Knowledge

Photophoresis

Source 📝

102:
coated with carbon nanotubes on one side. Experiments by Schafer, Kim, Vlassak and Keith suggest that photophoretic forces could levitate thin 10 centimetre-scale structures in Earth′s stratosphere indefinitely for the purpose of atmospheric science, especially monitoring high-altitude weather. They describe in 2022 a preliminary design fabricated with available methods of a 10 cm diameter device combining a levitating structure of two membranes 2 μm apart in a stiff support structure tested to have sufficient strength to withstand transport, deployment, and flight at 25 km altitude. Payload capacity is 300 mg and could support bidirectional radio communication at over 10 Mb/s and some navigational control. By upscaling the structure it might carry payloads of a few grams. They suggest uses for telecommunications, and deployment on Mars.
55:, light can heat up one side and gas molecules bounce from that surface with greater velocity, hence push the particle to the other side. Under certain conditions, with particles of diameter comparable to the wavelength of light, the phenomenon of a negative indirect photophoresis occurs, due to the unequal heat generation on the laser irradiation between the back and front sides of particles, this produces a temperature gradient in the medium around the particle such that molecules at the far side of the particle from the light source may get to heat up more, causing the particle to move towards the light source. 116:
layer reaches temperature equilibrium with the surface of the particle. Molecules with higher kinetic energy in the region of higher gas temperature impinge on the particle with greater momenta than molecules in the cold region; this causes a migration of particles in a direction opposite to the surface temperature gradient. The component of the photophoretic force responsible for this phenomenon is called the radiometric force. This comes as a result of uneven distribution of
382: 47:. In laser photophoresis, particles migrate once they have a refractive index different from their surrounding medium. The migration of particles is usually possible when the laser is slightly or not focused. A particle with a higher refractive index compared to its surrounding molecule moves away from the light source due to momentum transfer from absorbed and scattered light photons. This is referred to as a 176: 377:{\displaystyle \mathbf {F} _{\text{phot}}=-{\frac {\pi }{3}}\,\alpha \,\alpha _{\text{m}}{\frac {p}{\sqrt {{\overline {T_{\text{gas}}^{\text{out}}}}\,T_{\text{gas}}^{\text{in}}}}}\,r_{0}^{2}\,{\frac {I\,J_{1}}{{\frac {k}{r_{0}}}+4\sigma _{\text{SB}}\varepsilon \,T_{\text{black body}}^{3}}}\,\mathbf {e} _{z}} 101:
In 2021 Azadi, Popov et al. report "light-driven levitation of macroscopic polymer films with nanostructured surface as candidates for long-duration near-space flight" Using a light intensity comparable to sunlight, they levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film
97:
Recently, photophoresis has been suggested as a chiral sorting mechanism for single walled carbon nanotubes. The proposed method would utilise differences in the absorption spectra of semiconducting carbon nanotubes arising from optically excited transitions in electronic structure. If developed the
115:
larger compared to its surrounding medium. Indirect photophoresis occurs as a result of an increase in the kinetic energy of molecules when particles absorb incident light only on the irradiated side, thus creating a temperature gradient within the particle. In this situation the surrounding gas
536: 81:
The applications of photophoresis expand into the various divisions of science, thus physics, chemistry as well as in biology. Photophoresis is applied in particle trapping and levitation, in the field flow fractionation of particles, in the determination of
42:
medium. Separately from photophoresis, in a fluid mixture of different kinds of particles, the migration of some kinds of particles may be due to differences in their absorptions of thermal radiation and other thermal effects collectively known as
721: 440: 110:
Direct photophoresis is caused by the transfer of photon momentum to a particle by refraction and reflection. Movement of particles in the forward direction occurs when the particle is transparent and has an
880:
WATARAI, Hitoshi; MONJUSHIRO, Hideaki; TSUKAHARA, Satoshi; SUWA, Masayori; IIGUNI, Yoshinori (2004). "Migration Analysis of Micro-Particles in Liquids Using Microscopically Designed External Fields".
576: 603: 432: 1083: 638: 630: 1302:
Schafer, Benjamin C.; Kim, Jong-hyoung; Vlassak, Joost J.; Keith, David W. (2022-09-15). "Towards photophoretically levitating macroscopic sensors in the stratosphere".
405: 845:
Tehranian, Shahram; Giovane, Frank; Blum, Jürgen; Xu, Yu-Lin; Gustafson, Bo Å.S. (2001). "Photophoresis of micrometer-sized particles in the free-molecular regime".
826: 771: 168: 799: 966:
Kononenko, V. L.; Shimkus, J. K.; Giddings, J. C.; Myers, M. N. (1997). "Feasibility Studies on Photophoretic Effects in Field-Flow Fractionation of Particles".
744: 141: 1323: 801:(positive longitudinal photophoresis). For non-spherical particles, the average force exerted on the particle is given by the same equation where the radius 531:{\displaystyle {\overline {T_{\text{gas}}^{\text{out}}}}=T_{\text{gas}}^{\text{in}}+\alpha \left(T_{\text{black body}}-T_{\text{gas}}^{\text{in}}\right)} 91: 86:
and temperature of microscopic grains and also in the transport of soot particles in the atmosphere. The use of light in the separation of particles
1440:
Loesche, Christoph; Wurm, Gerhard; Teiser, Jens; Friedrich, Jon M.; Bischoff, Addi (2013-11-08). "Photophoretic Strength on Chondrules. 1. Modeling".
1172:
Azadi, Mohsen; Popov, George A.; Lu, Zhipeng; Eskenazi, Andy G.; Bang, Avery Ji Won; Campbell, Matthew F.; Hu, Howard; Bargatin, Igor (2021-02-12).
1528: 120:(source function within a particle). Indirect photophoretic force depends on the physical properties of the particle and the surrounding medium. 1336:
Yalamov, Yu.I; Kutukov, V.B; Shchukin, E.R (1976). "Theory of the photophoretic motion of the large-size volatile aerosol particle".
1379:
Loesche, C.; Husmann, T. (2016). "Photophoresis on particles hotter/colder than the ambient gas for the entire range of pressures".
1090: 1237:
Cortes, John; Stanczak, Christopher; Azadi, Mohsen; Narula, Maanav; Nicaise, Samuel M.; Hu, Howard; Bargatin, Igor (April 2020).
1504: 51:
force. This force depends on light intensity and particle size but has nothing to do with the surrounding medium. Just like in
1513: 1001:
Zhang, Xuefeng; Bar-Ziv, Ezra (1997). "A Novel Approach to Determine Thermal Conductivity of Micron-Sized Fuel Particles".
38:. The existence of this phenomenon is owed to a non-uniform distribution of temperature of an illuminated particle in a 923:
Rosenberg, M.; Mendis, D.A.; Sheehan, D.P. (1999). "Positively charged dust crystals induced by radiative heating".
90:
based on their optical properties, makes possible the separation of organic and inorganic particles of the same
1239:"Photophoretic Levitation: Photophoretic Levitation of Macroscopic Nanocardboard Plates (Adv. Mater. 16/2020)" 544: 1117:"Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral sorting" 1036:
Rohatschek, Hans (1996). "Levitation of stratospheric and mesospheric aerosols by gravito-photophoresis".
98:
technique would be orders of magnitudes faster than currently established ultracentrifugation techniques.
1533: 581: 410: 716:{\displaystyle T_{\text{black body}}={\sqrt{{\frac {I_{0}}{4\sigma _{\text{SB}}}}+T_{\text{opt}}^{4}}}} 608: 390: 70: 1459: 1398: 1345: 1260: 1185: 1128: 1045: 932: 804: 749: 146: 83: 8: 1084:""Photophoretic Particle Separation" in Institute of Hydrochemistry, Annual report, 2006" 776: 112: 1463: 1402: 1349: 1264: 1189: 1132: 1049: 936: 1483: 1449: 1422: 1388: 1303: 1284: 1250: 1214: 729: 126: 52: 48: 1471: 1174:"Controlled levitation of nanostructured thin films for sun-powered near-space flight" 858: 387:
where the mean temperature of the scattered gas is (thermal accommodation coefficient
1487: 1475: 1414: 1361: 1357: 1288: 1276: 1219: 1201: 1154: 1146: 1061: 1057: 1018: 983: 948: 905: 897: 862: 34:(hydrocolloids) start to migrate when illuminated by a sufficiently intense beam of 1426: 1467: 1410: 1406: 1353: 1268: 1209: 1193: 1136: 1053: 1010: 975: 940: 889: 854: 59: 143:, where the free mean path of the gas is much larger than the characteristic size 66: 117: 44: 1014: 979: 746:
is the thermal conductivity of the particle. The asymmetry factor for spheres
1522: 1479: 1418: 1365: 1280: 1205: 1150: 1065: 1022: 987: 952: 901: 866: 170:
of the suspended particle (direct photophoresis), the longitudinal force is
17: 1238: 1173: 1115:
Smith, David; Woods, Christopher; Seddon, Annela; Hoerber, Heinrich (2014).
1508: 1272: 1223: 1197: 1158: 909: 893: 931:(1). Institute of Electrical and Electronics Engineers (IEEE): 239–242. 69:
in the 1920s, though earlier observations were made by others including
1141: 1116: 944: 1393: 1308: 1255: 87: 58:
If the suspended particle is rotating, it will also experience the
1454: 31: 541:
and the black body temperature of the particle (net light flux
879: 828:
is now the radius of the respective volume-equivalent sphere.
965: 39: 35: 1081: 968:
Journal of Liquid Chromatography & Related Technologies
1439: 1236: 27: 26:
denotes the phenomenon that small particles suspended in
1114: 1335: 1324:
IEEE Journal of Selected Topics in Quantum Electronics
1301: 922: 888:(3). Japan Society for Analytical Chemistry: 423–434. 844: 807: 779: 752: 732: 641: 611: 584: 547: 443: 413: 393: 179: 149: 129: 1171: 65:
Discovery of photophoresis is usually attributed to
1127:(11). Royal Society of Chemistry (RSC): 5221–5228. 820: 793: 765: 738: 715: 624: 597: 570: 530: 426: 399: 376: 162: 135: 1520: 76: 847:International Journal of Heat and Mass Transfer 1378: 1077: 1075: 1000: 1035: 105: 1453: 1392: 1307: 1254: 1213: 1140: 1072: 557: 361: 342: 293: 286: 270: 251: 212: 208: 1338:Journal of Colloid and Interface Science 974:(16–17). Informa UK Limited: 2907–2929. 1529:Atomic, molecular, and optical physics 1521: 605:, temperature of the radiation field 571:{\displaystyle I=\varepsilon \,I_{0}} 407:, momentum accommodation coefficient 1082:C. Helmbrecht; C. Kykal; C. Haisch. 925:IEEE Transactions on Plasma Science 598:{\displaystyle \sigma _{\text{SB}}} 13: 1009:(1–6). Informa UK Limited: 79–95. 427:{\displaystyle \alpha _{\text{m}}} 14: 1545: 1498: 1003:Combustion Science and Technology 364: 182: 1433: 1372: 1329: 1316: 1295: 1230: 1411:10.1016/j.jaerosci.2016.08.013 1165: 1108: 1029: 994: 959: 916: 873: 838: 625:{\displaystyle T_{\text{opt}}} 1: 859:10.1016/s0017-9310(00)00230-1 853:(9). Elsevier BV: 1649–1657. 831: 77:Applications of photophoresis 1358:10.1016/0021-9797(76)90234-4 1089:. p. 11. Archived from 1058:10.1016/0021-8502(95)00556-0 578:, Stefan Boltzmann constant 461: 246: 7: 1472:10.1088/0004-637x/778/2/101 1344:(3). Elsevier BV: 564–571. 1044:(3). Elsevier BV: 467–475. 10: 1550: 1448:(2). IOP Publishing: 101. 1381:Journal of Aerosol Science 1038:Journal of Aerosol Science 15: 1442:The Astrophysical Journal 1015:10.1080/00102209708935738 980:10.1080/10826079708005600 16:Not to be confused with 400:{\displaystyle \alpha } 106:Theory of photophoresis 1514:Negative photophoresis 1387:. Elsevier BV: 55–71. 1273:10.1002/adma.202070127 1198:10.1126/sciadv.abe1127 1121:Phys. Chem. Chem. Phys 894:10.2116/analsci.20.423 822: 795: 767: 740: 717: 626: 599: 572: 532: 428: 401: 378: 164: 137: 823: 821:{\displaystyle r_{0}} 796: 768: 766:{\displaystyle J_{1}} 741: 718: 627: 600: 573: 533: 429: 402: 379: 165: 163:{\displaystyle r_{0}} 138: 71:Augustin-Jean Fresnel 805: 777: 750: 730: 639: 609: 582: 545: 441: 411: 391: 177: 147: 127: 84:thermal conductivity 1464:2013ApJ...778..101L 1403:2016JAerS.102...55L 1350:1976JCIS...57..564Y 1265:2020AdM....3206878C 1190:2021SciA....7.1127A 1133:2014PCCP...16.5221S 1050:1996JAerS..27..467R 937:1999ITPS...27..239R 882:Analytical Sciences 794:{\displaystyle 1/2} 704: 522: 483: 460: 357: 285: 266: 245: 113:index of refraction 1534:Physical phenomena 1507:in the context of 1243:Advanced Materials 1142:10.1039/c3cp54812k 818: 791: 763: 736: 713: 690: 622: 595: 568: 528: 508: 469: 446: 424: 397: 374: 343: 271: 252: 231: 160: 133: 53:Crookes radiometer 49:radiation pressure 945:10.1109/27.763125 739:{\displaystyle k} 711: 697: 685: 681: 649: 619: 592: 520: 515: 502: 481: 476: 464: 458: 453: 421: 359: 350: 336: 321: 268: 267: 264: 259: 249: 243: 238: 220: 206: 189: 136:{\displaystyle p} 1541: 1492: 1491: 1457: 1437: 1431: 1430: 1396: 1376: 1370: 1369: 1333: 1327: 1322:Ashkin, A. 2000 1320: 1314: 1313: 1311: 1299: 1293: 1292: 1258: 1234: 1228: 1227: 1217: 1178:Science Advances 1169: 1163: 1162: 1144: 1112: 1106: 1105: 1103: 1101: 1095: 1088: 1079: 1070: 1069: 1033: 1027: 1026: 998: 992: 991: 963: 957: 956: 920: 914: 913: 877: 871: 870: 842: 827: 825: 824: 819: 817: 816: 800: 798: 797: 792: 787: 772: 770: 769: 764: 762: 761: 745: 743: 742: 737: 722: 720: 719: 714: 712: 710: 705: 703: 698: 695: 686: 684: 683: 682: 679: 669: 668: 659: 656: 651: 650: 647: 631: 629: 628: 623: 621: 620: 617: 604: 602: 601: 596: 594: 593: 590: 577: 575: 574: 569: 567: 566: 537: 535: 534: 529: 527: 523: 521: 518: 516: 513: 504: 503: 500: 482: 479: 477: 474: 465: 459: 456: 454: 451: 445: 433: 431: 430: 425: 423: 422: 419: 406: 404: 403: 398: 383: 381: 380: 375: 373: 372: 367: 360: 358: 356: 351: 348: 338: 337: 334: 322: 320: 319: 307: 304: 303: 302: 288: 284: 279: 269: 265: 262: 260: 257: 250: 244: 241: 239: 236: 230: 228: 224: 222: 221: 218: 207: 199: 191: 190: 187: 185: 169: 167: 166: 161: 159: 158: 142: 140: 139: 134: 92:aerodynamic size 60:Yarkovsky effect 1549: 1548: 1544: 1543: 1542: 1540: 1539: 1538: 1519: 1518: 1501: 1496: 1495: 1438: 1434: 1377: 1373: 1334: 1330: 1321: 1317: 1300: 1296: 1249:(16): 2070127. 1235: 1231: 1170: 1166: 1113: 1109: 1099: 1097: 1093: 1086: 1080: 1073: 1034: 1030: 999: 995: 964: 960: 921: 917: 878: 874: 843: 839: 834: 812: 808: 806: 803: 802: 783: 778: 775: 774: 757: 753: 751: 748: 747: 731: 728: 727: 706: 699: 694: 678: 674: 670: 664: 660: 658: 657: 655: 646: 642: 640: 637: 636: 616: 612: 610: 607: 606: 589: 585: 583: 580: 579: 562: 558: 546: 543: 542: 517: 512: 499: 495: 494: 490: 478: 473: 455: 450: 444: 442: 439: 438: 418: 414: 412: 409: 408: 392: 389: 388: 368: 363: 362: 352: 347: 333: 329: 315: 311: 306: 305: 298: 294: 289: 287: 280: 275: 261: 256: 240: 235: 229: 223: 217: 213: 198: 186: 181: 180: 178: 175: 174: 154: 150: 148: 145: 144: 128: 125: 124: 108: 79: 67:Felix Ehrenhaft 21: 12: 11: 5: 1547: 1537: 1536: 1531: 1517: 1516: 1511: 1500: 1499:External links 1497: 1494: 1493: 1432: 1371: 1328: 1315: 1294: 1229: 1164: 1107: 1096:on 25 May 2019 1071: 1028: 993: 958: 915: 872: 836: 835: 833: 830: 815: 811: 790: 786: 782: 760: 756: 735: 725: 724: 709: 702: 693: 689: 677: 673: 667: 663: 654: 645: 615: 588: 565: 561: 556: 553: 550: 539: 538: 526: 511: 507: 498: 493: 489: 486: 472: 468: 463: 449: 417: 396: 385: 384: 371: 366: 355: 346: 341: 332: 328: 325: 318: 314: 310: 301: 297: 292: 283: 278: 274: 255: 248: 234: 227: 216: 211: 205: 202: 197: 194: 184: 157: 153: 132: 123:For pressures 118:radiant energy 107: 104: 78: 75: 45:thermophoresis 30:(aerosols) or 9: 6: 4: 3: 2: 1546: 1535: 1532: 1530: 1527: 1526: 1524: 1515: 1512: 1510: 1506: 1505:Photophoresis 1503: 1502: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1456: 1451: 1447: 1443: 1436: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1395: 1390: 1386: 1382: 1375: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1332: 1325: 1319: 1310: 1305: 1298: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1257: 1252: 1248: 1244: 1240: 1233: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1168: 1160: 1156: 1152: 1148: 1143: 1138: 1134: 1130: 1126: 1122: 1118: 1111: 1092: 1085: 1078: 1076: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1024: 1020: 1016: 1012: 1008: 1004: 997: 989: 985: 981: 977: 973: 969: 962: 954: 950: 946: 942: 938: 934: 930: 926: 919: 911: 907: 903: 899: 895: 891: 887: 883: 876: 868: 864: 860: 856: 852: 848: 841: 837: 829: 813: 809: 788: 784: 780: 758: 754: 733: 707: 700: 691: 687: 675: 671: 665: 661: 652: 643: 635: 634: 633: 613: 586: 563: 559: 554: 551: 548: 524: 509: 505: 496: 491: 487: 484: 470: 466: 447: 437: 436: 435: 415: 394: 369: 353: 344: 339: 330: 326: 323: 316: 312: 308: 299: 295: 290: 281: 276: 272: 253: 232: 225: 214: 209: 203: 200: 195: 192: 173: 172: 171: 155: 151: 130: 121: 119: 114: 103: 99: 95: 93: 89: 85: 74: 72: 68: 63: 61: 56: 54: 50: 46: 41: 37: 33: 29: 25: 24:Photophoresis 19: 18:photopheresis 1509:astrophysics 1445: 1441: 1435: 1384: 1380: 1374: 1341: 1337: 1331: 1326:, 6,841-856. 1318: 1297: 1246: 1242: 1232: 1181: 1177: 1167: 1124: 1120: 1110: 1098:. Retrieved 1091:the original 1041: 1037: 1031: 1006: 1002: 996: 971: 967: 961: 928: 924: 918: 885: 881: 875: 850: 846: 840: 726: 540: 386: 122: 109: 100: 96: 80: 64: 57: 23: 22: 773:is usually 1523:Categories 1394:1609.01341 1309:2209.08093 1256:1910.03900 832:References 648:black body 501:black body 349:black body 1488:118462436 1480:0004-637X 1455:1311.6660 1419:0021-8502 1366:0021-9797 1289:219111532 1281:0935-9648 1206:2375-2548 1151:1463-9076 1066:0021-8502 1023:0010-2202 988:1082-6076 953:0093-3813 902:0910-6340 867:0017-9310 676:σ 587:σ 555:ε 506:− 488:α 462:¯ 416:α 395:α 340:ε 331:σ 247:¯ 215:α 210:α 201:π 196:− 1427:67828668 1224:33579712 1159:24487342 910:15068282 88:aerosols 1460:Bibcode 1399:Bibcode 1346:Bibcode 1261:Bibcode 1215:7880585 1186:Bibcode 1129:Bibcode 1046:Bibcode 933:Bibcode 32:liquids 1486:  1478:  1425:  1417:  1364:  1287:  1279:  1222:  1212:  1204:  1157:  1149:  1100:25 May 1064:  1021:  986:  951:  908:  900:  865:  1484:S2CID 1450:arXiv 1423:S2CID 1389:arXiv 1304:arXiv 1285:S2CID 1251:arXiv 1184:(7). 1094:(PDF) 1087:(PDF) 40:fluid 36:light 1476:ISSN 1415:ISSN 1362:ISSN 1277:ISSN 1220:PMID 1202:ISSN 1155:PMID 1147:ISSN 1102:2019 1062:ISSN 1019:ISSN 984:ISSN 949:ISSN 906:PMID 898:ISSN 863:ISSN 188:phot 1468:doi 1446:778 1407:doi 1385:102 1354:doi 1269:doi 1210:PMC 1194:doi 1137:doi 1054:doi 1011:doi 1007:130 976:doi 941:doi 890:doi 855:doi 696:opt 618:opt 514:gas 475:gas 457:out 452:gas 258:gas 242:out 237:gas 28:gas 1525:: 1482:. 1474:. 1466:. 1458:. 1444:. 1421:. 1413:. 1405:. 1397:. 1383:. 1360:. 1352:. 1342:57 1340:. 1283:. 1275:. 1267:. 1259:. 1247:32 1245:. 1241:. 1218:. 1208:. 1200:. 1192:. 1180:. 1176:. 1153:. 1145:. 1135:. 1125:16 1123:. 1119:. 1074:^ 1060:. 1052:. 1042:27 1040:. 1017:. 1005:. 982:. 972:20 970:. 947:. 939:. 929:27 927:. 904:. 896:. 886:20 884:. 861:. 851:44 849:. 680:SB 632:) 591:SB 519:in 480:in 434:) 335:SB 263:in 94:. 73:. 62:. 1490:. 1470:: 1462:: 1452:: 1429:. 1409:: 1401:: 1391:: 1368:. 1356:: 1348:: 1312:. 1306:: 1291:. 1271:: 1263:: 1253:: 1226:. 1196:: 1188:: 1182:7 1161:. 1139:: 1131:: 1104:. 1068:. 1056:: 1048:: 1025:. 1013:: 990:. 978:: 955:. 943:: 935:: 912:. 892:: 869:. 857:: 814:0 810:r 789:2 785:/ 781:1 759:1 755:J 734:k 723:. 708:4 701:4 692:T 688:+ 672:4 666:0 662:I 653:= 644:T 614:T 564:0 560:I 552:= 549:I 525:) 510:T 497:T 492:( 485:+ 471:T 467:= 448:T 420:m 370:z 365:e 354:3 345:T 327:4 324:+ 317:0 313:r 309:k 300:1 296:J 291:I 282:2 277:0 273:r 254:T 233:T 226:p 219:m 204:3 193:= 183:F 156:0 152:r 131:p 20:.

Index

photopheresis
gas
liquids
light
fluid
thermophoresis
radiation pressure
Crookes radiometer
Yarkovsky effect
Felix Ehrenhaft
Augustin-Jean Fresnel
thermal conductivity
aerosols
aerodynamic size
index of refraction
radiant energy
doi
10.1016/s0017-9310(00)00230-1
ISSN
0017-9310
doi
10.2116/analsci.20.423
ISSN
0910-6340
PMID
15068282
Bibcode
1999ITPS...27..239R
doi
10.1109/27.763125

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.