Knowledge

Piwi-interacting RNA

Source πŸ“

226:
different transposons, including multiple Gypsies), all facing the same direction. Indeed, piRNAs are all found in clusters throughout animal genomes; these clusters may contain as few as ten or many thousands of piRNAs matching different, phased transposon fragments. This led to the idea in 2007 that in germlines a pool of primary piRNAs is processed from long single-stranded transcripts encoded by piRNA clusters in the opposite orientation of the transposons, so that the piRNAs can anneal to and complement the transposon-encoded transcripts, thereby triggering their degradation. Any transposon landing in the correct orientation in such a cluster will make the individual more or less immune to that transposon, and such an advantageous mutation will spread quickly through the population. The original mutations in the flamenco locus inhibited the transcription of the master transcript, thereby deactivating this defense system.
459:
Aub and Ago3 target cleavage triggers the 'phased' loading of piRNA into Piwi. Phasing begins with the targeting and cleavage of a complementary target by either Aub or Ago3 associated with a 'responder' piRNA. Once cleaved, the targeted transcript is then processed further by a mechanism believed to require the mitochondrial-associated endonuclease, Zucchini, which leads to the loading of Piwi protein with sequential fragments of the targeted transcript. In this way, the Aub or Ago3 'responder' piRNA sequence cleaves a complementary target that is then sliced at periodic intervals of approximately 27 nucleotides that are sequentially loaded into Piwi protein. Once loaded with piRNA, Piwi then enters the germ cell nucleus to co-transcriptionally silence nascent transcripts with complementarity to its piRNA guide. It is currently unknown whether phasing occurs in other organisms.
414:
the main factor in targeting deleterious transcripts through complementarity. Conversely, Ago3 piRNA sequences are predominantly of sense orientation to transposable element transcripts and are derived from the product of Aub cleavage of transposon mRNA. As such, Ago3 piRNA lack the ability to target transposable element transcripts directly. Therefore, it was proposed that Ago3 piRNA guide the production of piRNA that are loaded into Aub by targeting newly exported piRNA cluster transcripts. Several lines of evidence support the effect of Ago3 on the production of Aub piRNA, in particular from examining the piRNA repertoire in
4702: 315: 438:) was also shown to interact with both Aub and Ago3 through its Tudor domains while also binding itself through its N-terminal Krimper domain. Specifically, Krimper interacts with Ago3 in its piRNA-unloaded state, while its interaction with Aub is dependent on the symmetrical dimethylation of arginine residues in the N-terminal region of Aub. In Silkmoth germ cells, it was proposed that 306:, a species of yeast, as well in some plants, neither of which have been observed to contain the Piwi subfamily of Argonaute proteins. It has been observed that both rasiRNA and piRNA are maternally linked, but more specifically it is the Piwi protein subfamily that is maternally linked and therefore leads to the observation that rasiRNA and piRNA are maternally linked. 734:-based methods have been developed in response to this difficulty. However, research has also revealed that a number of annotated piRNAs may be false positives; for instance, a majority of piRNAs that were expressed in somatic non-gonadal tissues were considered to derive from non-coding RNA fragments. 458:
piRNA pathway can be separated into two branches: the cytoplasmic branch consisting of Aub and Ago3 operating the Ping-Pong mechanism, and the nuclear branch, pertaining to the co-transcriptional silencing of genomic loci by Piwi in the nucleus. Through complementary strategies, two studies show that
413:
or in mouse remains to be understood, but a leading hypothesis is that the interaction between Aub and Ago3 allows for a cyclic refinement of piRNA that are best suited to target active transposon sequences. Aub piRNA are primarily antisense to transposable element transcripts and are believed to be
589:. However, in mosquitoes the PIWI family of proteins has expanded and some PIWI proteins have been identified as antiviral such as Piwi4. As such virus infections in mosquitoes commonly produce virus-derived piRNAs in diverse positive-sense RNA, negative-sense RNA and single-stranded DNA viruses. 408:
where the piRNA associated with the two cytoplasmic Piwi proteins, Aubergine (Aub) and Argonaute-3 (Ago3) exhibited a high frequency of sequence complementarity over exactly 10 nucleotides at their 5β€² ends. This relationship is known as the "ping-pong signature" and is also observed in associated
299:
and some unicellular eukaryotes but its presence in mammals has not been determined, unlike piRNA which has been observed in many species of invertebrates and vertebrates including mammals; however, since proteins which associate with rasiRNA are found in both vertebrates and invertebrates, it is
225:
in the germline and by 2003 the idea had emerged that vestiges of transposons might produce dsRNAs required for the silencing of "live" transposons. Sequencing of the 200,000-bp flamenco locus was difficult, as it turned out to be packed with transposable element fragments (104 insertions of 42
237:
genome in the mid-20th century, and, through interbreeding, within decades all wild fruit flies worldwide (though not the reproductively isolated lab strains) contained the same P-element. Repression of further P-element activity, spreading near-simultaneously, appears to have occurred by the
1924:
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T (July 2006). "A novel class of small RNAs bind to MILI protein in mouse testes".
632:
that are known to bind symmetrically dimethylated arginine residues (sDMA) present in methylation motifs of Piwi proteins. Piwi proteins are symmetrically dimethylated by the PRMT5 methylosome complex, consisting of Valois (MEP50) and Capsulèen (dart5; PRMT5).
729:
platform sequencing. These techniques allow analysis of highly complex and heterogeneous RNA populations like piRNAs. Due to their small size, expression and amplification of small RNAs can be challenging, so specialised
538:. Three piwi subfamily proteins – MIWI, MIWI2, and MILI – have been found to be essential for spermatogenesis in mice. piRNAs direct the piwi proteins to their transposon targets. A decrease or absence of PIWI 395:
across species. Ping-pong signatures have been identified in very primitive animals such as sponges and cnidarians, pointing to the existence of the ping-pong cycle already in the early branches of metazoans.
542:
is correlated with an increased expression of transposons. Transposons have a high potential to cause deleterious effects on their hosts and, in fact, mutations in piRNA pathways have been found to reduce
487:
to transposon sequences, suggesting that transposons are targets of the piRNAs. In mammals, it appears that the activity of piRNAs in transposon silencing is most important during the development of the
445:
It is likely that the mechanism of Ping-Pong is primarily coordinated by Krimper but factors such as Kumo/Qin and Vasa, in addition to other factors have necessary functions in the Ping-Pong mechanism.
1420:
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. (April 2007). "A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish".
1289:
Carmen L, Michela B, Rosaria V, Gabriella M (2009). "Existence of snoRNA, microRNA, piRNA characteristics in a novel non-coding RNA: x-ncRNA and its biological implication in Homo sapiens".
1603:
Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, TavarΓ© S, Miska EA (July 2008).
3463:
Anne J, Mechler BM (May 2005). "Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase CapsulΓ©en".
330:
only, and this may indicate that they are the product of long single stranded precursor molecules. A primary processing pathway is suggested to be the only pathway used to produce
2462:
Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD (May 2009).
3304:"Aedes Anphevirus: an Insect-Specific Virus Distributed Worldwide in Aedes aegypti Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus Infection in Cells" 326:
of piRNAs is not yet fully understood, although possible mechanisms have been proposed. piRNAs show a significant strand bias, that is, they are derived from one strand of
3827:"Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes" 613:
Genetic screens examining fertility defects identified a number of proteins that are not Piwi-clade Argonautes, yet produce the same sterility phenotypes as Piwi mutants.
115: 98:
in 2001. By 2008, it was still unclear how piRNAs are generated, but potential methods had been suggested, and it was certain their biogenesis pathway is distinct from
295:. Unlike the Ago subfamily which is present in animals, plants, and fission yeast, the Piwi subfamily has only been found in animals. RasiRNA has been observed in 358:
at the tenth position. Since the piRNA involved in the ping pong cycle directs its attacks on transposon transcripts, the ping pong cycle acts only at the level of
3353:"Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs" 2656:
Xiol J, Spinelli P, Laussmann MA, Homolka D, Yang Z, Cora E, CoutΓ© Y, Conn S, Kadlec J, Sachidanandam R, Kaksonen M, Cusack S, Ephrussi A, Pillai RS (June 2014).
2078:, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (April 2007). "A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish". 173:. This 3’ modification is a 2’-O-methylation; the reason for this modification is not clear, but it has been suggested that it increases piRNA stability. 605:
effects. The activity of specific piRNAs in the epigenetic process also requires interactions between piwi proteins and HP1a, as well as other factors.
1360:
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (July 2006). "A distinct small RNA pathway silences selfish genetic elements in the germline".
3657:
Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, Kingston RE (July 2006). "Characterization of the piRNA complex from rat testes".
585:
ovarian somatic sheet (OSS) cells. Subsequent experimental studies have demonstrated that the piRNA pathway is not required for antiviral defence in
3400: 3288: 3223: 3157: 3092: 3015: 354:
from the 5’ end of the primary piRNA, producing the secondary piRNA. These secondary piRNAs are targeted toward sequences that possess an
1605:"Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline" 3737:
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (July 2006). "A germline-specific class of small RNAs binds mammalian Piwi proteins".
2131:
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (July 2006). "A germline-specific class of small RNAs binds mammalian Piwi proteins".
1976:
Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (May 2008).
844:"Computational Identification of piRNAs Using Features Based on RNA Sequence, Structure, Thermodynamic and Physicochemical Properties" 155:
have a 5’ monophosphate and a 3’ modification that acts to block either the 2’ or 3’ oxygen; this has also been confirmed to exist in
2905: 342:. Also proposed is a β€˜Ping Pong’ mechanism wherein primary piRNAs recognise their complementary targets and cause the recruitment of 79:(miRNA) in size (26–31 nucleotides as opposed to 21–24 nt), lack of sequence conservation, increased complexity, and independence of 4297: 991:"Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response" 20: 4035: 1184:"Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline" 425:
was reported to coordinate the loading of Ago3 with piRNA, in addition to interacting with both Aub and Ago3. However, the
268:, although they only seem to be required in males. In invertebrates, piRNAs have been detected in both the male and female 3414:
Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z (May 2009).
942:"Delving into the diversity of silencing pathways. Symposium on MicroRNAs and siRNAs: biological functions and mechanisms" 64:
and other spurious or repeat-derived transcripts, but can also be involved in the regulation of other genetic elements in
471:
function across species contributes to the difficulty in establishing the functionality of piRNAs. However, like other
143: 4383: 57: 2348:
Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP (October 2008).
205: 4670: 4141: 894:
Siomi MC, Sato K, Pezic D, Aravin AA (April 2011). "PIWI-interacting small RNAs: the vanguard of genome defence".
4675: 4069: 300:
possible that active rasiRNA exist and have yet to be observed in other animals. RasiRNAs have been observed in
3606:"Non-coding RNA fragments account for the majority of annotated piRNAs expressed in somatic non-gonadal tissues" 2795:
Le Thomas A, Rogers AK, Webster A, Marinov GK, Liao SE, Perkins EM, Hur JK, Aravin AA, TΓ³th KF (February 2013).
2297: 1035:"History of the discovery of a master locus producing piRNAs: the flamenco/COM locus in Drosophila melanogaster" 283:, suggesting that piRNA pathways may function in both of these areas and, therefore, may have multiple effects. 134:
and modes of action do vary somewhat between species, a number of features are conserved. piRNAs have no clear
1128:
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (May 2004).
4572: 4458: 2568:"Aub and Ago3 Are Recruited to Nuage through Two Mechanisms to Form a Ping-Pong Complex Assembled by Krimper" 2242:
Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ (September 2008).
2182:
Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (March 2004).
1571:
Lin H, Yin H, Beyret E, Findley S, Deng W (2008). "The role of the piRNA pathway in stem cell self-renewal".
515: 1473:
Kirino Y, Mourelatos Z (April 2007). "Mouse Piwi-interacting RNAs are 2β€²-O-methylated at their 3β€² termini".
2699:"Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis" 2074:
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E,
421:
The molecular mechanism that underpins Ping-Pong likely involves several piRNA pathway associated factors.
71:
piRNAs are mostly created from loci that function as transposon traps which provide a kind of RNA-mediated
3996: 4685: 4680: 4665: 4290: 4028: 2797:"Piwi induces piRNA-guided transcriptional silencing and establishment of a repressive chromatin state" 2748:"Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production" 2514:
Zhang Z, Xu J, Koppetsch BS, Wang J, Tipping C, Ma S, Weng Z, Theurkauf WE, Zamore PD (November 2011).
722: 573:
which are required to recognise and silence transposons, but this relationship is not well understood.
3173: 2405:
Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (March 2007).
1313:"Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans" 4008: 731: 558:(endo-siRNA) may have comparable and even redundant functionality in transposon control in mammalian 409:
piRNA from Mili and Miwi2 proteins isolated from mouse testes. The proposed function of Ping-Pong in
302: 2615:
Sato K, Iwasaki YW, Shibuya A, Carninci P, Tsuchizawa Y, Ishizu H, Siomi MC, Siomi H (August 2015).
4254: 3868:
Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ (April 2007).
1826:"Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing" 581:
In Dipterans viral-derived piRNAs derived from positive-sense RNA viruses were first identified in
359: 335: 3416:"Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability" 4731: 3870:"MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline" 2913: 989:
Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE (January 2007).
385:
contain adenine at their tenth position, and this has been interpreted as possible evidence of a
381: 193: 157: 4705: 4398: 4283: 4079: 2244:"A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice" 494: 368: 151: 2617:"Krimper Enforces an Antisense Bias on piRNA Pools by Binding AGO3 in the Drosophila Germline" 2566:
Webster A, Li S, Hur JK, Wachsmuth M, Bois JS, Perkins EM, Patel DJ, Aravin AA (August 2015).
2298:"Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila" 4582: 4426: 4171: 4021: 3394: 3282: 3217: 3151: 3086: 3028: 3009: 555: 372:, for instance, does have piRNAs, but does not appear to use the ping pong mechanism at all. 176:
More than 50,000 unique piRNA sequences have been discovered in mice and more than 13,000 in
3825:
Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (July 2006).
3174:
Varjak M, Maringer K, Watson M, Sreenu VB, Fredericks AC, Pondeville E; et al. (2017).
4617: 4600: 3746: 3666: 3046: 2969: 2860: 2516:"Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains" 2418: 2361: 2296:
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (March 2007).
2140: 1989: 1934: 1672: 1369: 1195: 61: 2464:"Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies" 2100: 1875:"proTRACβ€”a software for probabilistic piRNA cluster detection, visualization and analysis" 1442: 221:
proposed that double-stranded (ds) RNA-mediated silencing is implicated in the control of
8: 4612: 4595: 4453: 4336: 4151: 4100: 392: 200: 138:
motifs, due to the fact that the length of a piRNA varies between species (from 21 to 31
135: 3750: 3670: 3050: 2973: 2864: 2422: 2407:"A slicer-mediated mechanism for repeat-associated siRNA 5β€² end formation in Drosophila" 2365: 2144: 1993: 1938: 1676: 1659:
Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (November 2008).
1373: 1311:
Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (December 2006).
1199: 180:. It is thought that there are many hundreds of thousands of different piRNA species in 4506: 4501: 4376: 4181: 4176: 3931: 3904: 3851: 3826: 3808: 3783: 3770: 3690: 3630: 3605: 3581: 3556: 3532: 3507: 3488: 3440: 3415: 3382: 3328: 3303: 3265: 3238: 3200: 3175: 3134: 3107: 3069: 3030: 2992: 2958:"Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs" 2957: 2938: 2881: 2848: 2821: 2796: 2772: 2747: 2723: 2698: 2592: 2567: 2540: 2515: 2488: 2463: 2444: 2382: 2349: 2330: 2268: 2243: 2213: 2164: 2113: 2010: 1977: 1958: 1901: 1874: 1850: 1825: 1801: 1776: 1745: 1720: 1693: 1660: 1629: 1604: 1545: 1520: 1498: 1455: 1393: 1342: 1221: 1061: 1034: 966: 941: 919: 868: 843: 726: 386: 3108:"Comparative genomics of small RNA regulatory pathway components in vector mosquitoes" 2200: 2183: 1208: 1183: 1156: 1129: 859: 4590: 4552: 4545: 4496: 4448: 4186: 4095: 3971: 3936: 3891: 3856: 3813: 3762: 3725: 3682: 3635: 3586: 3537: 3480: 3445: 3374: 3333: 3270: 3205: 3139: 3074: 2997: 2930: 2886: 2826: 2777: 2728: 2679: 2638: 2597: 2545: 2493: 2436: 2387: 2322: 2273: 2205: 2156: 2105: 2056: 2015: 1978:"Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes" 1950: 1906: 1855: 1806: 1750: 1698: 1634: 1550: 1490: 1447: 1385: 1334: 1271: 1213: 1161: 1110: 1066: 1012: 971: 911: 873: 821: 566: 72: 3694: 3386: 3176:"Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses" 2942: 2658:"RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts" 2448: 2217: 2117: 1502: 1459: 1397: 1346: 1225: 4416: 4005:– a software for probabilistic piRNA cluster detection, visualization, and analysis 3961: 3926: 3916: 3881: 3846: 3838: 3803: 3795: 3774: 3754: 3715: 3674: 3625: 3617: 3576: 3568: 3527: 3519: 3492: 3472: 3435: 3427: 3364: 3323: 3315: 3260: 3250: 3195: 3187: 3129: 3119: 3064: 3054: 2987: 2977: 2922: 2876: 2868: 2816: 2808: 2767: 2759: 2718: 2710: 2669: 2628: 2587: 2579: 2535: 2527: 2483: 2475: 2426: 2377: 2369: 2334: 2312: 2263: 2255: 2195: 2168: 2148: 2095: 2087: 2046: 2005: 1997: 1962: 1942: 1896: 1886: 1845: 1837: 1796: 1788: 1740: 1732: 1688: 1680: 1624: 1616: 1580: 1540: 1532: 1482: 1437: 1429: 1377: 1324: 1261: 1203: 1151: 1141: 1100: 1056: 1046: 1002: 961: 953: 923: 903: 863: 855: 811: 773: 2051: 2034: 1105: 1088: 4540: 4511: 4223: 3886: 3869: 3255: 2633: 2616: 2583: 2531: 2259: 1620: 1146: 1007: 990: 816: 799: 539: 499: 222: 3704:"Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes" 3369: 3352: 1841: 1584: 1182:
Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (July 2001).
213:. The site of the mutations that made these Gypsies "dance" was thus called the 4632: 4535: 4352: 3990: 3572: 3523: 2674: 2657: 2479: 2350:"Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals" 2317: 2091: 1792: 1736: 1536: 1433: 1329: 1312: 778: 761: 476: 242: 34: 4002: 3621: 2926: 2872: 4720: 4567: 4557: 4438: 4393: 4371: 4207: 4136: 4064: 4059: 3191: 2075: 1089:"Identification and characterization of small RNAs involved in RNA silencing" 1051: 957: 721:
Major advances in the study of piRNA have been achieved thanks to the use of
511: 484: 442:
protein coordinates the Ping-Pong mechanism of Silkmoth Aub (Siwi) and Ago3.
426: 347: 291:
There are at least three Argonaute (Ago) subfamilies that have been found in
3678: 3124: 3059: 2982: 2763: 2714: 2431: 2406: 1684: 1661:"An epigenetic role for maternally inherited piRNAs in transposon silencing" 1381: 249:
and vertebrate piRNAs have been located in areas lacking any protein-coding
4726: 4650: 4470: 4443: 4388: 4307: 4264: 4074: 3975: 3940: 3895: 3860: 3817: 3766: 3729: 3686: 3639: 3590: 3541: 3484: 3449: 3378: 3337: 3274: 3209: 3143: 3078: 3001: 2934: 2890: 2830: 2812: 2781: 2732: 2683: 2642: 2601: 2549: 2497: 2440: 2391: 2326: 2277: 2209: 2160: 2109: 2060: 2019: 1954: 1910: 1891: 1859: 1810: 1754: 1702: 1638: 1554: 1494: 1451: 1389: 1338: 1275: 1217: 1165: 1114: 1070: 1016: 975: 915: 877: 825: 629: 535: 389: 276: 127: 3993:– a software for finding ping-pong signatures and ping-pong cycle activity 4562: 4408: 4275: 3319: 988: 570: 434: 90:
Double-stranded RNAs capable of silencing repeat elements, then known as
53: 4363: 3842: 3799: 3758: 3720: 3703: 2373: 2241: 2152: 2001: 1946: 1130:"Genetic and functional diversification of small RNA pathways in plants" 418:
ovaries that are mutant for Ago3 and the Tudor-domain protein Kumo/Qin.
4622: 4331: 4326: 4321: 4228: 4202: 3966: 3949: 2955: 1266: 1249: 602: 552: 480: 351: 323: 139: 131: 123: 3476: 3350: 3105: 3029:
Petit M, Mongelli V, Frangeul L, Blanc H, Jiggins F, Saleh MC (2016).
4486: 4259: 4233: 4115: 4105: 3905:"To be or not to be a piRNA: genomic origin and processing of piRNAs" 3867: 2849:"A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis" 1486: 682: 544: 531: 527: 523: 472: 439: 376: 331: 292: 280: 230: 162: 149:
is common to piRNAs in both vertebrates and invertebrates. piRNAs in
65: 49: 3431: 1923: 907: 318:
The ping-pong mechanism for the biogenesis of the 5β€² end of rasiRNA.
192:
In the early 1980s, it was discovered that a single mutation in the
75:
against transposon expansions and invasions. They are distinct from
4640: 4491: 4421: 4156: 3921: 3508:"A PCR-based method for detection and quantification of small RNAs" 2035:"Tiny RNA: Where do we come from? What are we? Where are we going?" 269: 210: 76: 3413: 2073: 1658: 1419: 4645: 4166: 4110: 939: 526:. These are active in the testes of mammals and are required for 363: 355: 339: 314: 265: 229:
A historical example of invasion and Piwi response is known: the
146: 41: 3736: 2130: 4660: 4655: 4605: 4238: 4146: 4013: 3239:"PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector Mosquitoes" 3236: 2347: 940:
Dorner S, Eulalio A, Huntzinger E, Izaurralde E (August 2007).
597:
piRNAs can be transmitted maternally, and based on research in
559: 489: 404:
The piRNA Ping-Pong pathway was first proposed from studies in
261: 196: 181: 2904:
Ozata DM, Gainetdinov I, Zoch A, Phillip D, Zamore PD (2019).
2404: 2184:"RISC assembly defects in the Drosophila RNAi mutant armitage" 672: 275:
At the cellular level, piRNAs have been found within both the
4463: 4120: 2956:
Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX; et al. (2010).
2794: 1288: 362:. One or both of these mechanisms may be acting in different 250: 103: 99: 80: 3656: 2655: 1127: 691: 3824: 2903: 1721:"Mighty Piwis defend the germline against genome intruders" 519: 468: 343: 166: 84: 52:
proteins. These piRNA complexes are mostly involved in the
45: 3784:"A novel class of small RNAs in mouse spermatogenic cells" 3555:
Tang F, Hayashi K, Kaneda M, Lao K, Surani MA (May 2008).
2614: 1602: 608: 522:
proteins that are part of a family of proteins called the
241:
piRNA clusters in genomes can now readily be detected via
118:
Proposed piRNA structure, with the 3β€² end 2β€²-O-methylation
16:
Largest class of small non-coding RNA molecules in animals
4525: 4346: 4045: 1032: 327: 170: 37: 3506:
Ro S, Park C, Jin J, Sanders KM, Yan W (December 2006).
3031:"piRNA pathway is not required for antiviral defense in 114: 2295: 1181: 2906:"PIWI-interacting RNAs: small RNAs with big functions" 106:, while rasiRNA is now considered a piRNA subspecies. 19:"piRNA" redirects here. For the software package, see 2565: 40:
molecules expressed in animal cells. piRNAs form RNA-
3554: 2746:
Han BW, Wang W, Li C, Weng Z, Zamore PD (May 2015).
2696: 2513: 2181: 1975: 1247: 893: 3999:– a web resource on classified and clustered piRNAs 3902: 3781: 3561:
Biochemical and Biophysical Research Communications
3512:
Biochemical and Biophysical Research Communications
1570: 1310: 616: 3557:"A sensitive multiplex assay for piRNA expression" 1872: 1718: 1359: 257:have been identified amidst protein-coding genes. 3603: 3301: 1518: 338:resulting in piRNAs with a tendency to target 5’ 4718: 3903:Le Thomas A, TΓ³th KF, Aravin AA (January 2014). 3782:Grivna ST, Beyret E, Wang Z, Lin H (July 2006). 3505: 2561: 2559: 1472: 1033:Goriaux C, ThΓ©ron E, Brasset E, Vaury C (2014). 334:piRNAs; in this mechanism, piRNA precursors are 3351:Parry R, Bishop C, De Hayr L, Asgari S (2019). 3169: 3167: 3106:Campbell CL, Black WC, Hess AM, Foy BD (2008). 2509: 2507: 1291:Journal of Bioinformatics and Sequence Analysis 797: 624:Many factors required for the piRNA pathway in 601:, piRNAs may be involved in maternally derived 1243: 1241: 1239: 1237: 1235: 889: 887: 4291: 4029: 2745: 2690: 2556: 2291: 2289: 2287: 1250:"Biogenesis and germline functions of piRNAs" 841: 375:A significant number of piRNAs identified in 3399:: CS1 maint: multiple names: authors list ( 3344: 3295: 3287:: CS1 maint: multiple names: authors list ( 3230: 3222:: CS1 maint: multiple names: authors list ( 3164: 3156:: CS1 maint: multiple names: authors list ( 3099: 3091:: CS1 maint: multiple names: authors list ( 3022: 3014:: CS1 maint: multiple names: authors list ( 2949: 2897: 2504: 2461: 2175: 2124: 2067: 1774: 1654: 1652: 1650: 1648: 1086: 199:could specifically activate all copies of a 83:for biogenesis, at least in animals. (Plant 3604:Tosar JP, Rovira C, Cayota A (2018-01-22). 3462: 2697:Mohn F, Handler D, Brennecke J (May 2015). 2398: 1714: 1712: 1282: 1248:Klattenhoff C, Theurkauf W (January 2008). 1232: 982: 884: 756: 754: 752: 750: 748: 746: 87:may play a role in rasi/piRNA biogenesis.) 4305: 4298: 4284: 4036: 4022: 3947: 2846: 2649: 2284: 2237: 2235: 2233: 2231: 2229: 2227: 1866: 1514: 1512: 1415: 1413: 1411: 1409: 1407: 798:Seto AG, Kingston RE, Lau NC (June 2007). 467:The wide variation in piRNA sequences and 3965: 3930: 3920: 3885: 3850: 3807: 3719: 3629: 3580: 3531: 3439: 3368: 3327: 3264: 3254: 3199: 3133: 3123: 3068: 3058: 2991: 2981: 2880: 2820: 2771: 2739: 2722: 2673: 2632: 2608: 2591: 2539: 2487: 2430: 2381: 2316: 2267: 2199: 2099: 2050: 2009: 1900: 1890: 1873:Rosenkranz D, Zischler H (January 2012). 1849: 1800: 1770: 1768: 1766: 1764: 1744: 1692: 1645: 1628: 1544: 1519:Faehnle CR, Joshua-Tor L (October 2007). 1475:Nature Structural & Molecular Biology 1441: 1328: 1265: 1207: 1177: 1175: 1155: 1145: 1104: 1060: 1050: 1028: 1026: 1006: 965: 867: 815: 777: 3237:Miesen P, Joosten J, van Rij RP (2016). 2788: 2455: 1823: 1709: 935: 933: 743: 551:. Further, it is thought that piRNA and 313: 113: 2842: 2840: 2341: 2224: 1777:"Small RNAs as guardians of the genome" 1509: 1404: 1306: 1304: 837: 835: 609:Accessory proteins of the piRNA pathway 475:, piRNAs are thought to be involved in 92:repeat associated small interfering RNA 21:Partition function for Interacting RNAs 4719: 2032: 2026: 1917: 1775:Malone CD, Hannon GJ (February 2009). 1761: 1598: 1596: 1594: 1566: 1564: 1466: 1172: 1082: 1080: 1023: 793: 791: 789: 4279: 4017: 3950:"piRNAs: from biogenesis to function" 3948:Weick EM, Miska EA (September 2014). 1719:O'Donnell KA, Boeke JD (April 2007). 1353: 930: 896:Nature Reviews Molecular Cell Biology 842:Monga I, Banerjee I (November 2019). 800:"The coming of age for Piwi proteins" 725:techniques, such as Solexa, 454, and 592: 498:and humans, piRNAs are necessary for 260:In mammals, piRNAs are found both in 3548: 2837: 1521:"Argonautes confront new small RNAs" 1301: 832: 576: 122:piRNAs have been identified in both 44:complexes through interactions with 3701: 1969: 1591: 1561: 1525:Current Opinion in Chemical Biology 1087:Aravin A, Tuschl T (October 2005). 1077: 786: 565:piRNAs appear to affect particular 187: 13: 3649: 3499: 109: 14: 4743: 4422:Micro 3984: 860:10.2174/1389202920666191129112705 350:of the transcript at a point ten 286: 4701: 4700: 4142:Cis-natural antisense transcript 4043: 716: 505: 479:, specifically the silencing of 449: 33:) is the largest class of small 4377:precursor, heterogenous nuclear 4070:Signal recognition particle RNA 3597: 3456: 3407: 1817: 4507:Trans-acting small interfering 4471:Enhancer RNAs 4389:Transfer 2847:Wang G, Reinke V (June 2008). 2101:11858/00-001M-0000-0012-E169-6 1443:11858/00-001M-0000-0012-E169-6 1121: 695:nuclear piRNA pathway proteins 346:proteins. This results in the 238:Piwi-interacting RNA pathway. 1: 4394:Ribosomal 4372:Messenger 2201:10.1016/S0092-8674(04)00218-1 2052:10.1016/j.tplants.2008.05.005 1209:10.1016/S0960-9822(01)00299-8 1106:10.1016/j.febslet.2005.08.009 737: 518:(RISC). piRNAs interact with 516:RNA-induced silencing complex 483:. The majority of piRNAs are 309: 3887:10.1016/j.devcel.2007.03.001 3256:10.1371/journal.ppat.1006017 2634:10.1016/j.molcel.2015.06.024 2584:10.1016/j.molcel.2015.07.017 2532:10.1016/j.molcel.2011.10.011 2260:10.1016/j.molcel.2008.09.003 1621:10.1016/j.molcel.2008.06.003 1147:10.1371/journal.pbio.0020104 1008:10.1016/j.devcel.2006.12.001 817:10.1016/j.molcel.2007.05.021 399: 94:(rasiRNA), were proposed in 7: 3370:10.1016/j.virol.2018.12.006 1842:10.1534/genetics.115.184119 1824:Kelleher ES (August 2016). 1585:10.1016/j.ydbio.2008.05.048 462: 10: 4748: 4573:Multicopy single-stranded 4417:Interferential 4229:Reverse transcribing virus 3573:10.1016/j.bbrc.2008.03.035 3524:10.1016/j.bbrc.2006.10.105 3302:Parry R, Asgari S (2018). 2675:10.1016/j.cell.2014.05.018 2480:10.1016/j.cell.2009.04.027 2318:10.1016/j.cell.2007.01.043 2092:10.1016/j.cell.2007.03.026 1793:10.1016/j.cell.2009.01.045 1737:10.1016/j.cell.2007.03.028 1537:10.1016/j.cbpa.2007.08.032 1434:10.1016/j.cell.2007.03.026 1330:10.1016/j.cell.2006.10.040 779:10.1016/j.cell.2006.07.012 762:"Molecular Biology Select" 723:next-generation sequencing 18: 4696: 4631: 4581: 4524: 4487:Guide 4479: 4407: 4362: 4345: 4314: 4247: 4216: 4195: 4129: 4088: 4052: 3622:10.1038/s42003-017-0001-7 2927:10.1038/s41576-018-0073-3 2873:10.1016/j.cub.2008.05.009 772:(2): 223–225. July 2006. 303:Schizosaccharomyces pombe 4449:Small nuclear 4009:piRNA cluster – database 3192:10.1128/mSphere.00144-17 3039:Proc Natl Acad Sci U S A 2962:Proc Natl Acad Sci U S A 1052:10.3389/fgene.2014.00257 958:10.1038/sj.embor.7401015 514:via the formation of an 4563:Genomic 4196:Cis-regulatory elements 4167:Repeat-associated siRNA 3831:Genes & Development 3788:Genes & Development 3708:Genes & Development 3679:10.1126/science.1130164 3125:10.1186/1471-2164-9-425 3060:10.1073/pnas.1607952113 3033:Drosophila melanogaster 2983:10.1073/pnas.0911353107 2914:Nature Reviews Genetics 2801:Genes & Development 2764:10.1126/science.aaa1264 2715:10.1126/science.aaa1039 2432:10.1126/science.1140494 2039:Trends in Plant Science 1685:10.1126/science.1165171 1382:10.1126/science.1129333 587:Drosophila melanogaster 235:Drosophila melanogaster 201:retrovirus-like element 158:Drosophila melanogaster 4666:Artificial chromosomes 4454:Small nucleolar 4080:Transfer-messenger RNA 3702:Kim VN (August 2006). 3610:Communications Biology 2813:10.1101/gad.209841.112 2033:Ruvkun G (July 2008). 1892:10.1186/1471-2105-13-5 677:piRNA pathway proteins 319: 152:Caenorhabditis elegans 142:), and the bias for a 119: 4459:Small Cajal Body RNAs 4172:Small interfering RNA 1573:Developmental Biology 1039:Frontiers in Genetics 620:Tudor domain proteins 556:small interfering RNA 317: 233:transposon invaded a 117: 62:transposable elements 4512:Subgenomic messenger 4427:Small interfering 4399:Transfer-messenger 4162:Piwi-interacting RNA 3320:10.1128/JVI.00224-18 665:Brother of Yb (BoYB) 510:piRNA has a role in 58:post-transcriptional 27:Piwi-interacting RNA 4101:Small nucleolar RNA 3843:10.1101/gad.1425706 3800:10.1101/gad.1434406 3759:10.1038/nature04917 3751:2006Natur.442..199G 3721:10.1101/gad.1456106 3671:2006Sci...313..363L 3051:2016PNAS..113E4218P 2974:2010PNAS..107.1606W 2865:2008CBio...18..861W 2423:2007Sci...315.1587G 2417:(5818): 1587–1590. 2374:10.1038/nature07415 2366:2008Natur.455.1193G 2360:(7217): 1193–1197. 2153:10.1038/nature04917 2145:2006Natur.442..199G 2002:10.1038/nature06904 1994:2008Natur.453..534T 1947:10.1038/nature04916 1939:2006Natur.442..203A 1677:2008Sci...322.1387B 1671:(5906): 1387–1392. 1374:2006Sci...313..320V 1200:2001CBio...11.1017A 668:Sister of Yb (SoYB) 136:secondary structure 4541:Chloroplast 4384:modified Messenger 4347:Ribonucleic acids 4182:Trans-acting siRNA 4177:Small temporal RNA 4152:Long noncoding RNA 3967:10.1242/dev.094037 3874:Developmental Cell 1879:BMC Bioinformatics 1267:10.1242/dev.006486 995:Developmental Cell 593:Epigenetic effects 567:methyltransferases 320: 217:. In 2001, Aravin 120: 4714: 4713: 4591:Xeno 4553:Complementary 4526:Deoxyribonucleic 4520: 4519: 4497:Small hairpin 4273: 4272: 4187:Short hairpin RNA 4096:Small nuclear RNA 4053:Protein synthesis 3960:(18): 3458–3471. 3837:(13): 1732–1743. 3794:(13): 1709–1714. 3745:(7099): 199–202. 3714:(15): 1993–1997. 3665:(5785): 363–367. 3477:10.1242/dev.01809 2758:(6236): 817–821. 2709:(6236): 812–817. 2139:(7099): 199–202. 1988:(7194): 534–538. 1933:(7099): 203–207. 1368:(5785): 320–324. 1194:(13): 1017–1027. 1099:(26): 5830–5840. 577:Antiviral effects 569:that perform the 73:adaptive immunity 4739: 4704: 4703: 4681:Yeast 4502:Small temporal 4432:Piwi-interacting 4360: 4359: 4356: 4337:Deoxynucleotides 4300: 4293: 4286: 4277: 4276: 4038: 4031: 4024: 4015: 4014: 3979: 3969: 3944: 3934: 3924: 3899: 3889: 3864: 3854: 3821: 3811: 3778: 3733: 3723: 3698: 3644: 3643: 3633: 3601: 3595: 3594: 3584: 3567:(4): 1190–1194. 3552: 3546: 3545: 3535: 3503: 3497: 3496: 3460: 3454: 3453: 3443: 3411: 3405: 3404: 3398: 3390: 3372: 3348: 3342: 3341: 3331: 3299: 3293: 3292: 3286: 3278: 3268: 3258: 3249:(12): e1006017. 3234: 3228: 3227: 3221: 3213: 3203: 3171: 3162: 3161: 3155: 3147: 3137: 3127: 3103: 3097: 3096: 3090: 3082: 3072: 3062: 3045:(29): E4218-27. 3026: 3020: 3019: 3013: 3005: 2995: 2985: 2953: 2947: 2946: 2910: 2901: 2895: 2894: 2884: 2844: 2835: 2834: 2824: 2792: 2786: 2785: 2775: 2743: 2737: 2736: 2726: 2694: 2688: 2687: 2677: 2668:(7): 1698–1711. 2653: 2647: 2646: 2636: 2612: 2606: 2605: 2595: 2563: 2554: 2553: 2543: 2511: 2502: 2501: 2491: 2459: 2453: 2452: 2434: 2402: 2396: 2395: 2385: 2345: 2339: 2338: 2320: 2311:(6): 1089–1103. 2302: 2293: 2282: 2281: 2271: 2239: 2222: 2221: 2203: 2179: 2173: 2172: 2128: 2122: 2121: 2103: 2071: 2065: 2064: 2054: 2030: 2024: 2023: 2013: 1973: 1967: 1966: 1921: 1915: 1914: 1904: 1894: 1870: 1864: 1863: 1853: 1836:(4): 1513–1531. 1821: 1815: 1814: 1804: 1772: 1759: 1758: 1748: 1716: 1707: 1706: 1696: 1656: 1643: 1642: 1632: 1600: 1589: 1588: 1568: 1559: 1558: 1548: 1516: 1507: 1506: 1487:10.1038/nsmb1218 1470: 1464: 1463: 1445: 1417: 1402: 1401: 1357: 1351: 1350: 1332: 1323:(6): 1193–1207. 1308: 1299: 1298: 1286: 1280: 1279: 1269: 1245: 1230: 1229: 1211: 1179: 1170: 1169: 1159: 1149: 1125: 1119: 1118: 1108: 1084: 1075: 1074: 1064: 1054: 1030: 1021: 1020: 1010: 986: 980: 979: 969: 937: 928: 927: 891: 882: 881: 871: 848:Current Genomics 839: 830: 829: 819: 795: 784: 783: 781: 758: 709:SetDB1 (Eggless) 687:Maelstrom (Mael) 643:Spindle-E (SpnE) 437: 223:retrotransposons 188:History and loci 4747: 4746: 4742: 4741: 4740: 4738: 4737: 4736: 4717: 4716: 4715: 4710: 4692: 4633:Cloning vectors 4627: 4613:Locked 4577: 4527: 4516: 4475: 4403: 4350: 4349: 4341: 4310: 4304: 4274: 4269: 4243: 4224:Retrotransposon 4212: 4191: 4130:Gene regulation 4125: 4084: 4048: 4042: 3987: 3982: 3652: 3650:Further reading 3647: 3602: 3598: 3553: 3549: 3504: 3500: 3461: 3457: 3432:10.1038/ncb1872 3412: 3408: 3392: 3391: 3349: 3345: 3300: 3296: 3280: 3279: 3235: 3231: 3215: 3214: 3172: 3165: 3149: 3148: 3104: 3100: 3084: 3083: 3027: 3023: 3007: 3006: 2954: 2950: 2908: 2902: 2898: 2859:(12): 861–867. 2853:Current Biology 2845: 2838: 2793: 2789: 2744: 2740: 2695: 2691: 2654: 2650: 2613: 2609: 2564: 2557: 2512: 2505: 2460: 2456: 2403: 2399: 2346: 2342: 2300: 2294: 2285: 2240: 2225: 2180: 2176: 2129: 2125: 2072: 2068: 2031: 2027: 1974: 1970: 1922: 1918: 1871: 1867: 1822: 1818: 1773: 1762: 1717: 1710: 1657: 1646: 1601: 1592: 1569: 1562: 1517: 1510: 1471: 1467: 1418: 1405: 1358: 1354: 1309: 1302: 1287: 1283: 1246: 1233: 1188:Current Biology 1180: 1173: 1126: 1122: 1085: 1078: 1031: 1024: 987: 983: 938: 931: 908:10.1038/nrm3089 892: 885: 840: 833: 796: 787: 760: 759: 744: 740: 719: 697: 679: 622: 611: 599:D. melanogaster 595: 579: 549:D. melanogaster 540:gene expression 534:development in 508: 500:spermatogenesis 465: 452: 433: 402: 382:D. melanogaster 312: 289: 247:D. melanogaster 245:methods. While 190: 178:D. melanogaster 130:, and although 112: 110:Characteristics 24: 17: 12: 11: 5: 4745: 4735: 4734: 4732:Non-coding RNA 4729: 4712: 4711: 4709: 4708: 4697: 4694: 4693: 4691: 4690: 4689: 4688: 4683: 4678: 4673: 4663: 4658: 4653: 4648: 4643: 4637: 4635: 4629: 4628: 4626: 4625: 4620: 4618:Peptide 4615: 4610: 4609: 4608: 4603: 4598: 4596:Glycol 4587: 4585: 4579: 4578: 4576: 4575: 4570: 4565: 4560: 4555: 4550: 4549: 4548: 4543: 4532: 4530: 4522: 4521: 4518: 4517: 4515: 4514: 4509: 4504: 4499: 4494: 4489: 4483: 4481: 4477: 4476: 4474: 4473: 4468: 4467: 4466: 4461: 4456: 4451: 4441: 4436: 4435: 4434: 4429: 4424: 4413: 4411: 4405: 4404: 4402: 4401: 4396: 4391: 4386: 4381: 4380: 4379: 4368: 4366: 4357: 4343: 4342: 4340: 4339: 4334: 4329: 4324: 4318: 4316: 4312: 4311: 4308:nucleic acids 4303: 4302: 4295: 4288: 4280: 4271: 4270: 4268: 4267: 4262: 4257: 4255:Telomerase RNA 4251: 4249: 4245: 4244: 4242: 4241: 4236: 4231: 4226: 4220: 4218: 4214: 4213: 4211: 4210: 4205: 4199: 4197: 4193: 4192: 4190: 4189: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4139: 4133: 4131: 4127: 4126: 4124: 4123: 4118: 4113: 4108: 4103: 4098: 4092: 4090: 4089:RNA processing 4086: 4085: 4083: 4082: 4077: 4072: 4067: 4062: 4056: 4054: 4050: 4049: 4041: 4040: 4033: 4026: 4018: 4012: 4011: 4006: 4000: 3994: 3986: 3985:External links 3983: 3981: 3980: 3945: 3922:10.1186/gb4154 3909:Genome Biology 3900: 3880:(4): 503–514. 3865: 3822: 3779: 3734: 3699: 3653: 3651: 3648: 3646: 3645: 3596: 3547: 3518:(3): 756–763. 3498: 3471:(9): 2167–77. 3455: 3420:Nat. Cell Biol 3406: 3343: 3294: 3229: 3163: 3098: 3021: 2968:(4): 1606–11. 2948: 2896: 2836: 2807:(4): 390–399. 2787: 2738: 2689: 2648: 2627:(4): 553–563. 2621:Molecular Cell 2607: 2578:(4): 564–575. 2572:Molecular Cell 2555: 2526:(4): 572–584. 2520:Molecular Cell 2503: 2474:(3): 509–521. 2454: 2397: 2340: 2283: 2254:(6): 785–799. 2248:Molecular Cell 2223: 2194:(6): 831–841. 2174: 2123: 2066: 2045:(7): 313–316. 2025: 1968: 1916: 1865: 1816: 1787:(4): 656–668. 1760: 1708: 1644: 1609:Molecular Cell 1590: 1560: 1531:(5): 569–577. 1508: 1481:(4): 347–348. 1465: 1403: 1352: 1300: 1281: 1231: 1171: 1120: 1076: 1022: 981: 952:(8): 723–729. 929: 902:(4): 246–258. 883: 854:(7): 508–518. 831: 810:(5): 603–609. 804:Molecular Cell 785: 741: 739: 736: 718: 715: 714: 713: 710: 707: 704: 701: 696: 690: 689: 688: 685: 678: 671: 670: 669: 666: 663: 656: 653: 652:Vreteno (Vret) 650: 647: 644: 641: 638: 621: 615: 610: 607: 594: 591: 578: 575: 507: 504: 492:, and in both 477:gene silencing 464: 461: 451: 448: 401: 398: 311: 308: 288: 287:Classification 285: 243:bioinformatics 215:flamenco locus 209:in the female 189: 186: 111: 108: 15: 9: 6: 4: 3: 2: 4744: 4733: 4730: 4728: 4725: 4724: 4722: 4707: 4699: 4698: 4695: 4687: 4684: 4682: 4679: 4677: 4674: 4672: 4669: 4668: 4667: 4664: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4638: 4636: 4634: 4630: 4624: 4621: 4619: 4616: 4614: 4611: 4607: 4604: 4602: 4601:Threose 4599: 4597: 4594: 4593: 4592: 4589: 4588: 4586: 4584: 4580: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4558:Deoxyribozyme 4556: 4554: 4551: 4547: 4546:Mitochondrial 4544: 4542: 4539: 4538: 4537: 4534: 4533: 4531: 4529: 4523: 4513: 4510: 4508: 4505: 4503: 4500: 4498: 4495: 4493: 4490: 4488: 4485: 4484: 4482: 4478: 4472: 4469: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4446: 4445: 4442: 4440: 4437: 4433: 4430: 4428: 4425: 4423: 4420: 4419: 4418: 4415: 4414: 4412: 4410: 4406: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4378: 4375: 4374: 4373: 4370: 4369: 4367: 4365: 4364:Translational 4361: 4358: 4354: 4348: 4344: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4319: 4317: 4313: 4309: 4301: 4296: 4294: 4289: 4287: 4282: 4281: 4278: 4266: 4263: 4261: 4258: 4256: 4253: 4252: 4250: 4246: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4221: 4219: 4215: 4209: 4208:SECIS element 4206: 4204: 4201: 4200: 4198: 4194: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4137:Antisense RNA 4135: 4134: 4132: 4128: 4122: 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4093: 4091: 4087: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4065:Ribosomal RNA 4063: 4061: 4060:Messenger RNA 4058: 4057: 4055: 4051: 4047: 4039: 4034: 4032: 4027: 4025: 4020: 4019: 4016: 4010: 4007: 4004: 4001: 3998: 3995: 3992: 3989: 3988: 3977: 3973: 3968: 3963: 3959: 3955: 3951: 3946: 3942: 3938: 3933: 3928: 3923: 3918: 3914: 3910: 3906: 3901: 3897: 3893: 3888: 3883: 3879: 3875: 3871: 3866: 3862: 3858: 3853: 3848: 3844: 3840: 3836: 3832: 3828: 3823: 3819: 3815: 3810: 3805: 3801: 3797: 3793: 3789: 3785: 3780: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3744: 3740: 3735: 3731: 3727: 3722: 3717: 3713: 3709: 3705: 3700: 3696: 3692: 3688: 3684: 3680: 3676: 3672: 3668: 3664: 3660: 3655: 3654: 3641: 3637: 3632: 3627: 3623: 3619: 3615: 3611: 3607: 3600: 3592: 3588: 3583: 3578: 3574: 3570: 3566: 3562: 3558: 3551: 3543: 3539: 3534: 3529: 3525: 3521: 3517: 3513: 3509: 3502: 3494: 3490: 3486: 3482: 3478: 3474: 3470: 3466: 3459: 3451: 3447: 3442: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3402: 3396: 3388: 3384: 3380: 3376: 3371: 3366: 3362: 3358: 3354: 3347: 3339: 3335: 3330: 3325: 3321: 3317: 3313: 3309: 3305: 3298: 3290: 3284: 3276: 3272: 3267: 3262: 3257: 3252: 3248: 3244: 3240: 3233: 3225: 3219: 3211: 3207: 3202: 3197: 3193: 3189: 3185: 3181: 3177: 3170: 3168: 3159: 3153: 3145: 3141: 3136: 3131: 3126: 3121: 3117: 3113: 3109: 3102: 3094: 3088: 3080: 3076: 3071: 3066: 3061: 3056: 3052: 3048: 3044: 3040: 3036: 3034: 3025: 3017: 3011: 3003: 2999: 2994: 2989: 2984: 2979: 2975: 2971: 2967: 2963: 2959: 2952: 2944: 2940: 2936: 2932: 2928: 2924: 2921:(2): 89–108. 2920: 2916: 2915: 2907: 2900: 2892: 2888: 2883: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2850: 2843: 2841: 2832: 2828: 2823: 2818: 2814: 2810: 2806: 2802: 2798: 2791: 2783: 2779: 2774: 2769: 2765: 2761: 2757: 2753: 2749: 2742: 2734: 2730: 2725: 2720: 2716: 2712: 2708: 2704: 2700: 2693: 2685: 2681: 2676: 2671: 2667: 2663: 2659: 2652: 2644: 2640: 2635: 2630: 2626: 2622: 2618: 2611: 2603: 2599: 2594: 2589: 2585: 2581: 2577: 2573: 2569: 2562: 2560: 2551: 2547: 2542: 2537: 2533: 2529: 2525: 2521: 2517: 2510: 2508: 2499: 2495: 2490: 2485: 2481: 2477: 2473: 2469: 2465: 2458: 2450: 2446: 2442: 2438: 2433: 2428: 2424: 2420: 2416: 2412: 2408: 2401: 2393: 2389: 2384: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2351: 2344: 2336: 2332: 2328: 2324: 2319: 2314: 2310: 2306: 2299: 2292: 2290: 2288: 2279: 2275: 2270: 2265: 2261: 2257: 2253: 2249: 2245: 2238: 2236: 2234: 2232: 2230: 2228: 2219: 2215: 2211: 2207: 2202: 2197: 2193: 2189: 2185: 2178: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2127: 2119: 2115: 2111: 2107: 2102: 2097: 2093: 2089: 2085: 2081: 2077: 2070: 2062: 2058: 2053: 2048: 2044: 2040: 2036: 2029: 2021: 2017: 2012: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1932: 1928: 1920: 1912: 1908: 1903: 1898: 1893: 1888: 1884: 1880: 1876: 1869: 1861: 1857: 1852: 1847: 1843: 1839: 1835: 1831: 1827: 1820: 1812: 1808: 1803: 1798: 1794: 1790: 1786: 1782: 1778: 1771: 1769: 1767: 1765: 1756: 1752: 1747: 1742: 1738: 1734: 1730: 1726: 1722: 1715: 1713: 1704: 1700: 1695: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1653: 1651: 1649: 1640: 1636: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1599: 1597: 1595: 1586: 1582: 1578: 1574: 1567: 1565: 1556: 1552: 1547: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1513: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1469: 1461: 1457: 1453: 1449: 1444: 1439: 1435: 1431: 1427: 1423: 1416: 1414: 1412: 1410: 1408: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1348: 1344: 1340: 1336: 1331: 1326: 1322: 1318: 1314: 1307: 1305: 1297:(2): 031–040. 1296: 1292: 1285: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1244: 1242: 1240: 1238: 1236: 1227: 1223: 1219: 1215: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1178: 1176: 1167: 1163: 1158: 1153: 1148: 1143: 1139: 1135: 1131: 1124: 1116: 1112: 1107: 1102: 1098: 1094: 1090: 1083: 1081: 1072: 1068: 1063: 1058: 1053: 1048: 1044: 1040: 1036: 1029: 1027: 1018: 1014: 1009: 1004: 1000: 996: 992: 985: 977: 973: 968: 963: 959: 955: 951: 947: 943: 936: 934: 925: 921: 917: 913: 909: 905: 901: 897: 890: 888: 879: 875: 870: 865: 861: 857: 853: 849: 845: 838: 836: 827: 823: 818: 813: 809: 805: 801: 794: 792: 790: 780: 775: 771: 767: 763: 757: 755: 753: 751: 749: 747: 742: 735: 733: 728: 724: 717:Investigation 711: 708: 705: 702: 699: 698: 694: 686: 684: 681: 680: 676: 667: 664: 661: 657: 654: 651: 648: 645: 642: 639: 636: 635: 634: 631: 630:Tudor domains 627: 619: 614: 606: 604: 600: 590: 588: 584: 574: 572: 568: 563: 561: 557: 554: 550: 546: 541: 537: 536:invertebrates 533: 529: 525: 521: 517: 513: 512:RNA silencing 506:RNA silencing 503: 501: 497: 496: 491: 486: 482: 478: 474: 470: 460: 457: 450:piRNA Phasing 447: 443: 441: 436: 431: 428: 427:Tudor protein 424: 419: 417: 412: 407: 397: 394: 391: 388: 384: 383: 378: 373: 371: 370: 365: 361: 360:transcription 357: 353: 349: 345: 341: 337: 333: 329: 325: 316: 307: 305: 304: 298: 294: 284: 282: 278: 273: 271: 267: 263: 258: 256: 252: 248: 244: 239: 236: 232: 227: 224: 220: 216: 212: 208: 207: 202: 198: 195: 185: 183: 179: 174: 172: 168: 164: 160: 159: 154: 153: 148: 145: 141: 137: 133: 129: 128:invertebrates 125: 116: 107: 105: 101: 97: 93: 88: 86: 82: 78: 74: 69: 67: 63: 60:silencing of 59: 55: 51: 47: 43: 39: 36: 32: 28: 22: 4676:Bacterial 4651:Lambda phage 4431: 4315:Constituents 4265:List of RNAs 4161: 4075:Transfer RNA 3957: 3953: 3912: 3908: 3877: 3873: 3834: 3830: 3791: 3787: 3742: 3738: 3711: 3707: 3662: 3658: 3613: 3609: 3599: 3564: 3560: 3550: 3515: 3511: 3501: 3468: 3464: 3458: 3426:(5): 652–8. 3423: 3419: 3409: 3395:cite journal 3360: 3356: 3346: 3311: 3307: 3297: 3283:cite journal 3246: 3242: 3232: 3218:cite journal 3183: 3179: 3152:cite journal 3115: 3112:BMC Genomics 3111: 3101: 3087:cite journal 3042: 3038: 3032: 3024: 3010:cite journal 2965: 2961: 2951: 2918: 2912: 2899: 2856: 2852: 2804: 2800: 2790: 2755: 2751: 2741: 2706: 2702: 2692: 2665: 2661: 2651: 2624: 2620: 2610: 2575: 2571: 2523: 2519: 2471: 2467: 2457: 2414: 2410: 2400: 2357: 2353: 2343: 2308: 2304: 2251: 2247: 2191: 2187: 2177: 2136: 2132: 2126: 2086:(1): 69–82. 2083: 2079: 2069: 2042: 2038: 2028: 1985: 1981: 1971: 1930: 1926: 1919: 1882: 1878: 1868: 1833: 1829: 1819: 1784: 1780: 1731:(1): 37–44. 1728: 1724: 1668: 1664: 1615:(1): 79–90. 1612: 1608: 1576: 1572: 1528: 1524: 1478: 1474: 1468: 1428:(1): 69–82. 1425: 1421: 1365: 1361: 1355: 1320: 1316: 1294: 1290: 1284: 1257: 1253: 1191: 1187: 1137: 1134:PLOS Biology 1133: 1123: 1096: 1093:FEBS Letters 1092: 1042: 1038: 1001:(1): 45–55. 998: 994: 984: 949: 946:EMBO Reports 945: 899: 895: 851: 847: 807: 803: 769: 765: 720: 700:Rhino (HP1D) 692: 674: 659: 625: 623: 617: 612: 598: 596: 586: 582: 580: 571:methylations 564: 548: 509: 493: 466: 455: 453: 444: 429: 422: 420: 415: 410: 405: 403: 390:biosynthetic 380: 374: 367: 321: 301: 296: 290: 274: 259: 254: 253:, piRNAs in 246: 240: 234: 228: 218: 214: 204: 191: 177: 175: 156: 150: 121: 95: 91: 89: 70: 30: 26: 25: 4671:P1-derived 4439:Antisense 4332:Nucleotides 4327:Nucleosides 4322:Nucleobases 3991:PingPongPro 3954:Development 3465:Development 3243:PLOS Pathog 1254:Development 1140:(5): E104. 649:Tejas (Tej) 637:Tudor (Tud) 481:transposons 352:nucleotides 336:transcribed 140:nucleotides 124:vertebrates 48:-subfamily 4721:Categories 4623:Morpholino 4536:Organellar 4444:Processual 4409:Regulatory 4353:non-coding 4203:Riboswitch 4147:CRISPR RNA 3997:piRNA Bank 3915:(1): 204. 3363:: 89–100. 1579:(2): 479. 1260:(1): 3–9. 738:References 693:Drosophila 675:Drosophila 673:Non-Tudor 626:Drosophila 618:Drosophila 603:epigenetic 583:Drosophila 553:endogenous 524:Argonautes 495:C. elegans 473:small RNAs 456:Drosophila 416:Drosophila 411:Drosophila 406:Drosophila 369:C. elegans 324:biogenesis 310:Biogenesis 297:Drosophila 293:eukaryotes 255:C. elegans 132:biogenesis 96:Drosophila 54:epigenetic 35:non-coding 4583:Analogues 4568:Hachimoji 4351:(coding, 4306:Types of 4260:Vault RNA 4234:RNA virus 4217:Parasites 4116:RNase MRP 4106:Guide RNA 4044:Types of 545:fertility 532:stem-cell 528:germ-cell 485:antisense 400:Ping Pong 393:mechanism 387:conserved 377:zebrafish 332:pachytene 281:cytoplasm 270:germlines 231:P-element 194:fruit fly 163:zebrafish 66:germ line 50:Argonaute 4706:Category 4641:Phagemid 4492:Ribozyme 4157:MicroRNA 3976:25183868 3941:24467990 3896:17395546 3861:16766679 3818:16766680 3767:16751776 3730:16882976 3695:21150160 3687:16778019 3640:30271890 3616:(1): 2. 3591:18348866 3542:17084816 3485:15800004 3450:19377467 3387:58572380 3379:30583288 3357:Virology 3338:29950416 3275:28033427 3210:28497119 3144:18801182 3079:27357659 3002:20080648 2943:53565676 2935:30446728 2891:18501605 2831:23392610 2782:25977554 2733:25977553 2684:24910301 2643:26212455 2602:26295961 2550:22099305 2498:19395009 2449:11513777 2441:17322028 2392:18830242 2327:17346786 2278:18922463 2218:17588448 2210:15035985 2161:16751776 2118:13373509 2110:17418787 2076:Moens CB 2061:18562240 2020:18404147 1955:16751777 1911:22233380 1885:(5): 5. 1860:27516614 1830:Genetics 1811:19239887 1755:17418784 1703:19039138 1639:18571451 1555:17928262 1503:31193964 1495:17384647 1460:13373509 1452:17418787 1398:40471466 1390:16809489 1347:16838469 1339:17174894 1276:18032451 1226:14767819 1218:11470406 1166:15024409 1115:16153643 1071:25136352 1017:17199040 976:17599087 916:21427766 878:32655289 826:17560367 727:Illumina 712:SuVar3–9 703:Deadlock 640:Qin/Kumo 628:contain 463:Function 348:cleavage 340:uridines 211:germline 77:microRNA 4646:Plasmid 4111:RNase P 4003:proTRAC 3932:4053809 3852:1522070 3809:1522066 3775:3185036 3747:Bibcode 3667:Bibcode 3659:Science 3631:6052916 3582:3855189 3533:1934510 3493:6810484 3441:2746449 3329:6096813 3308:J Virol 3266:5198996 3201:5415634 3180:mSphere 3135:2566310 3118:: 425. 3070:4961201 3047:Bibcode 2993:2824396 2970:Bibcode 2882:2494713 2861:Bibcode 2822:3589556 2773:4545291 2752:Science 2724:4988486 2703:Science 2593:4545750 2541:3236501 2489:2768572 2419:Bibcode 2411:Science 2383:3837422 2362:Bibcode 2335:2246942 2269:2730041 2169:3185036 2141:Bibcode 2011:2981145 1990:Bibcode 1963:4379895 1935:Bibcode 1902:3293768 1851:4981261 1802:2792755 1746:4122227 1694:2805124 1673:Bibcode 1665:Science 1630:3353317 1546:2077831 1370:Bibcode 1362:Science 1196:Bibcode 1062:4120762 1045:: 257. 967:1978081 924:5710813 869:7327968 660:fs(1)Yb 646:Krimper 560:oocytes 430:krimper 364:species 356:adenine 277:nucleus 266:ovaries 203:called 182:mammals 147:uridine 68:cells. 42:protein 4661:Fosmid 4656:Cosmid 4606:Hexose 4528:acids 4480:Others 4239:Viroid 3974:  3939:  3929:  3894:  3859:  3849:  3816:  3806:  3773:  3765:  3739:Nature 3728:  3693:  3685:  3638:  3628:  3589:  3579:  3540:  3530:  3491:  3483:  3448:  3438:  3385:  3377:  3336:  3326:  3314:(17). 3273:  3263:  3208:  3198:  3142:  3132:  3077:  3067:  3000:  2990:  2941:  2933:  2889:  2879:  2829:  2819:  2780:  2770:  2731:  2721:  2682:  2641:  2600:  2590:  2548:  2538:  2496:  2486:  2447:  2439:  2390:  2380:  2354:Nature 2333:  2325:  2276:  2266:  2216:  2208:  2167:  2159:  2133:Nature 2116:  2108:  2059:  2018:  2008:  1982:Nature 1961:  1953:  1927:Nature 1909:  1899:  1858:  1848:  1809:  1799:  1753:  1743:  1701:  1691:  1637:  1627:  1553:  1543:  1501:  1493:  1458:  1450:  1396:  1388:  1345:  1337:  1274:  1224:  1216:  1164:  1157:350667 1154:  1113:  1069:  1059:  1015:  974:  964:  922:  914:  876:  866:  824:  706:Cutoff 490:embryo 435:A1ZAC4 262:testes 219:et al. 197:genome 169:, and 4686:Human 4464:Y RNA 4248:Other 4121:Y RNA 3771:S2CID 3691:S2CID 3489:S2CID 3383:S2CID 3186:(3). 2939:S2CID 2909:(PDF) 2445:S2CID 2331:S2CID 2301:(PDF) 2214:S2CID 2165:S2CID 2114:S2CID 1959:S2CID 1499:S2CID 1456:S2CID 1394:S2CID 1343:S2CID 1222:S2CID 920:S2CID 251:genes 206:Gypsy 104:siRNA 100:miRNA 81:Dicer 31:piRNA 3972:PMID 3937:PMID 3892:PMID 3857:PMID 3814:PMID 3763:PMID 3726:PMID 3683:PMID 3636:PMID 3587:PMID 3538:PMID 3481:PMID 3446:PMID 3401:link 3375:PMID 3334:PMID 3289:link 3271:PMID 3224:link 3206:PMID 3158:link 3140:PMID 3093:link 3075:PMID 3016:link 2998:PMID 2931:PMID 2887:PMID 2827:PMID 2778:PMID 2729:PMID 2680:PMID 2662:Cell 2639:PMID 2598:PMID 2546:PMID 2494:PMID 2468:Cell 2437:PMID 2388:PMID 2323:PMID 2305:Cell 2274:PMID 2206:PMID 2188:Cell 2157:PMID 2106:PMID 2080:Cell 2057:PMID 2016:PMID 1951:PMID 1907:PMID 1856:PMID 1807:PMID 1781:Cell 1751:PMID 1725:Cell 1699:PMID 1635:PMID 1551:PMID 1491:PMID 1448:PMID 1422:Cell 1386:PMID 1335:PMID 1317:Cell 1272:PMID 1214:PMID 1162:PMID 1111:PMID 1067:PMID 1013:PMID 972:PMID 912:PMID 874:PMID 822:PMID 766:Cell 683:Vasa 658:Yb ( 655:Papi 530:and 520:piwi 469:piwi 454:The 440:Vasa 379:and 344:piwi 322:The 279:and 264:and 171:rats 167:mice 126:and 102:and 85:Dcl2 56:and 46:piwi 4727:RNA 4046:RNA 3962:doi 3958:141 3927:PMC 3917:doi 3882:doi 3847:PMC 3839:doi 3804:PMC 3796:doi 3755:doi 3743:442 3716:doi 3675:doi 3663:313 3626:PMC 3618:doi 3577:PMC 3569:doi 3565:369 3528:PMC 3520:doi 3516:351 3473:doi 3469:132 3436:PMC 3428:doi 3365:doi 3361:528 3324:PMC 3316:doi 3261:PMC 3251:doi 3196:PMC 3188:doi 3130:PMC 3120:doi 3065:PMC 3055:doi 3043:113 2988:PMC 2978:doi 2966:107 2923:doi 2877:PMC 2869:doi 2817:PMC 2809:doi 2768:PMC 2760:doi 2756:348 2719:PMC 2711:doi 2707:348 2670:doi 2666:157 2629:doi 2588:PMC 2580:doi 2536:PMC 2528:doi 2484:PMC 2476:doi 2472:137 2427:doi 2415:315 2378:PMC 2370:doi 2358:455 2313:doi 2309:128 2264:PMC 2256:doi 2196:doi 2192:116 2149:doi 2137:442 2096:hdl 2088:doi 2084:129 2047:doi 2006:PMC 1998:doi 1986:453 1943:doi 1931:442 1897:PMC 1887:doi 1846:PMC 1838:doi 1834:203 1797:PMC 1789:doi 1785:136 1741:PMC 1733:doi 1729:129 1689:PMC 1681:doi 1669:322 1625:PMC 1617:doi 1581:doi 1577:319 1541:PMC 1533:doi 1483:doi 1438:hdl 1430:doi 1426:129 1378:doi 1366:313 1325:doi 1321:127 1262:doi 1258:135 1204:doi 1152:PMC 1142:doi 1101:doi 1097:579 1057:PMC 1047:doi 1003:doi 962:PMC 954:doi 904:doi 864:PMC 856:doi 812:doi 774:doi 770:126 732:PCR 547:in 423:Qin 328:DNA 38:RNA 4723:: 3970:. 3956:. 3952:. 3935:. 3925:. 3913:15 3911:. 3907:. 3890:. 3878:12 3876:. 3872:. 3855:. 3845:. 3835:20 3833:. 3829:. 3812:. 3802:. 3792:20 3790:. 3786:. 3769:. 3761:. 3753:. 3741:. 3724:. 3712:20 3710:. 3706:. 3689:. 3681:. 3673:. 3661:. 3634:. 3624:. 3612:. 3608:. 3585:. 3575:. 3563:. 3559:. 3536:. 3526:. 3514:. 3510:. 3487:. 3479:. 3467:. 3444:. 3434:. 3424:11 3422:. 3418:. 3397:}} 3393:{{ 3381:. 3373:. 3359:. 3355:. 3332:. 3322:. 3312:92 3310:. 3306:. 3285:}} 3281:{{ 3269:. 3259:. 3247:12 3245:. 3241:. 3220:}} 3216:{{ 3204:. 3194:. 3182:. 3178:. 3166:^ 3154:}} 3150:{{ 3138:. 3128:. 3114:. 3110:. 3089:}} 3085:{{ 3073:. 3063:. 3053:. 3041:. 3037:. 3012:}} 3008:{{ 2996:. 2986:. 2976:. 2964:. 2960:. 2937:. 2929:. 2919:20 2917:. 2911:. 2885:. 2875:. 2867:. 2857:18 2855:. 2851:. 2839:^ 2825:. 2815:. 2805:27 2803:. 2799:. 2776:. 2766:. 2754:. 2750:. 2727:. 2717:. 2705:. 2701:. 2678:. 2664:. 2660:. 2637:. 2625:59 2623:. 2619:. 2596:. 2586:. 2576:59 2574:. 2570:. 2558:^ 2544:. 2534:. 2524:44 2522:. 2518:. 2506:^ 2492:. 2482:. 2470:. 2466:. 2443:. 2435:. 2425:. 2413:. 2409:. 2386:. 2376:. 2368:. 2356:. 2352:. 2329:. 2321:. 2307:. 2303:. 2286:^ 2272:. 2262:. 2252:31 2250:. 2246:. 2226:^ 2212:. 2204:. 2190:. 2186:. 2163:. 2155:. 2147:. 2135:. 2112:. 2104:. 2094:. 2082:. 2055:. 2043:13 2041:. 2037:. 2014:. 2004:. 1996:. 1984:. 1980:. 1957:. 1949:. 1941:. 1929:. 1905:. 1895:. 1883:13 1881:. 1877:. 1854:. 1844:. 1832:. 1828:. 1805:. 1795:. 1783:. 1779:. 1763:^ 1749:. 1739:. 1727:. 1723:. 1711:^ 1697:. 1687:. 1679:. 1667:. 1663:. 1647:^ 1633:. 1623:. 1613:31 1611:. 1607:. 1593:^ 1575:. 1563:^ 1549:. 1539:. 1529:11 1527:. 1523:. 1511:^ 1497:. 1489:. 1479:14 1477:. 1454:. 1446:. 1436:. 1424:. 1406:^ 1392:. 1384:. 1376:. 1364:. 1341:. 1333:. 1319:. 1315:. 1303:^ 1293:. 1270:. 1256:. 1252:. 1234:^ 1220:. 1212:. 1202:. 1192:11 1190:. 1186:. 1174:^ 1160:. 1150:. 1136:. 1132:. 1109:. 1095:. 1091:. 1079:^ 1065:. 1055:. 1041:. 1037:. 1025:^ 1011:. 999:12 997:. 993:. 970:. 960:. 948:. 944:. 932:^ 918:. 910:. 900:12 898:. 886:^ 872:. 862:. 852:20 850:. 846:. 834:^ 820:. 808:26 806:. 802:. 788:^ 768:. 764:. 745:^ 562:. 502:. 366:; 272:. 184:. 165:, 161:, 144:5’ 4355:) 4299:e 4292:t 4285:v 4037:e 4030:t 4023:v 3978:. 3964:: 3943:. 3919:: 3898:. 3884:: 3863:. 3841:: 3820:. 3798:: 3777:. 3757:: 3749:: 3732:. 3718:: 3697:. 3677:: 3669:: 3642:. 3620:: 3614:1 3593:. 3571:: 3544:. 3522:: 3495:. 3475:: 3452:. 3430:: 3403:) 3389:. 3367:: 3340:. 3318:: 3291:) 3277:. 3253:: 3226:) 3212:. 3190:: 3184:2 3160:) 3146:. 3122:: 3116:9 3095:) 3081:. 3057:: 3049:: 3035:" 3018:) 3004:. 2980:: 2972:: 2945:. 2925:: 2893:. 2871:: 2863:: 2833:. 2811:: 2784:. 2762:: 2735:. 2713:: 2686:. 2672:: 2645:. 2631:: 2604:. 2582:: 2552:. 2530:: 2500:. 2478:: 2451:. 2429:: 2421:: 2394:. 2372:: 2364:: 2337:. 2315:: 2280:. 2258:: 2220:. 2198:: 2171:. 2151:: 2143:: 2120:. 2098:: 2090:: 2063:. 2049:: 2022:. 2000:: 1992:: 1965:. 1945:: 1937:: 1913:. 1889:: 1862:. 1840:: 1813:. 1791:: 1757:. 1735:: 1705:. 1683:: 1675:: 1641:. 1619:: 1587:. 1583:: 1557:. 1535:: 1505:. 1485:: 1462:. 1440:: 1432:: 1400:. 1380:: 1372:: 1349:. 1327:: 1295:1 1278:. 1264:: 1228:. 1206:: 1198:: 1168:. 1144:: 1138:2 1117:. 1103:: 1073:. 1049:: 1043:5 1019:. 1005:: 978:. 956:: 950:8 926:. 906:: 880:. 858:: 828:. 814:: 782:. 776:: 662:) 432:( 29:( 23:.

Index

Partition function for Interacting RNAs
non-coding
RNA
protein
piwi
Argonaute
epigenetic
post-transcriptional
transposable elements
germ line
adaptive immunity
microRNA
Dicer
Dcl2
miRNA
siRNA

vertebrates
invertebrates
biogenesis
secondary structure
nucleotides
5’
uridine
Caenorhabditis elegans
Drosophila melanogaster
zebrafish
mice
rats
mammals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑