Knowledge

Plasmonics

Source đź“ť

162:, with components parallel and perpendicular to the metal-dielectric interface. The imaginary part of the wave vector component is inversely proportional to the SPP propagation length, while its real part defines the SPP confinement. The SPP dispersion characteristics depend on the dielectric constants of the materials comprising the waveguide. The propagation length and confinement of the surface plasmon polariton wave are inversely related. Therefore, stronger confinement of the mode typically results in shorter propagation lengths. The construction of a practical and usable surface plasmon circuit is heavily dependent on a compromise between propagation and confinement. Maximizing both confinement and propagation length helps mitigate the drawbacks of choosing propagation length over confinement and vice versa. Multiple types of waveguides have been created in pursuit of a plasmonic circuit with strong confinement and sufficient propagation length. Some of the most common types include insulator-metal-insulator (IMI), metal-insulator-metal (MIM), dielectric loaded surface plasmon polariton (DLSPP), gap plasmon polariton (GPP), channel plasmon polariton (CPP), wedge surface plasmon polariton (wedge), and hybrid opto-plasmonic waveguides and networks. Dissipation losses accompanying SPP propagation in metals can be mitigated by gain amplification or by combining them into hybrid networks with photonic elements such as fibers and coupled-resonator waveguides. This design can result in the previously mentioned hybrid plasmonic waveguide, which exhibits subwavelength mode on a scale of one-tenth of the diffraction limit of light, along with an acceptable propagation length. 171:
which means that for coupling to occur additional momentum should be provided by the input coupler to achieve the momentum conservation between incoming light and surface plasmon polariton waves launched in the plasmonic circuit. There are several solutions to this, including using dielectric prisms, gratings, or localized scattering elements on the surface of the metal to help induce coupling by matching the momenta of the incident light and the surface plasmons. After a surface plasmon has been created and sent to a destination, it can then be converted into an electrical signal. This can be achieved by using a photodetector in the metal plane, or decoupling the surface plasmon into freely propagating light that can then be converted into an electrical signal. Alternatively, the signal can be out-coupled into a propagating mode of an optical fiber or waveguide.
187:. Electro-optical devices have combined aspects of both optical and electrical devices in the form of a modulator as well. Specifically, electro-optic modulators have been designed using evanescently coupled resonant metal gratings and nanowires that rely on long-range surface plasmons (LRSP). Likewise, thermo-optic devices, which contain a dielectric material whose refractive index changes with variation in temperature, have also been used as interferometric modulators of SPP signals in addition to directional-coupler switches. Some thermo-optic devices have been shown to utilize LRSP waveguiding along gold stripes that are embedded in a polymer and heated by electrical signals as a means for modulation and directional-coupler switches. Another potential field lies in the use of 216:, or mirrors composed of a succession of planes to steer a surface plasmon beam. When optimized, Bragg reflectors can reflect nearly 100% of the incoming power. Another method used to create compact photonic components relies on CPP waveguides as they have displayed strong confinement with acceptable losses less than 3 dB within telecommunication wavelengths. Maximizing loss and compactness with regards to the use of passive devices, as well as active devices, creates more potential for the use of plasmonic circuits. 150: 136:
vortices, which circulate light powerflow through the inter-particle gaps thus reducing absorption and Ohmic heating, In addition to heat, it is also difficult to change the direction of a plasmonic signal in a circuit without significantly reducing its amplitude and propagation length. One clever solution to the issue of bending the direction of propagation is the use of
27: 128:
increasingly important the deeper the electric field penetrates into the metal. Researchers are attempting to reduce losses in surface plasmon propagation by examining a variety of materials, geometries, the frequency and their respective properties. New promising low-loss plasmonic materials include metal oxides and nitrides as well as
124:, thus constituting a barrier for further integration. Plasmonics could bridge this size mismatch between electronic and photonic components. At the same time, photonics and plasmonics can complement each other, since, under the right conditions, optical signals can be converted to SPPs and vice versa. 179:
The progress made in surface plasmons over the last 50 years has led to the development in various types of devices, both active and passive. A few of the most prominent areas of active devices are optical, thermo-optical, and electro-optical. All-optical devices have shown the capacity to become a
170:
The input and output ports of a plasmonic circuit will receive and send optical signals, respectively. To do this, coupling and decoupling of the optical signal to the surface plasmon is necessary. The dispersion relation for the surface plasmon lies entirely below the dispersion relation for light,
211:
can be implemented in a plasmonic circuit, however fabrication at the nano scale has proven difficult and has adverse effects. Significant losses can occur due to decoupling in situations where a refractive element with a different refractive index is used. However, some steps have been taken to
140:
to angle the signal in a particular direction, or even to function as splitters of the signal. Finally, emerging applications of plasmonics for thermal emission manipulation and heat-assisted magnetic recording leverage Ohmic losses in metals to obtain devices with new enhanced functionalities.
90:
along the interface between a dielectric (e.g. glass, air) and a metal (e.g. silver, gold). The SPP modes are strongly confined to their supporting interface, giving rise to strong light-matter interactions. In particular, the electron gas in the metal oscillates with the electro-magnetic wave.
135:
Another foreseeable barrier plasmonic circuits will have to overcome is heat; heat in a plasmonic circuit may or may not exceed the heat generated by complex electronic circuits. It has recently been proposed to reduce heating in plasmonic networks by designing them to support trapped optical
127:
One of the biggest issues in making plasmonic circuits a feasible reality is the short propagation length of surface plasmons. Typically, surface plasmons travel distances only on the scale of millimeters before damping diminishes the signal. This is largely due to ohmic losses, which become
1718: 91:
Because the moving electrons are scattered, ohmic losses in plasmonic signals are generally large, which limits the signal transfer distances to the sub-centimeter range, unless hybrid optoplasmonic light guiding networks, or plasmon gain amplification are used. Besides SPPs,
180:
viable source for information processing, communication, and data storage when used as a modulator. In one instance, the interaction of two light beams of different wavelengths was demonstrated by converting them into co-propagating surface plasmons via
577:
Grandidier, Jonathan; des Francs, GĂ©rard Colas; Massenot, SĂ©bastien; Bouhelier, Alexandre; Markey, Laurent; Weeber, Jean-Claude; Finot, Christophe; Dereux, Alain (2009-08-12). "Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength".
99:
are referred to as plasmonics modes. Both modes are characterized by large momentum values, which enable strong resonant enhancement of the local density of photon states, and can be utilized to enhance weak optical effects of opto-electronic devices.
1414:
Pile, D. F. P.; Ogawa, T.; Gramotnev, D. K.; Okamoto, T.; Haraguchi, M.; Fukui, M.; Matsuo, S. (2005-08-08). "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding".
1761:
González, M. U.; Weeber, J.-C.; Baudrion, A.-L.; Dereux, A.; Stepanov, A. L.; Krenn, J. R.; Devaux, E.; Ebbesen, T. W. (2006-04-13). "Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors".
157:
Optimal plasmonic waveguide designs strive to maximize both the confinement and propagation length of surface plasmons within a plasmonic circuit. Surface plasmon polaritons are characterized by a complex
1066:
Challener, W. A.; Peng, Chubing; Itagi, A. V.; Karns, D.; Peng, Wei; et al. (2009-03-22). "Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer".
199:
Although active components play an important role in the use of plasmonic circuitry, passive circuits are just as integral and, surprisingly, not trivial to make. Many passive elements such as
1230:
Steinberger, B.; Hohenau, A.; Ditlbacher, H.; Stepanov, A. L.; Drezet, A.; Aussenegg, F. R.; Leitner, A.; Krenn, J. R. (2006-02-27). "Dielectric stripes on gold as surface plasmon waveguides".
966:
S.V. Boriskina "Plasmonics with a twist: taming optical tornadoes on the nanoscale," chapter 12 in: Plasmonics: Theory and applications (T.V. Shahbazyan and M.I. Stockman Eds.) Springer 2013
522:
Santiago-Cordoba, Miguel A.; Boriskina, Svetlana V.; Vollmer, Frank; Demirel, Melik C. (2011-08-15). "Nanoparticle-based protein detection by optical shift of a resonant microcavity".
1529:
Ahn, Wonmi; Hong, Yan; Boriskina, Svetlana V.; Reinhard, Björn M. (2013-04-25). "Demonstration of Efficient On-Chip Photon Transfer in Self-Assembled Optoplasmonic Networks".
485:
Ahn, Wonmi; Hong, Yan; Boriskina, Svetlana V.; Reinhard, Björn M. (2013-04-25). "Demonstration of Efficient On-Chip Photon Transfer in Self-Assembled Optoplasmonic Networks".
1881:
Nikolajsen, Thomas; Leosson, Kristjan; Bozhevolnyi, Sergey I. (2004-12-13). "Surface plasmon polariton based modulators and switches operating at telecom wavelengths".
757:
Naik, Gururaj V.; Kim, Jongbum; Boltasseva, Alexandra (2011-09-06). "Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]".
1671:
Alam, Muhammad Z.; Aitchison, J. Stewart; Mojahedi, Mo (2014-02-19). "A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes".
52:
refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by
287:
Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. (2001). "Plasmonics-A Route to Nanoscale Optical Devices".
1140:
Verhagen, Ewold; Spasenović, Marko; Polman, Albert; Kuipers, L. (Kobus) (2009-05-19). "Nanowire Plasmon Excitation by Adiabatic Mode Transformation".
1836:
Wu, Zhi; Nelson, Robert L.; Haus, Joseph W.; Zhan, Qiwen (2008-03-05). "Plasmonic electro-optic modulator design using a resonant metal grating".
1461: 420: 132:. Key to more design freedom are improved fabrication techniques that can further contribute to reduced losses by reduced surface roughness. 1716:
Krenn, J. R.; Weeber, J.-C. (2004-04-15). Richards, David; Zayats, Anatoly (eds.). "Surface plasmon polaritons in metal stripes and wires".
1318:
Jung, K.-Y.; Teixeira, F.L.; Reano, R.M. (2009). "Surface Plasmon Coplanar Waveguides: Mode Characteristics and Mode Conversion Losses".
1565:
M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, "Super mode propagation in low index medium", Paper ID: JThD112, CLEO/QELS 2007.
1799:
Pacifici, Domenico; Lezec, Henri J.; Atwater, Harry A. (2007). "All-optical modulation by plasmonic excitation of CdSe quantum dots".
1185:
Dionne, J. A.; Lezec, H. J.; Atwater, Harry A. (2006). "Highly Confined Photon Transport in Subwavelength Metallic Slot Waveguides".
976:
Veronis, Georgios; Fan, Shanhui (2005-09-26). "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides".
1015:"Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films" 302: 680:
Brongersma, Mark. "Are Plasmonics Circuitry Wave of Future?" Stanford School of Engineering. N.p., n.d. Web. 26 Nov. 2014. <
1320: 268: 1719:
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
1575:
Sorger, Volker J.; Ye, Ziliang; Oulton, Rupert F.; Wang, Yuan; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang (2011-05-31).
1103:
Sorger, Volker J.; Oulton, Rupert F.; Ma, Ren-Min; Zhang, Xiang (2012). "Toward integrated plasmonic circuits".
385:
Barnes, William L (2006-03-21). "Surface plasmon–polariton length scales: a route to sub-wavelength optics".
112:, or in an electric circuit analog, to combine the size efficiency of electronics with the data capacity of 1673: 1363:
Bozhevolnyi, Sergey I.; Volkov, Valentyn S.; Devaux, EloĂŻse; Laluet, Jean-Yves; Ebbesen, Thomas W. (2006).
918:"Electromagnetic Field Enhancement and Spectrum Shaping through Plasmonically Integrated Optical Vortices" 1013:
Boriskina, Svetlana; Tong, Jonathan; Huang, Yi; Zhou, Jiawei; Chiloyan, Vazrik; Chen, Gang (2015-06-18).
867:"Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery" 212:
minimize losses and maximize compactness of the photonic components. One such step relies on the use of
113: 681: 356:
Marques Lameirinhas, Ricardo A.; N Torres, JoĂŁo Paulo; Baptista, AntĂłnio; Marques Martins, Maria JoĂŁo.
260: 121: 31: 759: 92: 87: 83: 77: 73: 120:
nodes used for electrical circuits are ever decreasing, the size of conventional PICs is limited by
2025: 1365:"Channel plasmon subwavelength waveguide components including interferometers and ring resonators" 2035: 1883: 1417: 1232: 1142: 978: 694:
Ozbay, E. (2006-01-13). "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions".
641:
Ebbesen, Thomas W.; Genet, Cyriaque; Bozhevolnyi, Sergey I. (2008). "Surface-plasmon circuitry".
524: 316:
Gramotnev, Dmitri K.; Bozhevolnyi, Sergey I. (2010). "Plasmonics beyond the diffraction limit".
2030: 358:"A new method to analyse the role of surface plasmon polaritons on dielectric-metal interfaces" 1581: 235: 60:), and finds applications in sensing, microscopy, optical communications, and bio-photonics. 1973: 1932: 1892: 1847: 1810: 1773: 1682: 1633: 1590: 1480: 1426: 1378: 1329: 1282: 1241: 1196: 1151: 1077: 1038: 987: 823: 778: 705: 652: 589: 543: 439: 327: 20: 1577:"Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales" 26: 8: 2020: 1019: 871: 387: 357: 35: 1977: 1958:
Volkov, Valentyn S.; Bozhevolnyi, Sergey I.; Devaux, EloĂŻse; Ebbesen, Thomas W. (2006).
1936: 1896: 1851: 1814: 1777: 1686: 1637: 1594: 1484: 1430: 1382: 1333: 1286: 1245: 1200: 1155: 1081: 1042: 991: 827: 782: 709: 656: 593: 547: 443: 331: 2015: 1743: 1698: 1620:"A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation" 1503: 1470: 1456: 1345: 1122: 1028: 944: 917: 893: 866: 847: 794: 768: 739: 559: 533: 462: 429: 415: 289: 1991: 1863: 1764: 1735: 1548: 1508: 1396: 1300: 1212: 1167: 949: 898: 839: 814: 731: 696: 605: 504: 467: 264: 1702: 1618:
Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. (2008-07-11).
1126: 851: 798: 622:
S.V. Boriskina, H. Ghasemi, and G. Chen, Materials Today, vol. 16, pp. 379-390, 2013
563: 400: 1981: 1940: 1923: 1900: 1855: 1818: 1801: 1781: 1747: 1727: 1690: 1651: 1641: 1624: 1598: 1540: 1498: 1488: 1434: 1386: 1369: 1349: 1337: 1290: 1249: 1204: 1163: 1159: 1114: 1085: 1068: 1046: 995: 939: 931: 888: 880: 831: 786: 743: 721: 713: 660: 597: 551: 496: 457: 447: 396: 365: 335: 318: 298: 181: 109: 39: 1457:"Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits" 416:"Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits" 213: 69: 916:
Ahn, Wonmi; Boriskina, Svetlana V.; Hong, Yan; Reinhard, Björn M. (2011-12-21).
1964: 1838: 1785: 1273: 370: 200: 355: 2009: 1918: 1646: 1619: 1341: 1051: 1014: 812:
Vakil, A.; Engheta, N. (2011-06-09). "Transformation Optics Using Graphene".
643: 339: 230: 225: 208: 204: 57: 1944: 1822: 1493: 1089: 835: 717: 452: 1995: 1867: 1739: 1731: 1694: 1656: 1552: 1512: 1400: 1304: 1216: 1187: 1171: 1105: 953: 922: 902: 843: 735: 609: 580: 508: 471: 137: 96: 56:, plasmonics follows the trend of miniaturizing optical devices (see also 1986: 1959: 1859: 1295: 1268: 1118: 790: 184: 159: 1391: 1364: 303:
10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
1603: 1576: 884: 726: 521: 1904: 1544: 1438: 1253: 1208: 999: 935: 664: 601: 555: 500: 86:, that are coherent electron oscillations travelling together with an 576: 53: 1229: 682:
http://engineering.stanford.edu/research-profile/mark-brongersma-mse
1531: 1033: 487: 129: 1475: 773: 538: 434: 191:
in areas such as nanoscale lithography, probing, and microscopy.
1139: 188: 149: 108:
An effort is currently being made to integrate plasmonics with
1957: 1362: 1880: 1760: 117: 1413: 286: 1528: 915: 484: 1065: 640: 309: 1960:"Compact gradual bends for channel plasmon polaritons" 1267:
Krasavin, Alexey V.; Zayats, Anatoly V. (2010-05-19).
1012: 153:
The field distribution on a hybrid plasmonic waveguide
1670: 1617: 282: 280: 1798: 315: 103: 1102: 865:Boriskina, Svetlana V.; Reinhard, Björn M. (2012). 636: 634: 632: 630: 628: 1574: 1184: 277: 1454: 1317: 864: 756: 413: 16:Use of plasmons for data transmission in circuits 2007: 1835: 1455:Boriskina, S. V.; Reinhard, B. M. (2011-02-07). 625: 414:Boriskina, S. V.; Reinhard, B. M. (2011-02-07). 1462:Proceedings of the National Academy of Sciences 421:Proceedings of the National Academy of Sciences 1266: 811: 254: 1715: 975: 1985: 1655: 1645: 1602: 1502: 1492: 1474: 1390: 1294: 1050: 1032: 943: 892: 772: 725: 537: 461: 451: 433: 369: 1917: 1911: 1754: 676: 674: 148: 25: 1450: 1448: 960: 909: 858: 2008: 1524: 1522: 969: 384: 351: 349: 1709: 1096: 1059: 1006: 805: 693: 687: 671: 515: 378: 1445: 1269:"Silicon-based plasmonic waveguides" 750: 570: 407: 255:Novotny, Lukas; Hecht, Bert (2012). 1519: 616: 346: 13: 478: 194: 114:photonic integrated circuits (PIC) 14: 2047: 1321:IEEE Photonics Technology Letters 174: 104:Motivation and current challenges 84:surface plasmon polaritons (SPPs) 1951: 1874: 1829: 1792: 1664: 1611: 1568: 1559: 1407: 1356: 1311: 1260: 1223: 1178: 1133: 1164:10.1103/physrevlett.102.203904 248: 144: 82:Plasmonics typically utilizes 19:For the academic journal, see 1: 1921:(2008). "Spasers explained". 1674:Laser & Photonics Reviews 241: 63: 7: 219: 165: 10: 2052: 1786:10.1103/physrevb.73.155416 371:10.1109/JPHOT.2022.3181967 261:Cambridge University Press 67: 18: 760:Optical Materials Express 401:10.1088/1464-4258/8/4/s06 257:Principles of Nano-Optics 95:modes supported by metal 93:localized surface plasmon 78:localized surface plasmon 74:surface plasmon polariton 1647:10.1038/nphoton.2008.131 1342:10.1109/lpt.2009.2015578 1052:10.3390/photonics2020659 340:10.1038/nphoton.2009.282 116:. While gate lengths of 1945:10.1038/nphoton.2008.85 1884:Applied Physics Letters 1823:10.1038/nphoton.2007.95 1494:10.1073/pnas.1016181108 1418:Applied Physics Letters 1233:Applied Physics Letters 1143:Physical Review Letters 1090:10.1038/nphoton.2009.26 979:Applied Physics Letters 836:10.1126/science.1202691 718:10.1126/science.1114849 525:Applied Physics Letters 453:10.1073/pnas.1016181108 1732:10.1098/rsta.2003.1344 1695:10.1002/lpor.201300168 362:IEEE Photonics Journal 154: 42: 1582:Nature Communications 236:Spoof surface plasmon 152: 34:design to facilitate 29: 1987:10.1364/oe.14.004494 1860:10.1364/ol.33.000551 1296:10.1364/oe.18.011791 1119:10.1557/mrs.2012.170 791:10.1364/ome.1.001090 88:electromagnetic wave 21:Plasmonics (journal) 1978:2006OExpr..14.4494V 1937:2008NaPho...2..327S 1897:2004ApPhL..85.5833N 1852:2008OptL...33..551W 1815:2007NaPho...1..402P 1778:2006PhRvB..73o5416G 1687:2014LPRv....8..394A 1638:2008NaPho...2.....O 1595:2011NatCo...2..331S 1485:2011PNAS..108.3147B 1431:2005ApPhL..87f1106P 1392:10.1038/nature04594 1383:2006Natur.440..508B 1334:2009IPTL...21..630J 1287:2010OExpr..1811791K 1246:2006ApPhL..88i4104S 1201:2006NanoL...6.1928D 1156:2009PhRvL.102t3904V 1082:2009NaPho...3..220C 1043:2015Photo...2..659B 992:2005ApPhL..87m1102V 828:2011Sci...332.1291V 822:(6035): 1291–1294. 783:2011OMExp...1.1090N 710:2006Sci...311..189O 657:2008PhT....61e..44E 594:2009NanoL...9.2935G 548:2011ApPhL..99g3701S 444:2011PNAS..108.3147B 388:Journal of Optics A 332:2010NaPho...4...83G 36:negative refraction 32:plasmonic waveguide 1604:10.1038/ncomms1315 885:10.1039/c1nr11406a 290:Advanced Materials 155: 43: 1919:Stockman, Mark I. 1905:10.1063/1.1835997 1891:(24): 5833–5835. 1765:Physical Review B 1726:(1817): 739–756. 1545:10.1021/nn401062b 1439:10.1063/1.1991990 1377:(7083): 508–511. 1254:10.1063/1.2180448 1209:10.1021/nl0610477 1000:10.1063/1.2056594 936:10.1021/nl203365y 704:(5758): 189–193. 665:10.1063/1.2930735 602:10.1021/nl901314u 556:10.1063/1.3599706 501:10.1021/nn401062b 297:(19): 1501–1505. 110:electric circuits 2043: 2000: 1999: 1989: 1972:(10): 4494–503. 1955: 1949: 1948: 1924:Nature Photonics 1915: 1909: 1908: 1878: 1872: 1871: 1833: 1827: 1826: 1802:Nature Photonics 1796: 1790: 1789: 1758: 1752: 1751: 1713: 1707: 1706: 1668: 1662: 1661: 1659: 1649: 1625:Nature Photonics 1615: 1609: 1608: 1606: 1572: 1566: 1563: 1557: 1556: 1539:(5): 4470–4478. 1526: 1517: 1516: 1506: 1496: 1478: 1469:(8): 3147–3151. 1452: 1443: 1442: 1411: 1405: 1404: 1394: 1360: 1354: 1353: 1315: 1309: 1308: 1298: 1264: 1258: 1257: 1227: 1221: 1220: 1195:(9): 1928–1932. 1182: 1176: 1175: 1137: 1131: 1130: 1100: 1094: 1093: 1069:Nature Photonics 1063: 1057: 1056: 1054: 1036: 1010: 1004: 1003: 973: 967: 964: 958: 957: 947: 913: 907: 906: 896: 862: 856: 855: 809: 803: 802: 776: 767:(6): 1090–1099. 754: 748: 747: 729: 691: 685: 678: 669: 668: 638: 623: 620: 614: 613: 588:(8): 2935–2939. 574: 568: 567: 541: 519: 513: 512: 495:(5): 4470–4478. 482: 476: 475: 465: 455: 437: 428:(8): 3147–3151. 411: 405: 404: 382: 376: 375: 373: 353: 344: 343: 319:Nature Photonics 313: 307: 306: 284: 275: 274: 252: 214:Bragg reflectors 182:cadmium selenide 40:visible spectrum 2051: 2050: 2046: 2045: 2044: 2042: 2041: 2040: 2026:Nanoelectronics 2006: 2005: 2004: 2003: 1956: 1952: 1916: 1912: 1879: 1875: 1834: 1830: 1797: 1793: 1759: 1755: 1714: 1710: 1669: 1665: 1616: 1612: 1573: 1569: 1564: 1560: 1527: 1520: 1453: 1446: 1412: 1408: 1361: 1357: 1328:(10): 630–632. 1316: 1312: 1281:(11): 11791–9. 1265: 1261: 1228: 1224: 1183: 1179: 1138: 1134: 1101: 1097: 1064: 1060: 1011: 1007: 974: 970: 965: 961: 914: 910: 863: 859: 810: 806: 755: 751: 692: 688: 679: 672: 639: 626: 621: 617: 575: 571: 520: 516: 483: 479: 412: 408: 383: 379: 354: 347: 314: 310: 285: 278: 271: 253: 249: 244: 222: 197: 195:Passive devices 177: 168: 147: 106: 80: 70:Surface plasmon 68:Main articles: 66: 24: 17: 12: 11: 5: 2049: 2039: 2038: 2036:Nanotechnology 2033: 2028: 2023: 2018: 2002: 2001: 1965:Optics Express 1950: 1931:(6): 327–329. 1910: 1873: 1839:Optics Letters 1828: 1809:(7): 402–406. 1791: 1772:(15): 155416. 1753: 1708: 1681:(3): 394–408. 1663: 1632:(8): 496–500. 1610: 1567: 1558: 1518: 1444: 1406: 1355: 1310: 1274:Optics Express 1259: 1222: 1177: 1150:(20): 203904. 1132: 1113:(8): 728–738. 1095: 1076:(4): 220–224. 1058: 1027:(2): 659–683. 1005: 986:(13): 131102. 968: 959: 930:(1): 219–227. 908: 857: 804: 749: 686: 670: 624: 615: 569: 514: 477: 406: 395:(4): S87–S93. 377: 345: 308: 276: 269: 246: 245: 243: 240: 239: 238: 233: 228: 221: 218: 209:beam splitters 196: 193: 176: 175:Active devices 173: 167: 164: 146: 143: 105: 102: 65: 62: 50:nanoplasmonics 15: 9: 6: 4: 3: 2: 2048: 2037: 2034: 2032: 2031:Metamaterials 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2013: 2011: 1997: 1993: 1988: 1983: 1979: 1975: 1971: 1967: 1966: 1961: 1954: 1946: 1942: 1938: 1934: 1930: 1926: 1925: 1920: 1914: 1906: 1902: 1898: 1894: 1890: 1886: 1885: 1877: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1840: 1832: 1824: 1820: 1816: 1812: 1808: 1804: 1803: 1795: 1787: 1783: 1779: 1775: 1771: 1767: 1766: 1757: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1720: 1712: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1675: 1667: 1658: 1657:10044/1/19117 1653: 1648: 1643: 1639: 1635: 1631: 1627: 1626: 1621: 1614: 1605: 1600: 1596: 1592: 1588: 1584: 1583: 1578: 1571: 1562: 1554: 1550: 1546: 1542: 1538: 1534: 1533: 1525: 1523: 1514: 1510: 1505: 1500: 1495: 1490: 1486: 1482: 1477: 1472: 1468: 1464: 1463: 1458: 1451: 1449: 1440: 1436: 1432: 1428: 1425:(6): 061106. 1424: 1420: 1419: 1410: 1402: 1398: 1393: 1388: 1384: 1380: 1376: 1372: 1371: 1366: 1359: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1322: 1314: 1306: 1302: 1297: 1292: 1288: 1284: 1280: 1276: 1275: 1270: 1263: 1255: 1251: 1247: 1243: 1240:(9): 094104. 1239: 1235: 1234: 1226: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1189: 1181: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1144: 1136: 1128: 1124: 1120: 1116: 1112: 1108: 1107: 1099: 1091: 1087: 1083: 1079: 1075: 1071: 1070: 1062: 1053: 1048: 1044: 1040: 1035: 1030: 1026: 1022: 1021: 1016: 1009: 1001: 997: 993: 989: 985: 981: 980: 972: 963: 955: 951: 946: 941: 937: 933: 929: 925: 924: 919: 912: 904: 900: 895: 890: 886: 882: 878: 874: 873: 868: 861: 853: 849: 845: 841: 837: 833: 829: 825: 821: 817: 816: 808: 800: 796: 792: 788: 784: 780: 775: 770: 766: 762: 761: 753: 745: 741: 737: 733: 728: 723: 719: 715: 711: 707: 703: 699: 698: 690: 683: 677: 675: 666: 662: 658: 654: 650: 646: 645: 644:Physics Today 637: 635: 633: 631: 629: 619: 611: 607: 603: 599: 595: 591: 587: 583: 582: 573: 565: 561: 557: 553: 549: 545: 540: 535: 532:(7): 073701. 531: 527: 526: 518: 510: 506: 502: 498: 494: 490: 489: 481: 473: 469: 464: 459: 454: 449: 445: 441: 436: 431: 427: 423: 422: 417: 410: 402: 398: 394: 390: 389: 381: 372: 367: 363: 359: 352: 350: 341: 337: 333: 329: 325: 321: 320: 312: 304: 300: 296: 292: 291: 283: 281: 272: 270:9780511794193 266: 262: 258: 251: 247: 237: 234: 232: 231:Metamaterials 229: 227: 226:Nanophotonics 224: 223: 217: 215: 210: 206: 202: 192: 190: 186: 183: 172: 163: 161: 151: 142: 139: 138:Bragg mirrors 133: 131: 125: 123: 119: 115: 111: 101: 98: 97:nanoparticles 94: 89: 85: 79: 75: 71: 61: 59: 58:nanophotonics 55: 51: 47: 41: 37: 33: 28: 22: 1969: 1963: 1953: 1928: 1922: 1913: 1888: 1882: 1876: 1846:(6): 551–3. 1843: 1837: 1831: 1806: 1800: 1794: 1769: 1763: 1756: 1723: 1717: 1711: 1678: 1672: 1666: 1629: 1623: 1613: 1586: 1580: 1570: 1561: 1536: 1530: 1466: 1460: 1422: 1416: 1409: 1374: 1368: 1358: 1325: 1319: 1313: 1278: 1272: 1262: 1237: 1231: 1225: 1192: 1188:Nano Letters 1186: 1180: 1147: 1141: 1135: 1110: 1106:MRS Bulletin 1104: 1098: 1073: 1067: 1061: 1024: 1018: 1008: 983: 977: 971: 962: 927: 923:Nano Letters 921: 911: 879:(1): 76–90. 876: 870: 860: 819: 813: 807: 764: 758: 752: 701: 695: 689: 651:(5): 44–50. 648: 642: 618: 585: 581:Nano Letters 579: 572: 529: 523: 517: 492: 486: 480: 425: 419: 409: 392: 386: 380: 361: 326:(2): 83–91. 323: 317: 311: 294: 288: 256: 250: 198: 185:quantum dots 178: 169: 156: 134: 126: 107: 81: 49: 45: 44: 727:11693/38263 259:. Norwood: 160:wave vector 145:Waveguiding 122:diffraction 2021:Plasmonics 2010:Categories 1589:(1): 331. 1034:1604.08130 242:References 64:Principles 46:Plasmonics 2016:Photonics 1476:1110.6822 1020:Photonics 872:Nanoscale 774:1108.0993 539:1108.2337 435:1110.6822 54:photonics 1996:19516603 1868:18347706 1740:15306491 1703:54036931 1553:23600526 1532:ACS Nano 1513:21300898 1401:16554814 1305:20589040 1217:16968003 1172:19519030 1127:15391453 954:22171957 903:22127488 852:29589317 844:21659598 799:13870978 736:16410515 610:19719111 564:54703911 509:23600526 488:ACS Nano 472:21300898 220:See also 166:Coupling 130:graphene 1974:Bibcode 1933:Bibcode 1893:Bibcode 1848:Bibcode 1811:Bibcode 1774:Bibcode 1748:6870662 1683:Bibcode 1634:Bibcode 1591:Bibcode 1504:3044402 1481:Bibcode 1427:Bibcode 1379:Bibcode 1350:6788393 1330:Bibcode 1283:Bibcode 1242:Bibcode 1197:Bibcode 1152:Bibcode 1078:Bibcode 1039:Bibcode 988:Bibcode 945:3383062 894:3339274 824:Bibcode 815:Science 779:Bibcode 744:2107839 706:Bibcode 697:Science 653:Bibcode 590:Bibcode 544:Bibcode 463:3044402 440:Bibcode 328:Bibcode 189:spasers 1994:  1866:  1746:  1738:  1701:  1551:  1511:  1501:  1399:  1370:Nature 1348:  1303:  1215:  1170:  1125:  952:  942:  901:  891:  850:  842:  797:  742:  734:  608:  562:  507:  470:  460:  267:  207:, and 205:lenses 201:prisms 76:, and 1744:S2CID 1699:S2CID 1471:arXiv 1346:S2CID 1123:S2CID 1029:arXiv 848:S2CID 795:S2CID 769:arXiv 740:S2CID 684:>. 560:S2CID 534:arXiv 430:arXiv 1992:PMID 1864:PMID 1736:PMID 1549:PMID 1509:PMID 1397:PMID 1301:PMID 1213:PMID 1168:PMID 950:PMID 899:PMID 840:PMID 732:PMID 606:PMID 505:PMID 468:PMID 265:ISBN 118:CMOS 1982:doi 1941:doi 1901:doi 1856:doi 1819:doi 1782:doi 1728:doi 1724:362 1691:doi 1652:hdl 1642:doi 1599:doi 1541:doi 1499:PMC 1489:doi 1467:108 1435:doi 1387:doi 1375:440 1338:doi 1291:doi 1250:doi 1205:doi 1160:doi 1148:102 1115:doi 1086:doi 1047:doi 996:doi 940:PMC 932:doi 889:PMC 881:doi 832:doi 820:332 787:doi 722:hdl 714:doi 702:311 661:doi 598:doi 552:doi 497:doi 458:PMC 448:doi 426:108 397:doi 366:doi 336:doi 299:doi 48:or 38:in 2012:: 1990:. 1980:. 1970:14 1968:. 1962:. 1939:. 1927:. 1899:. 1889:85 1887:. 1862:. 1854:. 1844:33 1842:. 1817:. 1805:. 1780:. 1770:73 1768:. 1742:. 1734:. 1722:. 1697:. 1689:. 1677:. 1650:. 1640:. 1628:. 1622:. 1597:. 1585:. 1579:. 1547:. 1535:. 1521:^ 1507:. 1497:. 1487:. 1479:. 1465:. 1459:. 1447:^ 1433:. 1423:87 1421:. 1395:. 1385:. 1373:. 1367:. 1344:. 1336:. 1326:21 1324:. 1299:. 1289:. 1279:18 1277:. 1271:. 1248:. 1238:88 1236:. 1211:. 1203:. 1191:. 1166:. 1158:. 1146:. 1121:. 1111:37 1109:. 1084:. 1072:. 1045:. 1037:. 1023:. 1017:. 994:. 984:87 982:. 948:. 938:. 928:12 926:. 920:. 897:. 887:. 875:. 869:. 846:. 838:. 830:. 818:. 793:. 785:. 777:. 763:. 738:. 730:. 720:. 712:. 700:. 673:^ 659:. 649:61 647:. 627:^ 604:. 596:. 584:. 558:. 550:. 542:. 530:99 528:. 503:. 491:. 466:. 456:. 446:. 438:. 424:. 418:. 391:. 364:. 360:. 348:^ 334:. 322:. 295:13 293:. 279:^ 263:. 203:, 72:, 30:A 1998:. 1984:: 1976:: 1947:. 1943:: 1935:: 1929:2 1907:. 1903:: 1895:: 1870:. 1858:: 1850:: 1825:. 1821:: 1813:: 1807:1 1788:. 1784:: 1776:: 1750:. 1730:: 1705:. 1693:: 1685:: 1679:8 1660:. 1654:: 1644:: 1636:: 1630:2 1607:. 1601:: 1593:: 1587:2 1555:. 1543:: 1537:7 1515:. 1491:: 1483:: 1473:: 1441:. 1437:: 1429:: 1403:. 1389:: 1381:: 1352:. 1340:: 1332:: 1307:. 1293:: 1285:: 1256:. 1252:: 1244:: 1219:. 1207:: 1199:: 1193:6 1174:. 1162:: 1154:: 1129:. 1117:: 1092:. 1088:: 1080:: 1074:3 1055:. 1049:: 1041:: 1031:: 1025:2 1002:. 998:: 990:: 956:. 934:: 905:. 883:: 877:4 854:. 834:: 826:: 801:. 789:: 781:: 771:: 765:1 746:. 724:: 716:: 708:: 667:. 663:: 655:: 612:. 600:: 592:: 586:9 566:. 554:: 546:: 536:: 511:. 499:: 493:7 474:. 450:: 442:: 432:: 403:. 399:: 393:8 374:. 368:: 342:. 338:: 330:: 324:4 305:. 301:: 273:. 23:.

Index

Plasmonics (journal)

plasmonic waveguide
negative refraction
visible spectrum
photonics
nanophotonics
Surface plasmon
surface plasmon polariton
localized surface plasmon
surface plasmon polaritons (SPPs)
electromagnetic wave
localized surface plasmon
nanoparticles
electric circuits
photonic integrated circuits (PIC)
CMOS
diffraction
graphene
Bragg mirrors

wave vector
cadmium selenide
quantum dots
spasers
prisms
lenses
beam splitters
Bragg reflectors
Nanophotonics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑