Knowledge

Potential evapotranspiration

Source 📝

99:). Actual evapotranspiration is said to equal potential evapotranspiration when there is ample water present. Evapotranspiration can never be greater than potential evapotranspiration, but can be lower if there is not enough water to be evaporated or plants are unable to transpire maturely and readily. Some US states utilize a full cover alfalfa reference crop that is 0.5 m (1.6 ft) in height, rather than the general short green grass reference, due to the higher value of ET from the 17: 139:. Often a value for the potential evapotranspiration is calculated at a nearby climate station on a reference surface, conventionally on short grass. This value is called the reference evapotranspiration, and can be converted to a potential evapotranspiration by multiplying by a surface coefficient. In agriculture, this is called a crop coefficient. The difference between potential evapotranspiration and actual precipitation is used in 116: 21: 20: 24: 23: 18: 25: 929:
was developed as a substitute to the Penman–Monteith equation to remove dependence on observations. For Priestley–Taylor, only radiation (irradiance) observations are required. This is done by removing the aerodynamic terms from the Penman–Monteith equation and adding an empirically derived constant
106:
Potential evapotranspiration is higher in the summer, on clearer and less cloudy days, and closer to the equator, because of the higher levels of solar radiation that provides the energy (heat) for evaporation. Potential evapotranspiration is also higher on windy days because the evaporated moisture
953:
The underlying concept behind the Priestley–Taylor model is that an air mass moving above a vegetated area with abundant water would become saturated with water. In these conditions, the actual evapotranspiration would match the Penman rate of potential evapotranspiration. However, observations
683:
describes evaporation (E) from an open water surface, and was developed by Howard Penman in 1948. Penman's equation requires daily mean temperature, wind speed, air pressure, and solar radiation to predict E. Simpler Hydrometeorological equations continue to be used where obtaining such data is
22: 166:
is a zone of climate with hot and humid summers, and cold to mild winters. Subarctic regions, between 50°N and 70°N latitude, have short, mild summers and freezing winters depending on local climates. Precipitation and evapotranspiration is low (compared to warmer variants), and vegetation is
1001:, is not a closed box, but constantly brings in dry air from higher up in the atmosphere towards the surface. As water evaporates more easily into a dry atmosphere, evapotranspiration is enhanced. This explains the larger than unity value of the Priestley-Taylor parameter 94:
Often a value for the potential evapotranspiration is calculated at a nearby climatic station on a reference surface, conventionally on land dominated by short grass (though this may differ from station to station). This value is called the reference evapotranspiration
842: 282: 538: 622: 1106: 19: 954:
revealed that actual evaporation was 1.26 times greater than potential evaporation, and therefore the equation for actual evaporation was found by taking potential evapotranspiration and multiplying it by
974:. The assumption here is for vegetation with an abundant water supply (i.e. the plants have low moisture stress). Areas like arid regions with high moisture stress are estimated to have higher 712: 182: 79:
is considered the net result of atmospheric demand for moisture from a surface and the ability of the surface to supply moisture, then PET is a measure of the demand side (also called
72:
from the ground up into the lower atmosphere and away from the initial location. Potential evapotranspiration is expressed in terms of a depth of water or soil moisture percentage.
410: 1021:. The proper equilibrium of the system has been derived and involves the characteristics of the interface of the atmospheric boundary layer and the overlying free atmosphere. 127:
Potential evapotranspiration is usually measured indirectly, from other climatic factors, but also depends on the surface type, such as free water (for lakes and oceans), the
997:
The assumption that an air mass moving over a vegetated surface with abundant water saturates has been questioned later. The lowest and turbulent part of the atmosphere, the
29:
This animation shows the projected increase in potential evaporation in North America through the year 2100, relative to 1980, based on the combined results of multiple
660: 1019: 992: 972: 948: 339: 917:
N.B.: The coefficient 0.408 and 900 are not unitless but account for the conversion from energy values to equivalent water depths: radiation = 0.408 radiation .
310: 1374: 403: 381: 359: 68:
if there was sufficient water available. It is a reflection of the energy available to evaporate or transpire water, and of the wind available to transport the
1297:
van Heerwaarden, C. C.; et al. (2009). "Interactions between dry-air entrainment, surface evaporation and convective boundary layer development".
1070: 544: 1030: 702:(ET) estimates of vegetated land areas. This equation was then derived by FAO for retrieving the potential evapotranspiration 1246: 107:
can be quickly moved from the ground or plant surface before it precipitates, allowing more evaporation to fill its place.
1238: 837:{\displaystyle ET_{o}={\frac {0.408\Delta (R_{n}-G)+{\frac {900}{T}}\gamma u_{2}\delta e}{\Delta +\gamma (1+0.34u_{2})}}} 277:{\displaystyle PET=16\left({\frac {L}{12}}\right)\left({\frac {N}{30}}\right)\left({\frac {10T_{d}}{I}}\right)^{\alpha }} 146:
Average annual potential evapotranspiration is often compared to average annual precipitation, the symbol for which is
1442: 1405: 1386: 1211: 1050: 1206:. FAO Irrigation and drainage paper 56. Rome, Italy: Food and Agriculture Organization of the United Nations. 1081: 694: 533:{\displaystyle \alpha =(6.75\times 10^{-7})I^{3}-(7.71\times 10^{-5})I^{2}+(1.792\times 10^{-2})I+0.49239} 998: 163: 87:, and wind all affect this. A dryland is a place where annual potential evaporation exceeds annual 119:
Monthly estimated potential evapotranspiration and measured pan evaporation for two locations in
906: 684:
impractical, to give comparable results within specific contexts, e.g. humid vs arid climates.
631: 1004: 977: 957: 933: 140: 1437: 1344: 1306: 1271: 1174: 317: 8: 857:Δ = Rate of change of saturation specific humidity with air temperature. (Pa K) 665:
Somewhat modified forms of this equation appear in later publications (1955 and 1957) by
289: 1348: 1310: 1275: 1262:
Culf, A. (1994). "Equilibrium evaporation beneath a growing convective boundary layer".
1178: 1147: 1130:
Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate".
699: 666: 388: 366: 344: 76: 53: 115: 1401: 1382: 1362: 1242: 1207: 1186: 706:. It is widely regarded as one of the most accurate models, in terms of estimates. 1352: 1314: 1279: 1182: 1139: 1237:. ASCE Manuals and Reports on Engineering Practices. Vol. 70. New York, NY: 679: 132: 1201: 1165:
Black, Peter E. (2007). "Revisiting the Thornthwaite and Mather water balance".
896: 1431: 617:{\displaystyle I=\sum _{i=1}^{12}\left({\frac {T_{m_{i}}}{5}}\right)^{1.514}} 159: 88: 30: 1232: 341:
is the average daily temperature (degrees Celsius; if this is negative, use
1366: 1357: 1332: 854:= Potential evapotranspiration, Water volume evapotranspired (mm day) 1421: 1045: 1040: 1035: 69: 1203:
Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements
1283: 867: 625: 136: 84: 1151: 65: 1318: 1199: 1143: 1379:
Evaporation into the Atmosphere: theory, history, and applications
876:= Ground heat flux (MJ m day), usually equivalent to zero on a day 100: 405:
is the average day length (hours) of the month being calculated
120: 1107:"Humid subtropical climate (Cfa) | SKYbrary Aviation Safety" 1333:"Natural evaporation from open water, bare soil, and grass" 128: 61: 57: 1233:
M. E. Jensen, R. D. Burman & R. G. Allen, ed. (1990).
687: 312:
is the estimated potential evapotranspiration (mm/month)
1200:
Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. (1998).
1299:
Quarterly Journal of the Royal Meteorological Society
1007: 980: 960: 936: 715: 634: 547: 413: 391: 369: 347: 320: 292: 185: 170: 383:
is the number of days in the month being calculated
1235:
Evapotranspiration and Irrigation Water Requirement
1167:
Journal of the American Water Resources Association
1063: 1013: 986: 966: 942: 836: 654: 628:which depends on the 12 monthly mean temperatures 616: 532: 397: 375: 353: 333: 304: 276: 1429: 1296: 175: 167:characteristic of the coniferous/taiga forest. 870:(MJ m day), the external source of energy flux 1123: 131:type for bare soil, and also the density and 1129: 1031:Effects of climate change on the water cycle 920: 1373: 1356: 672: 1071:"Kimberly Research and Extension Center" 114: 15: 52:) is the amount of water that would be 1430: 1330: 1158: 688:FAO 56 Penman–Monteith equation (1998) 1395: 1164: 1424:Global map of potential evaporation. 1261: 1239:American Society of Civil Engineers 13: 797: 738: 171:Estimates of potential evaporation 14: 1454: 1415: 1381:. Dordrecht, Holland: D. Reidel. 83:). Surface and air temperatures, 1187:10.1111/j.1752-1688.2007.00132.x 361:) of the month being calculated 1343:(1032). London, U.K.: 120–145. 110: 1290: 1255: 1226: 1193: 1099: 828: 806: 760: 741: 518: 496: 480: 458: 442: 420: 1: 1056: 1051:Köppen climate classification 888:= Wind speed at 2m height (m) 176:Thornthwaite equation (1948) 38:Potential evapotranspiration 7: 1024: 882:= Air temperature at 2m (K) 10: 1459: 1264:Boundary-Layer Meteorology 999:atmospheric boundary layer 927:Priestley–Taylor equation 921:Priestley–Taylor equation 655:{\displaystyle T_{m_{i}}} 164:humid subtropical climate 77:actual evapotranspiration 54:evaporated and transpired 1443:Meteorological phenomena 1400:. Cambridge, U.K.: CUP. 695:Penman–Monteith equation 150:. The ratio of the two, 1014:{\displaystyle \alpha } 987:{\displaystyle \alpha } 967:{\displaystyle \alpha } 943:{\displaystyle \alpha } 1398:Ecological Climatology 1396:Bonan, Gordon (2002). 1358:10.1098/rspa.1948.0037 1015: 988: 968: 944: 907:Psychrometric constant 838: 698:refines weather based 673:Penman equation (1948) 656: 618: 574: 534: 399: 377: 355: 335: 306: 278: 124: 34: 1331:Penman, H.L. (1948). 1016: 989: 969: 945: 839: 657: 619: 554: 535: 400: 378: 356: 336: 334:{\displaystyle T_{d}} 307: 279: 141:irrigation scheduling 118: 46:potential evaporation 28: 1078:extension.uidaho.edu 1005: 978: 958: 934: 713: 632: 545: 411: 389: 367: 345: 318: 290: 183: 1349:1948RSPSA.193..120P 1311:2009QJRMS.135.1277V 1276:1994BoLMe..70...37C 1179:2007JAWRA..43.1604B 1132:Geographical Review 305:{\displaystyle PET} 1305:(642): 1277–1291. 1284:10.1007/BF00712522 1011: 984: 964: 940: 834: 700:evapotranspiration 667:C. W. Thornthwaite 652: 614: 530: 395: 373: 351: 331: 302: 274: 125: 81:evaporative demand 35: 1248:978-0-87262-763-5 832: 774: 602: 398:{\displaystyle L} 376:{\displaystyle N} 354:{\displaystyle 0} 262: 231: 213: 123:, Hilo and Pahala 26: 1450: 1411: 1392: 1370: 1360: 1323: 1322: 1294: 1288: 1287: 1259: 1253: 1252: 1230: 1224: 1223: 1221: 1220: 1197: 1191: 1190: 1173:(6): 1604–1605. 1162: 1156: 1155: 1127: 1121: 1120: 1118: 1117: 1103: 1097: 1096: 1094: 1092: 1086: 1080:. Archived from 1075: 1067: 1020: 1018: 1017: 1012: 993: 991: 990: 985: 973: 971: 970: 965: 949: 947: 946: 941: 843: 841: 840: 835: 833: 831: 827: 826: 795: 788: 787: 775: 767: 753: 752: 733: 728: 727: 661: 659: 658: 653: 651: 650: 649: 648: 623: 621: 620: 615: 613: 612: 607: 603: 598: 597: 596: 595: 581: 573: 568: 539: 537: 536: 531: 517: 516: 492: 491: 479: 478: 454: 453: 441: 440: 404: 402: 401: 396: 382: 380: 379: 374: 360: 358: 357: 352: 340: 338: 337: 332: 330: 329: 311: 309: 308: 303: 283: 281: 280: 275: 273: 272: 267: 263: 258: 257: 256: 243: 236: 232: 224: 218: 214: 206: 27: 1458: 1457: 1453: 1452: 1451: 1449: 1448: 1447: 1428: 1427: 1418: 1408: 1389: 1375:Brutsaert, W.H. 1327: 1326: 1295: 1291: 1260: 1256: 1249: 1231: 1227: 1218: 1216: 1214: 1198: 1194: 1163: 1159: 1128: 1124: 1115: 1113: 1105: 1104: 1100: 1090: 1088: 1087:on 4 March 2016 1084: 1073: 1069: 1068: 1064: 1059: 1027: 1006: 1003: 1002: 979: 976: 975: 959: 956: 955: 935: 932: 931: 923: 913:≈ 66 Pa K) 865: 853: 822: 818: 796: 783: 779: 766: 748: 744: 734: 732: 723: 719: 714: 711: 710: 705: 690: 680:Penman equation 675: 644: 640: 639: 635: 633: 630: 629: 608: 591: 587: 586: 582: 580: 576: 575: 569: 558: 546: 543: 542: 509: 505: 487: 483: 471: 467: 449: 445: 433: 429: 412: 409: 408: 390: 387: 386: 368: 365: 364: 346: 343: 342: 325: 321: 319: 316: 315: 291: 288: 287: 268: 252: 248: 244: 242: 238: 237: 223: 219: 205: 201: 184: 181: 180: 178: 173: 113: 98: 16: 12: 11: 5: 1456: 1446: 1445: 1440: 1426: 1425: 1422:ag.arizona.edu 1417: 1416:External links 1414: 1413: 1412: 1406: 1393: 1387: 1371: 1325: 1324: 1319:10.1002/qj.431 1289: 1270:(1–2): 34–49. 1254: 1247: 1225: 1212: 1192: 1157: 1144:10.2307/210739 1122: 1098: 1061: 1060: 1058: 1055: 1054: 1053: 1048: 1043: 1038: 1033: 1026: 1023: 1010: 983: 963: 939: 922: 919: 915: 914: 900: 897:vapor pressure 889: 883: 877: 871: 863: 858: 855: 851: 845: 844: 830: 825: 821: 817: 814: 811: 808: 805: 802: 799: 794: 791: 786: 782: 778: 773: 770: 765: 762: 759: 756: 751: 747: 743: 740: 737: 731: 726: 722: 718: 703: 689: 686: 674: 671: 647: 643: 638: 611: 606: 601: 594: 590: 585: 579: 572: 567: 564: 561: 557: 553: 550: 529: 526: 523: 520: 515: 512: 508: 504: 501: 498: 495: 490: 486: 482: 477: 474: 470: 466: 463: 460: 457: 452: 448: 444: 439: 436: 432: 428: 425: 422: 419: 416: 394: 372: 350: 328: 324: 301: 298: 295: 271: 266: 261: 255: 251: 247: 241: 235: 230: 227: 222: 217: 212: 209: 204: 200: 197: 194: 191: 188: 177: 174: 172: 169: 112: 109: 96: 56:by a specific 31:climate models 9: 6: 4: 3: 2: 1455: 1444: 1441: 1439: 1436: 1435: 1433: 1423: 1420: 1419: 1409: 1407:0-521-80476-0 1403: 1399: 1394: 1390: 1388:90-277-1247-6 1384: 1380: 1376: 1372: 1368: 1364: 1359: 1354: 1350: 1346: 1342: 1338: 1334: 1329: 1328: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1285: 1281: 1277: 1273: 1269: 1265: 1258: 1250: 1244: 1240: 1236: 1229: 1215: 1213:92-5-104219-5 1209: 1205: 1204: 1196: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1153: 1149: 1145: 1141: 1137: 1133: 1126: 1112: 1111:skybrary.aero 1108: 1102: 1083: 1079: 1072: 1066: 1062: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1022: 1008: 1000: 995: 981: 961: 951: 937: 928: 918: 912: 908: 904: 901: 899:deficit (kPa) 898: 894: 890: 887: 884: 881: 878: 875: 872: 869: 862: 859: 856: 850: 847: 846: 823: 819: 815: 812: 809: 803: 800: 792: 789: 784: 780: 776: 771: 768: 763: 757: 754: 749: 745: 735: 729: 724: 720: 716: 709: 708: 707: 701: 697: 696: 685: 682: 681: 670: 668: 663: 645: 641: 636: 627: 609: 604: 599: 592: 588: 583: 577: 570: 565: 562: 559: 555: 551: 548: 540: 527: 524: 521: 513: 510: 506: 502: 499: 493: 488: 484: 475: 472: 468: 464: 461: 455: 450: 446: 437: 434: 430: 426: 423: 417: 414: 406: 392: 384: 370: 362: 348: 326: 322: 313: 299: 296: 293: 285: 269: 264: 259: 253: 249: 245: 239: 233: 228: 225: 220: 215: 210: 207: 202: 198: 195: 192: 189: 186: 168: 165: 161: 160:aridity index 157: 153: 149: 144: 142: 138: 134: 130: 122: 117: 108: 104: 102: 92: 90: 89:precipitation 86: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 32: 1397: 1378: 1340: 1337:Proc. R. Soc 1336: 1302: 1298: 1292: 1267: 1263: 1257: 1234: 1228: 1217:. Retrieved 1202: 1195: 1170: 1166: 1160: 1138:(1): 55–94. 1135: 1131: 1125: 1114:. Retrieved 1110: 1101: 1089:. Retrieved 1082:the original 1077: 1065: 996: 952: 926: 924: 916: 910: 902: 892: 885: 879: 873: 860: 848: 693: 691: 678: 676: 669:and Mather. 664: 541: 407: 385: 363: 314: 286: 179: 155: 151: 147: 145: 126: 111:Measurements 105: 103:reference. 93: 80: 74: 49: 45: 41: 37: 36: 1438:Climatology 1046:Water cycle 1041:Water vapor 1036:Evaporation 70:water vapor 1432:Categories 1219:2007-10-08 1116:2023-10-19 1057:References 868:irradiance 626:heat index 137:vegetation 85:insolation 1009:α 982:α 962:α 938:α 804:γ 798:Δ 790:δ 777:γ 755:− 739:Δ 556:∑ 511:− 503:× 473:− 465:× 456:− 435:− 427:× 415:α 270:α 158:, is the 133:diversity 66:ecosystem 1377:(1982). 1367:18865817 1025:See also 994:values. 930:factor, 1345:Bibcode 1307:Bibcode 1272:Bibcode 1175:Bibcode 528:0.49239 101:alfalfa 75:If the 1404:  1385:  1365:  1245:  1210:  1152:210739 1150:  911:γ 866:= Net 284:Where 121:Hawaii 1148:JSTOR 1091:4 May 1085:(PDF) 1074:(PDF) 736:0.408 624:is a 610:1.514 500:1.792 44:) or 1402:ISBN 1383:ISBN 1363:PMID 1341:A193 1243:ISBN 1208:ISBN 1093:2018 925:The 816:0.34 692:The 677:The 462:7.71 424:6.75 162:. A 129:soil 62:soil 58:crop 1353:doi 1315:doi 1303:135 1280:doi 1183:doi 1140:doi 886:u_2 769:900 156:PET 135:of 95:(ET 64:or 42:PET 1434:: 1361:. 1351:. 1339:. 1335:. 1313:. 1301:. 1278:. 1268:70 1266:. 1241:. 1181:. 1171:43 1169:. 1146:. 1136:38 1134:. 1109:. 1076:. 950:. 905:= 895:= 849:ET 662:. 571:12 507:10 469:10 431:10 246:10 229:30 211:12 199:16 143:. 91:. 60:, 50:PE 1410:. 1391:. 1369:. 1355:: 1347:: 1321:. 1317:: 1309:: 1286:. 1282:: 1274:: 1251:. 1222:. 1189:. 1185:: 1177:: 1154:. 1142:: 1119:. 1095:. 909:( 903:Îł 893:e 891:ÎŽ 880:T 874:G 864:n 861:R 852:0 829:) 824:2 820:u 813:+ 810:1 807:( 801:+ 793:e 785:2 781:u 772:T 764:+ 761:) 758:G 750:n 746:R 742:( 730:= 725:o 721:T 717:E 704:0 646:i 642:m 637:T 605:) 600:5 593:i 589:m 584:T 578:( 566:1 563:= 560:i 552:= 549:I 525:+ 522:I 519:) 514:2 497:( 494:+ 489:2 485:I 481:) 476:5 459:( 451:3 447:I 443:) 438:7 421:( 418:= 393:L 371:N 349:0 327:d 323:T 300:T 297:E 294:P 265:) 260:I 254:d 250:T 240:( 234:) 226:N 221:( 216:) 208:L 203:( 196:= 193:T 190:E 187:P 154:/ 152:P 148:P 97:0 48:( 40:( 33:.

Index

climate models
evaporated and transpired
crop
soil
ecosystem
water vapor
actual evapotranspiration
insolation
precipitation
alfalfa

Hawaii
soil
diversity
vegetation
irrigation scheduling
aridity index
humid subtropical climate
heat index
C. W. Thornthwaite
Penman equation
Penman–Monteith equation
evapotranspiration
irradiance
vapor pressure
Psychrometric constant
atmospheric boundary layer
Effects of climate change on the water cycle
Evaporation
Water vapor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑