Knowledge

Power outage

Source đź“ť

396:
have a greater effect on the surrounding components due to individual components carrying a larger load. This results in the larger load from the failing component having to be redistributed in larger quantities across the system, making it more likely for additional components not directly affected by the disturbance to fail, igniting costly and dangerous cascading failures. These initial disturbances causing blackouts are all the more unexpected and unavoidable due to actions of the power suppliers to prevent obvious disturbances (cutting back trees, separating lines in windy areas, replacing aging components etc.). The complexity of most power grids often makes the initial cause of a blackout extremely hard to identify.
339: 40: 1602: 163: 2181: 171: 529: 241: 275:
resilience of the network over time, which is only corrected after a major failure occurs. In a 2003 publication, Carreras and co-authors claimed that reducing the likelihood of small outages only increases the likelihood of larger ones. In that case, the short-term economic benefit of keeping the individual customer happy increases the likelihood of large-scale blackouts.
286:", the process of restoring electricity after a system-wide power loss. The hearing's purpose was for Congress to learn about what the backup plans are in the electric utility industry in the case that the electric grid is damaged. Threats to the electrical grid include cyberattacks, solar storms, and severe weather, among others. For example, the " 377:
Conversely, a system past the critical point will experience too many blackouts leading to system-wide upgrades moving it back below the critical point. The term critical point of the system is used here in the sense of statistical physics and nonlinear dynamics, representing the point where a system undergoes a
153:
for backup and also a socket for connecting a generator during extended periods of outage. During a power outage, there is a disruption in the supply of electricity, resulting in a loss of power to homes, businesses, and other facilities. Power outages can occur for various reasons, including severe
329:
utilities will establish localized 'power islands' which are then progressively coupled together. To maintain supply frequencies within tolerable limits during this process, demand must be reconnected at the same pace that generation is restored, requiring close coordination between power stations,
439:
proposed a mathematical model for the behavior of electrical distribution systems. This model has become known as the OPA model, a reference to the names of the authors' institutions. OPA is a cascading failure model. Other cascading failure models include Manchester, Hidden failure, CASCADE, and
395:
relationship is seen in both historical data and model systems. The practice of operating these systems much closer to their maximum capacity leads to magnified effects of random, unavoidable disturbances due to aging, weather, human interaction etc. While near the critical point, these failures
298:
Computer systems and other electronic devices containing logic circuitry are susceptible to data loss or hardware damage that can be caused by the sudden loss of power. These can include data networking equipment, video projectors, alarm systems as well as computers. To protect computer systems
274:
Modern power systems are designed to be resistant to this sort of cascading failure, but it may be unavoidable (see below). Moreover, since there is no short-term economic benefit to preventing rare large-scale failures, researchers have expressed concern that there is a tendency to erode the
376:
While blackout frequency has been shown to be reduced by operating it further from its critical point, it generally is not economically feasible, causing providers to increase the average load over time or upgrade less often resulting in the grid moving itself closer to its critical point.
303:
or 'UPS' can provide a constant flow of electricity if a primary power supply becomes unavailable for a short period of time. To protect against surges (events where voltages increase for a few seconds), which can damage hardware when power is restored, a special device called a
475:
In addition to the finding of each mitigation strategy having a cost-benefit relationship with regards to frequency of small and large blackouts, the total number of blackout events was not significantly reduced by any of the above-mentioned mitigation measures.
373:. These systems exhibit unavoidable disturbances of all sizes, up to the size of the entire system. This phenomenon has been attributed to steadily increasing demand/load, the economics of running a power company, and the limits of modern engineering. 381:; in this case the transition from a steady reliable grid with few cascading failures to a very sporadic unreliable grid with common cascading failures. Near the critical point the relationship between blackout frequency and size follows a 467:
Combination of increasing critical number and max load of lines – Shown to have no significant effect on either size of blackout. The resulting minor reduction in the frequency of blackouts is projected to not be worth the cost of the
316:
Restoring power after a wide-area outage can be difficult, as power stations need to be brought back online. Normally, this is done with the help of power from the rest of the grid. In the total absence of grid power, a so-called
452:
The effects of trying to mitigate cascading failures near the critical point in an economically feasible fashion are often shown to not be beneficial and often even detrimental. Four mitigation methods have been tested using the
444:– Crucitti–Latora–Marchiori (CLM) model, showing that both models exhibit similar phase transitions in the average network damage (load shed/demand in OPA, path damage in CLM), with respect to transmission capacity. 197:
in an electrical power supply. The term brownout comes from the dimming experienced by incandescent lighting when the voltage sags. Brownouts can cause poor performance of equipment or even incorrect operation.
211:
occur when demand for electricity exceeds supply, and allow some customers to receive power at the required voltage at the expense of other customers who get no power at all. They are a common occurrence in
204:
tripping are particularly difficult to recover from quickly. Outages may last from a few minutes to a few weeks depending on the nature of the blackout and the configuration of the electrical network.
200:
A blackout is the total loss of power to a wider area and of long duration. It is the most severe form of power outage that can occur. Blackouts which result from or result in
779: 279: 252:, the power generation and the electrical load (demand) must be very close to equal every second to avoid overloading of network components, which can severely damage them. 290:" was caused when overgrown trees touched high-voltage power lines. Around 55 million people in the U.S. and Canada lost power, and restoring it cost around $ 6 billion. 220:
of 2000–2001, when government deregulation destabilized the wholesale electricity market. Blackouts are also used as a public safety measure, such as to prevent a
461:
Increase critical number of failures causing cascading blackouts – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.
399:
Leaders are dismissive of system theories that conclude that blackouts are inevitable, but do agree that the basic operation of the grid must be changed. The
1265: 675: 1227:
Nedic, Dusko P.; Dobson, Ian; Kirschen, Daniel S.; Carreras, Benjamin A.; Lynch, Vickie E. (2006). "Criticality in a cascading failure blackout model".
895: 805: 1453: 263:
Under certain conditions, a network component shutting down can cause current fluctuations in neighboring segments of the network leading to a
244:
Tree limbs creating a short circuit in power lines during a storm. This typically results in a power outage in the area supplied by these lines
1186:
Dobson, I.; Carreras, B. A.; Lynch, V. E.; Newman, D. E. (2001). "An initial model for complex dynamics in electric power system blackouts".
913: 471:
Increase the excess power available to the grid – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.
2126: 1339:
Cupac, V.; Lizier, J.T.; Prokopenko, M. (2013). "Comparing dynamics of cascading failures between network-centric and power flow models".
1169: 750: 325:
the power grid into operation. The means of doing so will depend greatly on local circumstances and operational policies, but typically
464:
Increase individual power line max load – Shown to increase the frequency of smaller blackouts and decrease that of larger blackouts.
810:. 35th Annual Hawaii International Conference on System Sciences (HICSS'02), January 7–10, 2002. Big Island, Hawaii. Archived from 216:, and may be scheduled in advance or occur without warning. They have also occurred in developed countries, for example in the 834: 1203: 1025: 728: 111: 125:
Power failures are particularly critical at sites where the environment and public safety are at risk. Institutions such as
2184: 1601: 154:
weather conditions (such as storms, hurricanes, or snowstorms), equipment failure, grid overload, or planned maintenance.
2023: 2131: 1446: 1095: 616: 560: 356: 1751: 400: 921:. Proceedings of Hawaii International Conference on System Sciences, January 4–7, 2000, Maui, Hawaii. Archived from 2210: 1914: 1839: 1710: 1322: 591: 225: 178:
Power outages are categorized into three different phenomena, relating to the duration and effect of the outage:
44: 267:
of a larger section of the network. This may range from a building, to a block, to an entire city, to an entire
680: 670: 436: 229: 90:
There are many causes of power failures in an electricity network. Examples of these causes include faults at
2086: 2018: 2008: 1884: 1784: 1439: 428: 217: 24: 956:"Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization" 338: 1939: 1899: 1476: 626: 490:
In 2015, one of the solutions proposed to reduce the impact of power outage was introduced by M. S. Saleh.
300: 2166: 2161: 1879: 1854: 1844: 1820: 1815: 1521: 1123:"Critical points and transitions in an electric power transmission model for cascading failure blackouts" 811: 640: 412: 326: 95: 1012:. 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). pp. 195–200. 864: 2081: 1799: 1769: 1546: 690: 685: 416: 370: 287: 2136: 1625: 1586: 645: 1241: 2111: 1919: 1859: 1516: 596: 141:, which will automatically start up when electrical power is lost. Other critical systems, such as 103: 922: 836:
Dynamics, Criticality and Self-organization in a Model for Blackouts in Power Transmission Systems
780:"Senate Hearing Examines Electric Industry's Ability to Restore Power after System-wide Blackouts" 2050: 2040: 2030: 665: 601: 432: 408: 322: 865:"Suppressing cascades in a self-organized-critical model with non-contiguous spread of failures" 2205: 1971: 1834: 1617: 1506: 1236: 190: 138: 1122: 2106: 1874: 1869: 1849: 761: 575: 555: 362: 150: 99: 1700: 1462: 1385: 1290: 1137: 967: 879: 842:. Hawaii International Conference on Systems Sciences, January 2002, Hawaii. Archived from 655: 228:), or to prevent wildfires around poorly maintained transmission lines (such as during the 213: 713:
What happens during a blackout – Consequences of a prolonged and wide-ranging power outage
8: 2071: 1904: 1804: 1779: 1732: 1541: 1531: 1496: 711:
Petermann, Thomas; Bradke, Harald; LĂĽllmann, Arne; Poetzsch, Maik; Riehm, Ulrich (2011).
660: 581: 260:
are used to automatically detect overloads and to disconnect circuits at risk of damage.
182:
A transient fault is a loss of power typically caused by a fault on a power line, e.g. a
1389: 1294: 1141: 971: 883: 440:
Branching. The OPA model was quantitatively compared with a complex networks model of a
39: 19:
This article is about accidental power failures. For intentionally engineered ones, see
1945: 1556: 1409: 1375: 1314: 1280: 1209: 1070: 1031: 650: 249: 2096: 1976: 1581: 1401: 1306: 1199: 1161: 1153: 1021: 985: 724: 480: 441: 388: 264: 257: 142: 115: 1074: 1035: 2045: 1986: 1690: 1685: 1662: 1571: 1511: 1413: 1393: 1348: 1318: 1298: 1246: 1213: 1191: 1145: 1062: 1013: 975: 887: 843: 716: 611: 606: 378: 253: 224:
from catching fire (for example, power was cut to several towns in response to the
208: 130: 80: 20: 1397: 1050: 1009:
Impact of clustering microgrids on their stability and resilience during blackouts
1006:
Saleh, M. S.; Althaibani, A.; Esa, Y.; Mhandi, Y.; Mohamed, A. A. (October 2015).
915:
Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts
2076: 2035: 2013: 1894: 1864: 1829: 1789: 1591: 1352: 1250: 1188:
Proceedings of the 34th Annual Hawaii International Conference on System Sciences
586: 411:
to coordinate the grid. Others advocate greater use of electronically controlled
305: 268: 119: 1017: 891: 2101: 2091: 1889: 1501: 1302: 1066: 954:
Dobson, Ian; Carreras, Benjamin A.; Lynch, Vickie E.; Newman, David E. (2007).
807:
Examining Criticality of Blackouts in Power System Models with Cascading Events
1366:
Motter, Adilson E. (2004). "Cascade Control and Defense in Complex Networks".
1195: 1098:. Board of Regents of the University of Wisconsin System. 2014. Archived from 415:(HVDC) firebreaks to prevent disturbances from cascading across AC lines in a 2199: 2121: 1909: 1794: 1774: 1705: 1695: 1652: 1536: 1491: 1157: 1007: 549: 543: 534: 201: 183: 107: 91: 1099: 720: 2141: 2116: 1950: 1764: 1566: 1405: 1310: 1165: 989: 146: 1966: 1934: 1727: 1715: 1635: 1561: 1551: 1481: 1380: 1285: 565: 318: 283: 186:
or flashover. Power is automatically restored once the fault is cleared.
1929: 1924: 1737: 1720: 1576: 1431: 621: 404: 366: 1149: 980: 955: 162: 1645: 1640: 1526: 1486: 392: 382: 333: 170: 31: 1759: 715:. Berlin: Office of Technology Assessment at the German Bundestag. 221: 126: 84: 1680: 1670: 1121:
Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E. (2002).
912:
Carreras, B. A.; Newman, D. E.; Dobson, I.; Poole, A. B. (2000).
749:
Carreras, B. A.; Lynch, V. E.; Newman, D. E.; Dobson, I. (2003).
528: 293: 240: 1675: 710: 570: 498:
Utilities are measured on three specific performance measures:
134: 1229:
International Journal of Electrical Power & Energy Systems
751:"Blackout Mitigation Assessment in Power Transmission Systems" 514: 508: 502: 343: 1341:
International Journal of Electrical Power and Energy Systems
1630: 1226: 391:
becomes much more common close to this critical point. The
311: 235: 194: 30:"Power cut" redirects here. For the 2012 Punjabi film, see 804:
Dobson, I.; Chen, J.; Thorp, J.; Carreras, B.; Newman, D.
1185: 1120: 953: 911: 833:
Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E.
748: 43:
Vehicle lights provided the only illumination during the
1130:
Chaos: An Interdisciplinary Journal of Nonlinear Science
1005: 960:
Chaos: An Interdisciplinary Journal of Nonlinear Science
431:(ORNL), Power System Engineering Research Center of the 1263: 758:
36th Hawaii International Conference on System Sciences
447: 1338: 832: 949: 947: 945: 943: 524: 1266:"TModel for cascading failures in complex networks" 905: 803: 334:Blackout inevitability and electric sustainability 940: 407:features such as power control devices employing 145:, are also required to have emergency power. The 2197: 1264:Crucitti, P.; Latora, V.; Marchiori, M. (2004). 676:February 13–17, 2021 North American winter storm 280:Senate Committee on Energy and Natural Resources 479:A complex network-based model to control large 137:will usually have backup power sources such as 862: 294:Protecting computer systems from power outages 149:of a telephone exchange usually has arrays of 1447: 515:Customer Average Interruption Frequency Index 493: 350: 330:transmission and distribution organizations. 308:that absorbs the excess voltage can be used. 509:Customer Average Interruption Duration Index 1096:"Power Systems Engineering Research Center" 282:held a hearing in October 2018 to examine " 1454: 1440: 1359: 503:System Average Interruption Duration Index 1379: 1284: 1240: 979: 777: 744: 742: 740: 342:Comparison of duration of power outages ( 1461: 858: 856: 337: 312:Restoring power after a wide-area outage 239: 236:Protecting the power system from outages 169: 161: 38: 1179: 1048: 826: 797: 2198: 1365: 1001: 999: 737: 1435: 853: 863:Hoffmann, H.; Payton, D. W. (2014). 778:Kovaleski, Dave (October 15, 2018). 448:Mitigation of power outage frequency 1175:from the original on March 5, 2016. 1114: 996: 901:from the original on March 4, 2016. 361:It has been argued on the basis of 13: 2132:Renewable energy commercialization 617:Self-organized criticality control 561:Critical infrastructure protection 357:Self-organized criticality control 14: 2222: 1424: 401:Electric Power Research Institute 16:Loss of electric power to an area 2180: 2179: 1600: 527: 1332: 1257: 1220: 1088: 1042: 592:List of energy storage projects 371:self-organized critical systems 226:Merrimack Valley gas explosions 45:2009 Ecuador electricity crisis 771: 704: 681:New York City blackout of 1977 671:2019 California power shutoffs 487:was proposed by A. E. Motter. 437:University of Alaska Fairbanks 230:2019 California power shutoffs 1: 2127:Renewable Energy Certificates 2087:Cost of electricity by source 2009:Arc-fault circuit interrupter 1885:High-voltage shore connection 1398:10.1103/PhysRevLett.93.098701 697: 429:Oak Ridge National Laboratory 218:California electricity crisis 25:Power Outage (disambiguation) 2142:Spark/Dark/Quark/Bark spread 1940:Transmission system operator 1900:Mains electricity by country 1477:Automatic generation control 1353:10.1016/j.ijepes.2013.01.017 1251:10.1016/j.ijepes.2006.03.006 872:Chaos, Solitons and Fractals 627:Uninterruptible power supply 485:using local information only 422: 301:uninterruptible power supply 299:against this, the use of an 7: 2167:List of electricity sectors 2162:Electric energy consumption 1880:High-voltage direct current 1855:Electric power transmission 1845:Electric power distribution 1522:Energy return on investment 1018:10.1109/ICSGCE.2015.7454295 892:10.1016/j.chaos.2014.06.011 641:List of major power outages 520: 413:high-voltage direct current 365:and computer modeling that 96:electric transmission lines 10: 2227: 2082:Carbon offsets and credits 1800:Three-phase electric power 1303:10.1103/PhysRevE.69.045104 1067:10.1109/MSPEC.2004.1318179 691:Northeast blackout of 2003 686:Northeast blackout of 1965 494:Key performance indicators 354: 351:Self-organized criticality 288:Northeast Blackout of 2003 29: 18: 2175: 2150: 2137:Renewable Energy Payments 2060: 1997: 1959: 1813: 1750: 1661: 1626:Fossil fuel power station 1616: 1609: 1598: 1469: 1196:10.1109/HICSS.2001.926274 646:2019 Venezuelan blackouts 321:needs to be performed to 1920:Single-wire earth return 1860:Electrical busbar system 1517:Energy demand management 760:. Hawaii. Archived from 597:Outage management system 427:In 2002, researchers at 157: 2051:Residual-current device 2041:Power system protection 2031:Generator interlock kit 1368:Physical Review Letters 1051:"The Unruly Power Grid" 1049:Fairley, Peter (2004). 666:2011 Southwest blackout 602:Proactive cyber defence 433:University of Wisconsin 131:sewage treatment plants 2211:Electric power quality 1835:Distributed generation 1507:Electric power quality 347: 245: 175: 167: 102:or other parts of the 48: 23:. For other uses, see 2107:Fossil fuel phase-out 1875:Electricity retailing 1870:Electrical substation 1850:Electric power system 814:on September 12, 2003 721:10.5445/IR/1000103292 576:Electromagnetic pulse 556:Coronal mass ejection 511:, measured in minutes 505:, measured in minutes 403:champions the use of 355:Further information: 341: 250:power supply networks 243: 173: 165: 83:network supply to an 79:) is the loss of the 42: 1463:Electricity delivery 784:Daily Energy Insider 656:2012 India blackouts 214:developing countries 2072:Availability factor 2024:Sulfur hexafluoride 1905:Overhead power line 1805:Virtual power plant 1780:Induction generator 1733:Sustainable biofuel 1542:Home energy storage 1532:Grid energy storage 1497:Droop speed control 1390:2004PhRvL..93i8701M 1295:2004PhRvE..69d5104C 1142:2002Chaos..12..985C 972:2007Chaos..17b6103D 884:2014CSF....67...87H 849:on August 21, 2003. 661:2003 Italy blackout 634:Major power outages 582:Energy conservation 151:lead–acid batteries 1946:Transmission tower 1557:Nameplate capacity 1328:on April 24, 2017. 1279:(4 Pt 2): 045104. 651:2019 Java blackout 481:cascading failures 348: 246: 176: 168: 139:standby generators 49: 2193: 2192: 2097:Environmental tax 1977:Cascading failure 1746: 1745: 1582:Utility frequency 1273:Physical Review E 1205:978-0-7695-0981-5 1150:10.1063/1.1505810 1027:978-1-4673-8732-3 981:10.1063/1.2737822 928:on March 29, 2003 767:on April 1, 2011. 730:978-3-7322-9329-2 442:cascading failure 435:(PSerc), and the 389:Cascading failure 265:cascading failure 254:Protective relays 209:Rolling blackouts 143:telecommunication 112:cascading failure 2218: 2183: 2182: 2092:Energy subsidies 2046:Protective relay 1987:Rolling blackout 1614: 1613: 1604: 1572:Power-flow study 1512:Electrical fault 1456: 1449: 1442: 1433: 1432: 1418: 1417: 1383: 1381:cond-mat/0401074 1363: 1357: 1356: 1336: 1330: 1329: 1327: 1321:. Archived from 1288: 1286:cond-mat/0309141 1270: 1261: 1255: 1254: 1244: 1224: 1218: 1217: 1183: 1177: 1176: 1174: 1127: 1118: 1112: 1111: 1109: 1107: 1102:on June 12, 2015 1092: 1086: 1085: 1083: 1081: 1046: 1040: 1039: 1003: 994: 993: 983: 951: 938: 937: 935: 933: 927: 920: 909: 903: 902: 900: 869: 860: 851: 850: 848: 841: 830: 824: 823: 821: 819: 801: 795: 794: 792: 790: 775: 769: 768: 766: 755: 746: 735: 734: 708: 612:Rolling blackout 607:Renewable energy 537: 532: 531: 457:blackout model: 409:advanced sensors 379:phase transition 81:electrical power 21:rolling blackout 2226: 2225: 2221: 2220: 2219: 2217: 2216: 2215: 2196: 2195: 2194: 2189: 2171: 2155: 2153: 2146: 2077:Capacity factor 2065: 2063: 2056: 2036:Numerical relay 2014:Circuit breaker 2002: 2000: 1993: 1955: 1895:Load management 1865:Electrical grid 1830:Demand response 1823: 1818: 1809: 1790:Microgeneration 1742: 1657: 1605: 1596: 1592:Vehicle-to-grid 1465: 1460: 1429: 1427: 1422: 1421: 1364: 1360: 1337: 1333: 1325: 1268: 1262: 1258: 1242:10.1.1.375.2146 1225: 1221: 1206: 1190:. p. 710. 1184: 1180: 1172: 1125: 1119: 1115: 1105: 1103: 1094: 1093: 1089: 1079: 1077: 1047: 1043: 1028: 1004: 997: 952: 941: 931: 929: 925: 918: 910: 906: 898: 867: 861: 854: 846: 839: 831: 827: 817: 815: 802: 798: 788: 786: 776: 772: 764: 753: 747: 738: 731: 709: 705: 700: 695: 631: 587:Internet outage 533: 526: 523: 496: 468:implementation. 450: 425: 363:historical data 359: 353: 336: 314: 306:surge protector 296: 269:electrical grid 238: 174:Transient fault 160: 120:circuit breaker 55:(also called a 35: 28: 17: 12: 11: 5: 2224: 2214: 2213: 2208: 2191: 2190: 2188: 2187: 2176: 2173: 2172: 2170: 2169: 2164: 2158: 2156: 2152:Statistics and 2151: 2148: 2147: 2145: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2102:Feed-in tariff 2099: 2094: 2089: 2084: 2079: 2074: 2068: 2066: 2061: 2058: 2057: 2055: 2054: 2048: 2043: 2038: 2033: 2028: 2027: 2026: 2021: 2011: 2005: 2003: 1998: 1995: 1994: 1992: 1991: 1990: 1989: 1979: 1974: 1969: 1963: 1961: 1957: 1956: 1954: 1953: 1948: 1943: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1890:Interconnector 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1840:Dynamic demand 1837: 1832: 1826: 1824: 1814: 1811: 1810: 1808: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1770:Combined cycle 1767: 1762: 1756: 1754: 1748: 1747: 1744: 1743: 1741: 1740: 1735: 1730: 1725: 1724: 1723: 1718: 1713: 1708: 1703: 1693: 1688: 1683: 1678: 1673: 1667: 1665: 1659: 1658: 1656: 1655: 1650: 1649: 1648: 1643: 1638: 1633: 1622: 1620: 1611: 1607: 1606: 1599: 1597: 1595: 1594: 1589: 1584: 1579: 1574: 1569: 1564: 1559: 1554: 1549: 1547:Load-following 1544: 1539: 1534: 1529: 1524: 1519: 1514: 1509: 1504: 1502:Electric power 1499: 1494: 1489: 1484: 1479: 1473: 1471: 1467: 1466: 1459: 1458: 1451: 1444: 1436: 1426: 1425:External links 1423: 1420: 1419: 1358: 1331: 1256: 1219: 1204: 1178: 1136:(4): 985–994. 1113: 1087: 1041: 1026: 995: 939: 904: 852: 825: 796: 770: 736: 729: 702: 701: 699: 696: 694: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 637: 630: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 573: 568: 563: 558: 553: 546: 540: 539: 538: 522: 519: 518: 517: 512: 506: 495: 492: 473: 472: 469: 465: 462: 449: 446: 424: 421: 417:wide area grid 385:distribution. 352: 349: 335: 332: 313: 310: 295: 292: 237: 234: 206: 205: 202:power stations 198: 187: 159: 156: 92:power stations 69:power blackout 15: 9: 6: 4: 3: 2: 2223: 2212: 2209: 2207: 2206:Power outages 2204: 2203: 2201: 2186: 2178: 2177: 2174: 2168: 2165: 2163: 2160: 2159: 2157: 2149: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2122:Pigouvian tax 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2069: 2067: 2059: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2025: 2022: 2020: 2019:Earth-leakage 2017: 2016: 2015: 2012: 2010: 2007: 2006: 2004: 1996: 1988: 1985: 1984: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1964: 1962: 1960:Failure modes 1958: 1952: 1949: 1947: 1944: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1911: 1910:Power station 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1827: 1825: 1822: 1817: 1812: 1806: 1803: 1801: 1798: 1796: 1795:Rankine cycle 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1775:Cooling tower 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1757: 1755: 1753: 1749: 1739: 1736: 1734: 1731: 1729: 1726: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1698: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1668: 1666: 1664: 1660: 1654: 1651: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1628: 1627: 1624: 1623: 1621: 1619: 1618:Non-renewable 1615: 1612: 1608: 1603: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1537:Grid strength 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1492:Demand factor 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1474: 1472: 1468: 1464: 1457: 1452: 1450: 1445: 1443: 1438: 1437: 1434: 1430: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1382: 1377: 1374:(9): 098701. 1373: 1369: 1362: 1354: 1350: 1346: 1342: 1335: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1292: 1287: 1282: 1278: 1274: 1267: 1260: 1252: 1248: 1243: 1238: 1234: 1230: 1223: 1215: 1211: 1207: 1201: 1197: 1193: 1189: 1182: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1124: 1117: 1101: 1097: 1091: 1076: 1072: 1068: 1064: 1060: 1056: 1055:IEEE Spectrum 1052: 1045: 1037: 1033: 1029: 1023: 1019: 1015: 1011: 1010: 1002: 1000: 991: 987: 982: 977: 973: 969: 966:(2): 026103. 965: 961: 957: 950: 948: 946: 944: 924: 917: 916: 908: 897: 893: 889: 885: 881: 877: 873: 866: 859: 857: 845: 838: 837: 829: 813: 809: 808: 800: 785: 781: 774: 763: 759: 752: 745: 743: 741: 732: 726: 722: 718: 714: 707: 703: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 638: 636: 635: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 551: 550:Brittle Power 547: 545: 544:Energy crisis 542: 541: 536: 535:Energy portal 530: 525: 516: 513: 510: 507: 504: 501: 500: 499: 491: 488: 486: 482: 477: 470: 466: 463: 460: 459: 458: 456: 445: 443: 438: 434: 430: 420: 418: 414: 410: 406: 402: 397: 394: 390: 386: 384: 380: 374: 372: 368: 364: 358: 345: 340: 331: 328: 324: 320: 309: 307: 302: 291: 289: 285: 281: 276: 272: 270: 266: 261: 259: 255: 251: 242: 233: 231: 227: 223: 219: 215: 210: 203: 199: 196: 193:is a drop in 192: 188: 185: 184:short circuit 181: 180: 179: 172: 164: 155: 152: 148: 144: 140: 136: 132: 128: 123: 121: 117: 113: 109: 108:short circuit 105: 101: 97: 93: 88: 86: 82: 78: 74: 70: 66: 65:power failure 62: 58: 54: 46: 41: 37: 33: 26: 22: 2117:Net metering 2064:and policies 1982:Power outage 1981: 1951:Utility pole 1915:Pumped hydro 1821:distribution 1816:Transmission 1765:Cogeneration 1567:Power factor 1428: 1371: 1367: 1361: 1344: 1340: 1334: 1323:the original 1276: 1272: 1259: 1232: 1228: 1222: 1187: 1181: 1133: 1129: 1116: 1104:. Retrieved 1100:the original 1090: 1078:. Retrieved 1061:(8): 22–27. 1058: 1054: 1044: 1008: 963: 959: 930:. Retrieved 923:the original 914: 907: 875: 871: 844:the original 835: 828: 816:. Retrieved 812:the original 806: 799: 787:. Retrieved 783: 773: 762:the original 757: 712: 706: 633: 632: 548: 497: 489: 484: 483:(blackouts) 478: 474: 454: 451: 426: 398: 387: 375: 360: 327:transmission 315: 297: 277: 273: 262: 247: 207: 177: 147:battery room 124: 104:distribution 94:, damage to 89: 76: 72: 68: 64: 60: 56: 53:power outage 52: 50: 36: 2112:Load factor 1967:Black start 1935:Transformer 1636:Natural gas 1587:Variability 1562:Peak demand 1552:Merit order 1482:Backfeeding 1347:: 369–379. 789:October 23, 566:Cyberattack 367:power grids 346:), in 2014. 344:SAIDI value 319:black start 284:black start 122:operation. 100:substations 2200:Categories 2154:production 1999:Protective 1930:Super grid 1925:Smart grid 1752:Generation 1686:Geothermal 1577:Repowering 1235:(9): 627. 932:August 17, 818:August 17, 698:References 622:Smart grid 405:smart grid 106:system, a 73:power loss 2062:Economics 1785:Micro CHP 1663:Renewable 1646:Petroleum 1641:Oil shale 1527:Grid code 1487:Base load 1237:CiteSeerX 1158:1054-1500 878:: 87–93. 423:OPA model 393:power-law 383:power-law 323:bootstrap 127:hospitals 61:power out 32:Power Cut 2185:Category 1972:Brownout 1760:AC power 1470:Concepts 1406:15447153 1311:15169056 1170:Archived 1166:12779622 1106:June 23, 1080:June 24, 1075:19389285 1036:25664994 990:17614690 896:Archived 521:See also 222:gas leak 191:brownout 166:Blackout 85:end user 77:blackout 57:powercut 2001:devices 1711:Thermal 1706:Osmotic 1701:Current 1681:Biomass 1671:Biofuel 1653:Nuclear 1610:Sources 1414:4856492 1386:Bibcode 1319:3824371 1291:Bibcode 1214:7708994 1138:Bibcode 968:Bibcode 880:Bibcode 195:voltage 75:, or a 1696:Marine 1676:Biogas 1412:  1404:  1317:  1309:  1239:  1212:  1202:  1164:  1156:  1073:  1034:  1024:  988:  727:  571:Dumsor 133:, and 2053:(GFI) 1942:(TSO) 1728:Solar 1716:Tidal 1691:Hydro 1410:S2CID 1376:arXiv 1326:(PDF) 1315:S2CID 1281:arXiv 1269:(PDF) 1210:S2CID 1173:(PDF) 1126:(PDF) 1071:S2CID 1032:S2CID 926:(PDF) 919:(PDF) 899:(PDF) 868:(PDF) 847:(PDF) 840:(PDF) 765:(PDF) 754:(PDF) 578:(EMP) 258:fuses 158:Types 135:mines 63:, a 1819:and 1738:Wind 1721:Wave 1631:Coal 1402:PMID 1307:PMID 1200:ISBN 1162:PMID 1154:ISSN 1108:2015 1082:2012 1022:ISBN 986:PMID 934:2003 820:2003 791:2018 725:ISBN 369:are 278:The 256:and 116:fuse 71:, a 67:, a 59:, a 1394:doi 1349:doi 1299:doi 1247:doi 1192:doi 1146:doi 1063:doi 1014:doi 976:doi 888:doi 717:doi 455:OPA 248:In 232:). 118:or 2202:: 1408:. 1400:. 1392:. 1384:. 1372:93 1370:. 1345:49 1343:. 1313:. 1305:. 1297:. 1289:. 1277:69 1275:. 1271:. 1245:. 1233:28 1231:. 1208:. 1198:. 1168:. 1160:. 1152:. 1144:. 1134:12 1132:. 1128:. 1069:. 1059:41 1057:. 1053:. 1030:. 1020:. 998:^ 984:. 974:. 964:17 962:. 958:. 942:^ 894:. 886:. 876:67 874:. 870:. 855:^ 782:. 756:. 739:^ 723:. 419:. 271:. 189:A 129:, 114:, 110:, 98:, 87:. 51:A 1455:e 1448:t 1441:v 1416:. 1396:: 1388:: 1378:: 1355:. 1351:: 1301:: 1293:: 1283:: 1253:. 1249:: 1216:. 1194:: 1148:: 1140:: 1110:. 1084:. 1065:: 1038:. 1016:: 992:. 978:: 970:: 936:. 890:: 882:: 822:. 793:. 733:. 719:: 47:. 34:. 27:.

Index

rolling blackout
Power Outage (disambiguation)
Power Cut

2009 Ecuador electricity crisis
electrical power
end user
power stations
electric transmission lines
substations
distribution
short circuit
cascading failure
fuse
circuit breaker
hospitals
sewage treatment plants
mines
standby generators
telecommunication
battery room
lead–acid batteries


short circuit
brownout
voltage
power stations
Rolling blackouts
developing countries

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑