Knowledge

Preorder

Source 📝

1664: 1651: 1085: 1075: 1045: 1035: 1013: 1003: 968: 946: 936: 901: 869: 859: 834: 802: 787: 767: 735: 725: 715: 695: 663: 643: 633: 623: 591: 571: 527: 507: 497: 460: 435: 425: 393: 368: 331: 301: 269: 207: 172: 1831: 2089:, with elements of the set corresponding to vertices, and the order relation between pairs of elements corresponding to the directed edges between vertices. The converse is not true: most directed graphs are neither reflexive nor transitive. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a 5377: 5300: 2742: 1395: 2093:. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph. In general, a preorder's corresponding directed graph may have many disconnected components. 5139: 1324: 7259: 1639: 2534: 1253: 6655:
and there is one morphism for objects which are related, zero otherwise. In this sense, categories "generalize" preorders by allowing more than one relation between objects: each morphism is a distinct (named) preorder
1524: 8119:
As explained above, there is a 1-to-1 correspondence between preorders and pairs (partition, partial order). Thus the number of preorders is the sum of the number of partial orders on every partition. For example:
1480: 1436: 4838: 3770: 1661:
indicates that the property is not guaranteed in general (it might, or might not, hold). For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by
5078: 1594: 1491: 1447: 1406: 1335: 1264: 1208: 5495: 4565: 6493: 2686: 6244: 6055: 5648: 8497: 5841: 5083: 2370: 5989: 1197: 6867: 4312: 4131: 4106: 1583: 7346: 7292: 4344: 4284: 3792: 3543: 8319: 4198: 3670: 3489: 3460: 6077: 5907: 5517: 5195: 4909: 4492: 4466: 3641: 3615: 3589: 2808: 2786: 2616: 2392: 2276: 2228: 2116: 8686: 8462: 8368: 8280: 7556: 6212: 4440: 4412: 3168: 2167: 8978: 8433: 8193: 7619: 7593: 7527: 7461: 7435: 6900: 6820: 6744: 6702: 6570: 6426: 6372: 5958: 4987: 4961: 4879: 4169: 2575: 2445: 2328: 3245: 7654: 7099: 6121: 6099: 5929: 5749: 5724: 5680: 5559: 5221: 5009: 3877: 3705: 2764: 2661: 2302: 2138: 1330: 5771: 5702: 5539: 5425: 5403: 5295: 5161: 4745: 4633: 4380: 3901: 3853: 2870: 2842: 8715: 8651: 7060: 6325: 6270: 6183: 6015: 5801: 5605: 5247: 4778: 4718: 4521: 4081: 4053: 3822: 3730: 3101: 2931: 2903: 2474: 8622: 7393: 6296: 5455: 5035: 4935: 4689: 4025: 3979: 3515: 3411: 1737: 1259: 8776: 8592: 8537: 5579: 4262: 4230: 3139: 2987: 8560: 8235: 8152: 7490: 6141: 5885: 5861: 5372:{\displaystyle a<b\quad {\text{ if and only if }}\quad a\lesssim b\;{\text{ and }}\;a\neq b\quad \quad ({\text{assuming }}\lesssim {\text{ is antisymmetric}}).} 1818: 5273: 3013: 1789: 1763: 1551: 1168: 7373: 7319: 7196: 7166: 6653: 3924: 3434: 3271: 2254: 1997: 1974: 7143: 7119: 7019: 6999: 6979: 4653: 4605: 3999: 3953: 3563: 3385: 3353: 3321: 3291: 3073: 3053: 3033: 2951: 2681: 2636: 2076: 2056: 2017: 1951: 1698: 8749: 8403: 6766:
between finite topologies and finite preorders. However, the relation between infinite topological spaces and their specialization preorders is not one-to-one.
3220: 3194: 2078:, together with a partial order on the set of equivalence class. Like partial orders and equivalence relations, preorders (on a nonempty set) are never 7201: 6382:
in the directed graph. Conversely, every preorder is the reachability relationship of a directed graph (for instance, the graph that has an edge from
1589: 2485: 1203: 1486: 1442: 1401: 9008:
Schmidt, Gunther, "Relational Mathematics", Encyclopedia of Mathematics and its Applications, vol. 132, Cambridge University Press, 2011,
1933:. For example, the divides relation is reflexive as every integer divides itself. But the divides relation is not antisymmetric, because 9709: 72: 4789: 2034:
and (non-strict) partial orders. Both of these are special cases of a preorder: an antisymmetric preorder is a partial order, and a
9692: 9742: 9222: 9058: 5843:(that is, take the reflexive closure of the relation). This gives the partial order associated with the strict partial order " 3735: 9013: 9539: 5040: 6428:). However, many different graphs may have the same reachability preorder as each other. In the same way, reachability of 8113: 2027:" (except that, for integers, the greatest common divisor is also the greatest for the natural order of the integers). 5541:
would not be transitive (consider how equivalent non-equal elements relate). This is the reason for using the symbol "
5460: 4526: 9675: 9534: 9028: 8904: 7716: 6462: 9529: 9165: 8894: 6217: 5581:", which might cause confusion for a preorder that is not antisymmetric since it might misleadingly suggest that 3360: 6020: 9247: 65: 7682:; and indeed, every preorder on a set is in one-to-one correspondence with an Alexandrov topology on that set. 9566: 9486: 6594:, which is when the literals in a disjunctive first-order formula are contained by another, after applying a 5610: 4568: 3328: 8467: 7262: 5806: 9351: 9280: 9160: 8805: 6942: 3170:
That this is well-defined, meaning that its defining condition does not depend on which representatives of
2333: 5963: 9254: 9242: 9205: 9180: 9155: 9109: 9078: 8994:, Studies in logic and the foundation of mathematics, vol. 102, Amsterdam, the Netherlands: Elsevier 8825: 3332: 3324: 2813:
Using this relation, it is possible to construct a partial order on the quotient set of the equivalence,
1173: 6825: 9551: 9185: 9175: 9051: 6751: 4292: 4111: 4086: 1557: 9524: 9190: 7324: 7268: 6763: 6759: 6532: 6502: 4317: 4267: 3775: 3526: 3294: 2737:{\displaystyle a\sim b\quad {\text{ if and only if }}\quad a\lesssim b\;{\text{ and }}\;b\lesssim a.} 58: 28: 8292: 6496: 4174: 3646: 3465: 3439: 9456: 9083: 6717: 6629: 6060: 5890: 5500: 5178: 4892: 4471: 4445: 3620: 3594: 3568: 2791: 2769: 2599: 2375: 2259: 2211: 2099: 1132: 956: 125: 8656: 8438: 8344: 8253: 7666:
equipped with a preorder. Every set is a class and so every preordered set is a preordered class.
7532: 6188: 4420: 4385: 3144: 2143: 1390:{\displaystyle {\begin{aligned}a\neq {}&b\Rightarrow \\aRb{\text{ or }}&bRa\end{aligned}}} 9704: 9687: 8963: 8412: 8166: 7598: 7572: 7506: 7440: 7414: 7349: 6879: 6799: 6723: 6666: 6573: 6549: 6405: 6351: 5937: 5657:
Using the construction above, multiple non-strict preorders can produce the same strict preorder
4966: 4940: 4843: 4136: 2539: 2424: 2307: 2020: 3225: 9616: 9232: 8791: 8371: 7624: 7408: 7065: 6609: 6539: 6429: 6104: 6082: 5912: 5729: 5707: 5660: 5544: 5204: 5198: 5134:{\displaystyle a\lesssim b\quad {\text{ if and only if }}\quad a<b\;{\text{ or }}\;a\sim b.} 4992: 3858: 3675: 3364: 2747: 2644: 2281: 2121: 2090: 2024: 1915: 1319:{\displaystyle {\begin{aligned}aRb{\text{ and }}&bRa\\\Rightarrow a={}&b\end{aligned}}} 1102: 95: 5754: 5685: 5522: 5408: 5386: 5278: 5144: 4723: 4616: 4353: 3882: 3827: 2851: 2816: 9747: 9594: 9429: 9420: 9289: 9170: 9124: 9088: 9044: 8787: 8691: 8627: 7766: 7704: 7493: 7032: 6788: 6581: 6433: 6301: 6249: 6162: 5994: 5780: 5726:
for instance), it might not be possible to reconstruct the original non-strict preorder from
5584: 5226: 4754: 4694: 4497: 4058: 4030: 3801: 3709: 3078: 2908: 2875: 2450: 1657:
indicates that the column's property is always true the row's term (at the very left), while
1112: 105: 8601: 7378: 6275: 5434: 5014: 4914: 4668: 4004: 3958: 3494: 3390: 1707: 9682: 9641: 9631: 9621: 9366: 9329: 9319: 9299: 9284: 8876: 8796: 8722: 8565: 8510: 7781: 7771: 7559: 7396: 6595: 5564: 5164: 4659: 4584: 4580: 4235: 4203: 3795: 3106: 2960: 2954: 2639: 2031: 1678: 889: 164: 8545: 8211: 8128: 7466: 6126: 5866: 5846: 1794: 8: 9609: 9520: 9466: 9425: 9415: 9304: 9237: 9200: 8835: 7746: 7679: 7663: 7122: 6522: 5252: 4783: 4415: 2992: 2479: 2411: 2079: 1900: 1821:
A term's definition may require additional properties that are not listed in this table.
1768: 1742: 1701: 1530: 1147: 1137: 548: 130: 47: 7355: 7301: 7178: 7148: 6635: 5991:" (that is, take the inverse complement of the relation), which corresponds to defining 3906: 3416: 3253: 2236: 1979: 1956: 9721: 9648: 9501: 9410: 9400: 9341: 9259: 9195: 8943: 8890: 8809: 8800: 7756: 7751: 7500: 7128: 7104: 7022: 7004: 6984: 6964: 6903: 6528: 6506: 6148: 4638: 4590: 3984: 3929: 3548: 3370: 3356: 3338: 3306: 3276: 3058: 3038: 3018: 2936: 2666: 2621: 2418: 2407: 2061: 2041: 2035: 2002: 1936: 1896: 1683: 1127: 1107: 1097: 1023: 120: 100: 90: 20: 9561: 8376: 3199: 3173: 9658: 9636: 9496: 9481: 9461: 9264: 9024: 9009: 8900: 7295: 7026: 6919: 6772: 6660: 6591: 6144: 4287: 3387:
is that it is closed under logical consequences so that, for instance, if a sentence
2845: 2231: 8947: 4200:
where the right hand side condition is independent of the choice of representatives
9471: 9324: 8933: 8921: 8864: 7693: 7686: 7659: 6510: 1930: 1852: 1845: 822: 755: 9653: 9436: 9314: 9309: 9294: 9210: 9119: 9104: 8872: 8830: 7741: 4613:
is sometimes used for a strict partial order. That is, this is a binary relation
1892: 1856: 683: 480: 51: 7254:{\displaystyle R\backslash R={\overline {R^{\textsf {T}}\circ {\overline {R}}}}} 1867:) are shown together as a single node. The relation on equivalence classes is a 9571: 9556: 9546: 9405: 9383: 9361: 7566: 6456: 6345: 6152: 2086: 1634:{\displaystyle {\begin{aligned}aRb\Rightarrow \\{\text{not }}bRa\end{aligned}}} 351: 2529:{\displaystyle a\lesssim b{\text{ and }}b\lesssim c{\text{ then }}a\lesssim c} 1248:{\displaystyle {\begin{aligned}&aRb\\\Rightarrow {}&bRa\end{aligned}}} 9736: 9670: 9626: 9604: 9476: 9346: 9334: 9139: 8868: 6625: 1911: 1868: 1834: 1122: 1117: 289: 115: 110: 2019:. It is to this preorder that "greatest" and "lowest" refer in the phrases " 1922: 9491: 9373: 9356: 9274: 9114: 9067: 8899:. Cambridge, Massachusetts/London, England: The MIT Press. pp. 182ff. 8820: 6776: 6543: 6341: 4347: 3519: 1880: 35: 19:
This article is about binary relations. For the graph vertex ordering, see
8938: 9697: 9390: 9269: 9134: 8814: 7776: 7712: 7697: 6934: 6923: 6780: 6440: 5383:
used as (nor is it equivalent to) the general definition of the relation
1876: 413: 1519:{\displaystyle {\begin{aligned}a\wedge b\\{\text{exists}}\end{aligned}}} 9665: 9599: 9440: 7708: 6949: 6915: 6452:
In computer science, one can find examples of the following preorders.
1926: 611: 34:"Quasiorder" redirects here. For irreflexive transitive relations, see 5863:" through reflexive closure; in this case the equivalence is equality 5751:
Possible (non-strict) preorders that induce the given strict preorder
1475:{\displaystyle {\begin{aligned}a\vee b\\{\text{exists}}\end{aligned}}} 9716: 9589: 9395: 6930: 6516: 1431:{\displaystyle {\begin{aligned}\min S\\{\text{exists}}\end{aligned}}} 24: 8855:
Eklund, Patrik; Gähler, Werner (1990), "Generalized Cauchy spaces",
9511: 6784: 6613: 2038:
preorder is an equivalence relation. Moreover, a preorder on a set
3247:
It is readily verified that this yields a partially ordered set.
9036: 4833:{\displaystyle a<b{\text{ and }}b<c{\text{ then }}a<c} 5652: 6348:(possibly containing cycles) gives rise to a preorder, where 4884: 4583:(while keeping transitivity) then we get the definition of a 8922:"A machine-oriented logic based on the resolution principle" 5704:
was constructed (such knowledge of the equivalence relation
2591: 8089: 8084: 8079: 8074: 8069: 8064: 8059: 8054: 8049: 8044: 6436:(preorders satisfying an additional antisymmetry property). 3250:
Conversely, from any partial order on a partition of a set
1830: 6783:. The definition of convergence via nets is important in 3331:
with certain properties (details of which can be found in
2058:
can equivalently be defined as an equivalence relation on
6101:
are in general not transitive; however, if they are then
2788:
is reflexive; transitive by applying the transitivity of
6918:, or any type of structure-preserving function, such as 6762:
of a topological space in this way. That is, there is a
4574: 3772:; that is, two sentences are equivalent with respect to 3765:{\displaystyle A\Leftarrow B{\text{ and }}B\Leftarrow A} 3297:
between preorders and pairs (partition, partial order).
8507:. One may choose to extend the definition to all pairs 4264:
of the equivalence classes. All that has been said of
7208: 6659:
Alternately, a preordered set can be understood as an
8966: 8752: 8725: 8694: 8659: 8630: 8604: 8568: 8548: 8513: 8470: 8441: 8415: 8379: 8347: 8295: 8256: 8214: 8169: 8131: 7674:
Preorders play a pivotal role in several situations:
7627: 7601: 7575: 7535: 7509: 7469: 7443: 7417: 7381: 7358: 7327: 7304: 7271: 7204: 7181: 7151: 7131: 7107: 7068: 7035: 7007: 6987: 6967: 6882: 6828: 6802: 6726: 6669: 6638: 6552: 6465: 6408: 6354: 6304: 6278: 6252: 6220: 6191: 6165: 6129: 6107: 6085: 6063: 6023: 5997: 5966: 5940: 5915: 5893: 5869: 5849: 5809: 5783: 5757: 5732: 5710: 5688: 5663: 5613: 5587: 5567: 5547: 5525: 5503: 5463: 5437: 5411: 5389: 5303: 5281: 5255: 5229: 5207: 5181: 5147: 5086: 5073:{\displaystyle a\lesssim b{\text{ and not }}a\sim b;} 5043: 5017: 4995: 4969: 4943: 4917: 4895: 4846: 4792: 4757: 4726: 4697: 4671: 4641: 4619: 4593: 4529: 4500: 4474: 4448: 4423: 4388: 4356: 4320: 4295: 4270: 4238: 4206: 4177: 4139: 4114: 4089: 4061: 4033: 4007: 3987: 3961: 3932: 3909: 3885: 3861: 3830: 3804: 3778: 3738: 3712: 3678: 3649: 3623: 3597: 3571: 3551: 3529: 3497: 3468: 3442: 3419: 3393: 3373: 3341: 3309: 3279: 3256: 3228: 3202: 3176: 3147: 3109: 3081: 3061: 3041: 3021: 2995: 2963: 2939: 2911: 2878: 2854: 2819: 2794: 2772: 2750: 2689: 2669: 2647: 2624: 2602: 2542: 2488: 2453: 2427: 2378: 2336: 2310: 2284: 2262: 2239: 2214: 2146: 2124: 2102: 2064: 2044: 2005: 1982: 1959: 1939: 1797: 1771: 1745: 1710: 1686: 1592: 1560: 1533: 1489: 1445: 1404: 1333: 1262: 1206: 1176: 1150: 7062:
The transitive closure indicates path connection in
6374:
in the preorder if and only if there is a path from
7171:
Left residual preorder induced by a binary relation
6720:gives rise to a preorder on its points by defining 6495:. The corresponding equivalence relation is called 5171:strict partial order can be constructed this way. 2580:A set that is equipped with a preorder is called a 23:. For purchase orders for unreleased products, see 8992:Set Theory, An Introduction to Independence Proofs 8972: 8770: 8743: 8709: 8680: 8645: 8616: 8586: 8554: 8531: 8491: 8456: 8427: 8397: 8362: 8313: 8274: 8229: 8187: 8146: 7648: 7613: 7587: 7550: 7521: 7484: 7455: 7429: 7387: 7367: 7340: 7313: 7286: 7253: 7190: 7160: 7137: 7113: 7093: 7054: 7013: 6993: 6973: 6894: 6861: 6814: 6738: 6696: 6647: 6564: 6487: 6420: 6366: 6319: 6290: 6264: 6238: 6206: 6177: 6135: 6115: 6093: 6071: 6049: 6009: 5983: 5952: 5923: 5901: 5879: 5855: 5835: 5795: 5765: 5743: 5718: 5696: 5674: 5642: 5599: 5573: 5553: 5533: 5511: 5489: 5449: 5419: 5397: 5371: 5289: 5267: 5241: 5215: 5189: 5155: 5133: 5072: 5029: 5003: 4981: 4955: 4929: 4903: 4873: 4832: 4772: 4739: 4712: 4683: 4647: 4627: 4599: 4559: 4515: 4486: 4460: 4434: 4406: 4374: 4338: 4306: 4278: 4256: 4224: 4192: 4163: 4125: 4100: 4075: 4047: 4019: 3993: 3973: 3947: 3918: 3895: 3871: 3847: 3816: 3786: 3764: 3724: 3699: 3664: 3635: 3609: 3583: 3557: 3537: 3509: 3483: 3454: 3428: 3405: 3379: 3347: 3315: 3285: 3265: 3239: 3214: 3188: 3162: 3133: 3095: 3067: 3047: 3027: 3007: 2981: 2945: 2925: 2897: 2864: 2836: 2802: 2780: 2758: 2736: 2675: 2655: 2630: 2610: 2569: 2528: 2468: 2439: 2386: 2364: 2322: 2296: 2270: 2248: 2222: 2200:. Occasionally, the notation ← or → is also used. 2161: 2132: 2110: 2070: 2050: 2011: 1991: 1968: 1945: 1859:. Equivalence classes (sets of elements such that 1812: 1783: 1757: 1731: 1692: 1633: 1577: 1545: 1518: 1474: 1430: 1389: 1318: 1247: 1191: 1162: 5561:" instead of the "less than or equal to" symbol " 5519:is not antisymmetric then the resulting relation 9734: 6779:preorder, that is, each pair of elements has an 6432:, directed graphs with no cycles, gives rise to 5490:{\displaystyle a\lesssim b{\text{ and }}a\neq b} 5201:(and thus a partial order) then the equivalence 4911:gives rise to a strict partial order defined by 4560:{\displaystyle \left(S/\sim ,\Leftarrow \right)} 3824:is commonly denoted with its own special symbol 2096:As a binary relation, a preorder may be denoted 1409: 6488:{\displaystyle f:\mathbb {N} \to \mathbb {N} } 4108:which will also be denoted by the same symbol 9052: 7733:-element binary relations of different types 6758:. Every finite preorder can be formed as the 1914:, but not quite, as they are not necessarily 1674:in the "Antisymmetric" column, respectively. 66: 8854: 7678:Every preorder can be given a topology, the 6239:{\displaystyle \,\lesssim \;\;=\;\;\leq \,} 5653:Preorders induced by a strict partial order 3222:are chosen, follows from the definition of 9710:Positive cone of a partially ordered group 9059: 9045: 8817:– preorder that is antisymmetric and total 6624:is a preorder. Such categories are called 6231: 6230: 6226: 6225: 6050:{\displaystyle a<b{\text{ nor }}b<a} 5335: 5329: 5118: 5112: 4885:Strict partial order induced by a preorder 4567:is consequently also a directed set. See 4041: 4037: 3867: 3863: 3838: 3834: 3273:it is possible to construct a preorder on 2721: 2715: 73: 59: 8937: 8542:Using the corresponding strict relation " 7278: 7226: 6481: 6473: 6235: 6221: 6112: 6108: 6090: 6086: 6068: 6064: 5920: 5916: 5898: 5894: 5870: 5762: 5758: 5740: 5733: 5715: 5711: 5693: 5689: 5671: 5664: 5530: 5526: 5508: 5504: 5416: 5412: 5394: 5390: 5286: 5282: 5275:) and so in this case, the definition of 5212: 5208: 5186: 5182: 5152: 5148: 5000: 4996: 4900: 4896: 4727: 4624: 4620: 4431: 4424: 4303: 4296: 4275: 4271: 4122: 4115: 4097: 4090: 3886: 3868: 3862: 3783: 3779: 3534: 3530: 3236: 3229: 2855: 2799: 2795: 2777: 2773: 2755: 2751: 2652: 2648: 2607: 2603: 2592:Preorders as partial orders on partitions 2383: 2379: 2355: 2267: 2263: 2219: 2215: 2129: 2125: 2107: 2103: 9693:Positive cone of an ordered vector space 9018: 8919: 6787:, where preorders cannot be replaced by 1829: 16:Reflexive and transitive binary relation 5643:{\displaystyle a<b{\text{ or }}a=b.} 5379:But importantly, this new condition is 3798:. This particular equivalence relation 1921:A natural example of a preorder is the 1907:is meant to suggest that preorders are 9735: 8889: 8688:An open interval may be empty even if 8492:{\displaystyle a\lesssim x\lesssim b.} 7723: 7402: 5836:{\displaystyle a<b{\text{ or }}a=b} 5682:so without more information about how 9040: 8989: 4575:Relationship to strict partial orders 2810:twice; and symmetric by definition. 2365:{\displaystyle (a,b)\in \,\lesssim .} 8562:", one can also define the interval 8242:7 partitions with two classes (4 of 6513:are preorders on complexity classes. 6151:(formerly called total); that is, a 5984:{\displaystyle {\text{ not }}b<a} 3903:The equivalence class of a sentence 1677:All definitions tacitly require the 8539:The extra intervals are all empty. 8239:1 partition of 4, giving 1 preorder 8156:1 partition of 3, giving 1 preorder 8114:Stirling numbers of the second kind 6447: 1192:{\displaystyle S\neq \varnothing :} 13: 9220:Properties & Types ( 8967: 6862:{\displaystyle f(x)\lesssim f(y),} 6791:without losing important features. 6602: 6459:causes a preorder over functions 2085:A preorder can be visualized as a 14: 9759: 9676:Positive cone of an ordered field 8980:" does not mean "set difference". 7001:can be extended to a preorder on 6873:is a function into some preorder. 6123:is an equivalence; in that case " 4989:. Using the equivalence relation 4307:{\displaystyle \,\Rightarrow .\,} 3981:that are logically equivalent to 2030:Preorders are closely related to 1183: 9530:Ordered topological vector space 9066: 8499:It contains at least the points 7685:Preorders may be used to define 6956: 6519:relations are usually preorders. 4579:If reflexivity is replaced with 4126:{\displaystyle \,\Leftarrow ,\,} 4101:{\displaystyle \,\Leftarrow ,\,} 3413:logically implies some sentence 3367:. One of the many properties of 2766:is reflexive since the preorder 1925:"x divides y" between integers, 1662: 1649: 1578:{\displaystyle {\text{not }}aRa} 1083: 1073: 1043: 1033: 1011: 1001: 966: 944: 934: 899: 867: 857: 832: 800: 785: 765: 733: 723: 713: 693: 661: 641: 631: 621: 589: 569: 525: 505: 495: 458: 433: 423: 391: 366: 329: 299: 267: 205: 170: 8896:Types and Programming Languages 7341:{\displaystyle {\overline {R}}} 7287:{\displaystyle R^{\textsf {T}}} 6914:. Injection may be replaced by 6525:are preorders (hence the name). 6334: 5346: 5345: 5319: 5313: 5102: 5096: 4414:denotes the sentence formed by 4339:{\displaystyle (S,\Leftarrow )} 4286:so far can also be said of its 4279:{\displaystyle \,\Leftarrow \,} 3787:{\displaystyle \,\Leftarrow \,} 3538:{\displaystyle \,\Leftarrow \,} 2705: 2699: 9743:Properties of binary relations 9019:Schröder, Bernd S. W. (2002), 8983: 8954: 8913: 8883: 8847: 8765: 8753: 8738: 8726: 8581: 8569: 8526: 8514: 8392: 8380: 8331:I.e., together, 355 preorders. 8314:{\displaystyle 6\times 19=114} 6853: 6847: 6838: 6832: 6688: 6682: 6676: 6632:correspond to the elements of 6477: 5363: 5347: 4549: 4478: 4452: 4333: 4330: 4321: 4297: 4272: 4251: 4245: 4219: 4213: 4193:{\displaystyle A\Leftarrow B,} 4181: 4158: 4152: 4149: 4146: 4140: 4116: 4091: 4038: 3939: 3933: 3864: 3835: 3780: 3756: 3742: 3665:{\displaystyle A\Leftarrow C.} 3653: 3627: 3601: 3575: 3531: 3484:{\displaystyle B\Leftarrow A,} 3472: 3455:{\displaystyle A\Rightarrow B} 3446: 3209: 3203: 3183: 3177: 3128: 3122: 3116: 3110: 2976: 2970: 2872:If the preorder is denoted by 2349: 2337: 1670:in the "Symmetric" column and 1606: 1351: 1296: 1225: 1: 9487:Series-parallel partial order 9021:Ordered Sets: An Introduction 9002: 8205:I.e., together, 29 preorders. 7198:the complemented composition 6952:, according to common models. 6663:, enriched over the category 6214:The converse holds (that is, 6072:{\displaystyle \,\lesssim \,} 5902:{\displaystyle \,\lesssim \,} 5512:{\displaystyle \,\lesssim \,} 5190:{\displaystyle \,\lesssim \,} 4904:{\displaystyle \,\lesssim \,} 4487:{\displaystyle B\Leftarrow C} 4461:{\displaystyle A\Leftarrow C} 3636:{\displaystyle B\Leftarrow C} 3610:{\displaystyle A\Leftarrow B} 3584:{\displaystyle A\Leftarrow A} 2803:{\displaystyle \,\lesssim \,} 2781:{\displaystyle \,\lesssim \,} 2611:{\displaystyle \,\lesssim \,} 2387:{\displaystyle \,\lesssim \,} 2271:{\displaystyle \,\lesssim \,} 2223:{\displaystyle \,\lesssim \,} 2203: 2111:{\displaystyle \,\lesssim \,} 1671: 1658: 1068: 1063: 1058: 1053: 1028: 996: 991: 986: 981: 976: 961: 929: 924: 919: 914: 909: 894: 882: 877: 852: 847: 842: 827: 815: 810: 795: 780: 775: 760: 748: 743: 708: 703: 688: 676: 671: 656: 651: 616: 604: 599: 584: 579: 564: 559: 554: 540: 535: 520: 515: 490: 485: 473: 468: 453: 448: 443: 418: 406: 401: 386: 381: 376: 361: 356: 344: 339: 324: 319: 314: 309: 294: 282: 277: 262: 257: 252: 247: 242: 237: 220: 215: 200: 195: 190: 185: 180: 9166:Cantor's isomorphism theorem 8681:{\displaystyle a<x<b.} 8457:{\displaystyle x\lesssim b,} 8363:{\displaystyle a\lesssim b,} 8275:{\displaystyle 7\times 3=21} 7551:{\displaystyle b\lesssim a,} 7499:On the other hand, if it is 7333: 7261:forms a preorder called the 7246: 7240: 6443:relation is also a preorder. 6207:{\displaystyle a\lesssim b.} 6147:. The resulting preorder is 4607:. For this reason, the term 4435:{\displaystyle \,\wedge ,\,} 4407:{\displaystyle C:=A\wedge B} 3163:{\displaystyle x\lesssim y.} 2414:; that is, if it satisfies: 2162:{\displaystyle a\lesssim b,} 7: 9206:Szpilrajn extension theorem 9181:Hausdorff maximal principle 9156:Boolean prime ideal theorem 8973:{\displaystyle \backslash } 8826:Category of preordered sets 8781: 8428:{\displaystyle a\lesssim x} 8336: 8188:{\displaystyle 3\times 3=9} 7614:{\displaystyle b\lesssim a} 7588:{\displaystyle a\lesssim b} 7522:{\displaystyle a\lesssim b} 7456:{\displaystyle b\lesssim a} 7430:{\displaystyle a\lesssim b} 7101:if and only if there is an 6895:{\displaystyle x\lesssim y} 6815:{\displaystyle x\lesssim y} 6739:{\displaystyle x\lesssim y} 6697:{\displaystyle 2=(0\to 1).} 6565:{\displaystyle s\lesssim t} 6421:{\displaystyle x\lesssim y} 6367:{\displaystyle x\lesssim y} 6329: 5953:{\displaystyle a\lesssim b} 5080:and so the following holds 4982:{\displaystyle b\lesssim a} 4956:{\displaystyle a\lesssim b} 4874:{\displaystyle a,b,c\in P.} 4164:{\displaystyle \Leftarrow } 3361:Zermelo–Fraenkel set theory 2570:{\displaystyle a,b,c\in P.} 2440:{\displaystyle a\lesssim a} 2323:{\displaystyle a\lesssim b} 10: 9764: 9552:Topological vector lattice 8778:can be defined similarly. 6533:abstract rewriting systems 6246:) if and only if whenever 5497:) because if the preorder 5316: if and only if  5099: if and only if  4523:The partially ordered set 3955:consists of all sentences 3591:always holds and whenever 3333:the article on the subject 3240:{\displaystyle \,\sim .\,} 2702: if and only if  2230:be a binary relation on a 33: 18: 9582: 9510: 9449: 9219: 9148: 9097: 9074: 8857:Mathematische Nachrichten 7649:{\displaystyle a,b\in P.} 7094:{\displaystyle R:xR^{+}y} 6764:one-to-one correspondence 6116:{\displaystyle \,\sim \,} 6094:{\displaystyle \,\sim \,} 5924:{\displaystyle \,\sim \,} 5744:{\displaystyle \,<.\,} 5719:{\displaystyle \,\sim \,} 5675:{\displaystyle \,<,\,} 5554:{\displaystyle \lesssim } 5216:{\displaystyle \,\sim \,} 5004:{\displaystyle \,\sim \,} 4569:Lindenbaum–Tarski algebra 4055:). The partial order on 3872:{\displaystyle \,\iff \,} 3700:{\displaystyle A,B\in S,} 3436:which will be written as 3295:one-to-one correspondence 3103:it is possible to define 2759:{\displaystyle \,\sim \,} 2656:{\displaystyle \,\sim \,} 2297:{\displaystyle P\times P} 2133:{\displaystyle \,\leq \,} 29:Preorder (disambiguation) 9161:Cantor–Bernstein theorem 8920:Robinson, J. A. (1965). 8869:10.1002/mana.19901470123 8841: 7175:Given a binary relation 6876:The relation defined by 6796:The relation defined by 6718:finite topological space 6707: 5766:{\displaystyle \,<\,} 5697:{\displaystyle \,<\,} 5534:{\displaystyle \,<\,} 5420:{\displaystyle \,<\,} 5398:{\displaystyle \,<\,} 5290:{\displaystyle \,<\,} 5156:{\displaystyle \,<\,} 4740:{\displaystyle \,a<a} 4628:{\displaystyle \,<\,} 4375:{\displaystyle A,B\in S} 3896:{\displaystyle \,\sim .} 3848:{\displaystyle A\iff B,} 3794:if and only if they are 2865:{\displaystyle \,\sim .} 2844:which is the set of all 2837:{\displaystyle S/\sim ,} 9705:Partially ordered group 9525:Specialization preorder 8990:Kunen, Kenneth (1980), 8853:For "proset", see e.g. 8710:{\displaystyle a<b.} 8646:{\displaystyle x<b,} 7669: 7055:{\displaystyle R^{+=}.} 6933:relation for countable 6760:specialization preorder 6430:directed acyclic graphs 6320:{\displaystyle b<a.} 6265:{\displaystyle a\neq b} 6178:{\displaystyle a\leq b} 6010:{\displaystyle a\sim b} 5796:{\displaystyle a\leq b} 5773:include the following: 5600:{\displaystyle a\leq b} 5242:{\displaystyle a\sim b} 4773:{\displaystyle a\in P,} 4713:{\displaystyle a\in P;} 4571:for a related example. 4516:{\displaystyle C\in S.} 4076:{\displaystyle S/\sim } 4048:{\displaystyle A\iff B} 3879:may be used instead of 3817:{\displaystyle A\sim B} 3725:{\displaystyle A\sim B} 3643:both hold then so does 3096:{\displaystyle S/\sim } 2926:{\displaystyle S/\sim } 2898:{\displaystyle R^{+=},} 2744:The resulting relation 2469:{\displaystyle a\in P,} 2256:so that by definition, 2021:greatest common divisor 9191:Kruskal's tree theorem 9186:Knaster–Tarski theorem 9176:Dushnik–Miller theorem 9023:, Boston: Birkhäuser, 8974: 8772: 8745: 8711: 8682: 8647: 8618: 8617:{\displaystyle a<x} 8588: 8556: 8533: 8493: 8458: 8429: 8399: 8364: 8328:, giving 219 preorders 8315: 8276: 8231: 8189: 8148: 7703:Preorders are used in 7692:Preorders provide the 7650: 7615: 7589: 7552: 7523: 7486: 7457: 7431: 7407:If a preorder is also 7389: 7388:{\displaystyle \circ } 7369: 7342: 7315: 7288: 7255: 7192: 7162: 7139: 7115: 7095: 7056: 7015: 6995: 6975: 6961:Every binary relation 6896: 6863: 6816: 6789:partially ordered sets 6740: 6698: 6649: 6566: 6540:encompassment preorder 6497:asymptotic equivalence 6489: 6434:partially ordered sets 6422: 6368: 6321: 6292: 6291:{\displaystyle a<b} 6266: 6240: 6208: 6179: 6137: 6117: 6095: 6073: 6051: 6011: 5985: 5954: 5925: 5903: 5881: 5857: 5837: 5797: 5767: 5745: 5720: 5698: 5676: 5644: 5601: 5575: 5555: 5535: 5513: 5491: 5451: 5450:{\displaystyle a<b} 5421: 5399: 5373: 5360: is antisymmetric 5291: 5269: 5243: 5223:is equality (that is, 5217: 5191: 5157: 5135: 5074: 5031: 5030:{\displaystyle a<b} 5005: 4983: 4957: 4931: 4930:{\displaystyle a<b} 4905: 4875: 4834: 4774: 4741: 4714: 4685: 4684:{\displaystyle a<a} 4649: 4629: 4601: 4561: 4517: 4488: 4462: 4436: 4408: 4376: 4340: 4308: 4280: 4258: 4226: 4194: 4165: 4127: 4102: 4077: 4049: 4021: 4020:{\displaystyle B\in S} 3995: 3975: 3974:{\displaystyle B\in S} 3949: 3920: 3897: 3873: 3849: 3818: 3788: 3766: 3726: 3701: 3666: 3637: 3611: 3585: 3559: 3539: 3511: 3510:{\displaystyle B\in S} 3485: 3456: 3430: 3407: 3406:{\displaystyle A\in S} 3381: 3349: 3317: 3287: 3267: 3241: 3216: 3190: 3164: 3135: 3097: 3069: 3049: 3029: 3009: 2983: 2957:equivalence classes: 2947: 2927: 2899: 2866: 2838: 2804: 2782: 2760: 2738: 2677: 2657: 2632: 2612: 2571: 2530: 2470: 2441: 2388: 2366: 2324: 2298: 2272: 2250: 2224: 2163: 2134: 2112: 2091:directed acyclic graph 2072: 2052: 2025:lowest common multiple 2013: 1993: 1970: 1947: 1872: 1814: 1785: 1759: 1733: 1732:{\displaystyle a,b,c,} 1694: 1635: 1579: 1547: 1520: 1476: 1432: 1391: 1320: 1249: 1193: 1164: 27:. For other uses, see 8975: 8939:10.1145/321250.321253 8773: 8771:{\displaystyle (a,b]} 8746: 8744:{\displaystyle [a,b)} 8712: 8683: 8648: 8619: 8594:as the set of points 8589: 8587:{\displaystyle (a,b)} 8557: 8534: 8532:{\displaystyle (a,b)} 8494: 8459: 8430: 8405:is the set of points 8400: 8365: 8316: 8277: 8232: 8202:, giving 19 preorders 8190: 8149: 7696:for certain types of 7651: 7616: 7590: 7553: 7524: 7487: 7458: 7432: 7390: 7370: 7343: 7316: 7289: 7256: 7193: 7163: 7140: 7116: 7096: 7057: 7016: 6996: 6976: 6902:if there exists some 6897: 6864: 6817: 6741: 6699: 6650: 6582:substitution instance 6567: 6490: 6423: 6369: 6322: 6293: 6267: 6241: 6209: 6180: 6138: 6118: 6096: 6074: 6052: 6012: 5986: 5955: 5926: 5904: 5882: 5858: 5838: 5798: 5768: 5746: 5721: 5699: 5677: 5645: 5602: 5576: 5574:{\displaystyle \leq } 5556: 5536: 5514: 5492: 5452: 5422: 5400: 5374: 5297:can be restated as: 5292: 5270: 5244: 5218: 5192: 5158: 5136: 5075: 5032: 5006: 4984: 4958: 4932: 4906: 4876: 4835: 4775: 4742: 4715: 4686: 4662:or anti-reflexivity: 4650: 4630: 4602: 4562: 4518: 4489: 4463: 4437: 4409: 4377: 4341: 4309: 4281: 4259: 4257:{\displaystyle B\in } 4227: 4225:{\displaystyle A\in } 4195: 4166: 4128: 4103: 4078: 4050: 4022: 3996: 3976: 3950: 3921: 3898: 3874: 3850: 3819: 3789: 3767: 3727: 3702: 3672:Furthermore, for any 3667: 3638: 3612: 3586: 3560: 3540: 3512: 3486: 3457: 3431: 3408: 3382: 3350: 3318: 3288: 3268: 3242: 3217: 3191: 3165: 3136: 3134:{\displaystyle \leq } 3098: 3070: 3050: 3030: 3010: 2984: 2982:{\displaystyle x\in } 2948: 2928: 2900: 2867: 2839: 2805: 2783: 2761: 2739: 2678: 2658: 2633: 2613: 2572: 2531: 2471: 2442: 2389: 2367: 2325: 2299: 2273: 2251: 2225: 2164: 2135: 2113: 2073: 2053: 2032:equivalence relations 2014: 1994: 1971: 1948: 1833: 1815: 1786: 1760: 1734: 1695: 1636: 1580: 1548: 1521: 1477: 1433: 1392: 1321: 1250: 1194: 1165: 1144:Definitions, for all 9683:Ordered vector space 8964: 8797:Equivalence relation 8750: 8723: 8692: 8657: 8628: 8602: 8566: 8555:{\displaystyle <} 8546: 8511: 8468: 8439: 8413: 8377: 8345: 8293: 8254: 8230:{\displaystyle n=4:} 8212: 8167: 8147:{\displaystyle n=3:} 8129: 7782:Equivalence relation 7625: 7599: 7573: 7560:equivalence relation 7533: 7507: 7485:{\displaystyle a=b,} 7467: 7441: 7415: 7397:relation composition 7379: 7356: 7325: 7302: 7269: 7202: 7179: 7149: 7129: 7105: 7066: 7033: 7005: 6985: 6965: 6880: 6826: 6800: 6724: 6667: 6636: 6620:to any other object 6550: 6523:Simulation preorders 6463: 6406: 6352: 6344:relationship in any 6302: 6276: 6250: 6218: 6189: 6163: 6136:{\displaystyle <} 6127: 6105: 6083: 6061: 6021: 5995: 5964: 5938: 5913: 5891: 5880:{\displaystyle \,=,} 5867: 5856:{\displaystyle <} 5847: 5807: 5781: 5755: 5730: 5708: 5686: 5661: 5611: 5585: 5565: 5545: 5523: 5501: 5461: 5435: 5409: 5387: 5301: 5279: 5253: 5227: 5205: 5179: 5165:strict partial order 5145: 5084: 5041: 5015: 4993: 4967: 4941: 4915: 4893: 4844: 4790: 4755: 4724: 4695: 4669: 4639: 4617: 4591: 4585:strict partial order 4527: 4498: 4472: 4446: 4421: 4386: 4354: 4318: 4293: 4268: 4236: 4204: 4175: 4137: 4133:is characterized by 4112: 4087: 4059: 4031: 4005: 3985: 3959: 3930: 3907: 3883: 3859: 3828: 3802: 3796:logically equivalent 3776: 3736: 3710: 3676: 3647: 3621: 3595: 3569: 3549: 3527: 3495: 3466: 3440: 3417: 3391: 3371: 3339: 3327:, which is a set of 3307: 3277: 3254: 3226: 3200: 3174: 3145: 3107: 3079: 3059: 3039: 3019: 2993: 2961: 2937: 2909: 2876: 2852: 2817: 2792: 2770: 2748: 2687: 2667: 2645: 2640:equivalence relation 2622: 2600: 2540: 2486: 2451: 2425: 2376: 2334: 2330:is used in place of 2308: 2282: 2260: 2237: 2212: 2144: 2122: 2100: 2062: 2042: 2003: 1980: 1957: 1937: 1813:{\displaystyle aRc.} 1795: 1769: 1743: 1708: 1684: 1679:homogeneous relation 1590: 1558: 1531: 1487: 1443: 1402: 1331: 1260: 1204: 1174: 1148: 890:Strict partial order 165:Equivalence relation 9521:Alexandrov topology 9467:Lexicographic order 9426:Well-quasi-ordering 8891:Pierce, Benjamin C. 8836:Well-quasi-ordering 8808:– preorder that is 8799:– preorder that is 8790:– preorder that is 7734: 7724:Number of preorders 7680:Alexandrov topology 7403:Related definitions 6529:Reduction relations 6057:"; these relations 5268:{\displaystyle a=b} 5055: and not  4416:logical conjunction 4314:The preordered set 3855:and so this symbol 3365:zeroth-order theory 3293:itself. There is a 3075:. In any case, on 3008:{\displaystyle x=y} 2846:equivalence classes 1929:, or elements of a 1784:{\displaystyle bRc} 1758:{\displaystyle aRb} 1546:{\displaystyle aRa} 1163:{\displaystyle a,b} 549:Well-quasi-ordering 9502:Transitive closure 9462:Converse/Transpose 9171:Dilworth's theorem 8970: 8960:In this context, " 8768: 8741: 8707: 8678: 8643: 8614: 8584: 8552: 8529: 8489: 8454: 8425: 8395: 8360: 8311: 8272: 8227: 8185: 8144: 7728: 7646: 7611: 7585: 7548: 7519: 7482: 7453: 7427: 7385: 7368:{\displaystyle R,} 7365: 7338: 7314:{\displaystyle R,} 7311: 7284: 7251: 7191:{\displaystyle R,} 7188: 7161:{\displaystyle y.} 7158: 7135: 7111: 7091: 7052: 7023:transitive closure 7011: 6991: 6971: 6892: 6859: 6812: 6736: 6712:Further examples: 6694: 6648:{\displaystyle P,} 6645: 6562: 6507:many-one (mapping) 6485: 6418: 6364: 6317: 6288: 6262: 6236: 6204: 6175: 6133: 6113: 6091: 6069: 6047: 6007: 5981: 5950: 5921: 5899: 5877: 5853: 5833: 5793: 5763: 5741: 5716: 5694: 5672: 5640: 5597: 5571: 5551: 5531: 5509: 5487: 5447: 5417: 5395: 5369: 5287: 5265: 5239: 5213: 5187: 5153: 5131: 5070: 5027: 5011:introduced above, 5001: 4979: 4953: 4927: 4901: 4871: 4830: 4770: 4737: 4710: 4681: 4645: 4625: 4597: 4557: 4513: 4484: 4458: 4432: 4404: 4372: 4336: 4304: 4276: 4254: 4222: 4190: 4161: 4123: 4098: 4073: 4045: 4017: 3991: 3971: 3945: 3919:{\displaystyle A,} 3916: 3893: 3869: 3845: 3814: 3784: 3762: 3722: 3697: 3662: 3633: 3607: 3581: 3555: 3535: 3507: 3481: 3452: 3429:{\displaystyle B,} 3426: 3403: 3377: 3357:first-order theory 3345: 3313: 3283: 3266:{\displaystyle S,} 3263: 3237: 3212: 3186: 3160: 3131: 3093: 3065: 3045: 3025: 3005: 2979: 2943: 2923: 2895: 2862: 2834: 2800: 2778: 2756: 2734: 2673: 2653: 2638:one may define an 2628: 2608: 2567: 2526: 2466: 2437: 2384: 2362: 2320: 2294: 2278:is some subset of 2268: 2249:{\displaystyle P,} 2246: 2220: 2159: 2130: 2108: 2068: 2048: 2009: 1992:{\displaystyle -1} 1989: 1969:{\displaystyle -1} 1966: 1943: 1873: 1810: 1781: 1755: 1729: 1690: 1631: 1629: 1575: 1543: 1516: 1514: 1472: 1470: 1428: 1426: 1387: 1385: 1316: 1314: 1245: 1243: 1189: 1160: 1024:Strict total order 21:depth-first search 9730: 9729: 9688:Partially ordered 9497:Symmetric closure 9482:Reflexive closure 9225: 9014:978-0-521-76268-7 8095: 8094: 7687:interior algebras 7336: 7296:converse relation 7280: 7249: 7243: 7228: 7138:{\displaystyle x} 7114:{\displaystyle R} 7027:reflexive closure 7014:{\displaystyle S} 6994:{\displaystyle S} 6974:{\displaystyle R} 6920:ring homomorphism 6750:belongs to every 6661:enriched category 6612:with at most one 6592:Theta-subsumption 6511:Turing reductions 6145:strict weak order 6036: 5970: 5822: 5626: 5476: 5361: 5353: 5333: 5317: 5116: 5100: 5056: 4819: 4805: 4648:{\displaystyle P} 4600:{\displaystyle P} 4288:converse relation 3994:{\displaystyle A} 3948:{\displaystyle ,} 3751: 3558:{\displaystyle S} 3545:is a preorder on 3523:). The relation 3491:then necessarily 3380:{\displaystyle S} 3348:{\displaystyle S} 3335:). For instance, 3316:{\displaystyle S} 3286:{\displaystyle S} 3068:{\displaystyle y} 3048:{\displaystyle R} 3028:{\displaystyle x} 2946:{\displaystyle R} 2719: 2703: 2676:{\displaystyle S} 2631:{\displaystyle S} 2596:Given a preorder 2515: 2501: 2304:and the notation 2169:one may say that 2140:. In words, when 2071:{\displaystyle X} 2051:{\displaystyle X} 2012:{\displaystyle 1} 1946:{\displaystyle 1} 1826: 1825: 1693:{\displaystyle R} 1644: 1643: 1616: 1564: 1510: 1466: 1422: 1370: 1279: 957:Strict weak order 143:Total, Semiconnex 9755: 9472:Linear extension 9221: 9201:Mirsky's theorem 9061: 9054: 9047: 9038: 9037: 9033: 8997: 8995: 8987: 8981: 8979: 8977: 8976: 8971: 8958: 8952: 8951: 8941: 8917: 8911: 8910: 8887: 8881: 8879: 8851: 8777: 8775: 8774: 8769: 8748: 8747: 8742: 8716: 8714: 8713: 8708: 8687: 8685: 8684: 8679: 8652: 8650: 8649: 8644: 8623: 8621: 8620: 8615: 8593: 8591: 8590: 8585: 8561: 8559: 8558: 8553: 8538: 8536: 8535: 8530: 8498: 8496: 8495: 8490: 8463: 8461: 8460: 8455: 8434: 8432: 8431: 8426: 8404: 8402: 8401: 8398:{\displaystyle } 8396: 8369: 8367: 8366: 8361: 8327: 8320: 8318: 8317: 8312: 8288: 8285:6 partitions of 8281: 8279: 8278: 8273: 8249: 8245: 8236: 8234: 8233: 8228: 8201: 8194: 8192: 8191: 8186: 8162: 8159:3 partitions of 8153: 8151: 8150: 8145: 8111: 8039: 8026: 8025: 8005: 7988: 7987: 7936: 7931: 7926: 7921: 7735: 7727: 7694:Kripke semantics 7660:preordered class 7655: 7653: 7652: 7647: 7620: 7618: 7617: 7612: 7594: 7592: 7591: 7586: 7557: 7555: 7554: 7549: 7528: 7526: 7525: 7520: 7491: 7489: 7488: 7483: 7462: 7460: 7459: 7454: 7436: 7434: 7433: 7428: 7394: 7392: 7391: 7386: 7374: 7372: 7371: 7366: 7347: 7345: 7344: 7339: 7337: 7329: 7320: 7318: 7317: 7312: 7293: 7291: 7290: 7285: 7283: 7282: 7281: 7260: 7258: 7257: 7252: 7250: 7245: 7244: 7236: 7231: 7230: 7229: 7218: 7197: 7195: 7194: 7189: 7167: 7165: 7164: 7159: 7144: 7142: 7141: 7136: 7120: 7118: 7117: 7112: 7100: 7098: 7097: 7092: 7087: 7086: 7061: 7059: 7058: 7053: 7048: 7047: 7020: 7018: 7017: 7012: 7000: 6998: 6997: 6992: 6980: 6978: 6977: 6972: 6901: 6899: 6898: 6893: 6868: 6866: 6865: 6860: 6821: 6819: 6818: 6813: 6745: 6743: 6742: 6737: 6703: 6701: 6700: 6695: 6654: 6652: 6651: 6646: 6616:from any object 6571: 6569: 6568: 6563: 6494: 6492: 6491: 6486: 6484: 6476: 6457:Asymptotic order 6448:Computer science 6427: 6425: 6424: 6419: 6401: 6373: 6371: 6370: 6365: 6326: 6324: 6323: 6318: 6297: 6295: 6294: 6289: 6271: 6269: 6268: 6263: 6245: 6243: 6242: 6237: 6213: 6211: 6210: 6205: 6184: 6182: 6181: 6176: 6142: 6140: 6139: 6134: 6122: 6120: 6119: 6114: 6100: 6098: 6097: 6092: 6078: 6076: 6075: 6070: 6056: 6054: 6053: 6048: 6037: 6034: 6016: 6014: 6013: 6008: 5990: 5988: 5987: 5982: 5971: 5968: 5959: 5957: 5956: 5951: 5930: 5928: 5927: 5922: 5908: 5906: 5905: 5900: 5886: 5884: 5883: 5878: 5862: 5860: 5859: 5854: 5842: 5840: 5839: 5834: 5823: 5820: 5802: 5800: 5799: 5794: 5772: 5770: 5769: 5764: 5750: 5748: 5747: 5742: 5725: 5723: 5722: 5717: 5703: 5701: 5700: 5695: 5681: 5679: 5678: 5673: 5649: 5647: 5646: 5641: 5627: 5624: 5606: 5604: 5603: 5598: 5580: 5578: 5577: 5572: 5560: 5558: 5557: 5552: 5540: 5538: 5537: 5532: 5518: 5516: 5515: 5510: 5496: 5494: 5493: 5488: 5477: 5474: 5456: 5454: 5453: 5448: 5426: 5424: 5423: 5418: 5404: 5402: 5401: 5396: 5378: 5376: 5375: 5370: 5362: 5359: 5354: 5351: 5334: 5331: 5318: 5315: 5296: 5294: 5293: 5288: 5274: 5272: 5271: 5266: 5248: 5246: 5245: 5240: 5222: 5220: 5219: 5214: 5196: 5194: 5193: 5188: 5162: 5160: 5159: 5154: 5140: 5138: 5137: 5132: 5117: 5114: 5101: 5098: 5079: 5077: 5076: 5071: 5057: 5054: 5036: 5034: 5033: 5028: 5010: 5008: 5007: 5002: 4988: 4986: 4985: 4980: 4962: 4960: 4959: 4954: 4936: 4934: 4933: 4928: 4910: 4908: 4907: 4902: 4880: 4878: 4877: 4872: 4839: 4837: 4836: 4831: 4820: 4818: then  4817: 4806: 4803: 4779: 4777: 4776: 4771: 4746: 4744: 4743: 4738: 4719: 4717: 4716: 4711: 4690: 4688: 4687: 4682: 4655:that satisfies: 4654: 4652: 4651: 4646: 4634: 4632: 4631: 4626: 4606: 4604: 4603: 4598: 4566: 4564: 4563: 4558: 4556: 4552: 4542: 4522: 4520: 4519: 4514: 4493: 4491: 4490: 4485: 4467: 4465: 4464: 4459: 4441: 4439: 4438: 4433: 4413: 4411: 4410: 4405: 4381: 4379: 4378: 4373: 4345: 4343: 4342: 4337: 4313: 4311: 4310: 4305: 4285: 4283: 4282: 4277: 4263: 4261: 4260: 4255: 4231: 4229: 4228: 4223: 4199: 4197: 4196: 4191: 4170: 4168: 4167: 4162: 4132: 4130: 4129: 4124: 4107: 4105: 4104: 4099: 4082: 4080: 4079: 4074: 4069: 4054: 4052: 4051: 4046: 4026: 4024: 4023: 4018: 4000: 3998: 3997: 3992: 3980: 3978: 3977: 3972: 3954: 3952: 3951: 3946: 3925: 3923: 3922: 3917: 3902: 3900: 3899: 3894: 3878: 3876: 3875: 3870: 3854: 3852: 3851: 3846: 3823: 3821: 3820: 3815: 3793: 3791: 3790: 3785: 3771: 3769: 3768: 3763: 3752: 3749: 3731: 3729: 3728: 3723: 3706: 3704: 3703: 3698: 3671: 3669: 3668: 3663: 3642: 3640: 3639: 3634: 3616: 3614: 3613: 3608: 3590: 3588: 3587: 3582: 3564: 3562: 3561: 3556: 3544: 3542: 3541: 3536: 3516: 3514: 3513: 3508: 3490: 3488: 3487: 3482: 3461: 3459: 3458: 3453: 3435: 3433: 3432: 3427: 3412: 3410: 3409: 3404: 3386: 3384: 3383: 3378: 3354: 3352: 3351: 3346: 3322: 3320: 3319: 3314: 3292: 3290: 3289: 3284: 3272: 3270: 3269: 3264: 3246: 3244: 3243: 3238: 3221: 3219: 3218: 3215:{\displaystyle } 3213: 3195: 3193: 3192: 3189:{\displaystyle } 3187: 3169: 3167: 3166: 3161: 3140: 3138: 3137: 3132: 3102: 3100: 3099: 3094: 3089: 3074: 3072: 3071: 3066: 3054: 3052: 3051: 3046: 3034: 3032: 3031: 3026: 3014: 3012: 3011: 3006: 2988: 2986: 2985: 2980: 2952: 2950: 2949: 2944: 2932: 2930: 2929: 2924: 2919: 2904: 2902: 2901: 2896: 2891: 2890: 2871: 2869: 2868: 2863: 2843: 2841: 2840: 2835: 2827: 2809: 2807: 2806: 2801: 2787: 2785: 2784: 2779: 2765: 2763: 2762: 2757: 2743: 2741: 2740: 2735: 2720: 2717: 2704: 2701: 2682: 2680: 2679: 2674: 2662: 2660: 2659: 2654: 2637: 2635: 2634: 2629: 2617: 2615: 2614: 2609: 2576: 2574: 2573: 2568: 2535: 2533: 2532: 2527: 2516: 2514: then  2513: 2502: 2499: 2475: 2473: 2472: 2467: 2446: 2444: 2443: 2438: 2393: 2391: 2390: 2385: 2371: 2369: 2368: 2363: 2329: 2327: 2326: 2321: 2303: 2301: 2300: 2295: 2277: 2275: 2274: 2269: 2255: 2253: 2252: 2247: 2229: 2227: 2226: 2221: 2168: 2166: 2165: 2160: 2139: 2137: 2136: 2131: 2117: 2115: 2114: 2109: 2077: 2075: 2074: 2069: 2057: 2055: 2054: 2049: 2018: 2016: 2015: 2010: 1998: 1996: 1995: 1990: 1975: 1973: 1972: 1967: 1952: 1950: 1949: 1944: 1931:commutative ring 1923:divides relation 1879:, especially in 1837:of the preorder 1819: 1817: 1816: 1811: 1790: 1788: 1787: 1782: 1764: 1762: 1761: 1756: 1738: 1736: 1735: 1730: 1699: 1697: 1696: 1691: 1673: 1669: 1666: 1665: 1660: 1656: 1653: 1652: 1640: 1638: 1637: 1632: 1630: 1617: 1614: 1584: 1582: 1581: 1576: 1565: 1562: 1552: 1550: 1549: 1544: 1525: 1523: 1522: 1517: 1515: 1511: 1508: 1481: 1479: 1478: 1473: 1471: 1467: 1464: 1437: 1435: 1434: 1429: 1427: 1423: 1420: 1396: 1394: 1393: 1388: 1386: 1371: 1368: 1345: 1325: 1323: 1322: 1317: 1315: 1306: 1280: 1277: 1254: 1252: 1251: 1246: 1244: 1229: 1210: 1198: 1196: 1195: 1190: 1169: 1167: 1166: 1161: 1090: 1087: 1086: 1080: 1077: 1076: 1070: 1065: 1060: 1055: 1050: 1047: 1046: 1040: 1037: 1036: 1030: 1018: 1015: 1014: 1008: 1005: 1004: 998: 993: 988: 983: 978: 973: 970: 969: 963: 951: 948: 947: 941: 938: 937: 931: 926: 921: 916: 911: 906: 903: 902: 896: 884: 879: 874: 871: 870: 864: 861: 860: 854: 849: 844: 839: 836: 835: 829: 823:Meet-semilattice 817: 812: 807: 804: 803: 797: 792: 789: 788: 782: 777: 772: 769: 768: 762: 756:Join-semilattice 750: 745: 740: 737: 736: 730: 727: 726: 720: 717: 716: 710: 705: 700: 697: 696: 690: 678: 673: 668: 665: 664: 658: 653: 648: 645: 644: 638: 635: 634: 628: 625: 624: 618: 606: 601: 596: 593: 592: 586: 581: 576: 573: 572: 566: 561: 556: 551: 542: 537: 532: 529: 528: 522: 517: 512: 509: 508: 502: 499: 498: 492: 487: 475: 470: 465: 462: 461: 455: 450: 445: 440: 437: 436: 430: 427: 426: 420: 408: 403: 398: 395: 394: 388: 383: 378: 373: 370: 369: 363: 358: 346: 341: 336: 333: 332: 326: 321: 316: 311: 306: 303: 302: 296: 284: 279: 274: 271: 270: 264: 259: 254: 249: 244: 239: 234: 232: 222: 217: 212: 209: 208: 202: 197: 192: 187: 182: 177: 174: 173: 167: 85: 84: 75: 68: 61: 54: 52:binary relations 43: 42: 9763: 9762: 9758: 9757: 9756: 9754: 9753: 9752: 9733: 9732: 9731: 9726: 9722:Young's lattice 9578: 9506: 9445: 9295:Heyting algebra 9243:Boolean algebra 9215: 9196:Laver's theorem 9144: 9110:Boolean algebra 9105:Binary relation 9093: 9070: 9065: 9031: 9005: 9000: 8988: 8984: 8965: 8962: 8961: 8959: 8955: 8918: 8914: 8907: 8888: 8884: 8852: 8848: 8844: 8831:Prewellordering 8784: 8751: 8724: 8721: 8720: 8693: 8690: 8689: 8658: 8655: 8654: 8629: 8626: 8625: 8603: 8600: 8599: 8567: 8564: 8563: 8547: 8544: 8543: 8512: 8509: 8508: 8469: 8466: 8465: 8440: 8437: 8436: 8414: 8411: 8410: 8378: 8375: 8374: 8346: 8343: 8342: 8339: 8334: 8325: 8324:1 partition of 8294: 8291: 8290: 8286: 8255: 8252: 8251: 8247: 8243: 8213: 8210: 8209: 8199: 8198:1 partition of 8168: 8165: 8164: 8160: 8130: 8127: 8126: 8098: 8024: 8018: 8017: 8016: 8014: 7986: 7980: 7979: 7978: 7976: 7934: 7929: 7924: 7919: 7738:Elem­ents 7726: 7672: 7626: 7623: 7622: 7600: 7597: 7596: 7574: 7571: 7570: 7534: 7531: 7530: 7508: 7505: 7504: 7468: 7465: 7464: 7442: 7439: 7438: 7416: 7413: 7412: 7405: 7380: 7377: 7376: 7357: 7354: 7353: 7328: 7326: 7323: 7322: 7303: 7300: 7299: 7277: 7276: 7272: 7270: 7267: 7266: 7235: 7225: 7224: 7220: 7219: 7217: 7203: 7200: 7199: 7180: 7177: 7176: 7150: 7147: 7146: 7130: 7127: 7126: 7106: 7103: 7102: 7082: 7078: 7067: 7064: 7063: 7040: 7036: 7034: 7031: 7030: 7006: 7003: 7002: 6986: 6983: 6982: 6966: 6963: 6962: 6959: 6935:total orderings 6881: 6878: 6877: 6827: 6824: 6823: 6801: 6798: 6797: 6746:if and only if 6725: 6722: 6721: 6710: 6668: 6665: 6664: 6637: 6634: 6633: 6605: 6603:Category theory 6551: 6548: 6547: 6503:Polynomial-time 6480: 6472: 6464: 6461: 6460: 6450: 6407: 6404: 6403: 6391: 6390:for every pair 6353: 6350: 6349: 6337: 6332: 6303: 6300: 6299: 6277: 6274: 6273: 6251: 6248: 6247: 6219: 6216: 6215: 6190: 6187: 6186: 6164: 6161: 6160: 6128: 6125: 6124: 6106: 6103: 6102: 6084: 6081: 6080: 6062: 6059: 6058: 6035: nor  6033: 6022: 6019: 6018: 5996: 5993: 5992: 5969: not  5967: 5965: 5962: 5961: 5939: 5936: 5935: 5931:are not needed. 5914: 5911: 5910: 5892: 5889: 5888: 5887:so the symbols 5868: 5865: 5864: 5848: 5845: 5844: 5819: 5808: 5805: 5804: 5782: 5779: 5778: 5756: 5753: 5752: 5731: 5728: 5727: 5709: 5706: 5705: 5687: 5684: 5683: 5662: 5659: 5658: 5655: 5623: 5612: 5609: 5608: 5586: 5583: 5582: 5566: 5563: 5562: 5546: 5543: 5542: 5524: 5521: 5520: 5502: 5499: 5498: 5475: and  5473: 5462: 5459: 5458: 5457:if and only if 5436: 5433: 5432: 5410: 5407: 5406: 5388: 5385: 5384: 5358: 5350: 5332: and  5330: 5314: 5302: 5299: 5298: 5280: 5277: 5276: 5254: 5251: 5250: 5249:if and only if 5228: 5225: 5224: 5206: 5203: 5202: 5180: 5177: 5176: 5146: 5143: 5142: 5113: 5097: 5085: 5082: 5081: 5053: 5042: 5039: 5038: 5037:if and only if 5016: 5013: 5012: 4994: 4991: 4990: 4968: 4965: 4964: 4942: 4939: 4938: 4937:if and only if 4916: 4913: 4912: 4894: 4891: 4890: 4887: 4845: 4842: 4841: 4816: 4804: and  4802: 4791: 4788: 4787: 4756: 4753: 4752: 4725: 4722: 4721: 4696: 4693: 4692: 4670: 4667: 4666: 4640: 4637: 4636: 4618: 4615: 4614: 4610:strict preorder 4592: 4589: 4588: 4577: 4538: 4534: 4530: 4528: 4525: 4524: 4499: 4496: 4495: 4473: 4470: 4469: 4447: 4444: 4443: 4422: 4419: 4418: 4387: 4384: 4383: 4355: 4352: 4351: 4319: 4316: 4315: 4294: 4291: 4290: 4269: 4266: 4265: 4237: 4234: 4233: 4205: 4202: 4201: 4176: 4173: 4172: 4171:if and only if 4138: 4135: 4134: 4113: 4110: 4109: 4088: 4085: 4084: 4065: 4060: 4057: 4056: 4032: 4029: 4028: 4006: 4003: 4002: 3986: 3983: 3982: 3960: 3957: 3956: 3931: 3928: 3927: 3908: 3905: 3904: 3884: 3881: 3880: 3860: 3857: 3856: 3829: 3826: 3825: 3803: 3800: 3799: 3777: 3774: 3773: 3750: and  3748: 3737: 3734: 3733: 3732:if and only if 3711: 3708: 3707: 3677: 3674: 3673: 3648: 3645: 3644: 3622: 3619: 3618: 3596: 3593: 3592: 3570: 3567: 3566: 3550: 3547: 3546: 3528: 3525: 3524: 3496: 3493: 3492: 3467: 3464: 3463: 3441: 3438: 3437: 3418: 3415: 3414: 3392: 3389: 3388: 3372: 3369: 3368: 3363:) or a simpler 3340: 3337: 3336: 3308: 3305: 3304: 3278: 3275: 3274: 3255: 3252: 3251: 3227: 3224: 3223: 3201: 3198: 3197: 3175: 3172: 3171: 3146: 3143: 3142: 3141:if and only if 3108: 3105: 3104: 3085: 3080: 3077: 3076: 3060: 3057: 3056: 3040: 3037: 3036: 3020: 3017: 3016: 2994: 2991: 2990: 2989:if and only if 2962: 2959: 2958: 2938: 2935: 2934: 2915: 2910: 2907: 2906: 2883: 2879: 2877: 2874: 2873: 2853: 2850: 2849: 2823: 2818: 2815: 2814: 2793: 2790: 2789: 2771: 2768: 2767: 2749: 2746: 2745: 2718: and  2716: 2700: 2688: 2685: 2684: 2668: 2665: 2664: 2646: 2643: 2642: 2623: 2620: 2619: 2601: 2598: 2597: 2594: 2541: 2538: 2537: 2512: 2500: and  2498: 2487: 2484: 2483: 2452: 2449: 2448: 2426: 2423: 2422: 2377: 2374: 2373: 2335: 2332: 2331: 2309: 2306: 2305: 2283: 2280: 2279: 2261: 2258: 2257: 2238: 2235: 2234: 2213: 2210: 2209: 2206: 2145: 2142: 2141: 2123: 2120: 2119: 2101: 2098: 2097: 2063: 2060: 2059: 2043: 2040: 2039: 2004: 2001: 2000: 1981: 1978: 1977: 1958: 1955: 1954: 1938: 1935: 1934: 1893:binary relation 1857:natural numbers 1828: 1827: 1820: 1796: 1793: 1792: 1770: 1767: 1766: 1744: 1741: 1740: 1709: 1706: 1705: 1685: 1682: 1681: 1675: 1667: 1663: 1654: 1650: 1628: 1627: 1613: 1610: 1609: 1593: 1591: 1588: 1587: 1561: 1559: 1556: 1555: 1532: 1529: 1528: 1513: 1512: 1507: 1504: 1503: 1490: 1488: 1485: 1484: 1469: 1468: 1463: 1460: 1459: 1446: 1444: 1441: 1440: 1425: 1424: 1419: 1416: 1415: 1405: 1403: 1400: 1399: 1384: 1383: 1372: 1367: 1355: 1354: 1346: 1344: 1334: 1332: 1329: 1328: 1313: 1312: 1307: 1305: 1293: 1292: 1281: 1278: and  1276: 1263: 1261: 1258: 1257: 1242: 1241: 1230: 1228: 1222: 1221: 1207: 1205: 1202: 1201: 1175: 1172: 1171: 1149: 1146: 1145: 1088: 1084: 1078: 1074: 1048: 1044: 1038: 1034: 1016: 1012: 1006: 1002: 971: 967: 949: 945: 939: 935: 904: 900: 872: 868: 862: 858: 837: 833: 805: 801: 790: 786: 770: 766: 738: 734: 728: 724: 718: 714: 698: 694: 666: 662: 646: 642: 636: 632: 626: 622: 594: 590: 574: 570: 547: 530: 526: 510: 506: 500: 496: 481:Prewellordering 463: 459: 438: 434: 428: 424: 396: 392: 371: 367: 334: 330: 304: 300: 272: 268: 230: 227: 210: 206: 175: 171: 163: 155: 79: 46: 39: 32: 17: 12: 11: 5: 9761: 9751: 9750: 9745: 9728: 9727: 9725: 9724: 9719: 9714: 9713: 9712: 9702: 9701: 9700: 9695: 9690: 9680: 9679: 9678: 9668: 9663: 9662: 9661: 9656: 9649:Order morphism 9646: 9645: 9644: 9634: 9629: 9624: 9619: 9614: 9613: 9612: 9602: 9597: 9592: 9586: 9584: 9580: 9579: 9577: 9576: 9575: 9574: 9569: 9567:Locally convex 9564: 9559: 9549: 9547:Order topology 9544: 9543: 9542: 9540:Order topology 9537: 9527: 9517: 9515: 9508: 9507: 9505: 9504: 9499: 9494: 9489: 9484: 9479: 9474: 9469: 9464: 9459: 9453: 9451: 9447: 9446: 9444: 9443: 9433: 9423: 9418: 9413: 9408: 9403: 9398: 9393: 9388: 9387: 9386: 9376: 9371: 9370: 9369: 9364: 9359: 9354: 9352:Chain-complete 9344: 9339: 9338: 9337: 9332: 9327: 9322: 9317: 9307: 9302: 9297: 9292: 9287: 9277: 9272: 9267: 9262: 9257: 9252: 9251: 9250: 9240: 9235: 9229: 9227: 9217: 9216: 9214: 9213: 9208: 9203: 9198: 9193: 9188: 9183: 9178: 9173: 9168: 9163: 9158: 9152: 9150: 9146: 9145: 9143: 9142: 9137: 9132: 9127: 9122: 9117: 9112: 9107: 9101: 9099: 9095: 9094: 9092: 9091: 9086: 9081: 9075: 9072: 9071: 9064: 9063: 9056: 9049: 9041: 9035: 9034: 9029: 9016: 9004: 9001: 8999: 8998: 8982: 8969: 8953: 8912: 8905: 8882: 8845: 8843: 8840: 8839: 8838: 8833: 8828: 8823: 8818: 8812: 8806:Total preorder 8803: 8794: 8783: 8780: 8767: 8764: 8761: 8758: 8755: 8740: 8737: 8734: 8731: 8728: 8706: 8703: 8700: 8697: 8677: 8674: 8671: 8668: 8665: 8662: 8642: 8639: 8636: 8633: 8613: 8610: 8607: 8583: 8580: 8577: 8574: 8571: 8551: 8528: 8525: 8522: 8519: 8516: 8488: 8485: 8482: 8479: 8476: 8473: 8453: 8450: 8447: 8444: 8424: 8421: 8418: 8394: 8391: 8388: 8385: 8382: 8359: 8356: 8353: 8350: 8338: 8335: 8333: 8332: 8330: 8329: 8322: 8310: 8307: 8304: 8301: 8298: 8283: 8271: 8268: 8265: 8262: 8259: 8240: 8226: 8223: 8220: 8217: 8206: 8204: 8203: 8196: 8184: 8181: 8178: 8175: 8172: 8157: 8143: 8140: 8137: 8134: 8122: 8093: 8092: 8087: 8082: 8077: 8072: 8067: 8062: 8057: 8052: 8047: 8041: 8040: 8019: 8012: 8006: 7981: 7974: 7972: 7970: 7967: 7964: 7962: 7959: 7953: 7952: 7949: 7946: 7943: 7940: 7937: 7932: 7927: 7922: 7917: 7913: 7912: 7909: 7906: 7903: 7900: 7897: 7894: 7891: 7888: 7885: 7881: 7880: 7877: 7874: 7871: 7868: 7865: 7862: 7859: 7856: 7853: 7849: 7848: 7845: 7842: 7839: 7836: 7833: 7830: 7827: 7824: 7821: 7817: 7816: 7813: 7810: 7807: 7804: 7801: 7798: 7795: 7792: 7789: 7785: 7784: 7779: 7774: 7772:Total preorder 7769: 7764: 7759: 7754: 7749: 7744: 7739: 7725: 7722: 7721: 7720: 7701: 7690: 7683: 7671: 7668: 7645: 7642: 7639: 7636: 7633: 7630: 7610: 7607: 7604: 7584: 7581: 7578: 7565:A preorder is 7558:then it is an 7547: 7544: 7541: 7538: 7518: 7515: 7512: 7503:, that is, if 7481: 7478: 7475: 7472: 7452: 7449: 7446: 7426: 7423: 7420: 7404: 7401: 7384: 7364: 7361: 7335: 7332: 7310: 7307: 7275: 7248: 7242: 7239: 7234: 7223: 7216: 7213: 7210: 7207: 7187: 7184: 7157: 7154: 7134: 7110: 7090: 7085: 7081: 7077: 7074: 7071: 7051: 7046: 7043: 7039: 7021:by taking the 7010: 6990: 6970: 6958: 6955: 6954: 6953: 6943:total preorder 6939: 6938: 6927: 6891: 6888: 6885: 6874: 6858: 6855: 6852: 6849: 6846: 6843: 6840: 6837: 6834: 6831: 6811: 6808: 6805: 6793: 6792: 6768: 6767: 6735: 6732: 6729: 6709: 6706: 6705: 6704: 6693: 6690: 6687: 6684: 6681: 6678: 6675: 6672: 6657: 6644: 6641: 6604: 6601: 6600: 6599: 6598:to the former. 6589: 6561: 6558: 6555: 6542:on the set of 6536: 6526: 6520: 6514: 6500: 6483: 6479: 6475: 6471: 6468: 6449: 6446: 6445: 6444: 6437: 6417: 6414: 6411: 6363: 6360: 6357: 6346:directed graph 6336: 6333: 6331: 6328: 6316: 6313: 6310: 6307: 6287: 6284: 6281: 6261: 6258: 6255: 6234: 6229: 6224: 6203: 6200: 6197: 6194: 6174: 6171: 6168: 6157: 6156: 6153:total preorder 6132: 6111: 6089: 6067: 6046: 6043: 6040: 6032: 6029: 6026: 6006: 6003: 6000: 5980: 5977: 5974: 5949: 5946: 5943: 5932: 5919: 5897: 5876: 5873: 5852: 5832: 5829: 5826: 5821: or  5818: 5815: 5812: 5792: 5789: 5786: 5761: 5739: 5736: 5714: 5692: 5670: 5667: 5654: 5651: 5639: 5636: 5633: 5630: 5625: or  5622: 5619: 5616: 5596: 5593: 5590: 5570: 5550: 5529: 5507: 5486: 5483: 5480: 5472: 5469: 5466: 5446: 5443: 5440: 5430: 5415: 5393: 5382: 5368: 5365: 5357: 5352:assuming  5349: 5344: 5341: 5338: 5328: 5325: 5322: 5312: 5309: 5306: 5285: 5264: 5261: 5258: 5238: 5235: 5232: 5211: 5185: 5174: 5170: 5151: 5130: 5127: 5124: 5121: 5115: or  5111: 5108: 5105: 5095: 5092: 5089: 5069: 5066: 5063: 5060: 5052: 5049: 5046: 5026: 5023: 5020: 4999: 4978: 4975: 4972: 4952: 4949: 4946: 4926: 4923: 4920: 4899: 4886: 4883: 4882: 4881: 4870: 4867: 4864: 4861: 4858: 4855: 4852: 4849: 4829: 4826: 4823: 4815: 4812: 4809: 4801: 4798: 4795: 4781: 4769: 4766: 4763: 4760: 4750: 4736: 4733: 4730: 4709: 4706: 4703: 4700: 4680: 4677: 4674: 4665: 4644: 4623: 4611: 4596: 4576: 4573: 4555: 4551: 4548: 4545: 4541: 4537: 4533: 4512: 4509: 4506: 4503: 4483: 4480: 4477: 4457: 4454: 4451: 4430: 4427: 4403: 4400: 4397: 4394: 4391: 4371: 4368: 4365: 4362: 4359: 4335: 4332: 4329: 4326: 4323: 4302: 4299: 4274: 4253: 4250: 4247: 4244: 4241: 4221: 4218: 4215: 4212: 4209: 4189: 4186: 4183: 4180: 4160: 4157: 4154: 4151: 4148: 4145: 4142: 4121: 4118: 4096: 4093: 4072: 4068: 4064: 4044: 4040: 4036: 4016: 4013: 4010: 4001:(that is, all 3990: 3970: 3967: 3964: 3944: 3941: 3938: 3935: 3915: 3912: 3892: 3889: 3866: 3844: 3841: 3837: 3833: 3813: 3810: 3807: 3782: 3761: 3758: 3755: 3747: 3744: 3741: 3721: 3718: 3715: 3696: 3693: 3690: 3687: 3684: 3681: 3661: 3658: 3655: 3652: 3632: 3629: 3626: 3606: 3603: 3600: 3580: 3577: 3574: 3554: 3533: 3506: 3503: 3500: 3480: 3477: 3474: 3471: 3451: 3448: 3445: 3425: 3422: 3402: 3399: 3396: 3376: 3344: 3312: 3302: 3282: 3262: 3259: 3235: 3232: 3211: 3208: 3205: 3185: 3182: 3179: 3159: 3156: 3153: 3150: 3130: 3127: 3124: 3121: 3118: 3115: 3112: 3092: 3088: 3084: 3064: 3044: 3024: 3004: 3001: 2998: 2978: 2975: 2972: 2969: 2966: 2942: 2933:is the set of 2922: 2918: 2914: 2894: 2889: 2886: 2882: 2861: 2858: 2833: 2830: 2826: 2822: 2798: 2776: 2754: 2733: 2730: 2727: 2724: 2714: 2711: 2708: 2698: 2695: 2692: 2672: 2651: 2627: 2606: 2593: 2590: 2582:preordered set 2578: 2577: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2525: 2522: 2519: 2511: 2508: 2505: 2497: 2494: 2491: 2477: 2465: 2462: 2459: 2456: 2436: 2433: 2430: 2404: 2398: 2382: 2361: 2358: 2354: 2351: 2348: 2345: 2342: 2339: 2319: 2316: 2313: 2293: 2290: 2287: 2266: 2245: 2242: 2218: 2205: 2202: 2195: 2185: 2175: 2158: 2155: 2152: 2149: 2128: 2106: 2087:directed graph 2067: 2047: 2008: 1988: 1985: 1965: 1962: 1942: 1912:partial orders 1906: 1824: 1823: 1809: 1806: 1803: 1800: 1780: 1777: 1774: 1754: 1751: 1748: 1728: 1725: 1722: 1719: 1716: 1713: 1689: 1646: 1645: 1642: 1641: 1626: 1623: 1620: 1612: 1611: 1608: 1605: 1602: 1599: 1596: 1595: 1585: 1574: 1571: 1568: 1553: 1542: 1539: 1536: 1526: 1506: 1505: 1502: 1499: 1496: 1493: 1492: 1482: 1462: 1461: 1458: 1455: 1452: 1449: 1448: 1438: 1418: 1417: 1414: 1411: 1408: 1407: 1397: 1382: 1379: 1376: 1373: 1369: or  1366: 1363: 1360: 1357: 1356: 1353: 1350: 1347: 1343: 1340: 1337: 1336: 1326: 1311: 1308: 1304: 1301: 1298: 1295: 1294: 1291: 1288: 1285: 1282: 1275: 1272: 1269: 1266: 1265: 1255: 1240: 1237: 1234: 1231: 1227: 1224: 1223: 1220: 1217: 1214: 1211: 1209: 1199: 1188: 1185: 1182: 1179: 1159: 1156: 1153: 1141: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1092: 1091: 1081: 1071: 1066: 1061: 1056: 1051: 1041: 1031: 1026: 1020: 1019: 1009: 999: 994: 989: 984: 979: 974: 964: 959: 953: 952: 942: 932: 927: 922: 917: 912: 907: 897: 892: 886: 885: 880: 875: 865: 855: 850: 845: 840: 830: 825: 819: 818: 813: 808: 798: 793: 783: 778: 773: 763: 758: 752: 751: 746: 741: 731: 721: 711: 706: 701: 691: 686: 680: 679: 674: 669: 659: 654: 649: 639: 629: 619: 614: 608: 607: 602: 597: 587: 582: 577: 567: 562: 557: 552: 544: 543: 538: 533: 523: 518: 513: 503: 493: 488: 483: 477: 476: 471: 466: 456: 451: 446: 441: 431: 421: 416: 410: 409: 404: 399: 389: 384: 379: 374: 364: 359: 354: 352:Total preorder 348: 347: 342: 337: 327: 322: 317: 312: 307: 297: 292: 286: 285: 280: 275: 265: 260: 255: 250: 245: 240: 235: 224: 223: 218: 213: 203: 198: 193: 188: 183: 178: 168: 160: 159: 157: 152: 150: 148: 146: 144: 141: 139: 137: 134: 133: 128: 123: 118: 113: 108: 103: 98: 93: 88: 81: 80: 78: 77: 70: 63: 55: 41: 40: 15: 9: 6: 4: 3: 2: 9760: 9749: 9746: 9744: 9741: 9740: 9738: 9723: 9720: 9718: 9715: 9711: 9708: 9707: 9706: 9703: 9699: 9696: 9694: 9691: 9689: 9686: 9685: 9684: 9681: 9677: 9674: 9673: 9672: 9671:Ordered field 9669: 9667: 9664: 9660: 9657: 9655: 9652: 9651: 9650: 9647: 9643: 9640: 9639: 9638: 9635: 9633: 9630: 9628: 9627:Hasse diagram 9625: 9623: 9620: 9618: 9615: 9611: 9608: 9607: 9606: 9605:Comparability 9603: 9601: 9598: 9596: 9593: 9591: 9588: 9587: 9585: 9581: 9573: 9570: 9568: 9565: 9563: 9560: 9558: 9555: 9554: 9553: 9550: 9548: 9545: 9541: 9538: 9536: 9533: 9532: 9531: 9528: 9526: 9522: 9519: 9518: 9516: 9513: 9509: 9503: 9500: 9498: 9495: 9493: 9490: 9488: 9485: 9483: 9480: 9478: 9477:Product order 9475: 9473: 9470: 9468: 9465: 9463: 9460: 9458: 9455: 9454: 9452: 9450:Constructions 9448: 9442: 9438: 9434: 9431: 9427: 9424: 9422: 9419: 9417: 9414: 9412: 9409: 9407: 9404: 9402: 9399: 9397: 9394: 9392: 9389: 9385: 9382: 9381: 9380: 9377: 9375: 9372: 9368: 9365: 9363: 9360: 9358: 9355: 9353: 9350: 9349: 9348: 9347:Partial order 9345: 9343: 9340: 9336: 9335:Join and meet 9333: 9331: 9328: 9326: 9323: 9321: 9318: 9316: 9313: 9312: 9311: 9308: 9306: 9303: 9301: 9298: 9296: 9293: 9291: 9288: 9286: 9282: 9278: 9276: 9273: 9271: 9268: 9266: 9263: 9261: 9258: 9256: 9253: 9249: 9246: 9245: 9244: 9241: 9239: 9236: 9234: 9233:Antisymmetric 9231: 9230: 9228: 9224: 9218: 9212: 9209: 9207: 9204: 9202: 9199: 9197: 9194: 9192: 9189: 9187: 9184: 9182: 9179: 9177: 9174: 9172: 9169: 9167: 9164: 9162: 9159: 9157: 9154: 9153: 9151: 9147: 9141: 9140:Weak ordering 9138: 9136: 9133: 9131: 9128: 9126: 9125:Partial order 9123: 9121: 9118: 9116: 9113: 9111: 9108: 9106: 9103: 9102: 9100: 9096: 9090: 9087: 9085: 9082: 9080: 9077: 9076: 9073: 9069: 9062: 9057: 9055: 9050: 9048: 9043: 9042: 9039: 9032: 9030:0-8176-4128-9 9026: 9022: 9017: 9015: 9011: 9007: 9006: 8993: 8986: 8957: 8949: 8945: 8940: 8935: 8931: 8927: 8923: 8916: 8908: 8906:0-262-16209-1 8902: 8898: 8897: 8892: 8886: 8878: 8874: 8870: 8866: 8862: 8858: 8850: 8846: 8837: 8834: 8832: 8829: 8827: 8824: 8822: 8819: 8816: 8813: 8811: 8807: 8804: 8802: 8798: 8795: 8793: 8792:antisymmetric 8789: 8788:Partial order 8786: 8785: 8779: 8762: 8759: 8756: 8735: 8732: 8729: 8717: 8704: 8701: 8698: 8695: 8675: 8672: 8669: 8666: 8663: 8660: 8653:also written 8640: 8637: 8634: 8631: 8611: 8608: 8605: 8597: 8578: 8575: 8572: 8549: 8540: 8523: 8520: 8517: 8506: 8502: 8486: 8483: 8480: 8477: 8474: 8471: 8464:also written 8451: 8448: 8445: 8442: 8422: 8419: 8416: 8408: 8389: 8386: 8383: 8373: 8357: 8354: 8351: 8348: 8326:1 + 1 + 1 + 1 8323: 8308: 8305: 8302: 8299: 8296: 8284: 8269: 8266: 8263: 8260: 8257: 8241: 8238: 8237: 8224: 8221: 8218: 8215: 8207: 8197: 8182: 8179: 8176: 8173: 8170: 8158: 8155: 8154: 8141: 8138: 8135: 8132: 8124: 8123: 8121: 8117: 8115: 8109: 8105: 8101: 8091: 8088: 8086: 8083: 8081: 8078: 8076: 8073: 8071: 8068: 8066: 8063: 8061: 8058: 8056: 8053: 8051: 8048: 8046: 8043: 8042: 8037: 8033: 8029: 8022: 8013: 8010: 8007: 8003: 7999: 7995: 7991: 7984: 7975: 7973: 7971: 7968: 7965: 7963: 7960: 7958: 7955: 7954: 7950: 7947: 7944: 7941: 7938: 7933: 7928: 7923: 7918: 7915: 7914: 7910: 7907: 7904: 7901: 7898: 7895: 7892: 7889: 7886: 7883: 7882: 7878: 7875: 7872: 7869: 7866: 7863: 7860: 7857: 7854: 7851: 7850: 7846: 7843: 7840: 7837: 7834: 7831: 7828: 7825: 7822: 7819: 7818: 7814: 7811: 7808: 7805: 7802: 7799: 7796: 7793: 7790: 7787: 7786: 7783: 7780: 7778: 7775: 7773: 7770: 7768: 7767:Partial order 7765: 7763: 7760: 7758: 7755: 7753: 7750: 7748: 7745: 7743: 7740: 7737: 7736: 7732: 7718: 7714: 7710: 7706: 7702: 7699: 7695: 7691: 7688: 7684: 7681: 7677: 7676: 7675: 7667: 7665: 7661: 7656: 7643: 7640: 7637: 7634: 7631: 7628: 7608: 7605: 7602: 7582: 7579: 7576: 7568: 7563: 7561: 7545: 7542: 7539: 7536: 7516: 7513: 7510: 7502: 7497: 7495: 7494:partial order 7492:then it is a 7479: 7476: 7473: 7470: 7450: 7447: 7444: 7424: 7421: 7418: 7410: 7409:antisymmetric 7400: 7398: 7382: 7362: 7359: 7351: 7330: 7308: 7305: 7297: 7273: 7264: 7263:left residual 7237: 7232: 7221: 7214: 7211: 7205: 7185: 7182: 7173: 7172: 7168: 7155: 7152: 7132: 7124: 7108: 7088: 7083: 7079: 7075: 7072: 7069: 7049: 7044: 7041: 7037: 7028: 7024: 7008: 6988: 6968: 6957:Constructions 6951: 6948: 6947: 6946: 6944: 6941:Example of a 6936: 6932: 6928: 6925: 6921: 6917: 6913: 6909: 6905: 6889: 6886: 6883: 6875: 6872: 6856: 6850: 6844: 6841: 6835: 6829: 6809: 6806: 6803: 6795: 6794: 6790: 6786: 6782: 6778: 6774: 6770: 6769: 6765: 6761: 6757: 6753: 6749: 6733: 6730: 6727: 6719: 6715: 6714: 6713: 6691: 6685: 6679: 6673: 6670: 6662: 6658: 6642: 6639: 6631: 6627: 6623: 6619: 6615: 6611: 6607: 6606: 6597: 6593: 6590: 6587: 6583: 6579: 6575: 6559: 6556: 6553: 6546:, defined by 6545: 6541: 6537: 6534: 6530: 6527: 6524: 6521: 6518: 6515: 6512: 6508: 6504: 6501: 6498: 6469: 6466: 6458: 6455: 6454: 6453: 6442: 6438: 6435: 6431: 6415: 6412: 6409: 6399: 6395: 6389: 6385: 6381: 6377: 6361: 6358: 6355: 6347: 6343: 6339: 6338: 6327: 6314: 6311: 6308: 6305: 6285: 6282: 6279: 6259: 6256: 6253: 6232: 6227: 6222: 6201: 6198: 6195: 6192: 6172: 6169: 6166: 6154: 6150: 6146: 6130: 6109: 6087: 6065: 6044: 6041: 6038: 6030: 6027: 6024: 6004: 6001: 5998: 5978: 5975: 5972: 5947: 5944: 5941: 5933: 5917: 5895: 5874: 5871: 5850: 5830: 5827: 5824: 5816: 5813: 5810: 5790: 5787: 5784: 5776: 5775: 5774: 5759: 5737: 5734: 5712: 5690: 5668: 5665: 5650: 5637: 5634: 5631: 5628: 5620: 5617: 5614: 5594: 5591: 5588: 5568: 5548: 5527: 5505: 5484: 5481: 5478: 5470: 5467: 5464: 5444: 5441: 5438: 5428: 5413: 5391: 5380: 5366: 5355: 5342: 5339: 5336: 5326: 5323: 5320: 5310: 5307: 5304: 5283: 5262: 5259: 5256: 5236: 5233: 5230: 5209: 5200: 5199:antisymmetric 5183: 5175:the preorder 5172: 5168: 5166: 5149: 5141:The relation 5128: 5125: 5122: 5119: 5109: 5106: 5103: 5093: 5090: 5087: 5067: 5064: 5061: 5058: 5050: 5047: 5044: 5024: 5021: 5018: 4997: 4976: 4973: 4970: 4950: 4947: 4944: 4924: 4921: 4918: 4897: 4889:Any preorder 4868: 4865: 4862: 4859: 4856: 4853: 4850: 4847: 4827: 4824: 4821: 4813: 4810: 4807: 4799: 4796: 4793: 4785: 4782: 4767: 4764: 4761: 4758: 4748: 4734: 4731: 4728: 4707: 4704: 4701: 4698: 4678: 4675: 4672: 4663: 4661: 4660:Irreflexivity 4658: 4657: 4656: 4642: 4621: 4612: 4609: 4594: 4586: 4582: 4581:irreflexivity 4572: 4570: 4553: 4546: 4543: 4539: 4535: 4531: 4510: 4507: 4504: 4501: 4481: 4475: 4455: 4449: 4428: 4425: 4417: 4401: 4398: 4395: 4392: 4389: 4369: 4366: 4363: 4360: 4357: 4349: 4327: 4324: 4300: 4289: 4248: 4242: 4239: 4216: 4210: 4207: 4187: 4184: 4178: 4155: 4143: 4119: 4094: 4070: 4066: 4062: 4042: 4034: 4014: 4011: 4008: 3988: 3968: 3965: 3962: 3942: 3936: 3913: 3910: 3890: 3887: 3842: 3839: 3831: 3811: 3808: 3805: 3797: 3759: 3753: 3745: 3739: 3719: 3716: 3713: 3694: 3691: 3688: 3685: 3682: 3679: 3659: 3656: 3650: 3630: 3624: 3604: 3598: 3578: 3572: 3552: 3522: 3521: 3504: 3501: 3498: 3478: 3475: 3469: 3449: 3443: 3423: 3420: 3400: 3397: 3394: 3374: 3366: 3362: 3358: 3342: 3334: 3330: 3326: 3325:formal theory 3310: 3300: 3298: 3296: 3280: 3260: 3257: 3248: 3233: 3230: 3206: 3180: 3157: 3154: 3151: 3148: 3125: 3119: 3113: 3090: 3086: 3082: 3062: 3042: 3022: 3002: 2999: 2996: 2973: 2967: 2964: 2956: 2940: 2920: 2916: 2912: 2892: 2887: 2884: 2880: 2859: 2856: 2847: 2831: 2828: 2824: 2820: 2811: 2796: 2774: 2752: 2731: 2728: 2725: 2722: 2712: 2709: 2706: 2696: 2693: 2690: 2670: 2649: 2641: 2625: 2604: 2589: 2587: 2583: 2564: 2561: 2558: 2555: 2552: 2549: 2546: 2543: 2523: 2520: 2517: 2509: 2506: 2503: 2495: 2492: 2489: 2481: 2478: 2463: 2460: 2457: 2454: 2434: 2431: 2428: 2420: 2417: 2416: 2415: 2413: 2409: 2405: 2402: 2399: 2396: 2380: 2359: 2356: 2352: 2346: 2343: 2340: 2317: 2314: 2311: 2291: 2288: 2285: 2264: 2243: 2240: 2233: 2216: 2201: 2199: 2193: 2192: 2188: 2183: 2182: 2178: 2173: 2172: 2156: 2153: 2150: 2147: 2126: 2104: 2094: 2092: 2088: 2083: 2081: 2065: 2045: 2037: 2033: 2028: 2026: 2022: 2006: 1986: 1983: 1963: 1960: 1940: 1932: 1928: 1924: 1919: 1917: 1916:antisymmetric 1913: 1910: 1904: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1870: 1869:partial order 1866: 1862: 1858: 1854: 1851: 1847: 1844: 1840: 1836: 1835:Hasse diagram 1832: 1822: 1807: 1804: 1801: 1798: 1778: 1775: 1772: 1752: 1749: 1746: 1726: 1723: 1720: 1717: 1714: 1711: 1703: 1687: 1680: 1648: 1647: 1624: 1621: 1618: 1603: 1600: 1597: 1586: 1572: 1569: 1566: 1554: 1540: 1537: 1534: 1527: 1500: 1497: 1494: 1483: 1456: 1453: 1450: 1439: 1412: 1398: 1380: 1377: 1374: 1364: 1361: 1358: 1348: 1341: 1338: 1327: 1309: 1302: 1299: 1289: 1286: 1283: 1273: 1270: 1267: 1256: 1238: 1235: 1232: 1218: 1215: 1212: 1200: 1186: 1180: 1177: 1157: 1154: 1151: 1143: 1142: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1103:Antisymmetric 1101: 1099: 1096: 1094: 1093: 1082: 1072: 1067: 1062: 1057: 1052: 1042: 1032: 1027: 1025: 1022: 1021: 1010: 1000: 995: 990: 985: 980: 975: 965: 960: 958: 955: 954: 943: 933: 928: 923: 918: 913: 908: 898: 893: 891: 888: 887: 881: 876: 866: 856: 851: 846: 841: 831: 826: 824: 821: 820: 814: 809: 799: 794: 784: 779: 774: 764: 759: 757: 754: 753: 747: 742: 732: 722: 712: 707: 702: 692: 687: 685: 682: 681: 675: 670: 660: 655: 650: 640: 630: 620: 615: 613: 612:Well-ordering 610: 609: 603: 598: 588: 583: 578: 568: 563: 558: 553: 550: 546: 545: 539: 534: 524: 519: 514: 504: 494: 489: 484: 482: 479: 478: 472: 467: 457: 452: 447: 442: 432: 422: 417: 415: 412: 411: 405: 400: 390: 385: 380: 375: 365: 360: 355: 353: 350: 349: 343: 338: 328: 323: 318: 313: 308: 298: 293: 291: 290:Partial order 288: 287: 281: 276: 266: 261: 256: 251: 246: 241: 236: 233: 226: 225: 219: 214: 204: 199: 194: 189: 184: 179: 169: 166: 162: 161: 158: 153: 151: 149: 147: 145: 142: 140: 138: 136: 135: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 97: 96:Antisymmetric 94: 92: 89: 87: 86: 83: 82: 76: 71: 69: 64: 62: 57: 56: 53: 49: 45: 44: 37: 30: 26: 22: 9748:Order theory 9514:& Orders 9492:Star product 9421:Well-founded 9378: 9374:Prefix order 9330:Distributive 9320:Complemented 9290:Foundational 9255:Completeness 9211:Zorn's lemma 9129: 9115:Cyclic order 9098:Key concepts 9068:Order theory 9020: 8991: 8985: 8956: 8932:(1): 23–41. 8929: 8925: 8915: 8895: 8885: 8860: 8856: 8849: 8821:Directed set 8718: 8595: 8541: 8504: 8500: 8406: 8340: 8118: 8107: 8103: 8099: 8096: 8035: 8031: 8027: 8020: 8008: 8001: 7997: 7993: 7989: 7982: 7956: 7761: 7730: 7717:independence 7673: 7657: 7564: 7498: 7406: 7352:relation of 7348:denotes the 7294:denotes the 7174: 7170: 7169: 6960: 6940: 6911: 6907: 6870: 6755: 6752:neighborhood 6747: 6711: 6621: 6617: 6596:substitution 6585: 6577: 6451: 6397: 6393: 6387: 6383: 6379: 6375: 6342:reachability 6335:Graph theory 6158: 6017:as "neither 5656: 5431:defined as: 4888: 4784:Transitivity 4608: 4578: 4348:directed set 3520:modus ponens 3518: 3462:and also as 3299: 3249: 3055:-cycle with 2812: 2595: 2585: 2581: 2579: 2480:Transitivity 2401: 2395: 2394:is called a 2207: 2197: 2190: 2186: 2180: 2176: 2170: 2095: 2084: 2029: 1920: 1908: 1888: 1884: 1881:order theory 1874: 1864: 1860: 1849: 1842: 1838: 1676: 1113:Well-founded 231:(Quasiorder) 228: 106:Well-founded 36:strict order 9698:Riesz space 9659:Isomorphism 9535:Normal cone 9457:Composition 9391:Semilattice 9300:Homogeneous 9285:Equivalence 9135:Total order 8863:: 219–233, 8815:Total order 8598:satisfying 8409:satisfying 7777:Total order 7713:consistency 7698:modal logic 7411:, that is, 6924:permutation 6781:upper bound 6628:. Here the 6441:graph-minor 4350:because if 4083:induced by 3926:denoted by 3355:could be a 2683:such that 2419:Reflexivity 1927:polynomials 1903:. The name 1877:mathematics 1841:defined by 1133:Irreflexive 414:Total order 126:Irreflexive 9737:Categories 9666:Order type 9600:Cofinality 9441:Well-order 9416:Transitive 9305:Idempotent 9238:Asymmetric 9003:References 8250:), giving 8112:refers to 8097:Note that 7747:Transitive 7729:Number of 7709:set theory 7350:complement 6950:Preference 6916:surjection 5405:(that is, 4027:such that 2412:transitive 2403:quasiorder 2204:Definition 2189:, or that 2080:asymmetric 1901:transitive 1889:quasiorder 1704:: for all 1702:transitive 1138:Asymmetric 131:Asymmetric 48:Transitive 9717:Upper set 9654:Embedding 9590:Antichain 9411:Tolerance 9401:Symmetric 9396:Semiorder 9342:Reflexive 9260:Connected 8968:∖ 8801:symmetric 8481:≲ 8475:≲ 8446:≲ 8420:≲ 8352:≲ 8321:preorders 8300:× 8289:, giving 8287:2 + 1 + 1 8282:preorders 8261:× 8246:and 3 of 8200:1 + 1 + 1 8195:preorders 8174:× 8163:, giving 7757:Symmetric 7752:Reflexive 7711:to prove 7638:∈ 7606:≲ 7580:≲ 7540:≲ 7514:≲ 7501:symmetric 7448:≲ 7422:≲ 7383:∘ 7334:¯ 7247:¯ 7241:¯ 7233:∘ 7209:∖ 6981:on a set 6931:embedding 6904:injection 6887:≲ 6842:≲ 6807:≲ 6731:≲ 6683:→ 6656:relation. 6557:≲ 6517:Subtyping 6478:→ 6413:≲ 6359:≲ 6257:≠ 6233:≤ 6223:≲ 6196:≲ 6170:≤ 6149:connected 6110:∼ 6088:∼ 6066:≲ 6002:∼ 5945:≲ 5918:∼ 5896:≲ 5788:≤ 5713:∼ 5592:≤ 5569:≤ 5549:≲ 5506:≲ 5482:≠ 5468:≲ 5356:≲ 5340:≠ 5324:≲ 5234:∼ 5210:∼ 5184:≲ 5123:∼ 5091:≲ 5062:∼ 5048:≲ 4998:∼ 4974:≲ 4948:≲ 4898:≲ 4863:∈ 4762:∈ 4720:that is, 4702:∈ 4550:⇐ 4544:∼ 4505:∈ 4479:⇐ 4453:⇐ 4426:∧ 4399:∧ 4367:∈ 4331:⇐ 4298:⇒ 4273:⇐ 4243:∈ 4211:∈ 4182:⇐ 4150:⇐ 4117:⇐ 4092:⇐ 4071:∼ 4039:⟺ 4012:∈ 3966:∈ 3888:∼ 3865:⟺ 3836:⟺ 3809:∼ 3781:⇐ 3757:⇐ 3743:⇐ 3717:∼ 3689:∈ 3654:⇐ 3628:⇐ 3602:⇐ 3576:⇐ 3532:⇐ 3502:∈ 3473:⇐ 3447:⇒ 3398:∈ 3329:sentences 3231:∼ 3152:≲ 3120:≤ 3091:∼ 3035:is in an 2968:∈ 2921:∼ 2857:∼ 2829:∼ 2797:≲ 2775:≲ 2753:∼ 2726:≲ 2710:≲ 2694:∼ 2650:∼ 2605:≲ 2559:∈ 2521:≲ 2507:≲ 2493:≲ 2458:∈ 2432:≲ 2408:reflexive 2406:if it is 2381:≲ 2357:≲ 2353:∈ 2315:≲ 2289:× 2265:≲ 2217:≲ 2151:≲ 2127:≤ 2105:≲ 2036:symmetric 1984:− 1961:− 1897:reflexive 1855:4 on the 1615:not  1607:⇒ 1563:not  1498:∧ 1454:∨ 1352:⇒ 1342:≠ 1297:⇒ 1226:⇒ 1184:∅ 1181:≠ 1128:Reflexive 1123:Has meets 1118:Has joins 1108:Connected 1098:Symmetric 229:Preorder 156:reflexive 121:Reflexive 116:Has meets 111:Has joins 101:Connected 91:Symmetric 25:pre-order 9512:Topology 9379:Preorder 9362:Eulerian 9325:Complete 9275:Directed 9265:Covering 9130:Preorder 9089:Category 9084:Glossary 8948:14389185 8893:(2002). 8782:See also 8372:interval 8337:Interval 7762:Preorder 7719:results. 7621:for all 7529:implies 7463:implies 7395:denotes 7265:, where 6785:topology 6777:directed 6614:morphism 6610:category 6330:Examples 5607:implies 4963:and not 4840:for all 4751:for all 4691:for all 3565:because 2536:for all 2447:for all 2397:preorder 2184:precedes 2179:or that 1999:divides 1953:divides 1905:preorder 1895:that is 1885:preorder 1672:✗ 1659:✗ 1069:✗ 1064:✗ 1059:✗ 1054:✗ 1029:✗ 997:✗ 992:✗ 987:✗ 982:✗ 977:✗ 962:✗ 930:✗ 925:✗ 920:✗ 915:✗ 910:✗ 895:✗ 883:✗ 878:✗ 853:✗ 848:✗ 843:✗ 828:✗ 816:✗ 811:✗ 796:✗ 781:✗ 776:✗ 761:✗ 749:✗ 744:✗ 709:✗ 704:✗ 689:✗ 677:✗ 672:✗ 657:✗ 652:✗ 617:✗ 605:✗ 600:✗ 585:✗ 580:✗ 565:✗ 560:✗ 555:✗ 541:✗ 536:✗ 521:✗ 516:✗ 491:✗ 486:✗ 474:✗ 469:✗ 454:✗ 449:✗ 444:✗ 419:✗ 407:✗ 402:✗ 387:✗ 382:✗ 377:✗ 362:✗ 357:✗ 345:✗ 340:✗ 325:✗ 320:✗ 315:✗ 310:✗ 295:✗ 283:✗ 278:✗ 263:✗ 258:✗ 253:✗ 248:✗ 243:✗ 238:✗ 221:✗ 216:✗ 201:✗ 196:✗ 191:✗ 186:✗ 181:✗ 9617:Duality 9595:Cofinal 9583:Related 9562:Fréchet 9439:)  9315:Bounded 9310:Lattice 9283:)  9281:Partial 9149:Results 9120:Lattice 8877:1127325 8090:A000110 8085:A000142 8080:A000670 8075:A001035 8070:A000798 8065:A006125 8060:A053763 8055:A006905 8050:A002416 7705:forcing 6630:objects 6574:subterm 6143:" is a 5934:Define 5777:Define 4382:and if 3301:Example 2194:reduces 2023:" and " 684:Lattice 9642:Subnet 9622:Filter 9572:Normed 9557:Banach 9523:& 9430:Better 9367:Strict 9357:Graded 9248:topics 9079:Topics 9027:  9012:  8946:  8903:  8875:  7920:65,536 7375:while 6869:where 6716:Every 4494:where 3359:(like 3303:: Let 2586:proset 2174:covers 1909:almost 1509:exists 1465:exists 1421:exists 50:  9632:Ideal 9610:Graph 9406:Total 9384:Total 9270:Dense 8944:S2CID 8842:Notes 8810:total 8719:Also 8248:2 + 2 8244:3 + 1 8161:2 + 1 7935:1,024 7930:4,096 7925:3,994 7664:class 7662:is a 7567:total 7125:from 6922:, or 6906:from 6775:is a 6708:Other 6580:is a 6572:if a 6544:terms 6402:with 6272:then 6185:then 5169:every 5163:is a 4786:: if 4749:false 4442:then 4346:is a 3323:be a 2955:cycle 2905:then 2482:: if 2372:Then 1891:is a 1865:y R x 1861:x R y 1839:x R y 1791:then 154:Anti- 9223:list 9025:ISBN 9010:ISBN 8901:ISBN 8699:< 8670:< 8664:< 8635:< 8624:and 8609:< 8550:< 8503:and 8435:and 8370:the 8341:For 8208:for 8125:for 8045:OEIS 7715:and 7670:Uses 7437:and 7321:and 7123:path 7025:and 6929:The 6626:thin 6538:The 6509:and 6439:The 6340:The 6309:< 6283:< 6131:< 6079:and 6042:< 6028:< 5976:< 5960:as " 5909:and 5851:< 5814:< 5760:< 5735:< 5691:< 5666:< 5618:< 5528:< 5442:< 5414:< 5392:< 5308:< 5284:< 5167:and 5150:< 5107:< 5022:< 4922:< 4825:< 4811:< 4797:< 4732:< 4676:< 4622:< 4468:and 4232:and 3617:and 3517:(by 3196:and 2584:(or 2410:and 2208:Let 1976:and 1899:and 1883:, a 1863:and 1765:and 1170:and 9637:Net 9437:Pre 8934:doi 8926:ACM 8865:doi 8861:147 8309:114 7951:15 7942:219 7939:355 7890:171 7887:512 7742:Any 7707:in 7595:or 7569:if 7298:of 7145:to 6910:to 6822:if 6773:net 6754:of 6584:of 6576:of 6531:in 6386:to 6378:to 6298:or 6159:If 5803:as 5429:not 5427:is 5381:not 5197:is 4780:and 4747:is 4664:not 4635:on 4587:on 3015:or 2848:of 2663:on 2618:on 2588:). 2476:and 2400:or 2232:set 2196:to 2118:or 1887:or 1875:In 1739:if 1700:be 1410:min 9739:: 8942:. 8930:12 8928:. 8924:. 8873:MR 8871:, 8859:, 8303:19 8270:21 8116:. 8106:, 8034:, 8023:=0 8011:! 8000:, 7985:=0 7969:2 7966:2 7961:2 7948:24 7945:75 7911:5 7905:13 7902:19 7899:29 7896:64 7893:64 7879:2 7858:13 7855:16 7847:1 7815:1 7658:A 7562:. 7496:. 7399:. 7029:, 6945:: 6771:A 6608:A 6505:, 6396:, 5173:If 4393::= 2421:: 2082:. 1918:. 1853:// 1848:4≤ 1846:// 9435:( 9432:) 9428:( 9279:( 9226:) 9060:e 9053:t 9046:v 8996:. 8950:. 8936:: 8909:. 8880:. 8867:: 8766:] 8763:b 8760:, 8757:a 8754:( 8739:) 8736:b 8733:, 8730:a 8727:[ 8705:. 8702:b 8696:a 8676:. 8673:b 8667:x 8661:a 8641:, 8638:b 8632:x 8612:x 8606:a 8596:x 8582:) 8579:b 8576:, 8573:a 8570:( 8527:) 8524:b 8521:, 8518:a 8515:( 8505:b 8501:a 8487:. 8484:b 8478:x 8472:a 8452:, 8449:b 8443:x 8423:x 8417:a 8407:x 8393:] 8390:b 8387:, 8384:a 8381:[ 8358:, 8355:b 8349:a 8306:= 8297:6 8267:= 8264:3 8258:7 8225:: 8222:4 8219:= 8216:n 8183:9 8180:= 8177:3 8171:3 8142:: 8139:3 8136:= 8133:n 8110:) 8108:k 8104:n 8102:( 8100:S 8038:) 8036:k 8032:n 8030:( 8028:S 8021:k 8015:∑ 8009:n 8004:) 8002:k 7998:n 7996:( 7994:S 7992:! 7990:k 7983:k 7977:∑ 7957:n 7916:4 7908:6 7884:3 7876:2 7873:3 7870:3 7867:4 7864:8 7861:4 7852:2 7844:1 7841:1 7838:1 7835:1 7832:2 7829:1 7826:2 7823:2 7820:1 7812:1 7809:1 7806:1 7803:1 7800:1 7797:1 7794:1 7791:1 7788:0 7731:n 7700:. 7689:. 7644:. 7641:P 7635:b 7632:, 7629:a 7609:a 7603:b 7583:b 7577:a 7546:, 7543:a 7537:b 7517:b 7511:a 7480:, 7477:b 7474:= 7471:a 7451:a 7445:b 7425:b 7419:a 7363:, 7360:R 7331:R 7309:, 7306:R 7279:T 7274:R 7238:R 7227:T 7222:R 7215:= 7212:R 7206:R 7186:, 7183:R 7156:. 7153:y 7133:x 7121:- 7109:R 7089:y 7084:+ 7080:R 7076:x 7073:: 7070:R 7050:. 7045:= 7042:+ 7038:R 7009:S 6989:S 6969:R 6937:. 6926:. 6912:y 6908:x 6890:y 6884:x 6871:f 6857:, 6854:) 6851:y 6848:( 6845:f 6839:) 6836:x 6833:( 6830:f 6810:y 6804:x 6756:y 6748:x 6734:y 6728:x 6692:. 6689:) 6686:1 6680:0 6677:( 6674:= 6671:2 6643:, 6640:P 6622:y 6618:x 6588:. 6586:s 6578:t 6560:t 6554:s 6535:. 6499:. 6482:N 6474:N 6470:: 6467:f 6416:y 6410:x 6400:) 6398:y 6394:x 6392:( 6388:y 6384:x 6380:y 6376:x 6362:y 6356:x 6315:. 6312:a 6306:b 6286:b 6280:a 6260:b 6254:a 6228:= 6202:. 6199:b 6193:a 6173:b 6167:a 6155:. 6045:a 6039:b 6031:b 6025:a 6005:b 5999:a 5979:a 5973:b 5948:b 5942:a 5875:, 5872:= 5831:b 5828:= 5825:a 5817:b 5811:a 5791:b 5785:a 5738:. 5669:, 5638:. 5635:b 5632:= 5629:a 5621:b 5615:a 5595:b 5589:a 5485:b 5479:a 5471:b 5465:a 5445:b 5439:a 5367:. 5364:) 5348:( 5343:b 5337:a 5327:b 5321:a 5311:b 5305:a 5263:b 5260:= 5257:a 5237:b 5231:a 5129:. 5126:b 5120:a 5110:b 5104:a 5094:b 5088:a 5068:; 5065:b 5059:a 5051:b 5045:a 5025:b 5019:a 4977:a 4971:b 4951:b 4945:a 4925:b 4919:a 4869:. 4866:P 4860:c 4857:, 4854:b 4851:, 4848:a 4828:c 4822:a 4814:c 4808:b 4800:b 4794:a 4768:, 4765:P 4759:a 4735:a 4729:a 4708:; 4705:P 4699:a 4679:a 4673:a 4643:P 4595:P 4554:) 4547:, 4540:/ 4536:S 4532:( 4511:. 4508:S 4502:C 4482:C 4476:B 4456:C 4450:A 4429:, 4402:B 4396:A 4390:C 4370:S 4364:B 4361:, 4358:A 4334:) 4328:, 4325:S 4322:( 4301:. 4252:] 4249:B 4246:[ 4240:B 4220:] 4217:A 4214:[ 4208:A 4188:, 4185:B 4179:A 4159:] 4156:B 4153:[ 4147:] 4144:A 4141:[ 4120:, 4095:, 4067:/ 4063:S 4043:B 4035:A 4015:S 4009:B 3989:A 3969:S 3963:B 3943:, 3940:] 3937:A 3934:[ 3914:, 3911:A 3891:. 3843:, 3840:B 3832:A 3812:B 3806:A 3760:A 3754:B 3746:B 3740:A 3720:B 3714:A 3695:, 3692:S 3686:B 3683:, 3680:A 3660:. 3657:C 3651:A 3631:C 3625:B 3605:B 3599:A 3579:A 3573:A 3553:S 3505:S 3499:B 3479:, 3476:A 3470:B 3450:B 3444:A 3424:, 3421:B 3401:S 3395:A 3375:S 3343:S 3311:S 3281:S 3261:, 3258:S 3234:. 3210:] 3207:y 3204:[ 3184:] 3181:x 3178:[ 3158:. 3155:y 3149:x 3129:] 3126:y 3123:[ 3117:] 3114:x 3111:[ 3087:/ 3083:S 3063:y 3043:R 3023:x 3003:y 3000:= 2997:x 2977:] 2974:y 2971:[ 2965:x 2953:- 2941:R 2917:/ 2913:S 2893:, 2888:= 2885:+ 2881:R 2860:. 2832:, 2825:/ 2821:S 2732:. 2729:a 2723:b 2713:b 2707:a 2697:b 2691:a 2671:S 2626:S 2565:. 2562:P 2556:c 2553:, 2550:b 2547:, 2544:a 2524:c 2518:a 2510:c 2504:b 2496:b 2490:a 2464:, 2461:P 2455:a 2435:a 2429:a 2360:. 2350:) 2347:b 2344:, 2341:a 2338:( 2318:b 2312:a 2292:P 2286:P 2244:, 2241:P 2198:a 2191:b 2187:b 2181:a 2177:a 2171:b 2157:, 2154:b 2148:a 2066:X 2046:X 2007:1 1987:1 1964:1 1941:1 1871:. 1850:y 1843:x 1808:. 1805:c 1802:R 1799:a 1779:c 1776:R 1773:b 1753:b 1750:R 1747:a 1727:, 1724:c 1721:, 1718:b 1715:, 1712:a 1688:R 1668:Y 1655:Y 1625:a 1622:R 1619:b 1604:b 1601:R 1598:a 1573:a 1570:R 1567:a 1541:a 1538:R 1535:a 1501:b 1495:a 1457:b 1451:a 1413:S 1381:a 1378:R 1375:b 1365:b 1362:R 1359:a 1349:b 1339:a 1310:b 1303:= 1300:a 1290:a 1287:R 1284:b 1274:b 1271:R 1268:a 1239:a 1236:R 1233:b 1219:b 1216:R 1213:a 1187:: 1178:S 1158:b 1155:, 1152:a 1089:Y 1079:Y 1049:Y 1039:Y 1017:Y 1007:Y 972:Y 950:Y 940:Y 905:Y 873:Y 863:Y 838:Y 806:Y 791:Y 771:Y 739:Y 729:Y 719:Y 699:Y 667:Y 647:Y 637:Y 627:Y 595:Y 575:Y 531:Y 511:Y 501:Y 464:Y 439:Y 429:Y 397:Y 372:Y 335:Y 305:Y 273:Y 211:Y 176:Y 74:e 67:t 60:v 38:. 31:.

Index

depth-first search
pre-order
Preorder (disambiguation)
strict order
Transitive
binary relations
v
t
e
Symmetric
Antisymmetric
Connected
Well-founded
Has joins
Has meets
Reflexive
Irreflexive
Asymmetric
Equivalence relation
Preorder (Quasiorder)
Partial order
Total preorder
Total order
Prewellordering
Well-quasi-ordering
Well-ordering
Lattice
Join-semilattice
Meet-semilattice
Strict partial order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.