Knowledge

Primer (molecular biology)

Source πŸ“

91:) usually use DNA primers, since they are more temperature stable. Primers can be designed in laboratory for specific reactions such as polymerase chain reaction (PCR). When designing PCR primers, there are specific measures that must be taken into consideration, like the melting temperature of the primers and the annealing temperature of the reaction itself. Moreover, the DNA binding sequence of the primer in vitro has to be specifically chosen, which is done using a method called basic local alignment search tool (BLAST) that scans the DNA and finds specific and unique regions for the primer to bind. 261:, in eukaryotes it’s known as the RNase H2. This enzyme degrades most of the annealed RNA primer, except the nucleotides close to the 5’ end of the primer. Thus, the remaining nucleotides are displayed into a flap that is cleaved off using FEN-1. The last possible method of removing RNA primer is known as the long flap pathway. In this pathway several enzymes are recruited to elongate the RNA primer and then cleave it off. The flaps are elongated by a 5’ to 3’ 2110: 27: 302: 2150: 2122: 360:(PCR) uses a pair of custom primers to direct DNA elongation toward each other at opposite ends of the sequence being amplified. These primers are typically between 18 and 24 bases in length and must code for only the specific upstream and downstream sites of the sequence being amplified. A primer that can bind to multiple regions along the DNA will amplify them all, eliminating the purpose of PCR. 71:
using an enzyme called ligase. The removal process of the RNA primer requires several enzymes, such as Fen1, Lig1, and others that work in coordination with DNA polymerase, to ensure the removal of the RNA nucleotides and the addition of DNA nucleotides. Living organisms use solely RNA primers, while laboratory techniques in
413:
Selecting a specific region of DNA for primer binding requires some additional considerations. Regions high in mononucleotide and dinucleotide repeats should be avoided, as loop formation can occur and contribute to mishybridization. Primers should not easily anneal with other primers in the mixture;
363:
A few criteria must be brought into consideration when designing a pair of PCR primers. Pairs of primers should have similar melting temperatures since annealing during PCR occurs for both strands simultaneously, and this shared melting temperature must not be either too much higher or lower than the
252:
are formed, which are discontinuous strands of DNA. Then, when the DNA polymerase reaches to the 5’ end of the RNA primer from the previous Okazaki fragment, it displaces the 5β€² end of the primer into a single-stranded RNA flap which is removed by nuclease cleavage. Cleavage of the RNA flaps involves
70:
before DNA polymerase can begin a complementary strand. DNA polymerase adds nucleotides after binding to the RNA primer and synthesizes the whole strand. Later, the RNA strands must be removed accurately and replace them with DNA nucleotides forming a gap region known as a nick that is filled in
405:
As of 2014, many online tools are freely available for primer design, some of which focus on specific applications of PCR. Primers with high specificity for a subset of DNA templates in the presence of many similar variants can be designed using by some software (e.g.
414:
this phenomenon can lead to the production of 'primer dimer' products contaminating the end solution. Primers should also not anneal strongly to themselves, as internal hairpins and loops could hinder the annealing with the template DNA.
277:, which has a helicase-nuclease activity, that cleaves the long flap of RNA primer, which then leaves behind a couple of nucleotides that are cleaved by FEN1. At the end, when all the RNA primers have been removed, nicks form between the 339:
before being extended by DNA polymerase. The ability to create and customize synthetic primers has proven an invaluable tool necessary to a variety of molecular biological approaches involving the analysis of DNA. Both the
417:
When designing primers, additional nucleotide bases can be added to the back ends of each primer, resulting in a customized cap sequence on each end of the amplified region. One application for this practice is for use in
177:. Reverse transcriptase is an enzyme that uses a template strand of RNA to synthesize a complementary strand of DNA. The DNA polymerase component of reverse transcriptase requires an existing 3' end to begin synthesis. 224:
direction,  and polymerase I can do these activities simultaneously; this is known as β€œNick Translation”. Nick translation refers to the synchronized activity of polymerase I in removing the RNA primer and adding
385:
Additionally, primer sequences need to be chosen to uniquely select for a region of DNA, avoiding the possibility of hybridization to a similar sequence nearby. A commonly used method for selecting a primer site is
525:. Differences among sequences are accounted for by using IUPAC degeneracies for individual bases. PCR primers are then synthesized as a mixture of primers corresponding to all permutations of the codon sequence. 464:. This allows different organisms to have a significantly different genetic sequence that code for a highly similar protein. For this reason, degenerate primers are also used when primer design is based on 257:(FEN-1), which cleaves the 5’ overhanging flap. This method is known as the short flap pathway of RNA primer removal. The second way to cleave a RNA primer is by degrading the RNA strand using a 889:
Adenosine added on the primer 50 end improved TA cloning efficiency of polymerase chain reaction products, Ri-He Peng, Ai-Sheng Xiong, Jin-ge Liu, Fang Xu, Cai Bin, Hong Zhu, Quan-Hong Yao
2126: 162:
cannot add bases in the 3β€²β†’5β€² direction complementary to the template strand, DNA is synthesized β€˜backward’ in short fragments moving away from the replication fork, known as
390:
search, whereby all the possible regions to which a primer may bind can be seen. Both the nucleotide sequence as well as the primer itself can be BLAST searched. The free
521:
or allow the recovery of genes from organisms where genomic information is not available. Usually, degenerate primers are designed by aligning gene sequencing found in
166:. Unlike in the leading strand, this method results in the repeated starting and stopping of DNA synthesis, requiring multiple RNA primers. Along the DNA template, 273:(RPA). The RPA-bound DNA inhibits the activity or recruitment of FEN1, as a result another nuclease must be recruited to cleave the flap. This second nuclease is 375:(melting temperature) too much higher than the reaction's annealing temperature may mishybridize and extend at an incorrect location along the DNA sequence. A 208:
In prokaryotes, DNA polymerase I synthesizes the Okazaki fragment until it reaches the previous RNA primer. Then the enzyme simultaneously acts as a
663: 391: 507:. Degenerate primers may not perfectly hybridize with a target sequence, which can greatly reduce the specificity of the PCR amplification. 1688: 394:
tool Primer-BLAST integrates primer design and BLAST search into one application, as do commercial software products such as ePrime and
142:. Starting from the free 3’-OH of the primer, known as the primer terminus, a DNA polymerase can extend a newly synthesized strand. The 934: 422:, a special subcloning technique similar to PCR, where efficiency can be increased by adding AG tails to the 5β€² and the 3β€² ends. 253:
three methods of primer removal. The first possibility of primer removal is by creating a short flap that is directly removed by
1498: 1461: 1039: 254: 1433: 1713: 2180: 2032: 1735: 1581: 155: 63: 2024: 1964: 1590: 1156: 849:"New Sets of Primers for DNA Identification of Non-Indigenous Fish Species in the Volga-Kama Basin (European Russia)" 647: 575: 1304: 972: 440:
These are mixtures of primers that are similar, but not identical. These may be convenient when amplifying the same
1643: 266: 2086: 1969: 1681: 1503: 847:
Karabanov, D.P.; Bekker, E.I.; Pavlov, D.D.; Borovikova, E.A.; Kodukhova, Y.V.; Kotov, A.A. (1 February 2022).
154:, requiring only an initial RNA primer to begin synthesis. In the lagging strand, the template DNA runs in the 2091: 2081: 2068: 1313: 1163: 927: 245: 221: 113: 1626: 1708: 960: 290: 947: 1292: 912: 2175: 2140: 2114: 1674: 1409: 1110: 1057: 951: 332: 274: 1487: 534: 357: 324: 313: 306: 88: 47: 468:, as the specific sequence of codons are not known. Therefore, primer sequence corresponding to the 2170: 1648: 920: 1753: 1050: 981: 402:) may be performed to assist in primer design by giving melting and annealing temperatures, etc. 240:
is essential for the completion of replication. Thus, as the lagging strand being synthesized by
170:
intersperses RNA primers that DNA polymerase uses to synthesize DNA from in the 5β€²β†’3β€² direction.
20: 593:"In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways" 448:, as the sequences are probably similar but not identical. This technique is useful because the 1547: 1478: 1912: 1907: 1849: 1763: 1473: 1242: 387: 270: 174: 269:. After the addition of nucleotides to the flap by Pif1, the long flap is stabilized by the 205:
then joins the fragmented strands together, completing the synthesis of the lagging strand.
2012: 1869: 1718: 1520: 1493: 1444: 317: 282: 226: 217: 198: 220:
behind. Both the activities of polymerization and excision of the RNA primer occur in the
8: 1881: 1876: 1854: 1800: 1250: 407: 382:
significantly lower than the annealing temperature may fail to anneal and extend at all.
365: 328: 209: 241: 766: 733: 657: 2053: 1697: 1456: 1273: 872: 771: 753: 711: 703: 643: 620: 612: 571: 514: 341: 278: 249: 186: 163: 130: 76: 229:. Later, a gap between the strands is formed called a nick, which is sealed using a 1413: 1262: 1257: 1149: 907: 862: 789: 761: 745: 693: 604: 504: 465: 431: 151: 2017: 1743: 1418: 1010: 943: 853: 698: 681: 453: 395: 107: 43: 749: 2154: 2048: 1999: 1959: 1266: 1246: 345: 237: 213: 159: 143: 139: 135: 103: 84: 55: 331:
to a specific site on the template DNA. In solution, the primer spontaneously
305:
Diagrammatic representation of the forward and reverse primers for a standard
2164: 2058: 1949: 1864: 1468: 1395: 1005: 876: 803: 757: 707: 616: 518: 399: 147: 117: 16:
Short strand of RNA or DNA that serves as a starting point for DNA synthesis
1994: 1902: 1897: 1607: 775: 715: 638:
Doudna; Cox; O'Donnell, Jennifer; Michael M.; Michael (December 21, 2016).
624: 570:. New York: W. H. Freeman and Company. pp. 221–238, 369–376, 592–593. 496: 449: 72: 39: 2076: 1805: 1552: 942: 189:, the RNA primers are removed (the mechanism of removal differs between 1832: 1827: 1822: 1638: 1612: 1400: 1385: 608: 517:. They allow for the amplification of genes from thus far uncultivated 472: 469: 461: 419: 230: 202: 190: 59: 867: 848: 825: 1859: 1576: 1390: 1380: 592: 348:” method of DNA sequencing require primers to initiate the reaction. 336: 194: 58:(responsible for DNA replication) enzymes are only capable of adding 26: 1666: 2149: 1922: 1917: 1810: 1653: 1634: 1206: 1197: 995: 902: 492: 445: 262: 80: 301: 2028: 2003: 1978: 1974: 1954: 1767: 1217: 1192: 1187: 1019: 522: 488: 484: 480: 476: 410:) or be developed independently for a specific group of animals. 173:
Another example of primers being used to enable DNA synthesis is
167: 125: 1839: 1817: 846: 682:"Primer removal during mammalian mitochondrial DNA replication" 286: 2041: 1567: 1562: 1557: 1540: 1535: 1530: 1525: 1513: 1508: 1226: 1221: 1178: 1173: 1168: 500: 457: 258: 66:
of an existing nucleic acid, requiring a primer be bound to
1844: 1449: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1333: 1328: 1323: 1318: 1210: 1140: 1135: 1130: 1125: 1120: 1115: 1103: 1096: 1087: 1082: 1077: 1072: 1067: 1062: 1024: 1000: 988: 441: 637: 1757: 1747: 121: 67: 128:
add a complementary RNA primer to the reading template
806:. NCBI - National Center for Biotechnology Information 201:
that fill the gaps where the RNA primer was present.
2138: 732:
Balakrishnan, Lata; Bambara, Robert A. (2013-02-01).
537:– the methods by which primers are manufactured 513:
are widely used and extremely useful in the field of
30:
The DNA replication fork. RNA primer labeled at top.
731: 398:. Computer simulations of theoretical PCR results ( 323:Synthetic primers, sometimes known as oligos, are 42:used by all living organisms in the initiation of 2162: 236:In eukaryotes the removal of RNA primers in the 112:RNA primers are used by living organisms in the 680:Uhler, Jay P.; Falkenberg, Maria (2015-10-01). 679: 316:. For possible methods involving primers, see 1682: 928: 327:, usually of DNA, which can be customized to 662:: CS1 maint: multiple names: authors list ( 296: 1689: 1675: 935: 921: 738:Cold Spring Harbor Perspectives in Biology 640:Molecular Biology: Principles and practice 568:Molecular Biology: Principles and Practice 866: 765: 697: 436:Some situations may call for the use of 312:For the organic chemistry involved, see 300: 150:in one continuous piece moving with the 25: 590: 325:chemically synthesized oligonucleotides 2163: 255:flap structure-specific endonuclease 1 94: 1696: 1670: 916: 425: 50:primer may also be referred to as an 818: 796: 727: 725: 675: 673: 561: 559: 557: 555: 553: 551: 351: 2121: 565: 475:might be "ATH", where A stands for 13: 14: 2192: 1965:Post-transcriptional modification 1591:Control of chromosome duplication 1157:Autonomously replicating sequence 896: 828:. Wellcome Trust Sanger Institute 722: 670: 591:Henneke, Ghislaine (2012-09-26). 548: 180: 2148: 2120: 2109: 2108: 1970:Post-translational modification 883: 342:Sanger chain termination method 840: 782: 631: 584: 503:, using the IUPAC symbols for 1: 2092:Post-translational regulation 1314:DNA polymerase III holoenzyme 1164:Single-strand binding protein 734:"Okazaki fragment metabolism" 541: 54:, short for oligonucleotide. 2040:High-throughput technique (" 699:10.1016/j.dnarep.2015.07.003 456:, meaning several different 124:. A class of enzymes called 38:is a short, single-stranded 7: 1918:Functional biology/medicine 750:10.1101/cshperspect.a010173 528: 289:, through a process called 10: 2197: 1410:Prokaryotic DNA polymerase 1111:Minichromosome maintenance 1058:Origin recognition complex 429: 335:with the template through 311: 101: 18: 2181:Polymerase chain reaction 2104: 2067: 1987: 1942: 1935: 1890: 1777: 1734: 1727: 1704: 1625: 1599: 1488:Eukaryotic DNA polymerase 1429: 1300: 1291: 1235: 1035: 968: 959: 535:Oligonucleotide synthesis 358:polymerase chain reaction 337:Watson-Crick base pairing 314:Oligonucleotide synthesis 297:Uses of synthetic primers 285:using an enzyme known as 89:polymerase chain reaction 566:Cox, Michael M. (2015). 281:that are filled-in with 197:) and replaced with new 1051:Pre-replication complex 982:Pre-replication complex 185:After the insertion of 83:DNA synthesis (such as 460:can code for the same 309: 146:in DNA replication is 31: 1913:Developmental biology 1908:Computational biology 1474:Replication protein A 1243:Origin of replication 366:annealing temperature 304: 271:replication protein A 175:reverse transcription 102:Further information: 29: 2087:Post-transcriptional 1445:Replication factor C 318:Nucleic acid methods 283:deoxyribonucleotides 227:deoxyribonucleotides 218:deoxyribonucleotides 216:in front and adding 199:deoxyribonucleotides 19:For other uses, see 1882:Histone methylation 597:Biochemical Journal 495:, according to the 438:degenerate primers. 609:10.1042/BJ20120959 511:Degenerate primers 426:Degenerate primers 368:. A primer with a 310: 212:, removing primer 32: 2176:Molecular biology 2136: 2135: 2115:Molecular biology 2100: 2099: 2054:Mass spectrometry 1931: 1930: 1698:Molecular biology 1664: 1663: 1621: 1620: 1457:Flap endonuclease 1287: 1286: 1274:Okazaki fragments 868:10.3390/w14030437 642:. W. H. Freeman. 515:microbial ecology 352:PCR primer design 279:Okazaki fragments 250:Okazaki fragments 210:5β€²β†’3β€² exonuclease 187:Okazaki fragments 164:Okazaki fragments 77:molecular biology 2188: 2153: 2152: 2144: 2124: 2123: 2112: 2111: 2045: 1940: 1939: 1793: 1788: 1732: 1731: 1691: 1684: 1677: 1668: 1667: 1414:DNA polymerase I 1298: 1297: 1258:Replication fork 1150:Licensing factor 966: 965: 937: 930: 923: 914: 913: 890: 887: 881: 880: 870: 844: 838: 837: 835: 833: 826:"About DECIPHER" 822: 816: 815: 813: 811: 804:"Electronic PCR" 800: 794: 793: 786: 780: 779: 769: 729: 720: 719: 701: 677: 668: 667: 661: 653: 635: 629: 628: 588: 582: 581: 563: 505:degenerate bases 466:protein sequence 432:Degenerate bases 242:DNA polymerase Ξ΄ 152:replication fork 2196: 2195: 2191: 2190: 2189: 2187: 2186: 2185: 2171:DNA replication 2161: 2160: 2159: 2147: 2139: 2137: 2132: 2096: 2069:Gene regulation 2063: 2039: 2000:Model organisms 1983: 1960:Cell signalling 1927: 1886: 1791: 1786: 1773: 1744:DNA replication 1723: 1700: 1695: 1665: 1660: 1617: 1595: 1435: 1431: 1425: 1419:Klenow fragment 1302: 1283: 1267:leading strands 1231: 1041: 1037: 1031: 970: 955: 944:DNA replication 941: 899: 894: 893: 888: 884: 845: 841: 831: 829: 824: 823: 819: 809: 807: 802: 801: 797: 788: 787: 783: 730: 723: 678: 671: 655: 654: 650: 636: 632: 589: 585: 578: 564: 549: 544: 531: 444:from different 434: 428: 396:Beacon Designer 381: 374: 354: 321: 299: 214:ribonucleotides 183: 156:5β€²β†’3β€² direction 140:lagging strands 110: 108:DNA replication 100: 24: 17: 12: 11: 5: 2194: 2184: 2183: 2178: 2173: 2158: 2157: 2134: 2133: 2131: 2130: 2118: 2105: 2102: 2101: 2098: 2097: 2095: 2094: 2089: 2084: 2079: 2073: 2071: 2065: 2064: 2062: 2061: 2056: 2051: 2049:DNA microarray 2046: 2036: 2035: 2022: 2021: 2020: 2015: 2007: 1997: 1991: 1989: 1985: 1984: 1982: 1981: 1972: 1967: 1962: 1957: 1952: 1946: 1944: 1937: 1933: 1932: 1929: 1928: 1926: 1925: 1920: 1915: 1910: 1905: 1900: 1894: 1892: 1888: 1887: 1885: 1884: 1879: 1874: 1873: 1872: 1867: 1857: 1852: 1847: 1842: 1837: 1836: 1835: 1830: 1825: 1815: 1814: 1813: 1808: 1797: 1796: 1795: 1794: 1789: 1781: 1779: 1775: 1774: 1772: 1771: 1761: 1751: 1740: 1738: 1729: 1725: 1724: 1722: 1721: 1716: 1711: 1705: 1702: 1701: 1694: 1693: 1686: 1679: 1671: 1662: 1661: 1659: 1658: 1657: 1656: 1651: 1646: 1631: 1629: 1623: 1622: 1619: 1618: 1616: 1615: 1610: 1603: 1601: 1597: 1596: 1594: 1593: 1587: 1586: 1585: 1584: 1573: 1572: 1571: 1570: 1565: 1560: 1555: 1545: 1544: 1543: 1538: 1533: 1528: 1518: 1517: 1516: 1511: 1506: 1501: 1491: 1484: 1483: 1482: 1481: 1471: 1466: 1465: 1464: 1454: 1453: 1452: 1441: 1439: 1427: 1426: 1424: 1423: 1422: 1421: 1406: 1405: 1404: 1403: 1393: 1388: 1383: 1378: 1377: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1310: 1308: 1295: 1289: 1288: 1285: 1284: 1282: 1281: 1276: 1271: 1270: 1269: 1254: 1253: 1239: 1237: 1233: 1232: 1230: 1229: 1224: 1214: 1213: 1203: 1202: 1201: 1200: 1195: 1184: 1183: 1182: 1181: 1176: 1171: 1160: 1159: 1153: 1152: 1146: 1145: 1144: 1143: 1138: 1133: 1128: 1123: 1118: 1107: 1106: 1100: 1099: 1093: 1092: 1091: 1090: 1085: 1080: 1075: 1070: 1065: 1054: 1053: 1047: 1045: 1040:preparation in 1033: 1032: 1030: 1029: 1028: 1027: 1016: 1015: 1014: 1013: 1008: 1003: 992: 991: 985: 984: 978: 976: 963: 957: 956: 940: 939: 932: 925: 917: 911: 910: 905: 898: 897:External links 895: 892: 891: 882: 839: 817: 795: 790:"Primer-BLAST" 781: 744:(2): a010173. 721: 669: 648: 630: 603:(2): 271–280. 583: 576: 546: 545: 543: 540: 539: 538: 530: 527: 519:microorganisms 430:Main article: 427: 424: 400:Electronic PCR 379: 372: 353: 350: 298: 295: 238:lagging strand 182: 181:Primer removal 179: 160:DNA polymerase 144:leading strand 104:DNA polymerase 99: 93: 85:DNA sequencing 56:DNA polymerase 15: 9: 6: 4: 3: 2: 2193: 2182: 2179: 2177: 2174: 2172: 2169: 2168: 2166: 2156: 2151: 2146: 2145: 2142: 2129: 2128: 2119: 2117: 2116: 2107: 2106: 2103: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2074: 2072: 2070: 2066: 2060: 2059:Lab-on-a-chip 2057: 2055: 2052: 2050: 2047: 2043: 2038: 2037: 2034: 2033:Radioactivity 2030: 2026: 2023: 2019: 2016: 2014: 2011: 2010: 2008: 2005: 2001: 1998: 1996: 1993: 1992: 1990: 1986: 1980: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1950:Cultured meat 1948: 1947: 1945: 1941: 1938: 1934: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1896: 1895: 1893: 1889: 1883: 1880: 1878: 1875: 1871: 1870:trp repressor 1868: 1866: 1865:lac repressor 1863: 1862: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1834: 1831: 1829: 1826: 1824: 1821: 1820: 1819: 1816: 1812: 1809: 1807: 1804: 1803: 1802: 1799: 1798: 1790: 1785: 1784: 1783: 1782: 1780: 1776: 1769: 1765: 1762: 1759: 1755: 1754:Transcription 1752: 1749: 1745: 1742: 1741: 1739: 1737: 1736:Central dogma 1733: 1730: 1726: 1720: 1717: 1715: 1712: 1710: 1707: 1706: 1703: 1699: 1692: 1687: 1685: 1680: 1678: 1673: 1672: 1669: 1655: 1652: 1650: 1647: 1645: 1642: 1641: 1640: 1636: 1633: 1632: 1630: 1628: 1624: 1614: 1611: 1609: 1605: 1604: 1602: 1598: 1592: 1589: 1588: 1583: 1580: 1579: 1578: 1575: 1574: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1550: 1549: 1546: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1523: 1522: 1519: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1496: 1495: 1492: 1489: 1486: 1485: 1480: 1477: 1476: 1475: 1472: 1470: 1469:Topoisomerase 1467: 1463: 1460: 1459: 1458: 1455: 1451: 1448: 1447: 1446: 1443: 1442: 1440: 1437: 1428: 1420: 1417: 1416: 1415: 1411: 1408: 1407: 1402: 1399: 1398: 1397: 1396:Topoisomerase 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1316: 1315: 1312: 1311: 1309: 1306: 1299: 1296: 1294: 1290: 1280: 1277: 1275: 1272: 1268: 1264: 1261: 1260: 1259: 1256: 1255: 1252: 1248: 1244: 1241: 1240: 1238: 1234: 1228: 1225: 1223: 1219: 1216: 1215: 1212: 1208: 1205: 1204: 1199: 1196: 1194: 1191: 1190: 1189: 1186: 1185: 1180: 1177: 1175: 1172: 1170: 1167: 1166: 1165: 1162: 1161: 1158: 1155: 1154: 1151: 1148: 1147: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1113: 1112: 1109: 1108: 1105: 1102: 1101: 1098: 1095: 1094: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1059: 1056: 1055: 1052: 1049: 1048: 1046: 1043: 1034: 1026: 1023: 1022: 1021: 1018: 1017: 1012: 1009: 1007: 1004: 1002: 999: 998: 997: 994: 993: 990: 987: 986: 983: 980: 979: 977: 974: 967: 964: 962: 958: 953: 949: 945: 938: 933: 931: 926: 924: 919: 918: 915: 909: 906: 904: 901: 900: 886: 878: 874: 869: 864: 860: 856: 855: 850: 843: 827: 821: 805: 799: 791: 785: 777: 773: 768: 763: 759: 755: 751: 747: 743: 739: 735: 728: 726: 717: 713: 709: 705: 700: 695: 691: 687: 683: 676: 674: 665: 659: 651: 649:9781319116378 645: 641: 634: 626: 622: 618: 614: 610: 606: 602: 598: 594: 587: 579: 577:9781464126147 573: 569: 562: 560: 558: 556: 554: 552: 547: 536: 533: 532: 526: 524: 520: 516: 512: 508: 506: 502: 498: 494: 490: 486: 482: 478: 474: 471: 467: 463: 459: 455: 451: 447: 443: 439: 433: 423: 421: 415: 411: 409: 403: 401: 397: 393: 389: 383: 378: 371: 367: 361: 359: 349: 347: 343: 338: 334: 330: 326: 319: 315: 308: 303: 294: 292: 288: 284: 280: 276: 275:DNA2 nuclease 272: 268: 264: 260: 256: 251: 247: 243: 239: 234: 232: 228: 223: 219: 215: 211: 206: 204: 200: 196: 192: 188: 178: 176: 171: 169: 165: 161: 157: 153: 149: 145: 141: 137: 133: 132: 127: 123: 119: 115: 109: 105: 98: 92: 90: 86: 82: 79:that require 78: 74: 69: 65: 61: 57: 53: 49: 45: 44:DNA synthesis 41: 37: 28: 22: 2125: 2113: 2025:Fluorescence 2013:Nucleic acid 2004:C57BL/6 mice 1995:Cell culture 1903:Biochemistry 1898:Cell biology 1608:Processivity 1434:synthesis in 1278: 908:Primer-BLAST 885: 858: 852: 842: 830:. Retrieved 820: 808:. Retrieved 798: 784: 741: 737: 689: 685: 639: 633: 600: 596: 586: 567: 510: 509: 497:genetic code 483:, and H for 450:genetic code 437: 435: 416: 412: 404: 384: 376: 369: 362: 355: 322: 235: 207: 184: 172: 134:on both the 129: 120:a strand of 118:synthesizing 111: 96: 95:RNA primers 73:biochemistry 68:the template 51: 40:nucleic acid 35: 33: 2127:WikiProject 1936:Engineering 1891:Linked life 1806:Pribnow box 1764:Translation 1627:Termination 1301:Prokaryotic 1293:Replication 969:Prokaryotic 948:prokaryotic 946:(comparing 832:12 February 364:reaction's 265:, known as 248:direction, 191:prokaryotes 148:synthesized 60:nucleotides 2165:Categories 2077:Epigenetic 1988:Techniques 1850:Terminator 1833:trp operon 1828:lac operon 1823:gal operon 1639:Telomerase 1613:DNA ligase 1606:Movement: 1430:Eukaryotic 1401:DNA gyrase 1386:DNA ligase 1305:elongation 1036:Eukaryotic 973:initiation 961:Initiation 952:eukaryotic 861:(3): 437. 686:DNA Repair 542:References 473:isoleucine 470:amino acid 462:amino acid 454:degenerate 452:itself is 420:TA cloning 333:hybridizes 231:DNA ligase 203:DNA ligase 195:eukaryotes 114:initiation 2002:(such as 1860:Repressor 1577:DNA clamp 1391:DNA clamp 1381:Replisome 877:2073-4441 758:1943-0264 708:1568-7864 692:: 28–38. 658:cite book 617:0264-6021 499:for each 446:organisms 344:and the β€œ 48:synthetic 2009:Methods 1943:Concepts 1923:Genetics 1877:Silencer 1855:Enhancer 1811:TATA box 1801:Promoter 1792:Heredity 1728:Overview 1719:Glossary 1635:Telomere 1251:Replicon 1207:Helicase 1198:RNASEH2A 1042:G1 phase 996:Helicase 810:13 March 776:23378587 716:26303841 625:22849643 529:See also 493:cytosine 479:, T for 408:DECIPHER 346:Next-Gen 291:ligation 263:helicase 158:. Since 126:primases 81:in vitro 2155:Biology 2082:Genetic 2029:Pigment 2018:Protein 1979:Wet lab 1975:Dry lab 1955:Mitosis 1787:Genetic 1778:Element 1768:protein 1709:History 1548:epsilon 1436:S phase 1263:Lagging 1218:Primase 1193:RNASEH1 1188:RNase H 1020:Primase 903:Primer3 767:3552508 523:GenBank 489:thymine 485:adenine 481:thymine 477:adenine 287:ligase1 168:primase 136:leading 131:de novo 97:in vivo 62:to the 2141:Portal 2042:-omics 2031:& 1840:Intron 1818:Operon 1279:Primer 875:  774:  764:  756:  714:  706:  646:  623:  615:  574:  458:codons 329:anneal 64:3’-end 36:primer 21:Primer 1714:Index 1568:POLE4 1563:POLE3 1558:POLE2 1541:POLD4 1536:POLD3 1531:POLD2 1526:POLD1 1521:delta 1514:PRIM2 1509:PRIM1 1504:POLA2 1499:POLA1 1494:alpha 1227:PRIM2 1222:PRIM1 1179:SSBP4 1174:SSBP3 1169:SSBP2 854:Water 501:codon 491:, or 388:BLAST 259:RNase 246:5β€²β†’3β€² 222:5β€²β†’3β€² 52:oligo 1845:Exon 1654:DKC1 1649:TERC 1644:TERT 1600:Both 1582:PCNA 1553:POLE 1479:RPA1 1462:FEN1 1450:RFC1 1374:holE 1369:holD 1364:holC 1359:holB 1354:holA 1349:dnaX 1344:dnaT 1339:dnaQ 1334:dnaN 1329:dnaH 1324:dnaE 1319:dnaC 1265:and 1236:Both 1211:HFM1 1141:MCM7 1136:MCM6 1131:MCM5 1126:MCM4 1121:MCM3 1116:MCM2 1104:Cdt1 1097:Cdc6 1088:ORC6 1083:ORC5 1078:ORC4 1073:ORC3 1068:ORC2 1063:ORC1 1025:dnaG 1006:dnaB 1001:dnaA 989:dnaC 873:ISSN 834:2014 812:2012 772:PMID 754:ISSN 712:PMID 704:ISSN 664:link 644:ISBN 621:PMID 613:ISSN 572:ISBN 442:gene 392:NCBI 356:The 267:Pif1 193:and 138:and 106:and 87:and 75:and 46:. A 1758:RNA 1748:DNA 1247:Ori 950:to 863:doi 762:PMC 746:doi 694:doi 605:doi 601:447 307:PCR 244:in 122:DNA 116:of 2167:: 2044:") 2027:, 1977:/ 1637:: 1412:: 1220:: 1209:: 1011:T7 871:. 859:14 857:. 851:. 770:. 760:. 752:. 740:. 736:. 724:^ 710:. 702:. 690:34 688:. 684:. 672:^ 660:}} 656:{{ 619:. 611:. 599:. 595:. 550:^ 487:, 293:. 233:. 34:A 2143:: 2006:) 1770:) 1766:( 1760:) 1756:( 1750:) 1746:( 1690:e 1683:t 1676:v 1490:: 1438:) 1432:( 1307:) 1303:( 1249:/ 1245:/ 1044:) 1038:( 975:) 971:( 954:) 936:e 929:t 922:v 879:. 865:: 836:. 814:. 792:. 778:. 748:: 742:5 718:. 696:: 666:) 652:. 627:. 607:: 580:. 380:m 377:T 373:m 370:T 320:. 23:.

Index

Primer

nucleic acid
DNA synthesis
synthetic
DNA polymerase
nucleotides
3’-end
the template
biochemistry
molecular biology
in vitro
DNA sequencing
polymerase chain reaction
DNA polymerase
DNA replication
initiation
synthesizing
DNA
primases
de novo
leading
lagging strands
leading strand
synthesized
replication fork
5β€²β†’3β€² direction
DNA polymerase
Okazaki fragments
primase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑