Knowledge

Product of rings

Source 📝

1145: 989: 952: 233: 814: 741: 776: 525: 478: 441: 1549:
are non-trivial, then the converse is false: the set of elements with all but finitely many nonzero coordinates forms an ideal which is not a direct product of ideals of the
1140:{\displaystyle \mathbf {Z} /p_{1}^{n_{1}}\mathbf {Z} \ \times \ \mathbf {Z} /p_{2}^{n_{2}}\mathbf {Z} \ \times \ \cdots \ \times \ \mathbf {Z} /p_{k}^{n_{k}}\mathbf {Z} .} 187: 630: 686:, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings. For example, the 859: 1800: 1775: 87: 1839: 850: 623: 575: 197: 1453: 1450: 781: 708: 746: 492: 1792: 616: 483: 333: 1767: 1457: 93: 454: 417: 108: 1326: 1151: 835: 687: 1682: 1461: 568: 371: 321: 170: 1471:
natural isomorphism, meaning that it doesn't matter in which order one forms the direct product.
664: 380: 114: 73: 1755: 1446: 537: 388: 339: 120: 1601: 1834: 1810: 261: 135: 1818: 8: 1482: 543: 351: 302: 247: 141: 127: 55: 23: 1760: 1639: 1236: 656: 556: 42: 1796: 1771: 1413: 1198: 672: 660: 597: 394: 159: 100: 1814: 1531: 980: 699: 603: 589: 403: 345: 308: 67: 1806: 1795:, vol. 211 (Revised third ed.), New York: Springer-Verlag, p. 91, 1616: 1405: 365: 315: 153: 1674: 1642: 668: 409: 663:
of the underlying sets of several rings (possibly an infinity), equipped with
1828: 1696: 1620: 703: 550: 446: 61: 1426: 965: 582: 357: 253: 1561: 846: 683: 644: 562: 273: 147: 29: 1784: 1624: 1358: 1195: 327: 1409: 287: 192: 1703:
is an element of the product whose coordinates are all zero except
947:{\displaystyle n=p_{1}^{n_{1}}p_{2}^{n_{2}}\cdots \ p_{k}^{n_{k}},} 281: 267: 165: 49: 1720:
is an element of the product with all coordinates zero except
1695:
A product of two or more non-trivial rings always has nonzero
1468: 679: 1442:
fails to map 1 to 1 and hence is not a ring homomorphism.
1325:
This shows that the product of rings is an instance of
1645:
all of its components are units, i.e., if and only if
1416:(with identity): for example, when two or more of the 992: 862: 784: 749: 711: 495: 457: 420: 200: 173: 1759: 1404:, but this is incorrect from the point of view of 1139: 946: 808: 770: 735: 519: 472: 435: 227: 181: 1826: 1467:Direct products are commutative and associative 1460:. A coproduct in the category of algebras is a 624: 1336:is finite, the underlying additive group of 228:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 809:{\displaystyle \mathbb {Z} /n\mathbb {Z} .} 736:{\displaystyle \mathbb {Z} /mn\mathbb {Z} } 771:{\displaystyle \mathbb {Z} /m\mathbb {Z} } 631: 617: 1596:. However, the converse is not true when 799: 786: 764: 751: 729: 713: 520:{\displaystyle \mathbb {Z} (p^{\infty })} 497: 460: 423: 221: 208: 175: 16:Ring built from other rings (mathematics) 1754: 1611:form an ideal not contained in any such 1327:products in the sense of category theory 1827: 1186:is a product of rings, then for every 1783: 1745: = 0 in the product ring. 88:Free product of associative algebras 1619:gives that it is contained in some 13: 1370:. In this case, some authors call 1224: th coordinate. The product 1220:which projects the product on the 678:Since direct products are defined 509: 14: 1851: 1267:is a ring homomorphism for every 851:Fundamental theorem of arithmetic 576:Noncommutative algebraic geometry 1454:algebras over a commutative ring 1130: 1098: 1072: 1040: 1026: 994: 473:{\displaystyle \mathbb {Q} _{p}} 436:{\displaystyle \mathbb {Z} _{p}} 1685:of the groups of units of the 1600:is infinite. For example, the 1538:is of this form. However, if 1534:is true, i.e., every ideal of 1361:of the additive groups of the 1228:together with the projections 514: 501: 1: 1793:Graduate Texts in Mathematics 1748: 1374:the "direct sum of the rings 1157: 1408:, since it is usually not a 182:{\displaystyle \mathbb {Z} } 7: 1445:(A finite coproduct in the 845:is written as a product of 818: 334:Unique factorization domain 10: 1856: 1768:Cambridge University Press 1542:is infinite and the rings 1458:tensor product of algebras 94:Tensor product of algebras 1152:Chinese remainder theorem 688:Chinese remainder theorem 1840:Operations on structures 1462:free product of algebras 836:ring of integers modulo 823:An important example is 665:componentwise operations 372:Formal power series ring 322:Integrally closed domain 653:direct product of rings 381:Algebraic number theory 74:Total ring of fractions 1568:if all but one of the 1150:This follows from the 1141: 948: 810: 772: 737: 659:that is formed by the 538:Noncommutative algebra 521: 474: 437: 389:Algebraic number field 340:Principal ideal domain 229: 183: 121:Frobenius endomorphism 1142: 949: 811: 773: 738: 690:may be stated as: if 522: 475: 438: 230: 184: 1762:Noncommutative rings 1589:is a prime ideal in 1530:is finite, then the 1429:, the inclusion map 1275:, then there exists 990: 860: 782: 747: 709: 544:Noncommutative rings 493: 455: 418: 262:Non-associative ring 198: 171: 128:Algebraic structures 1357:coincides with the 1128: 1070: 1024: 940: 912: 890: 303:Commutative algebra 142:Associative algebra 24:Algebraic structure 1582:and the remaining 1279:ring homomorphism 1237:universal property 1235:has the following 1137: 1107: 1049: 1003: 944: 919: 891: 869: 806: 768: 743:is the product of 733: 557:Semiprimitive ring 517: 470: 433: 241:Related structures 225: 179: 115:Inner automorphism 101:Ring homomorphisms 1802:978-0-387-95385-4 1777:978-0-88385-039-8 1414:category of rings 1199:ring homomorphism 1096: 1090: 1084: 1078: 1038: 1032: 918: 673:category of rings 661:Cartesian product 641: 640: 598:Geometric algebra 309:Commutative rings 160:Category of rings 1847: 1821: 1780: 1766:(5th ed.), 1765: 1521: 1441: 1403: 1356: 1312: 1292: 1266: 1247:is any ring and 1219: 1185: 1146: 1144: 1143: 1138: 1133: 1127: 1126: 1125: 1115: 1106: 1101: 1094: 1088: 1082: 1076: 1075: 1069: 1068: 1067: 1057: 1048: 1043: 1036: 1030: 1029: 1023: 1022: 1021: 1011: 1002: 997: 953: 951: 950: 945: 939: 938: 937: 927: 916: 911: 910: 909: 899: 889: 888: 887: 877: 815: 813: 812: 807: 802: 794: 789: 777: 775: 774: 769: 767: 759: 754: 742: 740: 739: 734: 732: 721: 716: 700:coprime integers 697: 693: 649:product of rings 633: 626: 619: 604:Operator algebra 590:Clifford algebra 526: 524: 523: 518: 513: 512: 500: 479: 477: 476: 471: 469: 468: 463: 442: 440: 439: 434: 432: 431: 426: 404:Ring of integers 398: 395:Integers modulo 346:Euclidean domain 234: 232: 231: 226: 224: 216: 211: 188: 186: 185: 180: 178: 82:Product of rings 68:Fractional ideal 27: 19: 18: 1855: 1854: 1850: 1849: 1848: 1846: 1845: 1844: 1825: 1824: 1803: 1778: 1751: 1728: 1711: 1690: 1663: 1658:) is a unit in 1653: 1617:axiom of choice 1609: 1594: 1587: 1580: 1573: 1554: 1547: 1522:is an ideal of 1519: 1514: 1501: 1490: 1479: 1435: 1430: 1424: 1406:category theory 1402: 1394: 1384: 1382: 1369: 1355: 1347: 1337: 1310: 1301: ∘  1299: 1294: 1280: 1264: 1253: 1248: 1233: 1217: 1206: 1201: 1184: 1176: 1163: 1160: 1129: 1121: 1117: 1116: 1111: 1102: 1097: 1071: 1063: 1059: 1058: 1053: 1044: 1039: 1025: 1017: 1013: 1012: 1007: 998: 993: 991: 988: 987: 983:to the product 962: 933: 929: 928: 923: 905: 901: 900: 895: 883: 879: 878: 873: 861: 858: 857: 821: 798: 790: 785: 783: 780: 779: 763: 755: 750: 748: 745: 744: 728: 717: 712: 710: 707: 706: 695: 691: 637: 608: 607: 540: 530: 529: 508: 504: 496: 494: 491: 490: 464: 459: 458: 456: 453: 452: 427: 422: 421: 419: 416: 415: 396: 366:Polynomial ring 316:Integral domain 305: 295: 294: 220: 212: 207: 199: 196: 195: 174: 172: 169: 168: 154:Involutive ring 39: 28: 22: 17: 12: 11: 5: 1853: 1843: 1842: 1837: 1823: 1822: 1801: 1781: 1776: 1756:Herstein, I.N. 1750: 1747: 1724: 1707: 1688: 1675:group of units 1661: 1649: 1643:if and only if 1607: 1592: 1585: 1578: 1571: 1552: 1545: 1517: 1506: 1488: 1477: 1433: 1420: 1398: 1386: 1378: 1365: 1351: 1339: 1323: 1322: 1308: 1297: 1262: 1251: 1231: 1215: 1204: 1180: 1168: 1159: 1156: 1148: 1147: 1136: 1132: 1124: 1120: 1114: 1110: 1105: 1100: 1093: 1087: 1081: 1074: 1066: 1062: 1056: 1052: 1047: 1042: 1035: 1028: 1020: 1016: 1010: 1006: 1001: 996: 960: 955: 954: 943: 936: 932: 926: 922: 915: 908: 904: 898: 894: 886: 882: 876: 872: 868: 865: 820: 817: 805: 801: 797: 793: 788: 766: 762: 758: 753: 731: 727: 724: 720: 715: 669:direct product 639: 638: 636: 635: 628: 621: 613: 610: 609: 601: 600: 572: 571: 565: 559: 553: 541: 536: 535: 532: 531: 528: 527: 516: 511: 507: 503: 499: 480: 467: 462: 443: 430: 425: 413:-adic integers 406: 400: 391: 377: 376: 375: 374: 368: 362: 361: 360: 348: 342: 336: 330: 324: 306: 301: 300: 297: 296: 293: 292: 291: 290: 278: 277: 276: 270: 258: 257: 256: 238: 237: 236: 235: 223: 219: 215: 210: 206: 203: 189: 177: 156: 150: 144: 138: 124: 123: 117: 111: 97: 96: 90: 84: 78: 77: 76: 70: 58: 52: 40: 38:Basic concepts 37: 36: 33: 32: 15: 9: 6: 4: 3: 2: 1852: 1841: 1838: 1836: 1833: 1832: 1830: 1820: 1816: 1812: 1808: 1804: 1798: 1794: 1790: 1786: 1782: 1779: 1773: 1769: 1764: 1763: 1757: 1753: 1752: 1746: 1744: 1740: 1737: ≠  1736: 1732: 1727: 1723: 1719: 1715: 1710: 1706: 1702: 1698: 1697:zero divisors 1693: 1691: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1652: 1648: 1644: 1641: 1637: 1633: 1628: 1626: 1622: 1621:maximal ideal 1618: 1614: 1610: 1603: 1599: 1595: 1588: 1581: 1575:are equal to 1574: 1567: 1563: 1559: 1556:. The ideal 1555: 1548: 1541: 1537: 1533: 1529: 1525: 1520: 1513: 1509: 1504: 1499: 1495: 1491: 1484: 1480: 1472: 1470: 1465: 1463: 1459: 1455: 1452: 1448: 1443: 1440: 1436: 1428: 1423: 1419: 1415: 1411: 1407: 1401: 1397: 1393: 1389: 1381: 1377: 1373: 1368: 1364: 1360: 1354: 1350: 1346: 1342: 1335: 1330: 1328: 1320: 1316: 1311: 1304: 1300: 1291: 1287: 1283: 1278: 1277:precisely one 1274: 1270: 1265: 1258: 1254: 1246: 1242: 1241: 1240: 1238: 1234: 1227: 1223: 1218: 1211: 1207: 1200: 1197: 1193: 1189: 1183: 1179: 1175: 1171: 1166: 1155: 1153: 1134: 1122: 1118: 1112: 1108: 1103: 1091: 1085: 1079: 1064: 1060: 1054: 1050: 1045: 1033: 1018: 1014: 1008: 1004: 999: 986: 985: 984: 982: 979:is naturally 978: 975: 971: 967: 964:are distinct 963: 941: 934: 930: 924: 920: 913: 906: 902: 896: 892: 884: 880: 874: 870: 866: 863: 856: 855: 854: 852: 848: 844: 840: 839: 833: 830: 826: 816: 803: 795: 791: 760: 756: 725: 722: 718: 705: 704:quotient ring 701: 689: 685: 681: 676: 674: 670: 666: 662: 658: 654: 650: 646: 634: 629: 627: 622: 620: 615: 614: 612: 611: 606: 605: 599: 595: 594: 593: 592: 591: 586: 585: 584: 579: 578: 577: 570: 566: 564: 560: 558: 554: 552: 551:Division ring 548: 547: 546: 545: 539: 534: 533: 505: 489: 487: 481: 465: 451: 450:-adic numbers 449: 444: 428: 414: 412: 407: 405: 401: 399: 392: 390: 386: 385: 384: 383: 382: 373: 369: 367: 363: 359: 355: 354: 353: 349: 347: 343: 341: 337: 335: 331: 329: 325: 323: 319: 318: 317: 313: 312: 311: 310: 304: 299: 298: 289: 285: 284: 283: 279: 275: 271: 269: 265: 264: 263: 259: 255: 251: 250: 249: 245: 244: 243: 242: 217: 213: 204: 201: 194: 193:Terminal ring 190: 167: 163: 162: 161: 157: 155: 151: 149: 145: 143: 139: 137: 133: 132: 131: 130: 129: 122: 118: 116: 112: 110: 106: 105: 104: 103: 102: 95: 91: 89: 85: 83: 79: 75: 71: 69: 65: 64: 63: 62:Quotient ring 59: 57: 53: 51: 47: 46: 45: 44: 35: 34: 31: 26:→ Ring theory 25: 21: 20: 1788: 1761: 1742: 1738: 1734: 1730: 1725: 1721: 1717: 1713: 1708: 1704: 1700: 1694: 1686: 1678: 1670: 1666: 1659: 1655: 1650: 1646: 1635: 1631: 1629: 1612: 1605: 1597: 1590: 1583: 1576: 1569: 1565: 1557: 1550: 1543: 1539: 1535: 1527: 1523: 1515: 1511: 1507: 1502: 1497: 1493: 1486: 1475: 1473: 1466: 1444: 1438: 1431: 1421: 1417: 1399: 1395: 1391: 1387: 1383:" and write 1379: 1375: 1371: 1366: 1362: 1352: 1348: 1344: 1340: 1333: 1331: 1324: 1318: 1314: 1306: 1302: 1295: 1289: 1285: 1281: 1276: 1272: 1268: 1260: 1256: 1249: 1244: 1229: 1225: 1221: 1213: 1209: 1202: 1191: 1187: 1181: 1177: 1173: 1169: 1164: 1161: 1149: 976: 973: 969: 958: 956: 847:prime powers 842: 837: 831: 828: 824: 822: 677: 652: 648: 642: 602: 588: 587: 583:Free algebra 581: 580: 574: 573: 542: 485: 447: 410: 379: 378: 358:Finite field 307: 254:Finite field 240: 239: 166:Initial ring 126: 125: 99: 98: 81: 41: 1835:Ring theory 1785:Lang, Serge 1630:An element 1562:prime ideal 1451:commutative 684:isomorphism 645:mathematics 563:Simple ring 274:Jordan ring 148:Graded ring 30:Ring theory 1829:Categories 1819:0984.00001 1749:References 1665:for every 1625:a fortiori 1615:, but the 1602:direct sum 1359:direct sum 1313:for every 1293:such that 1196:surjective 1194:we have a 1158:Properties 981:isomorphic 957:where the 667:. It is a 569:Commutator 328:GCD domain 1758:(2005) , 1623:which is 1492:for each 1410:coproduct 1092:× 1086:⋯ 1080:× 1034:× 914:⋯ 510:∞ 288:Semifield 1787:(2002), 1733:) where 1729: ( 1712: ( 1654: ( 1532:converse 1447:category 1425:are non- 1284: : 1255: : 1208: : 819:Examples 282:Semiring 268:Lie ring 50:Subrings 1811:1878556 1789:Algebra 1741:, then 1683:product 1681:is the 1627:prime. 1604:of the 1500:, then 1427:trivial 1412:in the 968:, then 671:in the 484:Prüfer 86:•  1817:  1809:  1799:  1774:  1716:) and 1673:. The 1526:. If 1481:is an 1095:  1089:  1083:  1077:  1037:  1031:  966:primes 917:  834:, the 702:, the 136:Module 109:Kernel 1699:: if 1638:is a 1560:is a 1483:ideal 1469:up to 1456:is a 1332:When 849:(see 841:. If 680:up to 655:is a 488:-ring 352:Field 248:Field 56:Ideal 43:Rings 1797:ISBN 1772:ISBN 1640:unit 778:and 698:are 694:and 657:ring 647:, a 1815:Zbl 1677:of 1669:in 1634:in 1564:in 1505:= Π 1496:in 1485:of 1474:If 1464:.) 1449:of 1329:. 1317:in 1271:in 1243:if 1239:: 1190:in 1167:= Π 1162:If 853:), 682:an 651:or 643:In 1831:: 1813:, 1807:MR 1805:, 1791:, 1770:, 1743:xy 1692:. 1437:→ 1305:= 1288:→ 1259:→ 1212:→ 1154:. 675:. 596:• 567:• 561:• 555:• 549:• 482:• 445:• 408:• 402:• 393:• 387:• 370:• 364:• 356:• 350:• 344:• 338:• 332:• 326:• 320:• 314:• 286:• 280:• 272:• 266:• 260:• 252:• 246:• 191:• 164:• 158:• 152:• 146:• 140:• 134:• 119:• 113:• 107:• 92:• 80:• 72:• 66:• 60:• 54:• 48:• 1739:j 1735:i 1731:y 1726:j 1722:p 1718:y 1714:x 1709:i 1705:p 1701:x 1689:i 1687:R 1679:R 1671:I 1667:i 1662:i 1660:R 1656:x 1651:i 1647:p 1636:R 1632:x 1613:A 1608:i 1606:R 1598:I 1593:i 1591:R 1586:i 1584:A 1579:i 1577:R 1572:i 1570:A 1566:R 1558:A 1553:i 1551:R 1546:i 1544:R 1540:I 1536:R 1528:I 1524:R 1518:i 1516:A 1512:I 1510:∈ 1508:i 1503:A 1498:I 1494:i 1489:i 1487:R 1478:i 1476:A 1439:R 1434:i 1432:R 1422:i 1418:R 1400:i 1396:R 1392:I 1390:∈ 1388:i 1385:⊕ 1380:i 1376:R 1372:R 1367:i 1363:R 1353:i 1349:R 1345:I 1343:∈ 1341:i 1338:Π 1334:I 1321:. 1319:I 1315:i 1309:i 1307:f 1303:f 1298:i 1296:p 1290:R 1286:S 1282:f 1273:I 1269:i 1263:i 1261:R 1257:S 1252:i 1250:f 1245:S 1232:i 1230:p 1226:R 1222:i 1216:i 1214:R 1210:R 1205:i 1203:p 1192:I 1188:i 1182:i 1178:R 1174:I 1172:∈ 1170:i 1165:R 1135:. 1131:Z 1123:k 1119:n 1113:k 1109:p 1104:/ 1099:Z 1073:Z 1065:2 1061:n 1055:2 1051:p 1046:/ 1041:Z 1027:Z 1019:1 1015:n 1009:1 1005:p 1000:/ 995:Z 977:Z 974:n 972:/ 970:Z 961:i 959:p 942:, 935:k 931:n 925:k 921:p 907:2 903:n 897:2 893:p 885:1 881:n 875:1 871:p 867:= 864:n 843:n 838:n 832:Z 829:n 827:/ 825:Z 804:. 800:Z 796:n 792:/ 787:Z 765:Z 761:m 757:/ 752:Z 730:Z 726:n 723:m 719:/ 714:Z 696:n 692:m 632:e 625:t 618:v 515:) 506:p 502:( 498:Z 486:p 466:p 461:Q 448:p 429:p 424:Z 411:p 397:n 222:Z 218:1 214:/ 209:Z 205:= 202:0 176:Z

Index

Algebraic structure
Ring theory
Rings
Subrings
Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
Free product of associative algebras
Tensor product of algebras
Ring homomorphisms
Kernel
Inner automorphism
Frobenius endomorphism
Algebraic structures
Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring
Terminal ring
Field
Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.