Knowledge

Quadratic residue

Source 📝

13750: 11992: 14762: 14242: 11952: 11972: 11962: 11982: 1182: 5155: 1020: 4952: 2129: 2892: 1177:{\displaystyle \left({\frac {a}{p}}\right)={\begin{cases}\;\;\,0&{\text{ if }}p{\text{ divides }}a\\+1&{\text{ if }}a\operatorname {R} p{\text{ and }}p{\text{ does not divide }}a\\-1&{\text{ if }}a\operatorname {N} p{\text{ and }}p{\text{ does not divide }}a\end{cases}}} 3996: 4358: 5653:), then follow the algorithm described in congruence of squares. The efficiency of the factoring algorithm depends on the exact characteristics of the root-finder (e.g. does it return all roots? just the smallest one? a random one?), but it will be efficient. 2310: 4237: 1866: 3231: 3109: 3857: 5150:{\displaystyle x\equiv {\begin{cases}\pm \;a^{(n+3)/8}{\pmod {n}}&{\text{ if }}a{\text{ is a quartic residue modulo }}n\\\pm \;a^{(n+3)/8}2^{(n-1)/4}{\pmod {n}}&{\text{ if }}a{\text{ is a quartic non-residue modulo }}n\end{cases}}} 4126: 3613: 1623:≡ 1 (mod 840), and Dirichlet's theorem says there are an infinite number of primes of this form. 2521 is the smallest, and indeed 1 ≡ 1, 1046 ≡ 2, 123 ≡ 3, 2 ≡ 4, 643 ≡ 5, 87 ≡ 6, 668 ≡ 7, 429 ≡ 8, 3 ≡ 9, and 529 ≡ 10 (mod 2521). 1993: 1748: 2718: 3868: 4933: 3751: 3676: 5379: 5594: 5483: 872:
The fact that, e.g., modulo 15 the product of the nonresidues 3 and 5, or of the nonresidue 5 and the residue 9, or the two residues 9 and 10 are all zero comes from working in the full ring
5319: 4252: 5820: 5533: 5426: 4846: 911: 859: 405: 11148: 5217: 4793: 2348: 2204: 676:
Modulo 8, the product of the nonresidues 3 and 5 is the nonresidue 7, and likewise for permutations of 3, 5 and 7. In fact, the multiplicative group of the non-residues and 1 form the
109: 4141: 182:(1801). Article 95 introduces the terminology "quadratic residue" and "quadratic nonresidue", and states that if the context makes it clear, the adjective "quadratic" may be dropped. 2957: 1763: 1327: 1534: 1493: 1391: 1250: 1978: 1432: 3467: 172:, and other number theorists of the 17th and 18th centuries established theorems and formed conjectures about quadratic residues, but the first systematic treatment is § IV of 3124: 3005: 3762: 300: 277: 4018: 5649:, and have the efficient square root algorithm find a root. Repeat until it returns a number not equal to the one we originally squared (or its negative modulo 1191:) are treated specially. As we have seen, it makes many formulas and theorems easier to state. The other (related) reason is that the quadratic character is a 3511: 2146:
An intriguing fact about these two theorems is that all known proofs rely on analysis; no-one has ever published a simple or direct proof of either statement.
1263:
One advantage of this notation over Gauss's is that the Legendre symbol is a function that can be used in formulas. It can also easily be generalized to
869:, and there is no simple rule that predicts which one their product will be in. Modulo a prime, there is only the subgroup of squares and a single coset. 12129: 2124:{\displaystyle L(1)={\frac {\pi }{\left(2-\left({\frac {2}{q}}\right)\right)\!{\sqrt {q}}}}\sum _{n=1}^{\frac {q-1}{2}}\left({\frac {n}{q}}\right)>0.} 747:
Modulo a composite number, the product of two residues is a residue. The product of a residue and a nonresidue may be a residue, a nonresidue, or zero.
1576: 770:
The product of the residue 3 and the nonresidue 5 is the residue 3, whereas the product of the residue 4 and the nonresidue 2 is the nonresidue 2.
1666: 12804: 11373:. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the 5612:
allows us to find the roots efficiently. Say there were an efficient algorithm for finding square roots modulo a composite number. The article
2887:{\displaystyle A_{ij}=\left\{k\in \{1,2,\dots ,p-2\}:\left({\frac {k}{p}}\right)=(-1)^{i}\land \left({\frac {k+1}{p}}\right)=(-1)^{j}\right\},} 809:
This phenomenon can best be described using the vocabulary of abstract algebra. The congruence classes relatively prime to the modulus are a
665:
is a nonresidue, and in general all the residues and nonresidues obey the same rules, except that the products will be zero if the power of
12887: 12028: 3991:{\displaystyle \left|\sum _{n=M+1}^{M+N}\left({\frac {n}{q}}\right)\right|<{\frac {4}{\pi ^{2}}}{\sqrt {q}}\log q+0.41{\sqrt {q}}+0.61.} 8201:, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 19, 23, 24, 25, 27, 32, 35, 36, 37, 38, 41, 46, 48, 49, 50, 54, 55, 57, 61, 64, 65, 67, 69, 70, 71, 72 11975: 8070:, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 19, 20, 24, 25, 27, 29, 30, 32, 36, 37, 38, 40, 43, 45, 48, 49, 50, 54, 57, 58, 60, 64 6248: 6238: 6221: 5935: 4538: 4492: 1196: 420:
Modulo a prime, the product of two nonresidues is a residue and the product of a nonresidue and a (nonzero) residue is a nonresidue.
360: 228:) to some in the obtained list. But the obtained list is not composed of mutually incongruent quadratic residues (mod n) only. Since 10930:, pp. 135–137, (proof of P–V, (in fact big-O can be replaced by 2); journal references for Paley, Montgomery, and Schur) 414:
Following this convention, the multiplicative inverse of a residue is a residue, and the inverse of a nonresidue is a nonresidue.
13201: 11675: 7672:, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65 1615:≡ 1 (mod 8), (mod 12), (mod 5) and (mod 28), then by the law of quadratic reciprocity 2, 3, 5, and 7 will all be residues modulo 4005: 805:
The product of the nonresidues 2 and 8 is the residue 1, whereas the product of the nonresidues 2 and 7 is the nonresidue 14.
13786: 13359: 11542: 10989: 12147: 10952:
Pomerance & Crandall, ex 2.38 pp.106–108. result from T. Cochrane, "On a trigonometric inequality of Vinogradov",
14227: 13214: 12537: 4862: 3695: 3628: 6085: 5959: 5172:
found efficient algorithms that work for all prime moduli. Both algorithms require finding a quadratic nonresidue modulo
4353:{\displaystyle \max _{N}\left|\sum _{n=1}^{N}\left({\frac {d}{n}}\right)\right|>{\frac {1}{7}}{\sqrt {d}}\log \log d} 14029: 13966: 13219: 13209: 12946: 12799: 12152: 6206:
which will yield a factorization. The number field sieve is the fastest general-purpose factorization algorithm known.
5328: 12143: 5546: 5435: 14278: 13355: 11578: 11560: 11508: 11479: 11461: 11443: 11421: 11399: 11065: 11029: 6019: 5698: 5278: 12697: 7121:, 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46, 47, 48, 49, 52, 56, 57, 58, 60 6151:
is based on the same principles. There is a deterministic version of it, but the proof that it works depends on the
5782: 5495: 5388: 2305:{\displaystyle \left({\frac {p}{q}}\right)\left({\frac {q}{p}}\right)=(-1)^{{\frac {p-1}{2}}\cdot {\frac {q-1}{2}}}} 13452: 13196: 12021: 11391: 10910:
Crandall & Pomerance, ex 2.38, pp 106–108 discuss the similarities and differences. For example, tossing
10815: 10633: 6191: 5176:, and there is no efficient deterministic algorithm known for doing that. But since half the numbers between 1 and 4810: 875: 823: 369: 12757: 12450: 11118: 11013: 6148: 5187: 4763: 4232:{\displaystyle \max _{N}\left|\sum _{n=1}^{N}\left({\frac {n}{q}}\right)\right|>{\frac {1}{2\pi }}{\sqrt {q}}} 4001: 2318: 12191: 2142:
For example, modulo 11 there are four residues less than 6 (namely 1, 3, 4, and 5), but only one nonresidue (2).
13713: 13415: 13178: 13173: 12998: 12419: 12103: 11706: 6981:, 1, 3, 4, 5, 7, 9, 12, 15, 16, 17, 19, 20, 21, 22, 25, 26, 27, 28, 29, 35, 36, 41, 45, 46, 48, 49, 51, 53, 57 6152: 6039: 4545:
congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under
4433: 4009: 1861:{\displaystyle L(1)=-{\frac {\pi }{\sqrt {q}}}\sum _{n=1}^{q-1}{\frac {n}{q}}\left({\frac {n}{q}}\right)>0.} 1633: 62: 14796: 14716: 13708: 13491: 13408: 13121: 13052: 12929: 12171: 11021: 10981: 6035: 5694: 417:
Following this convention, modulo an odd prime number there are an equal number of residues and nonresidues.
2903: 955:
Although it makes things tidier, this article does not insist that residues must be coprime to the modulus.
14564: 13961: 13945: 13633: 13459: 13145: 12779: 12378: 11965: 11752: 10648: 6180: 5220: 5165: 4796: 1641: 1584: 1285: 424: 1498: 1457: 1352: 1209: 14791: 13981: 13511: 13506: 13116: 12855: 12784: 12113: 12014: 11747: 11732: 11668: 11357: 6104:) using a modification of Euclid's algorithm, and also using Euler's criterion. If the results disagree, 1939: 1875:≡ 3 (mod 4)), the sum of the quadratic residues minus the sum of the nonresidues in the range 1, 2, ..., 1396: 259:) around its midpoint, hence it is actually only needed to square all the numbers in the list 0, 1, ..., 178: 3226:{\displaystyle \alpha _{01}={\frac {p+1}{4}},\;\alpha _{00}=\alpha _{10}=\alpha _{11}={\frac {p-3}{4}}.} 1932:≡ 1 (mod 4), the sum of the quadratic residues minus the sum of the nonresidues in the range 1, 2, ..., 14786: 14737: 14495: 13826: 13440: 13030: 12424: 12392: 12083: 6199: 3482: 3437: 3104:{\displaystyle \alpha _{00}={\frac {p-5}{4}},\;\alpha _{01}=\alpha _{10}=\alpha _{11}={\frac {p-1}{4}}} 13779: 13730: 13679: 13576: 13074: 13035: 12512: 12157: 11927: 11886: 11765: 5717: 4698: 1588: 12186: 6488:, 1, 4, 6, 7, 9, 10, 11, 13, 15, 16, 17, 24, 25, 28, 29, 36, 37, 38, 40, 42, 43, 44, 46, 47, 49, 52 4967: 1050: 14742: 14732: 14441: 14061: 13971: 13571: 13501: 13040: 12892: 12875: 12598: 12078: 11771: 11245: 10852: 6167:, then the GRH would be false, which would have implications through many branches of mathematics. 2134:
This implies that there are more quadratic residues than nonresidues among the numbers 1, 2, ..., (
1000: 995:
Although this notation is compact and convenient for some purposes, a more useful notation is the
14747: 14451: 14341: 14222: 13910: 13403: 13380: 13341: 13227: 13168: 12814: 12734: 12578: 12522: 12135: 11991: 11714: 11698: 11534: 11378: 6202:) generate small quadratic residues (modulo the number being factorized) in an attempt to find a 5963: 5219:
until a nonresidue is found will quickly produce one. A slight variant of this algorithm is the
3852:{\displaystyle \left|\sum _{n=M+1}^{M+N}\left({\frac {n}{q}}\right)\right|<{\sqrt {q}}\log q.} 14629: 14554: 14475: 14465: 14431: 14381: 14123: 14022: 13940: 13935: 13930: 13808: 13693: 13420: 13398: 13365: 13258: 13104: 13089: 13062: 13013: 12897: 12832: 12657: 12623: 12618: 12492: 12323: 12300: 11955: 11775: 11724: 11661: 10653: 5169: 1580: 138: 11995: 4121:{\displaystyle \left|\sum _{n=M+1}^{M+N}\chi (n)\right|=O\left({\sqrt {q}}\log \log q\right).} 285: 262: 14624: 14618: 14391: 14271: 14194: 13920: 13900: 13623: 13476: 13268: 12986: 12722: 12628: 12487: 12472: 12353: 12328: 11932: 11861: 6203: 6000: 5613: 5604:(i.e. an efficient solution to either problem could be used to solve the other efficiently). 5597: 4939: 4853: 4800: 2155: 169: 165: 146: 4693:
The theoretical way solutions modulo the prime powers are combined to make solutions modulo
14588: 14511: 14469: 14412: 14334: 14054: 13986: 13905: 13772: 13596: 13558: 13435: 13239: 13079: 13003: 12981: 12809: 12767: 12666: 12633: 12497: 12285: 12196: 11922: 11757: 10638: 10628: 6187: 6057: 4804: 1657: 1637: 1253: 356: 11985: 11075: 11039: 10999: 8: 14645: 14569: 14515: 14501: 14491: 14435: 14376: 14361: 14351: 14163: 14158: 14143: 14138: 14049: 13799: 13725: 13616: 13601: 13581: 13538: 13425: 13375: 13301: 13246: 13183: 12976: 12971: 12919: 12687: 12676: 12348: 12248: 12176: 12167: 12163: 12098: 12093: 11891: 11800: 11795: 11789: 11781: 11742: 11292: 4608:
An important difference between prime and composite moduli shows up here. Modulo a prime
3608:{\displaystyle \left|\sum _{n=M+1}^{M+N}\chi (n)\right|=O\left({\sqrt {q}}\log q\right),} 3486: 810: 364: 41: 11981: 14604: 14521: 14425: 14356: 14324: 14303: 14298: 14189: 14148: 14071: 13976: 13843: 13838: 13764: 13754: 13523: 13486: 13471: 13464: 13447: 13251: 13233: 13099: 13025: 13008: 12961: 12774: 12683: 12517: 12502: 12462: 12414: 12399: 12387: 12343: 12318: 12088: 12037: 11937: 11881: 11785: 11702: 11497: 11274: 6046: 6031: 6027: 818: 134: 12707: 11629: 529:
So a nonzero number is a residue mod 8, 16, etc., if and only if it is of the form 4(8
14695: 14665: 14535: 14445: 14396: 14329: 14245: 14133: 14091: 14081: 14015: 13821: 13749: 13689: 13496: 13306: 13296: 13188: 13069: 12904: 12880: 12661: 12645: 12550: 12527: 12404: 12373: 12338: 12233: 12068: 11851: 11626: 11609: 11574: 11556: 11538: 11527: 11504: 11475: 11457: 11439: 11417: 11395: 11061: 11025: 10985: 8113:, 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42 5989: 5250: 4387:) is more subtle, but it is always prime, with 7 appearing for the first time at 71. 1264: 774:
Also, the product of two nonresidues may be either a residue, a nonresidue, or zero.
359:. In this case, it is customary to consider 0 as a special case and work within the 14765: 14650: 14319: 14264: 14096: 13874: 13867: 13862: 13703: 13698: 13591: 13548: 13370: 13331: 13326: 13311: 13137: 13094: 12991: 12789: 12739: 12313: 12275: 11856: 11841: 11643: 11604: 11492: 11488: 11366: 11266: 11071: 11035: 10995: 10969: 5986: 5982: 5273: 929: 677: 34: 13996: 11018:
Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis
1915:
1 + 4 + 9 + 5 + 3 = 22, 2 + 6 + 7 + 8 + 10 = 33, and the difference is −11.
14685: 14675: 14594: 14421: 14346: 14215: 14153: 14086: 13884: 13879: 13831: 13816: 13684: 13674: 13628: 13611: 13566: 13528: 13430: 13350: 13157: 13084: 13057: 13045: 12951: 12865: 12839: 12794: 12762: 12563: 12365: 12308: 12258: 12223: 12181: 11870: 11846: 11761: 11588: 11370: 11362: 11053: 10943:. The proof is a page long and only requires elementary facts about Gaussian sums 10918:/2 heads followed by that many tails. V-P inequality rules that out for residues. 7707:, 1, 4, 6, 9, 10, 11, 13, 14, 15, 16, 17, 21, 23, 24, 25, 31, 35, 36, 38, 40, 41 6195: 5777: 4758: 2351: 1619:, and thus all numbers 1–10 will be. The CRT says that this is the same as 1203: 996: 8236:, 1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46 6163:
is prime or the GRH is false". If the second output ever occurs for a composite
4379:
is clearly 1. The question of the magnitude of the least quadratic non-residue
3478: 642:
Notice that the rules are different for powers of two and powers of odd primes.
14700: 14689: 14608: 14459: 14371: 14113: 13855: 13850: 13669: 13648: 13606: 13586: 13481: 13336: 12934: 12924: 12914: 12909: 12843: 12717: 12593: 12482: 12477: 12455: 12056: 11907: 11826: 11710: 10973: 6141: 3619: 1645: 814: 1556:
Although quadratic residues appear to occur in a rather random pattern modulo
14780: 14614: 14579: 13643: 13321: 12828: 12613: 12603: 12573: 12558: 12228: 11866: 11718: 11684: 11435: 10643: 6179:
Gauss discusses two factoring algorithms that use quadratic residues and the
4426: 4243: 1275: 45: 20: 1743:{\displaystyle L(s)=\sum _{n=1}^{\infty }\left({\frac {n}{q}}\right)n^{-s}.} 924:
For this reason some authors add to the definition that a quadratic residue
14598: 14531: 14505: 14386: 14179: 13991: 13543: 13390: 13291: 13283: 13163: 13111: 13020: 12956: 12939: 12870: 12729: 12588: 12290: 12073: 11912: 11836: 11736: 11522: 7516:, 1, 2, 4, 5, 8, 9, 10, 16, 18, 20, 21, 23, 25, 31, 32, 33, 36, 37, 39, 40 6023: 1192: 1008: 914: 341: 142: 14669: 14655: 14573: 14559: 14525: 13653: 13533: 12712: 12702: 12649: 12333: 12253: 12238: 12118: 12063: 11518: 11390:, translated by Clarke, Arthur A. (Second corrected ed.), New York: 6014:
The fact that finding a square root of a number modulo a large composite
5974: 5713: 5231: 4738:
x ≡ 7 (mod 3) has two solutions, 1 and 2; x ≡ 7 (mod 5) has no solutions.
4725:
x ≡ 4 (mod 3) has two solutions, 1 and 2; x ≡ 4 (mod 5) has two, 2 and 3.
4132: 1270:
There is a generalization of the Legendre symbol for composite values of
302:. The list so obtained may still contain mutually congruent numbers (mod 130: 14679: 14659: 14584: 13795: 12583: 12438: 12409: 12215: 11917: 11876: 11728: 11647: 11278: 5904:, but then this takes the problem away from quadratic residues (unless 306:). Thus, the number of mutually noncongruent quadratic residues modulo 11499:
Computers and Intractability: A Guide to the Theory of NP-Completeness
5265:
has been factored into prime powers the solution was discussed above.
411:
has a multiplicative inverse. This is not true for composite moduli.)
14184: 13925: 13735: 13638: 12691: 12608: 12568: 12532: 12468: 12280: 12270: 12243: 12006: 11634: 11416:], translated by Maser, H. (second ed.), New York: Chelsea, 11374: 3474: 3402:
Gauss (1828) introduced this sort of counting when he proved that if
1257: 11270: 7148:, 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36 4659:
is written as a product of powers of distinct primes, and there are
244:), the list obtained by squaring all numbers in the list 1, 2, ..., 14455: 14417: 14366: 14106: 14038: 13915: 13720: 13518: 12966: 12671: 12265: 11293:"The design and application of modular acoustic diffusing elements" 862: 5995:
Paley digraphs are directed analogs of Paley graphs, one for each
5858:
Note: This theorem essentially requires that the factorization of
4712:
x ≡ 6 (mod 3) has one solution, 0; x ≡ 6 (mod 5) has two, 1 and 4.
14287: 14101: 13316: 12108: 5704:
On the other hand, if we want to know if there is a solution for
24: 11653: 11414:
Disquisitiones Arithemeticae & other papers on number theory
2984:
is the number of nonresidues that are followed by a residue, and
11816: 4728:
and there are four solutions modulo 15, namely 2, 7, 8, and 13.
4451: 2991:
is the number of nonresidues that are followed by a nonresidue.
1572:, their distribution also exhibits some striking regularities. 653:, the products of residues and nonresidues relatively prime to 465:
is a nonresidue and the negative of a nonresidue is a residue.
454:
is a residue and the negative of a nonresidue is a nonresidue.
157: 137:, quadratic residues are now used in applications ranging from 473:
All odd squares are ≡ 1 (mod 8) and thus also ≡ 1 (mod 4). If
193:
may be obtained by simply squaring all the numbers 0, 1, ...,
14210: 12860: 12206: 12051: 6018:
is equivalent to factoring (which is widely believed to be a
866: 407:. (In other words, every congruence class except zero modulo 173: 161: 152: 4807:. If it is −1 there is no solution. Secondly, assuming that 2977:
is the number of residues that are followed by a nonresidue,
14007: 10939:
Planet Math: Proof of Pólya–Vinogradov Inequality in
8449: 8445: 6252: 6242: 6216: 5930: 5928:
1, 2, 2, 2, 3, 4, 4, 3, 4, 6, 6, 4, 7, 8, 6, ... (sequence
5143: 4533: 4487: 1170: 14256: 11624: 6006:
The construction of these graphs uses quadratic residues.
5608:
The above discussion indicates how knowing the factors of
1197:
multiplicative group of nonzero congruence classes modulo
5689:
by computing the Legendre symbol. However, for composite
3485:
proved (independently) in 1918 that for any nonprincipal
2970:
is the number of residues that are followed by a residue,
1920:
In fact the difference will always be an odd multiple of
971:
to denote residuosity and non-residuosity, respectively;
13794: 6049:
is a similar problem that is also used in cryptography.
5645:
efficiently. Generate a random number, square it modulo
3681:
this shows that the number of quadratic residues modulo
431:≡ 1 (mod 4) then −1 is a quadratic residue modulo 10876:
Lemmermeyer, p. 29 ex. 1.22; cf pp. 26–27, Ch. 10
10801:
This extension of the domain is necessary for defining
1561: 6683:, 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28 5791: 5555: 5504: 5444: 5397: 5337: 5287: 4715:
and there are two solutions modulo 15, namely 6 and 9.
4519:) is the number of quadratic residues on the range (0, 3445: 1506: 1465: 1404: 1360: 1293: 1217: 683: 11831: 11821: 11434:, Algorithmic Number Theory, vol. I, Cambridge: 11331:, pp. 109–110; Euler's criterion requires O(log 11121: 10739: 10737: 5962:
have been based on number-theoretic concepts such as
5949: 5785: 5549: 5498: 5438: 5391: 5331: 5281: 5190: 4955: 4928:{\displaystyle x\equiv \pm \;a^{(n+1)/4}{\pmod {n}},} 4865: 4813: 4766: 4701:; it can be implemented with an efficient algorithm. 4568: 4255: 4144: 4021: 3871: 3765: 3746:{\displaystyle {\frac {1}{2}}N+O({\sqrt {q}}\log q).} 3698: 3671:{\displaystyle \chi (n)=\left({\frac {n}{q}}\right),} 3631: 3514: 3440: 3127: 3008: 2906: 2721: 2321: 2207: 1996: 1942: 1766: 1669: 1551: 1501: 1460: 1399: 1355: 1288: 1212: 1023: 878: 865:
of it. Different nonresidues may belong to different
826: 372: 288: 265: 65: 11595:-Complete Decision Problems for Binary Quadratics", 10709: 10707: 10697: 10695: 6132:
none will. If, after using many different values of
5916:
The list of the number of quadratic residues modulo
2651: 778:For example, from the table for modulus 15   16:
Integer that is a perfect square modulo some integer
10896:
Theorie der biquadratischen Reste, Erste Abhandlung
10885:
Crandall & Pomerance, ex 2.38, pp 106–108
10839:, pp. 8–9, 43–51. These are classical results. 6508:, 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28 6186:Several modern factorization algorithms (including 5911: 5701:as factorization, but is assumed to be quite hard. 751:For example, from the table for modulus 6   11526: 11496: 11208:Crandall & Pomerance, ex. 6.5 & 6.6, p.273 11142: 10968: 10734: 5814: 5588: 5527: 5477: 5420: 5373: 5313: 5211: 5149: 4927: 4840: 4787: 4470:) > X is bounded by a constant depending on ε. 4352: 4231: 4131:This result cannot be substantially improved, for 4120: 3990: 3851: 3745: 3670: 3607: 3461: 3429: 3225: 3103: 2951: 2886: 2342: 2304: 2123: 1972: 1860: 1742: 1528: 1487: 1426: 1385: 1321: 1244: 1176: 905: 853: 399: 294: 271: 133:concept from the branch of number theory known as 103: 11451: 10816:Legendre symbol#Properties of the Legendre symbol 10704: 10692: 6076:is composite the formula may or may not compute ( 5374:{\displaystyle \left({\tfrac {a}{n/2}}\right)=-1} 5164:≡ 1 (mod 8), however, there is no known formula. 2052: 1936:− 1 is zero, implying that both sums equal 1548:is prime, the Jacobi and Legendre symbols agree. 439:≡ 3 (mod 4) then −1 is a nonresidue modulo 329:The product of two residues is always a residue. 224:), any other quadratic residue is congruent (mod 14778: 11553:A Classical Introduction to Modern Number Theory 5977:are dense undirected graphs, one for each prime 5942:A formula to count the number of squares modulo 5616:discusses how finding two numbers x and y where 5589:{\displaystyle \left({\tfrac {a}{n/2}}\right)=1} 5478:{\displaystyle \left({\tfrac {a}{n/2}}\right)=1} 4257: 4146: 337:Modulo 2, every integer is a quadratic residue. 11195:, p. 156 ff; the algorithm requires O(log 10914:coins, it is possible (though unlikely) to get 5314:{\displaystyle \left({\tfrac {a}{n}}\right)=-1} 4748: 4485:2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, ... (sequence 2149: 13817:Zero polynomial (degree undefined or −1 or −∞) 11586: 11217: 11179:, p. 156 ff; the algorithm requires O(log 11052: 6224:) lists the quadratic residues mod 1 to 75 (a 6209: 6140:has not been proved composite it is called a " 5815:{\displaystyle \left({\tfrac {a}{p}}\right)=1} 5528:{\displaystyle \left({\tfrac {a}{n}}\right)=1} 5421:{\displaystyle \left({\tfrac {a}{n}}\right)=1} 5184:at random and calculating the Legendre symbol 4390:The Pólya–Vinogradov inequality above gives O( 4370: 2700:, etc., are almost equal. More precisely, let 2616:≡ 1, 5, 7, 9, 19, 25, 35, 37, 39, 43 (mod 44) 14272: 14023: 13780: 12022: 11669: 5981:≡ 1 (mod 4), that form an infinite family of 4841:{\displaystyle \left({\frac {a}{n}}\right)=1} 461:≡ 3 (mod 4) the negative of a residue modulo 450:≡ 1 (mod 4) the negative of a residue modulo 11550: 11487: 10762: 5661:is a quadratic residue or nonresidue modulo 4008:improved this in 1977, showing that, if the 2779: 2749: 906:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )} 854:{\displaystyle (\mathbb {Z} /n\mathbb {Z} )} 400:{\displaystyle (\mathbb {Z} /p\mathbb {Z} )} 289: 266: 11568: 11517: 11452:Crandall, Richard; Pomerance, Carl (2001), 11429: 11328: 11316: 11192: 11176: 11143:{\displaystyle \left({\frac {a}{n}}\right)} 11112: 11088: 6112:may be composite or prime. For a composite 5596:, the problem is known to be equivalent to 5212:{\displaystyle \left({\frac {x}{n}}\right)} 5134: is a quartic non-residue modulo  4788:{\displaystyle \left({\frac {a}{n}}\right)} 2343:{\displaystyle \left({\frac {p}{q}}\right)} 1632:The first of these regularities stems from 1278:, but its properties are not as simple: if 1187:There are two reasons why numbers ≡ 0 (mod 928:must not only be a square but must also be 14279: 14265: 14030: 14016: 13787: 13773: 12214: 12029: 12015: 11971: 11961: 11676: 11662: 11644:Proof of Pólya–Vinogradov inequality 11571:Reciprocity Laws: from Euler to Eisenstein 11454:Prime Numbers: A Computational Perspective 11012: 6246:, and for nonzero quadratic residues, see 6232:). (For the quadratic residues coprime to 5045: 4973: 4875: 3162: 3043: 1054: 1053: 497:For example, mod (32) the odd squares are 189:, a list of the quadratic residues modulo 153:History, conventions, and elementary facts 11608: 11551:Ireland, Kenneth; Rosen, Michael (1990), 11469: 10927: 10864: 10848: 10836: 4604:assuming one does exist, to calculate it? 1055: 896: 883: 844: 831: 521:2 ≡ 6≡ 10 ≡ 14≡ 4 481:= 8, 16, or some higher power of 2, then 390: 377: 104:{\displaystyle x^{2}\equiv q{\pmod {n}}.} 11529:An Introduction to the Theory of Numbers 10964: 10962: 6170: 5877:, then the congruence can be reduced to 5731:is a quadratic residue modulo composite 361:multiplicative group of nonzero elements 11597:Journal of Computer and System Sciences 11555:(second ed.), New York: Springer, 5272:is not congruent to 2 modulo 4 and the 5032: is a quartic residue modulo  2605:≡ 1, 7, 9, 11, 13, 19, 23, 37 (mod 40) 2596:≡ 1, 3, 9, 13, 27, 31, 37, 39 (mod 40) 1627: 14779: 12036: 11474:(third ed.), New York: Springer, 11243: 11228: 10900:Untersuchungen über hohere Arithmetik) 8164:, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 6060:is a formula for the Legendre symbol ( 4856:found that the solutions are given by 4425:, obtained by estimates of Burgess on 2952:{\displaystyle \alpha _{ij}=|A_{ij}|.} 1560:, and this has been exploited in such 548:if and only if it is a residue modulo 468: 14260: 14011: 13768: 12010: 11657: 11625: 11430:Bach, Eric; Shallit, Jeffrey (1996), 11410:Untersuchungen über hohere Arithmetik 11407: 11385: 11233:. New York: McGraw HIll. p. 195. 11199:) steps and is also nondeterministic. 10959: 8332:, 1, 4, 6, 9, 11, 14, 16, 19, 21, 24 6092:is prime or composite picks a random 5735:, one can use the following theorem: 5381:, then there is also no solution. If 4741:and there are no solutions modulo 15. 4473:The least quadratic non-residues mod 3430:The Pólya–Vinogradov inequality 1983:Dirichlet also proved that for prime 1591:(CRT) it is easy to see that for any 1322:{\displaystyle ({\tfrac {a}{m}})=-1,} 1267:, quartic and higher power residues. 1256:to be extended to the multiplicative 14228:List of differential geometry topics 11091:, p. 104 ff; it requires O(log 6159:is definitely composite" or "either 6052: 5985:, which yield an infinite family of 5685:) can be done efficiently for prime 5256: 1529:{\displaystyle ({\tfrac {4}{15}})=1} 1488:{\displaystyle ({\tfrac {2}{15}})=1} 1386:{\displaystyle ({\tfrac {a}{m}})=1,} 1245:{\displaystyle ({\tfrac {np}{p}})=0} 1003:, which is defined for all integers 10940: 10680:Lemmermeyer, pp 6–8, p. 16 ff 5539:is not congruent to 2 modulo 4, or 5385:is not congruent to 2 modulo 4 and 5114: 5107: 5012: 5005: 4914: 4673:mod the second, ..., there will be 4523:/2) minus the number in the range ( 4499: 4406:The best unconditional estimate is 2187:)) if and only if (at least one of 1973:{\displaystyle {\frac {q(q-1)}{4}}} 1427:{\displaystyle ({\tfrac {a}{m}})=1} 1282:is composite and the Jacobi symbol 684:Composite modulus not a prime power 657:obey the same rules as they do mod 351:+ 1)/2 residues (including 0) and ( 90: 52:; i.e., if there exists an integer 13: 11290: 11244:Stangl, Walter D. (October 1996), 10851:, pp. 49–51, (conjectured by 5950:Applications of quadratic residues 5245:and "lifted" to a solution modulo 4655:In general if a composite modulus 4569:Complexity of finding square roots 1701: 1552:Distribution of quadratic residues 1142: 1097: 510:7 ≡ 9 ≡ 49 ≡ 17 14: 14808: 11683: 11618: 11361:has been translated from Gauss's 11099:is the number of primes dividing 11060:. World Scientific. p. 250. 6022:) has been used for constructing 5488:If the complete factorization of 5241:, a solution may be found modulo 5180:are nonresidues, picking numbers 4561:congruent to 3 mod 4, the excess 3462:{\displaystyle ({\tfrac {a}{p}})} 2652:Pairs of residues and nonresidues 1656:a complex variable, and define a 1599:such that the numbers 1, 2, ..., 1569: 813:under multiplication, called the 544:is a residue modulo any power of 540:relatively prime to an odd prime 14761: 14760: 14241: 14240: 13748: 11990: 11980: 11970: 11960: 11951: 11950: 6155:; the output from this test is " 5912:The number of quadratic residues 5843:is divisible by 4 but not 8; or 4375:The least quadratic residue mod 1879:− 1 is a negative number. 518:0 ≡ 8 ≡ 16 ≡ 0 332: 11338: 11322: 11310: 11284: 11237: 11222: 11211: 11202: 11186: 11170: 11161: 11106: 11082: 11046: 11006: 10946: 10933: 10921: 10904: 10888: 10879: 10870: 10858: 10842: 10830: 10821: 10808: 10795: 10786: 10777: 10768: 10755: 7762:, 1, 4, 5, 6, 7, 9, 11, 16, 17 6086:Solovay–Strassen primality test 6009: 5969: 5862:is known. Also notice that if 5543:is congruent to 2 modulo 4 and 5485:, there may or may not be one. 5432:is congruent to 2 modulo 4 and 5325:is congruent to 2 modulo 4 and 4907: 3473:mimic a random variable like a 3414:) can be solved if and only if 2535:≡ 1, 3, 9, 19, 25, 27 (mod 28) 1928:> 3. In contrast, for prime 1871:Therefore, in this case (prime 688:The basic fact in this case is 83: 11729:analytic theory of L-functions 11707:non-abelian class field theory 11408:Gauss, Carl Friedrich (1965), 11386:Gauss, Carl Friedrich (1986), 10746: 10725: 10716: 10683: 10674: 10665: 6214:The following table (sequence 6153:generalized Riemann hypothesis 6040:Goldwasser-Micali cryptosystem 5697:, which is not known to be as 5321:then there is no solution; if 5118: 5108: 5093: 5081: 5063: 5051: 5016: 5006: 4991: 4979: 4918: 4908: 4893: 4881: 4434:Generalised Riemann hypothesis 4069: 4063: 4010:generalized Riemann hypothesis 3737: 3718: 3641: 3635: 3562: 3556: 3456: 3441: 2942: 2924: 2867: 2857: 2816: 2806: 2257: 2247: 2006: 2000: 1961: 1949: 1776: 1770: 1679: 1673: 1636:'s work (in the 1830s) on the 1634:Peter Gustav Lejeune Dirichlet 1565: 1517: 1502: 1476: 1461: 1415: 1400: 1371: 1356: 1304: 1289: 1233: 1213: 1206:under multiplication. Setting 900: 879: 848: 827: 798:, 11, 12, 13, 14 (residues in 443:. This implies the following: 394: 373: 94: 84: 1: 13977:Horner's method of evaluation 13709:History of mathematical logic 11350: 11344:Gauss, DA, arts 329–334 11056:; Diamond, Harold G. (2004). 11022:American Mathematical Society 10982:American Mathematical Society 10827:Lemmermeyer, pp 111–end 8444:Quadratic Residues (see also 6108:is composite; if they agree, 6036:quadratic residuosity problem 5695:quadratic residuosity problem 355:− 1)/2 nonresidues, by 14565:Eigenvalues and eigenvectors 14037: 13634:Primitive recursive function 11753:Transcendental number theory 11610:10.1016/0022-0000(78)90044-2 11472:Multiplicative Number Theory 11388:Disquisitiones Arithemeticae 10783:e.g. Hardy and Wright use it 10649:Law of quadratic reciprocity 7607:, 1, 2, 4, 8, 9, 13, 15, 16 6181:law of quadratic reciprocity 5954: 5772:is solvable if and only if: 5727:In general, to determine if 4942:found a similar solution if 4749:Prime or prime power modulus 4666:roots modulo the first one, 2150:Law of quadratic reciprocity 1585:law of quadratic reciprocity 958: 425:law of quadratic reciprocity 423:The first supplement to the 7: 14286: 13982:Polynomial identity testing 11976:List of recreational topics 11748:Computational number theory 11733:probabilistic number theory 11569:Lemmermeyer, Franz (2000), 11358:Disquisitiones Arithmeticae 10622: 6228:means it is not coprime to 6210:Table of quadratic residues 6177:Disquisitiones Arithmeticae 6149:Miller–Rabin primality test 6116:at least 1/2 the values of 6088:for whether a given number 5924:= 1, 2, 3 ..., looks like: 5822:for all odd prime divisors 5708:less than some given limit 4371:Least quadratic non-residue 2398:is a quadratic residue mod 2383:is a quadratic residue mod 2183:is a quadratic residue mod 2175:is a quadratic residue mod 1161: does not divide  1116: does not divide  251:(or in the list 0, 1, ..., 179:Disquisitiones Arithmeticae 10: 14813: 12698:Schröder–Bernstein theorem 12425:Monadic predicate calculus 12084:Foundations of mathematics 11533:(fifth ed.), Oxford: 11470:Davenport, Harold (2000), 11377:, the investigations into 11218:Manders & Adleman 1978 5253:or an algorithm of Gauss. 4753:First off, if the modulus 4454:showed that the number of 3685:in any interval of length 3469:for consecutive values of 3237:For example: (residues in 2195:is congruent to 1 mod 4). 2153: 645:Modulo an odd prime power 147:factoring of large numbers 14756: 14725: 14709: 14638: 14545: 14484: 14405: 14312: 14294: 14236: 14203: 14172: 14122: 14070: 14045: 13954: 13893: 13806: 13744: 13731:Philosophy of mathematics 13680:Automated theorem proving 13662: 13557: 13389: 13282: 13134: 12851: 12827: 12805:Von Neumann–Bernays–Gödel 12750: 12644: 12548: 12446: 12437: 12364: 12299: 12205: 12127: 12044: 11946: 11928:Diophantine approximation 11900: 11887:Chinese remainder theorem 11809: 11691: 11381:, and unpublished notes. 11298:. BBC Research Department 11115:, p. 113; computing 10898:(pp 511–533 of the 6406:, 10, 13, 16, 19, 22, 25 6192:continued fraction method 6128:is composite"; for prime 6120:in the range 2, 3, ..., 5718:fixed-parameter tractable 4699:Chinese remainder theorem 3756:It is easy to prove that 2625:≡ 1, 3, 4, 5, 9 (mod 11) 1753:Dirichlet showed that if 1589:Chinese remainder theorem 11772:Arithmetic combinatorics 11231:Elementary Number Theory 10763:Ireland & Rosen 1990 10659: 5999:≡ 3 (mod 4), that yield 5966:and quadratic residues. 5221:Tonelli–Shanks algorithm 4573:That is, given a number 4246:had proved in 1932 that 4135:had proved in 1918 that 2515:≡ 1, 5, 19, 23 (mod 24) 1883:For example, modulo 11, 1603:are all residues modulo 1595:> 0 there are primes 861:, and the squares are a 524:4 ≡ 12 ≡ 16. 295:{\displaystyle \rfloor } 272:{\displaystyle \lfloor } 14639:Algebraic constructions 14342:Algebraic number theory 14223:List of geometry topics 13967:Greatest common divisor 13381:Self-verifying theories 13202:Tarski's axiomatization 12153:Tarski's undefinability 12148:incompleteness theorems 11743:Geometric number theory 11699:Algebraic number theory 11535:Oxford University Press 11379:biquadratic reciprocity 11329:Bach & Shallit 1996 11317:Bach & Shallit 1996 11193:Bach & Shallit 1996 11177:Bach & Shallit 1996 11113:Bach & Shallit 1996 11089:Bach & Shallit 1996 6289:quadratic residues mod 6278:quadratic residues mod 6267:quadratic residues mod 6124:− 1 will return " 4624:) roots (i.e. zero if 2712:= 0, 1 define the sets 2524:≡ 1, 5, 7, 11 (mod 24) 1581:arithmetic progressions 1434:we do not know whether 731:is a nonresidue modulo 723:is a nonresidue modulo 620:is a nonresidue modulo 586:is a nonresidue modulo 507:5 ≡ 11 ≡ 25 129:Originally an abstract 14382:Noncommutative algebra 13839:Quadratic function (2) 13755:Mathematics portal 13366:Proof of impossibility 13014:propositional variable 12324:Propositional calculus 11862:Transcendental numbers 11776:additive number theory 11725:Analytic number theory 11456:, New York: Springer, 11246:"Counting Squares in ℤ 11229:Burton, David (2007). 11144: 11058:Analytic Number Theory 10855:, proved by Dirichlet) 10792:Gauss, DA, art 230 ff. 10654:Quadratic residue code 5816: 5655: 5641:suffices to factorize 5590: 5529: 5479: 5422: 5375: 5315: 5213: 5151: 4929: 4842: 4789: 4746: 4735:Solve x ≡ 7 (mod 15). 4722:Solve x ≡ 4 (mod 15). 4709:Solve x ≡ 6 (mod 15). 4612:, a quadratic residue 4508:be an odd prime. The 4354: 4291: 4233: 4180: 4122: 4059: 3992: 3909: 3853: 3803: 3747: 3672: 3609: 3552: 3463: 3400: 3227: 3105: 2953: 2888: 2660:, the number of pairs 2504:≡ 1, 3, 7, 9 (mod 20) 2344: 2306: 2168:are odd primes, then: 2144: 2125: 2096: 1974: 1918: 1862: 1823: 1744: 1705: 1625: 1530: 1489: 1428: 1387: 1323: 1246: 1178: 907: 855: 807: 772: 527: 514:and the even ones are 504:3 ≡ 13 ≡ 9 501:1 ≡ 15 ≡ 1 401: 296: 273: 139:acoustical engineering 105: 14619:Orthogonal complement 14392:Representation theory 14195:Differential geometry 13822:Constant function (0) 13624:Kolmogorov complexity 13577:Computably enumerable 13477:Model complete theory 13269:Principia Mathematica 12329:Propositional formula 12158:Banach–Tarski paradox 11933:Irrationality measure 11923:Diophantine equations 11766:Hodge–Arakelov theory 11587:Manders, Kenneth L.; 11145: 10956:, 27:9–16, 1987 7232:, 1, 3, 4, 9, 10, 12 6204:congruence of squares 6171:Integer factorization 6038:is the basis for the 6024:cryptographic schemes 6003:conference matrices. 5817: 5716:; however, this is a 5614:congruence of squares 5606: 5598:integer factorization 5591: 5530: 5480: 5423: 5376: 5316: 5214: 5152: 4930: 4843: 4799:using a variation of 4790: 4703: 4355: 4271: 4234: 4160: 4123: 4027: 3993: 3877: 3854: 3771: 3748: 3673: 3610: 3520: 3464: 3422: + 64  3235: 3228: 3106: 2954: 2889: 2704:be an odd prime. For 2345: 2307: 2156:quadratic reciprocity 2140: 2126: 2063: 1975: 1881: 1863: 1797: 1745: 1685: 1609: 1531: 1490: 1429: 1388: 1324: 1260:of all the integers. 1247: 1179: 908: 856: 776: 749: 739:prime power dividing 712:prime power dividing 495: 477:is an odd number and 402: 297: 274: 106: 14797:NP-complete problems 14717:Algebraic structures 14485:Algebraic structures 14470:Equivalence relation 14413:Algebraic expression 13955:Tools and algorithms 13875:Quintic function (5) 13863:Quartic function (4) 13800:polynomial functions 13572:Church–Turing thesis 13559:Computability theory 12768:continuum hypothesis 12286:Square of opposition 12144:Gödel's completeness 11892:Arithmetic functions 11758:Diophantine geometry 11573:, Berlin: Springer, 11432:Efficient Algorithms 11259:Mathematics Magazine 11119: 10970:Friedlander, John B. 5946:is given by Stangl. 5783: 5657:Determining whether 5547: 5496: 5436: 5389: 5329: 5279: 5188: 4953: 4863: 4811: 4764: 4565:is always positive. 4363:for infinitely many 4253: 4142: 4019: 3869: 3763: 3696: 3629: 3512: 3438: 3125: 3006: 2904: 2719: 2319: 2205: 1994: 1940: 1764: 1667: 1658:Dirichlet L-function 1628:Dirichlet's formulas 1499: 1458: 1397: 1353: 1286: 1210: 1021: 876: 824: 704:is a residue modulo 696:is a residue modulo 601:is a residue modulo 572:is a residue modulo 485:is a residue modulo 370: 286: 263: 255:) is symmetric (mod 120:quadratic nonresidue 63: 14646:Composition algebra 14570:Inner product space 14548:multilinear algebra 14436:Polynomial function 14377:Multilinear algebra 14362:Homological algebra 14352:Commutative algebra 13885:Septic equation (7) 13880:Sextic equation (6) 13827:Linear function (1) 13726:Mathematical object 13617:P versus NP problem 13582:Computable function 13376:Reverse mathematics 13302:Logical consequence 13179:primitive recursive 13174:elementary function 12947:Free/bound variable 12800:Tarski–Grothendieck 12319:Logical connectives 12249:Logical equivalence 12099:Logical consequence 11938:Continued fractions 11801:Arithmetic dynamics 11796:Arithmetic topology 11790:P-adic Hodge theory 11782:Arithmetic geometry 11715:Iwasawa–Tate theory 11630:"Quadratic Residue" 11014:Montgomery, Hugh L. 10774:Gauss, DA, art. 131 10752:Gauss, DA, art. 102 10743:Gauss, DA, art. 101 10731:Gauss, DA, art. 103 8453: 5990:conference matrices 4585:to tell whether an 3487:Dirichlet character 1652:be a prime number, 1577:Dirichlet's theorem 1071: divides  1001:quadratic character 469:Prime power modulus 14792:Modular arithmetic 14426:Quadratic equation 14357:Elementary algebra 14325:Algebraic geometry 14190:Algebraic geometry 13851:Cubic function (3) 13844:Quadratic equation 13524:Transfer principle 13487:Semantics of logic 13472:Categorical theory 13448:Non-standard model 12962:Logical connective 12089:Information theory 12038:Mathematical logic 11882:Modular arithmetic 11852:Irrational numbers 11786:anabelian geometry 11703:class field theory 11627:Weisstein, Eric W. 11514:A7.1: AN1, pg.249. 11167:Lemmermeyer, p. 29 11140: 10722:Gauss, DA, art 111 10713:Gauss, DA, art. 98 10701:Gauss, DA, art. 96 10689:Gauss, DA, art. 94 8443: 7213:, 41, 45, 47, 49, 6648:, 26, 31, 34, 36, 6200:number field sieve 6047:discrete logarithm 6032:oblivious transfer 6028:Rabin cryptosystem 5854:is divisible by 8. 5812: 5800: 5724:is the parameter. 5712:, this problem is 5586: 5574: 5525: 5513: 5492:is not known, and 5475: 5463: 5418: 5406: 5371: 5356: 5311: 5296: 5209: 5147: 5142: 4925: 4838: 4801:Euclid's algorithm 4785: 4436:, Ankeny obtained 4350: 4265: 4229: 4154: 4118: 3988: 3849: 3743: 3668: 3605: 3459: 3454: 3351:, 12, 13, 14, 15, 3223: 3101: 2949: 2884: 2544:≡ 1, 2, 4 (mod 7) 2365:that don't divide 2357:Thus, for numbers 2340: 2302: 2179:) if and only if ( 2121: 1970: 1906:, 10 (residues in 1858: 1757:≡ 3 (mod 4), then 1740: 1526: 1515: 1485: 1474: 1424: 1413: 1383: 1369: 1319: 1302: 1242: 1231: 1174: 1169: 999:, also called the 903: 851: 555:If the modulus is 397: 292: 269: 135:modular arithmetic 101: 14787:Quadratic residue 14774: 14773: 14696:Symmetric algebra 14666:Geometric algebra 14446:Linear inequality 14397:Universal algebra 14330:Algebraic variety 14254: 14253: 14005: 14004: 13946:Quasi-homogeneous 13762: 13761: 13694:Abstract category 13497:Theories of truth 13307:Rule of inference 13297:Natural deduction 13278: 13277: 12823: 12822: 12528:Cartesian product 12433: 12432: 12339:Many-valued logic 12314:Boolean functions 12197:Russell's paradox 12172:diagonal argument 12069:First-order logic 12004: 12003: 11901:Advanced concepts 11857:Algebraic numbers 11842:Composite numbers 11544:978-0-19-853171-5 11503:, W. H. Freeman, 11493:Johnson, David S. 11489:Garey, Michael R. 11134: 10991:978-0-8218-4970-5 10671:Lemmemeyer, Ch. 1 10639:Zolotarev's lemma 10629:Euler's criterion 10620: 10619: 8441: 8440: 6188:Dixon's algorithm 6084:) correctly. The 6058:Euler's criterion 6053:Primality testing 5983:conference graphs 5799: 5693:, this forms the 5573: 5512: 5462: 5405: 5355: 5295: 5257:Composite modulus 5203: 5135: 5127: 5033: 5025: 4826: 4805:Euler's criterion 4779: 4686:... roots modulo 4581:, how hard is it 4333: 4326: 4304: 4256: 4227: 4220: 4193: 4145: 4093: 3980: 3958: 3951: 3922: 3835: 3816: 3726: 3707: 3659: 3586: 3497:and any integers 3453: 3406:≡ 1 (mod 4) then 3218: 3157: 3099: 3038: 2848: 2797: 2649: 2648: 2636:≡ 1, 11 (mod 12) 2454:≡ 1, 11 (mod 12) 2334: 2298: 2277: 2238: 2220: 2109: 2094: 2061: 2058: 2041: 1968: 1846: 1832: 1795: 1794: 1718: 1514: 1473: 1412: 1368: 1301: 1230: 1162: 1154: 1137: 1117: 1109: 1092: 1072: 1064: 1036: 1007:and positive odd 763:, 5 (residues in 669:in the product ≥ 357:Euler's criterion 32:quadratic residue 14804: 14764: 14763: 14651:Exterior algebra 14320:Abstract algebra 14281: 14274: 14267: 14258: 14257: 14244: 14243: 14032: 14025: 14018: 14009: 14008: 13868:Quartic equation 13789: 13782: 13775: 13766: 13765: 13753: 13752: 13704:History of logic 13699:Category of sets 13592:Decision problem 13371:Ordinal analysis 13312:Sequent calculus 13210:Boolean algebras 13150: 13149: 13124: 13095:logical/constant 12849: 12848: 12835: 12758:Zermelo–Fraenkel 12509:Set operations: 12444: 12443: 12381: 12212: 12211: 12192:Löwenheim–Skolem 12079:Formal semantics 12031: 12024: 12017: 12008: 12007: 11994: 11984: 11974: 11973: 11964: 11963: 11954: 11953: 11847:Rational numbers 11678: 11671: 11664: 11655: 11654: 11640: 11639: 11614: 11612: 11589:Adleman, Leonard 11583: 11565: 11547: 11532: 11513: 11502: 11484: 11466: 11448: 11426: 11404: 11363:Ciceronian Latin 11345: 11342: 11336: 11326: 11320: 11314: 11308: 11307: 11305: 11303: 11297: 11288: 11282: 11281: 11256: 11241: 11235: 11234: 11226: 11220: 11215: 11209: 11206: 11200: 11190: 11184: 11174: 11168: 11165: 11159: 11149: 11147: 11146: 11141: 11139: 11135: 11127: 11110: 11104: 11086: 11080: 11079: 11054:Bateman, Paul T. 11050: 11044: 11043: 11010: 11004: 11003: 10966: 10957: 10954:J. Number Theory 10950: 10944: 10937: 10931: 10925: 10919: 10908: 10902: 10892: 10886: 10883: 10877: 10874: 10868: 10862: 10856: 10846: 10840: 10834: 10828: 10825: 10819: 10812: 10806: 10799: 10793: 10790: 10784: 10781: 10775: 10772: 10766: 10759: 10753: 10750: 10744: 10741: 10732: 10729: 10723: 10720: 10714: 10711: 10702: 10699: 10690: 10687: 10681: 10678: 10672: 10669: 8454: 8442: 8437: 8433: 8429: 8425: 8421: 8417: 8413: 8409: 8405: 8401: 8397: 8393: 8384: 8380: 8376: 8372: 8368: 8364: 8360: 8356: 8352: 8348: 8344: 8340: 8331: 8320: 8316: 8312: 8308: 8304: 8300: 8296: 8292: 8288: 8284: 8280: 8276: 8272: 8268: 8264: 8260: 8256: 8252: 8248: 8244: 8235: 8227: 8223: 8219: 8215: 8211: 8200: 8192: 8188: 8184: 8180: 8176: 8172: 8163: 8153: 8149: 8145: 8141: 8137: 8133: 8129: 8125: 8121: 8112: 8104: 8100: 8096: 8092: 8088: 8084: 8080: 8069: 8060: 8056: 8052: 8048: 8044: 8040: 8036: 8032: 8028: 8024: 8020: 8016: 8012: 8004: 8000: 7996: 7992: 7988: 7978: 7974: 7970: 7966: 7962: 7958: 7954: 7950: 7946: 7942: 7938: 7934: 7930: 7926: 7922: 7918: 7914: 7910: 7902: 7898: 7894: 7890: 7886: 7882: 7874: 7870: 7866: 7862: 7851: 7847: 7843: 7839: 7835: 7831: 7827: 7823: 7819: 7815: 7811: 7807: 7803: 7794: 7790: 7786: 7782: 7778: 7774: 7770: 7761: 7751: 7747: 7743: 7739: 7735: 7731: 7727: 7723: 7719: 7715: 7706: 7698: 7694: 7690: 7686: 7682: 7671: 7663: 7659: 7655: 7651: 7647: 7643: 7639: 7635: 7631: 7627: 7623: 7619: 7615: 7606: 7596: 7592: 7588: 7584: 7580: 7576: 7572: 7568: 7564: 7560: 7556: 7552: 7548: 7544: 7540: 7536: 7532: 7528: 7524: 7515: 7506: 7502: 7491: 7487: 7483: 7479: 7475: 7471: 7467: 7463: 7459: 7451: 7447: 7443: 7439: 7435: 7431: 7427: 7419: 7415: 7411: 7407: 7396: 7392: 7388: 7384: 7376: 7372: 7368: 7364: 7360: 7356: 7352: 7348: 7339: 7335: 7331: 7327: 7323: 7312: 7308: 7304: 7300: 7296: 7292: 7288: 7280: 7276: 7272: 7268: 7264: 7260: 7256: 7252: 7248: 7244: 7240: 7231: 7220: 7216: 7212: 7208: 7204: 7200: 7196: 7192: 7188: 7184: 7180: 7176: 7172: 7168: 7164: 7160: 7156: 7147: 7139: 7135: 7131: 7120: 7112: 7108: 7104: 7100: 7096: 7088:, 1, 3, 4, 5, 9 7087: 7076: 7072: 7068: 7064: 7060: 7056: 7052: 7048: 7044: 7040: 7032: 7028: 7024: 7020: 7016: 7012: 7003: 6999: 6995: 6991: 6980: 6971: 6967: 6963: 6959: 6955: 6951: 6947: 6943: 6939: 6935: 6926: 6915: 6911: 6907: 6903: 6899: 6895: 6891: 6887: 6883: 6879: 6875: 6871: 6867: 6863: 6859: 6855: 6846: 6842: 6838: 6834: 6830: 6826: 6822: 6814: 6810: 6799: 6795: 6791: 6787: 6783: 6779: 6775: 6771: 6767: 6763: 6759: 6750: 6746: 6742: 6733: 6723: 6719: 6715: 6711: 6707: 6703: 6699: 6695: 6691: 6682: 6674: 6670: 6666: 6655: 6651: 6647: 6643: 6639: 6635: 6631: 6627: 6619: 6615: 6611: 6607: 6603: 6599: 6595: 6591: 6587: 6583: 6574: 6564: 6560: 6556: 6552: 6548: 6544: 6540: 6536: 6532: 6528: 6524: 6520: 6516: 6507: 6498: 6487: 6478: 6474: 6470: 6466: 6462: 6453: 6442: 6438: 6434: 6430: 6426: 6422: 6418: 6414: 6405: 6401: 6392: 6381: 6377: 6373: 6369: 6365: 6361: 6357: 6353: 6349: 6345: 6336: 6332: 6328: 6324: 6320: 6316: 6312: 6308: 6259: 6258: 6255: 6245: 6227: 6219: 5933: 5903: 5876: 5849: 5838: 5821: 5819: 5818: 5813: 5805: 5801: 5792: 5771: 5756: 5744: 5684: 5674: 5640: 5630: 5595: 5593: 5592: 5587: 5579: 5575: 5572: 5568: 5556: 5534: 5532: 5531: 5526: 5518: 5514: 5505: 5484: 5482: 5481: 5476: 5468: 5464: 5461: 5457: 5445: 5427: 5425: 5424: 5419: 5411: 5407: 5398: 5380: 5378: 5377: 5372: 5361: 5357: 5354: 5350: 5338: 5320: 5318: 5317: 5312: 5301: 5297: 5288: 5274:Kronecker symbol 5218: 5216: 5215: 5210: 5208: 5204: 5196: 5156: 5154: 5153: 5148: 5146: 5145: 5136: 5133: 5128: 5125: 5121: 5105: 5104: 5100: 5075: 5074: 5070: 5034: 5031: 5026: 5023: 5019: 5003: 5002: 4998: 4934: 4932: 4931: 4926: 4921: 4905: 4904: 4900: 4847: 4845: 4844: 4839: 4831: 4827: 4819: 4797:quickly computed 4794: 4792: 4791: 4786: 4784: 4780: 4772: 4536: 4510:quadratic excess 4500:Quadratic excess 4490: 4424: 4423: 4418:for any θ>1/4 4398: 4397: 4359: 4357: 4356: 4351: 4334: 4329: 4327: 4319: 4314: 4310: 4309: 4305: 4297: 4290: 4285: 4264: 4238: 4236: 4235: 4230: 4228: 4223: 4221: 4219: 4208: 4203: 4199: 4198: 4194: 4186: 4179: 4174: 4153: 4127: 4125: 4124: 4119: 4114: 4110: 4094: 4089: 4076: 4072: 4058: 4047: 3997: 3995: 3994: 3989: 3981: 3976: 3959: 3954: 3952: 3950: 3949: 3937: 3932: 3928: 3927: 3923: 3915: 3908: 3897: 3858: 3856: 3855: 3850: 3836: 3831: 3826: 3822: 3821: 3817: 3809: 3802: 3791: 3752: 3750: 3749: 3744: 3727: 3722: 3708: 3700: 3677: 3675: 3674: 3669: 3664: 3660: 3652: 3614: 3612: 3611: 3606: 3601: 3597: 3587: 3582: 3569: 3565: 3551: 3540: 3477:. Specifically, 3468: 3466: 3465: 3460: 3455: 3446: 3395:= {2,12,13,14}. 3377:= {1,7,9,11,17}, 3232: 3230: 3229: 3224: 3219: 3214: 3203: 3198: 3197: 3185: 3184: 3172: 3171: 3158: 3153: 3142: 3137: 3136: 3110: 3108: 3107: 3102: 3100: 3095: 3084: 3079: 3078: 3066: 3065: 3053: 3052: 3039: 3034: 3023: 3018: 3017: 2958: 2956: 2955: 2950: 2945: 2940: 2939: 2927: 2919: 2918: 2893: 2891: 2890: 2885: 2880: 2876: 2875: 2874: 2853: 2849: 2844: 2833: 2824: 2823: 2802: 2798: 2790: 2734: 2733: 2372: 2371: 2349: 2347: 2346: 2341: 2339: 2335: 2327: 2311: 2309: 2308: 2303: 2301: 2300: 2299: 2294: 2283: 2278: 2273: 2262: 2243: 2239: 2231: 2225: 2221: 2213: 2130: 2128: 2127: 2122: 2114: 2110: 2102: 2095: 2090: 2079: 2077: 2062: 2060: 2059: 2054: 2051: 2047: 2046: 2042: 2034: 2013: 1979: 1977: 1976: 1971: 1969: 1964: 1944: 1867: 1865: 1864: 1859: 1851: 1847: 1839: 1833: 1825: 1822: 1811: 1796: 1790: 1786: 1749: 1747: 1746: 1741: 1736: 1735: 1723: 1719: 1711: 1704: 1699: 1638:analytic formula 1611:For example, if 1547: 1543: 1539: 1535: 1533: 1532: 1527: 1516: 1507: 1494: 1492: 1491: 1486: 1475: 1466: 1453: 1443: 1433: 1431: 1430: 1425: 1414: 1405: 1392: 1390: 1389: 1384: 1370: 1361: 1348: 1338: 1328: 1326: 1325: 1320: 1303: 1294: 1281: 1273: 1251: 1249: 1248: 1243: 1232: 1226: 1218: 1200: 1190: 1183: 1181: 1180: 1175: 1173: 1172: 1163: 1160: 1155: 1152: 1138: 1135: 1118: 1115: 1110: 1107: 1093: 1090: 1073: 1070: 1065: 1062: 1041: 1037: 1029: 1013: 1006: 990: 986: 982: 978: 970: 966: 930:relatively prime 912: 910: 909: 904: 899: 891: 886: 860: 858: 857: 852: 847: 839: 834: 678:Klein four-group 636:is a nonresidue. 406: 404: 403: 398: 393: 385: 380: 301: 299: 298: 293: 278: 276: 275: 270: 250: 199: 110: 108: 107: 102: 97: 75: 74: 14812: 14811: 14807: 14806: 14805: 14803: 14802: 14801: 14777: 14776: 14775: 14770: 14752: 14721: 14705: 14686:Quotient object 14676:Polynomial ring 14634: 14595:Linear subspace 14547: 14541: 14480: 14422:Linear equation 14401: 14347:Category theory 14308: 14290: 14285: 14255: 14250: 14232: 14199: 14168: 14125: 14118: 14073: 14066: 14041: 14036: 14006: 14001: 13950: 13889: 13832:Linear equation 13802: 13793: 13763: 13758: 13747: 13740: 13685:Category theory 13675:Algebraic logic 13658: 13629:Lambda calculus 13567:Church encoding 13553: 13529:Truth predicate 13385: 13351:Complete theory 13274: 13143: 13139: 13135: 13130: 13122: 12842: and  12838: 12833: 12819: 12795:New Foundations 12763:axiom of choice 12746: 12708:Gödel numbering 12648: and  12640: 12544: 12429: 12379: 12360: 12309:Boolean algebra 12295: 12259:Equiconsistency 12224:Classical logic 12201: 12182:Halting problem 12170: and  12146: and  12134: and  12133: 12128:Theorems ( 12123: 12040: 12035: 12005: 12000: 11942: 11908:Quadratic forms 11896: 11871:P-adic analysis 11827:Natural numbers 11805: 11762:Arakelov theory 11687: 11682: 11621: 11581: 11563: 11545: 11511: 11482: 11464: 11446: 11424: 11402: 11353: 11348: 11343: 11339: 11327: 11323: 11315: 11311: 11301: 11299: 11295: 11289: 11285: 11271:10.2307/2690536 11254: 11251: 11242: 11238: 11227: 11223: 11216: 11212: 11207: 11203: 11191: 11187: 11175: 11171: 11166: 11162: 11150:requires O(log 11126: 11122: 11120: 11117: 11116: 11111: 11107: 11087: 11083: 11068: 11051: 11047: 11032: 11024:. p. 176. 11011: 11007: 10992: 10984:. p. 156. 10978:Opera De Cribro 10974:Iwaniec, Henryk 10967: 10960: 10951: 10947: 10938: 10934: 10926: 10922: 10909: 10905: 10893: 10889: 10884: 10880: 10875: 10871: 10863: 10859: 10847: 10843: 10835: 10831: 10826: 10822: 10813: 10809: 10800: 10796: 10791: 10787: 10782: 10778: 10773: 10769: 10760: 10756: 10751: 10747: 10742: 10735: 10730: 10726: 10721: 10717: 10712: 10705: 10700: 10693: 10688: 10684: 10679: 10675: 10670: 10666: 10662: 10625: 8435: 8431: 8427: 8423: 8419: 8415: 8411: 8407: 8403: 8399: 8395: 8391: 8382: 8378: 8374: 8370: 8366: 8362: 8358: 8354: 8350: 8346: 8342: 8338: 8329: 8318: 8314: 8310: 8306: 8302: 8298: 8294: 8290: 8286: 8282: 8278: 8274: 8270: 8266: 8262: 8258: 8254: 8250: 8246: 8242: 8233: 8225: 8221: 8217: 8213: 8209: 8198: 8190: 8186: 8182: 8178: 8174: 8170: 8161: 8151: 8147: 8143: 8139: 8135: 8131: 8127: 8123: 8119: 8110: 8102: 8098: 8094: 8090: 8086: 8082: 8078: 8067: 8058: 8054: 8050: 8046: 8042: 8038: 8034: 8030: 8026: 8022: 8018: 8014: 8010: 8002: 7998: 7994: 7990: 7986: 7976: 7972: 7968: 7964: 7960: 7956: 7952: 7948: 7944: 7940: 7936: 7932: 7928: 7924: 7920: 7916: 7912: 7908: 7900: 7896: 7892: 7888: 7884: 7880: 7872: 7868: 7864: 7860: 7849: 7845: 7841: 7837: 7833: 7829: 7825: 7821: 7817: 7813: 7809: 7805: 7801: 7792: 7788: 7784: 7780: 7776: 7772: 7768: 7759: 7749: 7745: 7741: 7737: 7733: 7729: 7725: 7721: 7717: 7713: 7704: 7696: 7692: 7688: 7684: 7680: 7669: 7661: 7657: 7653: 7649: 7645: 7641: 7637: 7633: 7629: 7625: 7621: 7617: 7613: 7604: 7594: 7590: 7586: 7582: 7578: 7574: 7570: 7566: 7562: 7558: 7554: 7550: 7546: 7542: 7538: 7534: 7530: 7526: 7522: 7513: 7504: 7500: 7489: 7485: 7481: 7477: 7473: 7469: 7465: 7461: 7457: 7449: 7445: 7441: 7437: 7433: 7429: 7425: 7417: 7413: 7409: 7405: 7394: 7390: 7386: 7382: 7374: 7370: 7366: 7362: 7358: 7354: 7350: 7346: 7337: 7333: 7329: 7325: 7321: 7310: 7306: 7302: 7298: 7294: 7290: 7286: 7278: 7274: 7270: 7266: 7262: 7258: 7254: 7250: 7246: 7242: 7238: 7229: 7218: 7214: 7210: 7206: 7202: 7198: 7194: 7190: 7186: 7182: 7178: 7174: 7170: 7166: 7162: 7158: 7154: 7145: 7137: 7133: 7129: 7118: 7110: 7106: 7102: 7098: 7094: 7085: 7074: 7070: 7066: 7062: 7058: 7054: 7050: 7046: 7042: 7038: 7030: 7026: 7022: 7018: 7014: 7013:, 1, 4, 9, 11, 7010: 7001: 6997: 6993: 6989: 6978: 6969: 6965: 6961: 6957: 6953: 6949: 6945: 6941: 6937: 6933: 6924: 6913: 6909: 6905: 6901: 6897: 6893: 6889: 6885: 6881: 6877: 6873: 6869: 6865: 6861: 6857: 6853: 6844: 6840: 6836: 6832: 6828: 6824: 6820: 6812: 6808: 6797: 6793: 6789: 6785: 6781: 6777: 6773: 6769: 6765: 6761: 6757: 6748: 6744: 6740: 6731: 6721: 6717: 6713: 6709: 6705: 6701: 6697: 6693: 6689: 6680: 6672: 6668: 6664: 6653: 6649: 6645: 6641: 6637: 6633: 6629: 6625: 6617: 6613: 6609: 6605: 6601: 6597: 6593: 6589: 6585: 6581: 6572: 6562: 6558: 6554: 6550: 6546: 6542: 6538: 6534: 6530: 6526: 6522: 6518: 6514: 6505: 6496: 6485: 6476: 6472: 6468: 6464: 6460: 6451: 6440: 6436: 6432: 6428: 6424: 6420: 6416: 6412: 6403: 6399: 6390: 6379: 6375: 6371: 6367: 6363: 6359: 6355: 6351: 6347: 6343: 6334: 6330: 6326: 6322: 6318: 6314: 6310: 6306: 6247: 6237: 6225: 6215: 6212: 6196:quadratic sieve 6175:In § VI of the 6173: 6055: 6012: 5972: 5964:primitive roots 5960:Sound diffusers 5957: 5952: 5929: 5914: 5878: 5863: 5844: 5833: 5790: 5786: 5784: 5781: 5780: 5778:Legendre symbol 5758: 5746: 5739: 5720:problem, where 5676: 5666: 5632: 5617: 5564: 5560: 5554: 5550: 5548: 5545: 5544: 5503: 5499: 5497: 5494: 5493: 5453: 5449: 5443: 5439: 5437: 5434: 5433: 5396: 5392: 5390: 5387: 5386: 5346: 5342: 5336: 5332: 5330: 5327: 5326: 5286: 5282: 5280: 5277: 5276: 5261:If the modulus 5259: 5226:If the modulus 5195: 5191: 5189: 5186: 5185: 5141: 5140: 5132: 5124: 5122: 5106: 5096: 5080: 5076: 5066: 5050: 5046: 5039: 5038: 5030: 5022: 5020: 5004: 4994: 4978: 4974: 4963: 4962: 4954: 4951: 4950: 4906: 4896: 4880: 4876: 4864: 4861: 4860: 4818: 4814: 4812: 4809: 4808: 4771: 4767: 4765: 4762: 4761: 4759:Legendre symbol 4751: 4685: 4679: 4672: 4665: 4571: 4532: 4502: 4486: 4477:for odd primes 4421: 4419: 4393: 4391: 4373: 4328: 4318: 4296: 4292: 4286: 4275: 4270: 4266: 4260: 4254: 4251: 4250: 4222: 4212: 4207: 4185: 4181: 4175: 4164: 4159: 4155: 4149: 4143: 4140: 4139: 4088: 4087: 4083: 4048: 4031: 4026: 4022: 4020: 4017: 4016: 3975: 3953: 3945: 3941: 3936: 3914: 3910: 3898: 3881: 3876: 3872: 3870: 3867: 3866: 3830: 3808: 3804: 3792: 3775: 3770: 3766: 3764: 3761: 3760: 3721: 3699: 3697: 3694: 3693: 3651: 3647: 3630: 3627: 3626: 3581: 3580: 3576: 3541: 3524: 3519: 3515: 3513: 3510: 3509: 3444: 3439: 3436: 3435: 3432: 3394: 3385: 3376: 3367: 3313: 3304: 3295: 3286: 3204: 3202: 3193: 3189: 3180: 3176: 3167: 3163: 3143: 3141: 3132: 3128: 3126: 3123: 3122: 3085: 3083: 3074: 3070: 3061: 3057: 3048: 3044: 3024: 3022: 3013: 3009: 3007: 3004: 3003: 2990: 2983: 2976: 2969: 2941: 2932: 2928: 2923: 2911: 2907: 2905: 2902: 2901: 2870: 2866: 2834: 2832: 2828: 2819: 2815: 2789: 2785: 2742: 2738: 2726: 2722: 2720: 2717: 2716: 2656:Modulo a prime 2654: 2564:≡ 1, 3 (mod 8) 2555:≡ 1, 7 (mod 8) 2495:≡ 1, 4 (mod 5) 2443:≡ 1, 3 (mod 8) 2434:≡ 1, 7 (mod 8) 2402:if and only if 2387:if and only if 2361:and odd primes 2352:Legendre symbol 2326: 2322: 2320: 2317: 2316: 2284: 2282: 2263: 2261: 2260: 2256: 2230: 2226: 2212: 2208: 2206: 2203: 2202: 2158: 2152: 2101: 2097: 2080: 2078: 2067: 2053: 2033: 2029: 2022: 2018: 2017: 2012: 1995: 1992: 1991: 1945: 1943: 1941: 1938: 1937: 1838: 1834: 1824: 1812: 1801: 1785: 1765: 1762: 1761: 1728: 1724: 1710: 1706: 1700: 1689: 1668: 1665: 1664: 1646:quadratic forms 1630: 1554: 1545: 1541: 1537: 1505: 1500: 1497: 1496: 1464: 1459: 1456: 1455: 1454:. For example: 1445: 1435: 1403: 1398: 1395: 1394: 1359: 1354: 1351: 1350: 1340: 1330: 1292: 1287: 1284: 1283: 1279: 1271: 1219: 1216: 1211: 1208: 1207: 1204:complex numbers 1198: 1188: 1168: 1167: 1159: 1153: and  1151: 1134: 1132: 1123: 1122: 1114: 1108: and  1106: 1089: 1087: 1078: 1077: 1069: 1061: 1059: 1046: 1045: 1028: 1024: 1022: 1019: 1018: 1011: 1004: 997:Legendre symbol 988: 984: 980: 976: 968: 964: 961: 944:if and only if 932:to the modulus 895: 887: 882: 877: 874: 873: 843: 835: 830: 825: 822: 821: 686: 489:if and only if 471: 389: 381: 376: 371: 368: 367: 335: 287: 284: 283: 264: 261: 260: 245: 194: 155: 82: 70: 66: 64: 61: 60: 17: 12: 11: 5: 14810: 14800: 14799: 14794: 14789: 14772: 14771: 14769: 14768: 14757: 14754: 14753: 14751: 14750: 14745: 14740: 14738:Linear algebra 14735: 14729: 14727: 14723: 14722: 14720: 14719: 14713: 14711: 14707: 14706: 14704: 14703: 14701:Tensor algebra 14698: 14693: 14690:Quotient group 14683: 14673: 14663: 14653: 14648: 14642: 14640: 14636: 14635: 14633: 14632: 14627: 14622: 14612: 14609:Euclidean norm 14602: 14592: 14582: 14577: 14567: 14562: 14557: 14551: 14549: 14543: 14542: 14540: 14539: 14529: 14519: 14509: 14499: 14488: 14486: 14482: 14481: 14479: 14478: 14473: 14463: 14460:Multiplication 14449: 14439: 14429: 14415: 14409: 14407: 14406:Basic concepts 14403: 14402: 14400: 14399: 14394: 14389: 14384: 14379: 14374: 14372:Linear algebra 14369: 14364: 14359: 14354: 14349: 14344: 14339: 14338: 14337: 14332: 14322: 14316: 14314: 14310: 14309: 14307: 14306: 14301: 14295: 14292: 14291: 14284: 14283: 14276: 14269: 14261: 14252: 14251: 14249: 14248: 14237: 14234: 14233: 14231: 14230: 14225: 14220: 14219: 14218: 14207: 14205: 14201: 14200: 14198: 14197: 14192: 14187: 14182: 14176: 14174: 14170: 14169: 14167: 14166: 14161: 14156: 14151: 14146: 14141: 14136: 14130: 14128: 14124:Non-Euclidean 14120: 14119: 14117: 14116: 14114:Solid geometry 14111: 14110: 14109: 14104: 14097:Plane geometry 14094: 14089: 14084: 14078: 14076: 14068: 14067: 14065: 14064: 14059: 14058: 14057: 14046: 14043: 14042: 14035: 14034: 14027: 14020: 14012: 14003: 14002: 14000: 13999: 13994: 13989: 13984: 13979: 13974: 13969: 13964: 13958: 13956: 13952: 13951: 13949: 13948: 13943: 13938: 13933: 13928: 13923: 13918: 13913: 13908: 13903: 13897: 13895: 13891: 13890: 13888: 13887: 13882: 13877: 13872: 13871: 13870: 13860: 13859: 13858: 13856:Cubic equation 13848: 13847: 13846: 13836: 13835: 13834: 13824: 13819: 13813: 13811: 13804: 13803: 13792: 13791: 13784: 13777: 13769: 13760: 13759: 13745: 13742: 13741: 13739: 13738: 13733: 13728: 13723: 13718: 13717: 13716: 13706: 13701: 13696: 13687: 13682: 13677: 13672: 13670:Abstract logic 13666: 13664: 13660: 13659: 13657: 13656: 13651: 13649:Turing machine 13646: 13641: 13636: 13631: 13626: 13621: 13620: 13619: 13614: 13609: 13604: 13599: 13589: 13587:Computable set 13584: 13579: 13574: 13569: 13563: 13561: 13555: 13554: 13552: 13551: 13546: 13541: 13536: 13531: 13526: 13521: 13516: 13515: 13514: 13509: 13504: 13494: 13489: 13484: 13482:Satisfiability 13479: 13474: 13469: 13468: 13467: 13457: 13456: 13455: 13445: 13444: 13443: 13438: 13433: 13428: 13423: 13413: 13412: 13411: 13406: 13399:Interpretation 13395: 13393: 13387: 13386: 13384: 13383: 13378: 13373: 13368: 13363: 13353: 13348: 13347: 13346: 13345: 13344: 13334: 13329: 13319: 13314: 13309: 13304: 13299: 13294: 13288: 13286: 13280: 13279: 13276: 13275: 13273: 13272: 13264: 13263: 13262: 13261: 13256: 13255: 13254: 13249: 13244: 13224: 13223: 13222: 13220:minimal axioms 13217: 13206: 13205: 13204: 13193: 13192: 13191: 13186: 13181: 13176: 13171: 13166: 13153: 13151: 13132: 13131: 13129: 13128: 13127: 13126: 13114: 13109: 13108: 13107: 13102: 13097: 13092: 13082: 13077: 13072: 13067: 13066: 13065: 13060: 13050: 13049: 13048: 13043: 13038: 13033: 13023: 13018: 13017: 13016: 13011: 13006: 12996: 12995: 12994: 12989: 12984: 12979: 12974: 12969: 12959: 12954: 12949: 12944: 12943: 12942: 12937: 12932: 12927: 12917: 12912: 12910:Formation rule 12907: 12902: 12901: 12900: 12895: 12885: 12884: 12883: 12873: 12868: 12863: 12858: 12852: 12846: 12829:Formal systems 12825: 12824: 12821: 12820: 12818: 12817: 12812: 12807: 12802: 12797: 12792: 12787: 12782: 12777: 12772: 12771: 12770: 12765: 12754: 12752: 12748: 12747: 12745: 12744: 12743: 12742: 12732: 12727: 12726: 12725: 12718:Large cardinal 12715: 12710: 12705: 12700: 12695: 12681: 12680: 12679: 12674: 12669: 12654: 12652: 12642: 12641: 12639: 12638: 12637: 12636: 12631: 12626: 12616: 12611: 12606: 12601: 12596: 12591: 12586: 12581: 12576: 12571: 12566: 12561: 12555: 12553: 12546: 12545: 12543: 12542: 12541: 12540: 12535: 12530: 12525: 12520: 12515: 12507: 12506: 12505: 12500: 12490: 12485: 12483:Extensionality 12480: 12478:Ordinal number 12475: 12465: 12460: 12459: 12458: 12447: 12441: 12435: 12434: 12431: 12430: 12428: 12427: 12422: 12417: 12412: 12407: 12402: 12397: 12396: 12395: 12385: 12384: 12383: 12370: 12368: 12362: 12361: 12359: 12358: 12357: 12356: 12351: 12346: 12336: 12331: 12326: 12321: 12316: 12311: 12305: 12303: 12297: 12296: 12294: 12293: 12288: 12283: 12278: 12273: 12268: 12263: 12262: 12261: 12251: 12246: 12241: 12236: 12231: 12226: 12220: 12218: 12209: 12203: 12202: 12200: 12199: 12194: 12189: 12184: 12179: 12174: 12162:Cantor's  12160: 12155: 12150: 12140: 12138: 12125: 12124: 12122: 12121: 12116: 12111: 12106: 12101: 12096: 12091: 12086: 12081: 12076: 12071: 12066: 12061: 12060: 12059: 12048: 12046: 12042: 12041: 12034: 12033: 12026: 12019: 12011: 12002: 12001: 11999: 11998: 11988: 11978: 11968: 11966:List of topics 11958: 11947: 11944: 11943: 11941: 11940: 11935: 11930: 11925: 11920: 11915: 11910: 11904: 11902: 11898: 11897: 11895: 11894: 11889: 11884: 11879: 11874: 11867:P-adic numbers 11864: 11859: 11854: 11849: 11844: 11839: 11834: 11829: 11824: 11819: 11813: 11811: 11807: 11806: 11804: 11803: 11798: 11793: 11779: 11769: 11755: 11750: 11745: 11740: 11722: 11711:Iwasawa theory 11695: 11693: 11689: 11688: 11681: 11680: 11673: 11666: 11658: 11652: 11651: 11641: 11620: 11619:External links 11617: 11616: 11615: 11603:(2): 168–184, 11584: 11579: 11566: 11561: 11548: 11543: 11515: 11509: 11485: 11480: 11467: 11462: 11449: 11444: 11427: 11422: 11405: 11400: 11352: 11349: 11347: 11346: 11337: 11321: 11309: 11283: 11265:(4): 285–289, 11247: 11236: 11221: 11210: 11201: 11185: 11169: 11160: 11138: 11133: 11130: 11125: 11105: 11095:) steps where 11081: 11066: 11045: 11030: 11005: 10990: 10958: 10945: 10941:external links 10932: 10928:Davenport 2000 10920: 10903: 10887: 10878: 10869: 10865:Davenport 2000 10857: 10849:Davenport 2000 10841: 10837:Davenport 2000 10829: 10820: 10807: 10794: 10785: 10776: 10767: 10754: 10745: 10733: 10724: 10715: 10703: 10691: 10682: 10673: 10663: 10661: 10658: 10657: 10656: 10651: 10646: 10641: 10636: 10631: 10624: 10621: 10618: 10617: 10614: 10611: 10608: 10605: 10602: 10599: 10596: 10593: 10590: 10587: 10584: 10581: 10578: 10575: 10572: 10569: 10566: 10563: 10560: 10557: 10554: 10551: 10548: 10545: 10542: 10538: 10537: 10534: 10531: 10528: 10525: 10522: 10519: 10516: 10513: 10510: 10507: 10504: 10501: 10498: 10495: 10492: 10489: 10486: 10483: 10480: 10477: 10474: 10471: 10468: 10465: 10462: 10458: 10457: 10454: 10451: 10448: 10445: 10442: 10439: 10436: 10433: 10430: 10427: 10424: 10421: 10418: 10415: 10412: 10409: 10406: 10403: 10400: 10397: 10394: 10391: 10388: 10385: 10382: 10378: 10377: 10374: 10371: 10368: 10365: 10362: 10359: 10356: 10353: 10350: 10347: 10344: 10341: 10338: 10335: 10332: 10329: 10326: 10323: 10320: 10317: 10314: 10311: 10308: 10305: 10302: 10298: 10297: 10294: 10291: 10288: 10285: 10282: 10279: 10276: 10273: 10270: 10267: 10264: 10261: 10258: 10255: 10252: 10249: 10246: 10243: 10240: 10237: 10234: 10231: 10228: 10225: 10222: 10218: 10217: 10214: 10211: 10208: 10205: 10202: 10199: 10196: 10193: 10190: 10187: 10184: 10181: 10178: 10175: 10172: 10169: 10166: 10163: 10160: 10157: 10154: 10151: 10148: 10145: 10142: 10138: 10137: 10134: 10131: 10128: 10125: 10122: 10119: 10116: 10113: 10110: 10107: 10104: 10101: 10098: 10095: 10092: 10089: 10086: 10083: 10080: 10077: 10074: 10071: 10068: 10065: 10062: 10058: 10057: 10054: 10051: 10048: 10045: 10042: 10039: 10036: 10033: 10030: 10027: 10024: 10021: 10018: 10015: 10012: 10009: 10006: 10003: 10000: 9997: 9994: 9991: 9988: 9985: 9982: 9978: 9977: 9974: 9971: 9968: 9965: 9962: 9959: 9956: 9953: 9950: 9947: 9944: 9941: 9938: 9935: 9932: 9929: 9926: 9923: 9920: 9917: 9914: 9911: 9908: 9905: 9902: 9898: 9897: 9894: 9891: 9888: 9885: 9882: 9879: 9876: 9873: 9870: 9867: 9864: 9861: 9858: 9855: 9852: 9849: 9846: 9843: 9840: 9837: 9834: 9831: 9828: 9825: 9822: 9818: 9817: 9814: 9811: 9808: 9805: 9802: 9799: 9796: 9793: 9790: 9787: 9784: 9781: 9778: 9775: 9772: 9769: 9766: 9763: 9760: 9757: 9754: 9751: 9748: 9745: 9742: 9738: 9737: 9734: 9731: 9728: 9725: 9722: 9719: 9716: 9713: 9710: 9707: 9704: 9701: 9698: 9695: 9692: 9689: 9686: 9683: 9680: 9677: 9674: 9671: 9668: 9665: 9662: 9658: 9657: 9654: 9651: 9648: 9645: 9642: 9639: 9636: 9633: 9630: 9627: 9624: 9621: 9618: 9615: 9612: 9609: 9606: 9603: 9600: 9597: 9594: 9591: 9588: 9585: 9582: 9578: 9577: 9574: 9571: 9568: 9565: 9562: 9559: 9556: 9553: 9550: 9547: 9544: 9541: 9538: 9535: 9532: 9529: 9526: 9523: 9520: 9517: 9514: 9511: 9508: 9505: 9502: 9498: 9497: 9494: 9491: 9488: 9485: 9482: 9479: 9476: 9473: 9470: 9467: 9464: 9461: 9458: 9455: 9452: 9449: 9446: 9443: 9440: 9437: 9434: 9431: 9428: 9425: 9422: 9418: 9417: 9414: 9411: 9408: 9405: 9402: 9399: 9396: 9393: 9390: 9387: 9384: 9381: 9378: 9375: 9372: 9369: 9366: 9363: 9360: 9357: 9354: 9351: 9348: 9345: 9342: 9338: 9337: 9334: 9331: 9328: 9325: 9322: 9319: 9316: 9313: 9310: 9307: 9304: 9301: 9298: 9295: 9292: 9289: 9286: 9283: 9280: 9277: 9274: 9271: 9268: 9265: 9262: 9258: 9257: 9254: 9251: 9248: 9245: 9242: 9239: 9236: 9233: 9230: 9227: 9224: 9221: 9218: 9215: 9212: 9209: 9206: 9203: 9200: 9197: 9194: 9191: 9188: 9185: 9182: 9178: 9177: 9174: 9171: 9168: 9165: 9162: 9159: 9156: 9153: 9150: 9147: 9144: 9141: 9138: 9135: 9132: 9129: 9126: 9123: 9120: 9117: 9114: 9111: 9108: 9105: 9102: 9098: 9097: 9094: 9091: 9088: 9085: 9082: 9079: 9076: 9073: 9070: 9067: 9064: 9061: 9058: 9055: 9052: 9049: 9046: 9043: 9040: 9037: 9034: 9031: 9028: 9025: 9022: 9018: 9017: 9014: 9011: 9008: 9005: 9002: 8999: 8996: 8993: 8990: 8987: 8984: 8981: 8978: 8975: 8972: 8969: 8966: 8963: 8960: 8957: 8954: 8951: 8948: 8945: 8942: 8938: 8937: 8934: 8931: 8928: 8925: 8922: 8919: 8916: 8913: 8910: 8907: 8904: 8901: 8898: 8895: 8892: 8889: 8886: 8883: 8880: 8877: 8874: 8871: 8868: 8865: 8862: 8858: 8857: 8854: 8851: 8848: 8845: 8842: 8839: 8836: 8833: 8830: 8827: 8824: 8821: 8818: 8815: 8812: 8809: 8806: 8803: 8800: 8797: 8794: 8791: 8788: 8785: 8782: 8778: 8777: 8774: 8771: 8768: 8765: 8762: 8759: 8756: 8753: 8750: 8747: 8744: 8741: 8738: 8735: 8732: 8729: 8726: 8723: 8720: 8717: 8714: 8711: 8708: 8705: 8702: 8698: 8697: 8694: 8691: 8688: 8685: 8682: 8679: 8676: 8673: 8670: 8667: 8664: 8661: 8658: 8655: 8652: 8649: 8646: 8643: 8640: 8637: 8634: 8631: 8628: 8625: 8622: 8618: 8617: 8614: 8611: 8608: 8605: 8602: 8599: 8596: 8593: 8590: 8587: 8584: 8581: 8578: 8575: 8572: 8569: 8566: 8563: 8560: 8557: 8554: 8551: 8548: 8545: 8542: 8536: 8535: 8532: 8529: 8526: 8523: 8520: 8517: 8514: 8511: 8508: 8505: 8502: 8499: 8496: 8493: 8490: 8487: 8484: 8481: 8478: 8475: 8472: 8469: 8466: 8463: 8460: 8439: 8438: 8389: 8386: 8336: 8333: 8327: 8323: 8322: 8240: 8237: 8231: 8228: 8207: 8203: 8202: 8196: 8193: 8168: 8165: 8159: 8155: 8154: 8117: 8114: 8108: 8105: 8076: 8072: 8071: 8065: 8062: 8053:, 27, 29, 31, 8008: 8005: 7984: 7980: 7979: 7906: 7903: 7878: 7875: 7858: 7854: 7853: 7799: 7796: 7766: 7763: 7757: 7753: 7752: 7711: 7708: 7702: 7699: 7678: 7674: 7673: 7667: 7664: 7611: 7608: 7602: 7598: 7597: 7520: 7517: 7511: 7508: 7498: 7494: 7493: 7455: 7452: 7423: 7420: 7403: 7399: 7398: 7393:, 17, 25, 33, 7380: 7377: 7365:, 16, 22, 25, 7344: 7341: 7319: 7315: 7314: 7309:, 37, 43, 46, 7284: 7281: 7236: 7233: 7227: 7223: 7222: 7152: 7149: 7143: 7140: 7127: 7123: 7122: 7116: 7113: 7092: 7089: 7083: 7079: 7078: 7036: 7033: 7008: 7005: 6987: 6983: 6982: 6976: 6973: 6960:, 19, 21, 25, 6931: 6928: 6922: 6918: 6917: 6908:, 45, 49, 51, 6851: 6848: 6818: 6815: 6806: 6802: 6801: 6755: 6752: 6738: 6735: 6729: 6725: 6724: 6687: 6684: 6678: 6675: 6662: 6658: 6657: 6623: 6620: 6579: 6576: 6570: 6566: 6565: 6512: 6509: 6503: 6500: 6494: 6490: 6489: 6483: 6480: 6458: 6455: 6449: 6445: 6444: 6431:, 17, 25, 29, 6410: 6407: 6397: 6394: 6388: 6384: 6383: 6341: 6338: 6304: 6301: 6298: 6294: 6293: 6287: 6282: 6276: 6271: 6265: 6211: 6208: 6172: 6169: 6142:probable prime 6096:and computes ( 6054: 6051: 6011: 6008: 5971: 5968: 5956: 5953: 5951: 5948: 5940: 5939: 5913: 5910: 5908:is a square). 5856: 5855: 5831: 5811: 5808: 5804: 5798: 5795: 5789: 5585: 5582: 5578: 5571: 5567: 5563: 5559: 5553: 5524: 5521: 5517: 5511: 5508: 5502: 5474: 5471: 5467: 5460: 5456: 5452: 5448: 5442: 5417: 5414: 5410: 5404: 5401: 5395: 5370: 5367: 5364: 5360: 5353: 5349: 5345: 5341: 5335: 5310: 5307: 5304: 5300: 5294: 5291: 5285: 5258: 5255: 5251:Hensel's lemma 5207: 5202: 5199: 5194: 5168:(in 1891) and 5158: 5157: 5144: 5139: 5131: 5126: if  5123: 5120: 5117: 5113: 5110: 5103: 5099: 5095: 5092: 5089: 5086: 5083: 5079: 5073: 5069: 5065: 5062: 5059: 5056: 5053: 5049: 5044: 5041: 5040: 5037: 5029: 5024: if  5021: 5018: 5015: 5011: 5008: 5001: 4997: 4993: 4990: 4987: 4984: 4981: 4977: 4972: 4969: 4968: 4966: 4961: 4958: 4936: 4935: 4924: 4920: 4917: 4913: 4910: 4903: 4899: 4895: 4892: 4889: 4886: 4883: 4879: 4874: 4871: 4868: 4837: 4834: 4830: 4825: 4822: 4817: 4783: 4778: 4775: 4770: 4750: 4747: 4745: 4744: 4743: 4742: 4739: 4732: 4731: 4730: 4729: 4726: 4719: 4718: 4717: 4716: 4713: 4697:is called the 4683: 4677: 4670: 4663: 4606: 4605: 4602: 4577:and a modulus 4570: 4567: 4501: 4498: 4497: 4496: 4427:character sums 4372: 4369: 4361: 4360: 4349: 4346: 4343: 4340: 4337: 4332: 4325: 4322: 4317: 4313: 4308: 4303: 4300: 4295: 4289: 4284: 4281: 4278: 4274: 4269: 4263: 4259: 4240: 4239: 4226: 4218: 4215: 4211: 4206: 4202: 4197: 4192: 4189: 4184: 4178: 4173: 4170: 4167: 4163: 4158: 4152: 4148: 4129: 4128: 4117: 4113: 4109: 4106: 4103: 4100: 4097: 4092: 4086: 4082: 4079: 4075: 4071: 4068: 4065: 4062: 4057: 4054: 4051: 4046: 4043: 4040: 4037: 4034: 4030: 4025: 3999: 3998: 3987: 3984: 3979: 3974: 3971: 3968: 3965: 3962: 3957: 3948: 3944: 3940: 3935: 3931: 3926: 3921: 3918: 3913: 3907: 3904: 3901: 3896: 3893: 3890: 3887: 3884: 3880: 3875: 3860: 3859: 3848: 3845: 3842: 3839: 3834: 3829: 3825: 3820: 3815: 3812: 3807: 3801: 3798: 3795: 3790: 3787: 3784: 3781: 3778: 3774: 3769: 3754: 3753: 3742: 3739: 3736: 3733: 3730: 3725: 3720: 3717: 3714: 3711: 3706: 3703: 3679: 3678: 3667: 3663: 3658: 3655: 3650: 3646: 3643: 3640: 3637: 3634: 3620:big O notation 3616: 3615: 3604: 3600: 3596: 3593: 3590: 3585: 3579: 3575: 3572: 3568: 3564: 3561: 3558: 3555: 3550: 3547: 3544: 3539: 3536: 3533: 3530: 3527: 3523: 3518: 3458: 3452: 3449: 3443: 3434:The values of 3431: 3428: 3399: 3398: 3397: 3396: 3392: 3387: 3386:= {3,8,10,15}, 3383: 3378: 3374: 3369: 3365: 3318: 3317: 3316: 3315: 3314:= {5,6,10,11}. 3311: 3306: 3305:= {3,7,12,14}, 3302: 3297: 3293: 3288: 3284: 3267:, 10, 11, 12, 3234: 3233: 3222: 3217: 3213: 3210: 3207: 3201: 3196: 3192: 3188: 3183: 3179: 3175: 3170: 3166: 3161: 3156: 3152: 3149: 3146: 3140: 3135: 3131: 3112: 3111: 3098: 3094: 3091: 3088: 3082: 3077: 3073: 3069: 3064: 3060: 3056: 3051: 3047: 3042: 3037: 3033: 3030: 3027: 3021: 3016: 3012: 2993: 2992: 2988: 2985: 2981: 2978: 2974: 2971: 2967: 2960: 2959: 2948: 2944: 2938: 2935: 2931: 2926: 2922: 2917: 2914: 2910: 2895: 2894: 2883: 2879: 2873: 2869: 2865: 2862: 2859: 2856: 2852: 2847: 2843: 2840: 2837: 2831: 2827: 2822: 2818: 2814: 2811: 2808: 2805: 2801: 2796: 2793: 2788: 2784: 2781: 2778: 2775: 2772: 2769: 2766: 2763: 2760: 2757: 2754: 2751: 2748: 2745: 2741: 2737: 2732: 2729: 2725: 2653: 2650: 2647: 2646: 2640: 2637: 2631: 2627: 2626: 2620: 2617: 2611: 2607: 2606: 2600: 2597: 2591: 2587: 2586: 2580: 2577: 2570: 2566: 2565: 2559: 2556: 2550: 2546: 2545: 2539: 2536: 2530: 2526: 2525: 2519: 2516: 2510: 2506: 2505: 2499: 2496: 2490: 2486: 2485: 2479: 2476: 2469: 2465: 2464: 2458: 2455: 2449: 2445: 2444: 2438: 2435: 2429: 2425: 2424: 2418: 2415: 2408: 2404: 2403: 2393: 2388: 2378: 2338: 2333: 2330: 2325: 2313: 2312: 2297: 2293: 2290: 2287: 2281: 2276: 2272: 2269: 2266: 2259: 2255: 2252: 2249: 2246: 2242: 2237: 2234: 2229: 2224: 2219: 2216: 2211: 2154:Main article: 2151: 2148: 2138:− 1)/2. 2132: 2131: 2120: 2117: 2113: 2108: 2105: 2100: 2093: 2089: 2086: 2083: 2076: 2073: 2070: 2066: 2057: 2050: 2045: 2040: 2037: 2032: 2028: 2025: 2021: 2016: 2011: 2008: 2005: 2002: 1999: 1967: 1963: 1960: 1957: 1954: 1951: 1948: 1917: 1916: 1912: 1911: 1869: 1868: 1857: 1854: 1850: 1845: 1842: 1837: 1831: 1828: 1821: 1818: 1815: 1810: 1807: 1804: 1800: 1793: 1789: 1784: 1781: 1778: 1775: 1772: 1769: 1751: 1750: 1739: 1734: 1731: 1727: 1722: 1717: 1714: 1709: 1703: 1698: 1695: 1692: 1688: 1684: 1681: 1678: 1675: 1672: 1629: 1626: 1553: 1550: 1525: 1522: 1519: 1513: 1510: 1504: 1484: 1481: 1478: 1472: 1469: 1463: 1423: 1420: 1417: 1411: 1408: 1402: 1382: 1379: 1376: 1373: 1367: 1364: 1358: 1318: 1315: 1312: 1309: 1306: 1300: 1297: 1291: 1241: 1238: 1235: 1229: 1225: 1222: 1215: 1185: 1184: 1171: 1166: 1158: 1150: 1147: 1144: 1141: 1136: if  1133: 1131: 1128: 1125: 1124: 1121: 1113: 1105: 1102: 1099: 1096: 1091: if  1088: 1086: 1083: 1080: 1079: 1076: 1068: 1063: if  1060: 1058: 1052: 1051: 1049: 1044: 1040: 1035: 1032: 1027: 993: 992: 960: 957: 948:is coprime to 940:is coprime to 917:for composite 902: 898: 894: 890: 885: 881: 850: 846: 842: 838: 833: 829: 815:group of units 745: 744: 717: 685: 682: 640: 639: 638: 637: 618: 599: 584: 526: 525: 522: 519: 512: 511: 508: 505: 502: 470: 467: 396: 392: 388: 384: 379: 375: 340:Modulo an odd 334: 331: 310:cannot exceed 291: 268: 154: 151: 112: 111: 100: 96: 93: 89: 86: 81: 78: 73: 69: 46:perfect square 15: 9: 6: 4: 3: 2: 14809: 14798: 14795: 14793: 14790: 14788: 14785: 14784: 14782: 14767: 14759: 14758: 14755: 14749: 14746: 14744: 14741: 14739: 14736: 14734: 14731: 14730: 14728: 14724: 14718: 14715: 14714: 14712: 14708: 14702: 14699: 14697: 14694: 14691: 14687: 14684: 14681: 14677: 14674: 14671: 14667: 14664: 14661: 14657: 14654: 14652: 14649: 14647: 14644: 14643: 14641: 14637: 14631: 14628: 14626: 14623: 14620: 14616: 14615:Orthogonality 14613: 14610: 14606: 14603: 14600: 14596: 14593: 14590: 14586: 14583: 14581: 14580:Hilbert space 14578: 14575: 14571: 14568: 14566: 14563: 14561: 14558: 14556: 14553: 14552: 14550: 14544: 14537: 14533: 14530: 14527: 14523: 14520: 14517: 14513: 14510: 14507: 14503: 14500: 14497: 14493: 14490: 14489: 14487: 14483: 14477: 14474: 14471: 14467: 14464: 14461: 14457: 14453: 14450: 14447: 14443: 14440: 14437: 14433: 14430: 14427: 14423: 14419: 14416: 14414: 14411: 14410: 14408: 14404: 14398: 14395: 14393: 14390: 14388: 14385: 14383: 14380: 14378: 14375: 14373: 14370: 14368: 14365: 14363: 14360: 14358: 14355: 14353: 14350: 14348: 14345: 14343: 14340: 14336: 14333: 14331: 14328: 14327: 14326: 14323: 14321: 14318: 14317: 14315: 14311: 14305: 14302: 14300: 14297: 14296: 14293: 14289: 14282: 14277: 14275: 14270: 14268: 14263: 14262: 14259: 14247: 14239: 14238: 14235: 14229: 14226: 14224: 14221: 14217: 14214: 14213: 14212: 14209: 14208: 14206: 14202: 14196: 14193: 14191: 14188: 14186: 14183: 14181: 14178: 14177: 14175: 14171: 14165: 14162: 14160: 14157: 14155: 14152: 14150: 14147: 14145: 14142: 14140: 14137: 14135: 14132: 14131: 14129: 14127: 14121: 14115: 14112: 14108: 14105: 14103: 14100: 14099: 14098: 14095: 14093: 14090: 14088: 14085: 14083: 14082:Combinatorial 14080: 14079: 14077: 14075: 14069: 14063: 14060: 14056: 14053: 14052: 14051: 14048: 14047: 14044: 14040: 14033: 14028: 14026: 14021: 14019: 14014: 14013: 14010: 13998: 13997:Gröbner basis 13995: 13993: 13990: 13988: 13985: 13983: 13980: 13978: 13975: 13973: 13970: 13968: 13965: 13963: 13962:Factorization 13960: 13959: 13957: 13953: 13947: 13944: 13942: 13939: 13937: 13934: 13932: 13929: 13927: 13924: 13922: 13919: 13917: 13914: 13912: 13909: 13907: 13904: 13902: 13899: 13898: 13896: 13894:By properties 13892: 13886: 13883: 13881: 13878: 13876: 13873: 13869: 13866: 13865: 13864: 13861: 13857: 13854: 13853: 13852: 13849: 13845: 13842: 13841: 13840: 13837: 13833: 13830: 13829: 13828: 13825: 13823: 13820: 13818: 13815: 13814: 13812: 13810: 13805: 13801: 13797: 13790: 13785: 13783: 13778: 13776: 13771: 13770: 13767: 13757: 13756: 13751: 13743: 13737: 13734: 13732: 13729: 13727: 13724: 13722: 13719: 13715: 13712: 13711: 13710: 13707: 13705: 13702: 13700: 13697: 13695: 13691: 13688: 13686: 13683: 13681: 13678: 13676: 13673: 13671: 13668: 13667: 13665: 13661: 13655: 13652: 13650: 13647: 13645: 13644:Recursive set 13642: 13640: 13637: 13635: 13632: 13630: 13627: 13625: 13622: 13618: 13615: 13613: 13610: 13608: 13605: 13603: 13600: 13598: 13595: 13594: 13593: 13590: 13588: 13585: 13583: 13580: 13578: 13575: 13573: 13570: 13568: 13565: 13564: 13562: 13560: 13556: 13550: 13547: 13545: 13542: 13540: 13537: 13535: 13532: 13530: 13527: 13525: 13522: 13520: 13517: 13513: 13510: 13508: 13505: 13503: 13500: 13499: 13498: 13495: 13493: 13490: 13488: 13485: 13483: 13480: 13478: 13475: 13473: 13470: 13466: 13463: 13462: 13461: 13458: 13454: 13453:of arithmetic 13451: 13450: 13449: 13446: 13442: 13439: 13437: 13434: 13432: 13429: 13427: 13424: 13422: 13419: 13418: 13417: 13414: 13410: 13407: 13405: 13402: 13401: 13400: 13397: 13396: 13394: 13392: 13388: 13382: 13379: 13377: 13374: 13372: 13369: 13367: 13364: 13361: 13360:from ZFC 13357: 13354: 13352: 13349: 13343: 13340: 13339: 13338: 13335: 13333: 13330: 13328: 13325: 13324: 13323: 13320: 13318: 13315: 13313: 13310: 13308: 13305: 13303: 13300: 13298: 13295: 13293: 13290: 13289: 13287: 13285: 13281: 13271: 13270: 13266: 13265: 13260: 13259:non-Euclidean 13257: 13253: 13250: 13248: 13245: 13243: 13242: 13238: 13237: 13235: 13232: 13231: 13229: 13225: 13221: 13218: 13216: 13213: 13212: 13211: 13207: 13203: 13200: 13199: 13198: 13194: 13190: 13187: 13185: 13182: 13180: 13177: 13175: 13172: 13170: 13167: 13165: 13162: 13161: 13159: 13155: 13154: 13152: 13147: 13141: 13136:Example  13133: 13125: 13120: 13119: 13118: 13115: 13113: 13110: 13106: 13103: 13101: 13098: 13096: 13093: 13091: 13088: 13087: 13086: 13083: 13081: 13078: 13076: 13073: 13071: 13068: 13064: 13061: 13059: 13056: 13055: 13054: 13051: 13047: 13044: 13042: 13039: 13037: 13034: 13032: 13029: 13028: 13027: 13024: 13022: 13019: 13015: 13012: 13010: 13007: 13005: 13002: 13001: 13000: 12997: 12993: 12990: 12988: 12985: 12983: 12980: 12978: 12975: 12973: 12970: 12968: 12965: 12964: 12963: 12960: 12958: 12955: 12953: 12950: 12948: 12945: 12941: 12938: 12936: 12933: 12931: 12928: 12926: 12923: 12922: 12921: 12918: 12916: 12913: 12911: 12908: 12906: 12903: 12899: 12896: 12894: 12893:by definition 12891: 12890: 12889: 12886: 12882: 12879: 12878: 12877: 12874: 12872: 12869: 12867: 12864: 12862: 12859: 12857: 12854: 12853: 12850: 12847: 12845: 12841: 12836: 12830: 12826: 12816: 12813: 12811: 12808: 12806: 12803: 12801: 12798: 12796: 12793: 12791: 12788: 12786: 12783: 12781: 12780:Kripke–Platek 12778: 12776: 12773: 12769: 12766: 12764: 12761: 12760: 12759: 12756: 12755: 12753: 12749: 12741: 12738: 12737: 12736: 12733: 12731: 12728: 12724: 12721: 12720: 12719: 12716: 12714: 12711: 12709: 12706: 12704: 12701: 12699: 12696: 12693: 12689: 12685: 12682: 12678: 12675: 12673: 12670: 12668: 12665: 12664: 12663: 12659: 12656: 12655: 12653: 12651: 12647: 12643: 12635: 12632: 12630: 12627: 12625: 12624:constructible 12622: 12621: 12620: 12617: 12615: 12612: 12610: 12607: 12605: 12602: 12600: 12597: 12595: 12592: 12590: 12587: 12585: 12582: 12580: 12577: 12575: 12572: 12570: 12567: 12565: 12562: 12560: 12557: 12556: 12554: 12552: 12547: 12539: 12536: 12534: 12531: 12529: 12526: 12524: 12521: 12519: 12516: 12514: 12511: 12510: 12508: 12504: 12501: 12499: 12496: 12495: 12494: 12491: 12489: 12486: 12484: 12481: 12479: 12476: 12474: 12470: 12466: 12464: 12461: 12457: 12454: 12453: 12452: 12449: 12448: 12445: 12442: 12440: 12436: 12426: 12423: 12421: 12418: 12416: 12413: 12411: 12408: 12406: 12403: 12401: 12398: 12394: 12391: 12390: 12389: 12386: 12382: 12377: 12376: 12375: 12372: 12371: 12369: 12367: 12363: 12355: 12352: 12350: 12347: 12345: 12342: 12341: 12340: 12337: 12335: 12332: 12330: 12327: 12325: 12322: 12320: 12317: 12315: 12312: 12310: 12307: 12306: 12304: 12302: 12301:Propositional 12298: 12292: 12289: 12287: 12284: 12282: 12279: 12277: 12274: 12272: 12269: 12267: 12264: 12260: 12257: 12256: 12255: 12252: 12250: 12247: 12245: 12242: 12240: 12237: 12235: 12232: 12230: 12229:Logical truth 12227: 12225: 12222: 12221: 12219: 12217: 12213: 12210: 12208: 12204: 12198: 12195: 12193: 12190: 12188: 12185: 12183: 12180: 12178: 12175: 12173: 12169: 12165: 12161: 12159: 12156: 12154: 12151: 12149: 12145: 12142: 12141: 12139: 12137: 12131: 12126: 12120: 12117: 12115: 12112: 12110: 12107: 12105: 12102: 12100: 12097: 12095: 12092: 12090: 12087: 12085: 12082: 12080: 12077: 12075: 12072: 12070: 12067: 12065: 12062: 12058: 12055: 12054: 12053: 12050: 12049: 12047: 12043: 12039: 12032: 12027: 12025: 12020: 12018: 12013: 12012: 12009: 11997: 11993: 11989: 11987: 11983: 11979: 11977: 11969: 11967: 11959: 11957: 11949: 11948: 11945: 11939: 11936: 11934: 11931: 11929: 11926: 11924: 11921: 11919: 11916: 11914: 11913:Modular forms 11911: 11909: 11906: 11905: 11903: 11899: 11893: 11890: 11888: 11885: 11883: 11880: 11878: 11875: 11872: 11868: 11865: 11863: 11860: 11858: 11855: 11853: 11850: 11848: 11845: 11843: 11840: 11838: 11837:Prime numbers 11835: 11833: 11830: 11828: 11825: 11823: 11820: 11818: 11815: 11814: 11812: 11808: 11802: 11799: 11797: 11794: 11791: 11787: 11783: 11780: 11777: 11773: 11770: 11767: 11763: 11759: 11756: 11754: 11751: 11749: 11746: 11744: 11741: 11738: 11734: 11730: 11726: 11723: 11720: 11719:Kummer theory 11716: 11712: 11708: 11704: 11700: 11697: 11696: 11694: 11690: 11686: 11685:Number theory 11679: 11674: 11672: 11667: 11665: 11660: 11659: 11656: 11649: 11645: 11642: 11637: 11636: 11631: 11628: 11623: 11622: 11611: 11606: 11602: 11598: 11594: 11590: 11585: 11582: 11580:3-540-66957-4 11576: 11572: 11567: 11564: 11562:0-387-97329-X 11558: 11554: 11549: 11546: 11540: 11536: 11531: 11530: 11524: 11523:Wright, E. M. 11520: 11516: 11512: 11510:0-7167-1045-5 11506: 11501: 11500: 11494: 11490: 11486: 11483: 11481:0-387-95097-4 11477: 11473: 11468: 11465: 11463:0-387-94777-9 11459: 11455: 11450: 11447: 11445:0-262-02405-5 11441: 11437: 11436:The MIT Press 11433: 11428: 11425: 11423:0-8284-0191-8 11419: 11415: 11411: 11406: 11403: 11401:0-387-96254-9 11397: 11393: 11389: 11384: 11383: 11382: 11380: 11376: 11372: 11368: 11364: 11360: 11359: 11341: 11334: 11330: 11325: 11319:, p. 113 11318: 11313: 11294: 11287: 11280: 11276: 11272: 11268: 11264: 11260: 11253: 11250: 11240: 11232: 11225: 11219: 11214: 11205: 11198: 11194: 11189: 11182: 11178: 11173: 11164: 11157: 11153: 11136: 11131: 11128: 11123: 11114: 11109: 11102: 11098: 11094: 11090: 11085: 11077: 11073: 11069: 11067:981-256-080-7 11063: 11059: 11055: 11049: 11041: 11037: 11033: 11031:0-8218-0737-4 11027: 11023: 11019: 11015: 11009: 11001: 10997: 10993: 10987: 10983: 10979: 10975: 10971: 10965: 10963: 10955: 10949: 10942: 10936: 10929: 10924: 10917: 10913: 10907: 10901: 10897: 10891: 10882: 10873: 10866: 10861: 10854: 10850: 10845: 10838: 10833: 10824: 10817: 10811: 10804: 10798: 10789: 10780: 10771: 10764: 10758: 10749: 10740: 10738: 10728: 10719: 10710: 10708: 10698: 10696: 10686: 10677: 10668: 10664: 10655: 10652: 10650: 10647: 10645: 10644:Character sum 10642: 10640: 10637: 10635: 10634:Gauss's lemma 10632: 10630: 10627: 10626: 10615: 10612: 10609: 10606: 10603: 10600: 10597: 10594: 10591: 10588: 10585: 10582: 10579: 10576: 10573: 10570: 10567: 10564: 10561: 10558: 10555: 10552: 10549: 10546: 10543: 10540: 10539: 10535: 10532: 10529: 10526: 10523: 10520: 10517: 10514: 10511: 10508: 10505: 10502: 10499: 10496: 10493: 10490: 10487: 10484: 10481: 10478: 10475: 10472: 10469: 10466: 10463: 10460: 10459: 10455: 10452: 10449: 10446: 10443: 10440: 10437: 10434: 10431: 10428: 10425: 10422: 10419: 10416: 10413: 10410: 10407: 10404: 10401: 10398: 10395: 10392: 10389: 10386: 10383: 10380: 10379: 10375: 10372: 10369: 10366: 10363: 10360: 10357: 10354: 10351: 10348: 10345: 10342: 10339: 10336: 10333: 10330: 10327: 10324: 10321: 10318: 10315: 10312: 10309: 10306: 10303: 10300: 10299: 10295: 10292: 10289: 10286: 10283: 10280: 10277: 10274: 10271: 10268: 10265: 10262: 10259: 10256: 10253: 10250: 10247: 10244: 10241: 10238: 10235: 10232: 10229: 10226: 10223: 10220: 10219: 10215: 10212: 10209: 10206: 10203: 10200: 10197: 10194: 10191: 10188: 10185: 10182: 10179: 10176: 10173: 10170: 10167: 10164: 10161: 10158: 10155: 10152: 10149: 10146: 10143: 10140: 10139: 10135: 10132: 10129: 10126: 10123: 10120: 10117: 10114: 10111: 10108: 10105: 10102: 10099: 10096: 10093: 10090: 10087: 10084: 10081: 10078: 10075: 10072: 10069: 10066: 10063: 10060: 10059: 10055: 10052: 10049: 10046: 10043: 10040: 10037: 10034: 10031: 10028: 10025: 10022: 10019: 10016: 10013: 10010: 10007: 10004: 10001: 9998: 9995: 9992: 9989: 9986: 9983: 9980: 9979: 9975: 9972: 9969: 9966: 9963: 9960: 9957: 9954: 9951: 9948: 9945: 9942: 9939: 9936: 9933: 9930: 9927: 9924: 9921: 9918: 9915: 9912: 9909: 9906: 9903: 9900: 9899: 9895: 9892: 9889: 9886: 9883: 9880: 9877: 9874: 9871: 9868: 9865: 9862: 9859: 9856: 9853: 9850: 9847: 9844: 9841: 9838: 9835: 9832: 9829: 9826: 9823: 9820: 9819: 9815: 9812: 9809: 9806: 9803: 9800: 9797: 9794: 9791: 9788: 9785: 9782: 9779: 9776: 9773: 9770: 9767: 9764: 9761: 9758: 9755: 9752: 9749: 9746: 9743: 9740: 9739: 9735: 9732: 9729: 9726: 9723: 9720: 9717: 9714: 9711: 9708: 9705: 9702: 9699: 9696: 9693: 9690: 9687: 9684: 9681: 9678: 9675: 9672: 9669: 9666: 9663: 9660: 9659: 9655: 9652: 9649: 9646: 9643: 9640: 9637: 9634: 9631: 9628: 9625: 9622: 9619: 9616: 9613: 9610: 9607: 9604: 9601: 9598: 9595: 9592: 9589: 9586: 9583: 9580: 9579: 9575: 9572: 9569: 9566: 9563: 9560: 9557: 9554: 9551: 9548: 9545: 9542: 9539: 9536: 9533: 9530: 9527: 9524: 9521: 9518: 9515: 9512: 9509: 9506: 9503: 9500: 9499: 9495: 9492: 9489: 9486: 9483: 9480: 9477: 9474: 9471: 9468: 9465: 9462: 9459: 9456: 9453: 9450: 9447: 9444: 9441: 9438: 9435: 9432: 9429: 9426: 9423: 9420: 9419: 9415: 9412: 9409: 9406: 9403: 9400: 9397: 9394: 9391: 9388: 9385: 9382: 9379: 9376: 9373: 9370: 9367: 9364: 9361: 9358: 9355: 9352: 9349: 9346: 9343: 9340: 9339: 9335: 9332: 9329: 9326: 9323: 9320: 9317: 9314: 9311: 9308: 9305: 9302: 9299: 9296: 9293: 9290: 9287: 9284: 9281: 9278: 9275: 9272: 9269: 9266: 9263: 9260: 9259: 9255: 9252: 9249: 9246: 9243: 9240: 9237: 9234: 9231: 9228: 9225: 9222: 9219: 9216: 9213: 9210: 9207: 9204: 9201: 9198: 9195: 9192: 9189: 9186: 9183: 9180: 9179: 9175: 9172: 9169: 9166: 9163: 9160: 9157: 9154: 9151: 9148: 9145: 9142: 9139: 9136: 9133: 9130: 9127: 9124: 9121: 9118: 9115: 9112: 9109: 9106: 9103: 9100: 9099: 9095: 9092: 9089: 9086: 9083: 9080: 9077: 9074: 9071: 9068: 9065: 9062: 9059: 9056: 9053: 9050: 9047: 9044: 9041: 9038: 9035: 9032: 9029: 9026: 9023: 9020: 9019: 9015: 9012: 9009: 9006: 9003: 9000: 8997: 8994: 8991: 8988: 8985: 8982: 8979: 8976: 8973: 8970: 8967: 8964: 8961: 8958: 8955: 8952: 8949: 8946: 8943: 8940: 8939: 8935: 8932: 8929: 8926: 8923: 8920: 8917: 8914: 8911: 8908: 8905: 8902: 8899: 8896: 8893: 8890: 8887: 8884: 8881: 8878: 8875: 8872: 8869: 8866: 8863: 8860: 8859: 8855: 8852: 8849: 8846: 8843: 8840: 8837: 8834: 8831: 8828: 8825: 8822: 8819: 8816: 8813: 8810: 8807: 8804: 8801: 8798: 8795: 8792: 8789: 8786: 8783: 8780: 8779: 8775: 8772: 8769: 8766: 8763: 8760: 8757: 8754: 8751: 8748: 8745: 8742: 8739: 8736: 8733: 8730: 8727: 8724: 8721: 8718: 8715: 8712: 8709: 8706: 8703: 8700: 8699: 8695: 8692: 8689: 8686: 8683: 8680: 8677: 8674: 8671: 8668: 8665: 8662: 8659: 8656: 8653: 8650: 8647: 8644: 8641: 8638: 8635: 8632: 8629: 8626: 8623: 8620: 8619: 8615: 8612: 8609: 8606: 8603: 8600: 8597: 8594: 8591: 8588: 8585: 8582: 8579: 8576: 8573: 8570: 8567: 8564: 8561: 8558: 8555: 8552: 8549: 8546: 8543: 8541: 8538: 8537: 8533: 8530: 8527: 8524: 8521: 8518: 8515: 8512: 8509: 8506: 8503: 8500: 8497: 8494: 8491: 8488: 8485: 8482: 8479: 8476: 8473: 8470: 8467: 8464: 8461: 8459: 8456: 8455: 8451: 8447: 8390: 8387: 8337: 8334: 8328: 8325: 8324: 8241: 8238: 8232: 8229: 8208: 8205: 8204: 8197: 8194: 8169: 8166: 8160: 8157: 8156: 8118: 8115: 8109: 8106: 8077: 8074: 8073: 8066: 8063: 8009: 8006: 7985: 7982: 7981: 7907: 7904: 7879: 7876: 7859: 7856: 7855: 7852:, 55, 58, 64 7800: 7797: 7767: 7764: 7758: 7755: 7754: 7712: 7709: 7703: 7700: 7679: 7676: 7675: 7668: 7665: 7612: 7609: 7603: 7600: 7599: 7521: 7518: 7512: 7509: 7499: 7496: 7495: 7492:, 56, 61, 64 7456: 7453: 7424: 7421: 7404: 7401: 7400: 7397:, 41, 49, 57 7381: 7378: 7345: 7342: 7320: 7317: 7316: 7285: 7282: 7237: 7234: 7228: 7225: 7224: 7153: 7150: 7144: 7141: 7128: 7125: 7124: 7117: 7114: 7093: 7090: 7084: 7081: 7080: 7037: 7034: 7009: 7006: 6988: 6985: 6984: 6977: 6974: 6948:, 9, 13, 15, 6932: 6929: 6923: 6920: 6919: 6852: 6849: 6819: 6816: 6807: 6804: 6803: 6756: 6753: 6739: 6736: 6730: 6727: 6726: 6688: 6685: 6679: 6676: 6663: 6660: 6659: 6624: 6621: 6580: 6577: 6571: 6568: 6567: 6513: 6510: 6504: 6501: 6495: 6492: 6491: 6484: 6481: 6459: 6456: 6450: 6447: 6446: 6411: 6408: 6398: 6395: 6389: 6386: 6385: 6342: 6339: 6305: 6302: 6299: 6296: 6295: 6292: 6288: 6286: 6283: 6281: 6277: 6275: 6272: 6270: 6266: 6264: 6261: 6260: 6257: 6254: 6250: 6244: 6240: 6235: 6231: 6223: 6218: 6207: 6205: 6201: 6197: 6193: 6189: 6184: 6182: 6178: 6168: 6166: 6162: 6158: 6154: 6150: 6145: 6143: 6139: 6135: 6131: 6127: 6123: 6119: 6115: 6111: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6072:is prime. If 6071: 6067: 6063: 6059: 6050: 6048: 6043: 6041: 6037: 6033: 6029: 6025: 6021: 6017: 6007: 6004: 6002: 6001:antisymmetric 5998: 5993: 5991: 5988: 5984: 5980: 5976: 5967: 5965: 5961: 5947: 5945: 5937: 5932: 5927: 5926: 5925: 5923: 5919: 5909: 5907: 5901: 5897: 5893: 5889: 5885: 5881: 5875: 5871: 5867: 5861: 5853: 5847: 5842: 5836: 5832: 5829: 5825: 5809: 5806: 5802: 5796: 5793: 5787: 5779: 5775: 5774: 5773: 5769: 5765: 5761: 5754: 5750: 5742: 5736: 5734: 5730: 5725: 5723: 5719: 5715: 5711: 5707: 5702: 5700: 5696: 5692: 5688: 5683: 5679: 5673: 5669: 5664: 5660: 5654: 5652: 5648: 5644: 5639: 5635: 5628: 5624: 5620: 5615: 5611: 5605: 5603: 5599: 5583: 5580: 5576: 5569: 5565: 5561: 5557: 5551: 5542: 5538: 5522: 5519: 5515: 5509: 5506: 5500: 5491: 5486: 5472: 5469: 5465: 5458: 5454: 5450: 5446: 5440: 5431: 5415: 5412: 5408: 5402: 5399: 5393: 5384: 5368: 5365: 5362: 5358: 5351: 5347: 5343: 5339: 5333: 5324: 5308: 5305: 5302: 5298: 5292: 5289: 5283: 5275: 5271: 5266: 5264: 5254: 5252: 5248: 5244: 5240: 5236: 5233: 5229: 5224: 5222: 5205: 5200: 5197: 5192: 5183: 5179: 5175: 5171: 5167: 5163: 5137: 5129: 5115: 5111: 5101: 5097: 5090: 5087: 5084: 5077: 5071: 5067: 5060: 5057: 5054: 5047: 5042: 5035: 5027: 5013: 5009: 4999: 4995: 4988: 4985: 4982: 4975: 4970: 4964: 4959: 4956: 4949: 4948: 4947: 4946:≡ 5 (mod 8): 4945: 4941: 4922: 4915: 4911: 4901: 4897: 4890: 4887: 4884: 4877: 4872: 4869: 4866: 4859: 4858: 4857: 4855: 4852:≡ 3 (mod 4), 4851: 4835: 4832: 4828: 4823: 4820: 4815: 4806: 4802: 4798: 4781: 4776: 4773: 4768: 4760: 4757:is prime the 4756: 4740: 4737: 4736: 4734: 4733: 4727: 4724: 4723: 4721: 4720: 4714: 4711: 4710: 4708: 4707: 4706: 4705:For example: 4702: 4700: 4696: 4691: 4689: 4682: 4676: 4669: 4662: 4658: 4653: 4651: 4647: 4643: 4640:), or two if 4639: 4635: 4631: 4627: 4623: 4619: 4615: 4611: 4603: 4600: 4596: 4592: 4588: 4584: 4583: 4582: 4580: 4576: 4566: 4564: 4560: 4556: 4552: 4548: 4544: 4540: 4535: 4530: 4526: 4522: 4518: 4514: 4511: 4507: 4494: 4489: 4484: 4483: 4482: 4480: 4476: 4471: 4469: 4465: 4461: 4457: 4453: 4449: 4447: 4443: 4439: 4435: 4432:Assuming the 4430: 4428: 4417: 4413: 4409: 4404: 4402: 4396: 4388: 4386: 4382: 4378: 4368: 4366: 4347: 4344: 4341: 4338: 4335: 4330: 4323: 4320: 4315: 4311: 4306: 4301: 4298: 4293: 4287: 4282: 4279: 4276: 4272: 4267: 4261: 4249: 4248: 4247: 4245: 4224: 4216: 4213: 4209: 4204: 4200: 4195: 4190: 4187: 4182: 4176: 4171: 4168: 4165: 4161: 4156: 4150: 4138: 4137: 4136: 4134: 4115: 4111: 4107: 4104: 4101: 4098: 4095: 4090: 4084: 4080: 4077: 4073: 4066: 4060: 4055: 4052: 4049: 4044: 4041: 4038: 4035: 4032: 4028: 4023: 4015: 4014: 4013: 4012:is true then 4011: 4007: 4003: 3985: 3982: 3977: 3972: 3969: 3966: 3963: 3960: 3955: 3946: 3942: 3938: 3933: 3929: 3924: 3919: 3916: 3911: 3905: 3902: 3899: 3894: 3891: 3888: 3885: 3882: 3878: 3873: 3865: 3864: 3863: 3846: 3843: 3840: 3837: 3832: 3827: 3823: 3818: 3813: 3810: 3805: 3799: 3796: 3793: 3788: 3785: 3782: 3779: 3776: 3772: 3767: 3759: 3758: 3757: 3740: 3734: 3731: 3728: 3723: 3715: 3712: 3709: 3704: 3701: 3692: 3691: 3690: 3688: 3684: 3665: 3661: 3656: 3653: 3648: 3644: 3638: 3632: 3625: 3624: 3623: 3621: 3602: 3598: 3594: 3591: 3588: 3583: 3577: 3573: 3570: 3566: 3559: 3553: 3548: 3545: 3542: 3537: 3534: 3531: 3528: 3525: 3521: 3516: 3508: 3507: 3506: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3450: 3447: 3427: 3425: 3421: 3418: =  3417: 3413: 3409: 3405: 3391: 3388: 3382: 3379: 3373: 3370: 3368:= {4,5,6,16}, 3364: 3361: 3360: 3358: 3354: 3350: 3346: 3342: 3338: 3334: 3330: 3326: 3323: 3322: 3321: 3310: 3307: 3301: 3298: 3296:= {2,4,9,13}, 3292: 3289: 3283: 3280: 3279: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3247: 3246: 3245: 3242: 3240: 3220: 3215: 3211: 3208: 3205: 3199: 3194: 3190: 3186: 3181: 3177: 3173: 3168: 3164: 3159: 3154: 3150: 3147: 3144: 3138: 3133: 3129: 3121: 3120: 3119: 3117: 3096: 3092: 3089: 3086: 3080: 3075: 3071: 3067: 3062: 3058: 3054: 3049: 3045: 3040: 3035: 3031: 3028: 3025: 3019: 3014: 3010: 3002: 3001: 3000: 2998: 2986: 2979: 2972: 2965: 2964: 2963: 2946: 2936: 2933: 2929: 2920: 2915: 2912: 2908: 2900: 2899: 2898: 2881: 2877: 2871: 2863: 2860: 2854: 2850: 2845: 2841: 2838: 2835: 2829: 2825: 2820: 2812: 2809: 2803: 2799: 2794: 2791: 2786: 2782: 2776: 2773: 2770: 2767: 2764: 2761: 2758: 2755: 2752: 2746: 2743: 2739: 2735: 2730: 2727: 2723: 2715: 2714: 2713: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2644: 2641: 2638: 2635: 2632: 2629: 2628: 2624: 2621: 2618: 2615: 2612: 2609: 2608: 2604: 2601: 2598: 2595: 2592: 2589: 2588: 2584: 2581: 2578: 2575: 2572:(every prime 2571: 2568: 2567: 2563: 2560: 2557: 2554: 2551: 2548: 2547: 2543: 2540: 2537: 2534: 2531: 2528: 2527: 2523: 2520: 2517: 2514: 2511: 2508: 2507: 2503: 2500: 2497: 2494: 2491: 2488: 2487: 2483: 2480: 2477: 2474: 2471:(every prime 2470: 2467: 2466: 2462: 2459: 2456: 2453: 2450: 2447: 2446: 2442: 2439: 2436: 2433: 2430: 2427: 2426: 2422: 2419: 2416: 2413: 2410:(every prime 2409: 2406: 2405: 2401: 2397: 2394: 2392: 2389: 2386: 2382: 2379: 2377: 2374: 2373: 2370: 2368: 2364: 2360: 2355: 2353: 2336: 2331: 2328: 2323: 2295: 2291: 2288: 2285: 2279: 2274: 2270: 2267: 2264: 2253: 2250: 2244: 2240: 2235: 2232: 2227: 2222: 2217: 2214: 2209: 2201: 2200: 2199: 2196: 2194: 2190: 2186: 2182: 2178: 2174: 2169: 2167: 2163: 2157: 2147: 2143: 2139: 2137: 2118: 2115: 2111: 2106: 2103: 2098: 2091: 2087: 2084: 2081: 2074: 2071: 2068: 2064: 2055: 2048: 2043: 2038: 2035: 2030: 2026: 2023: 2019: 2014: 2009: 2003: 1997: 1990: 1989: 1988: 1987:≡ 3 (mod 4), 1986: 1981: 1965: 1958: 1955: 1952: 1946: 1935: 1931: 1927: 1923: 1914: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1886: 1885: 1884: 1880: 1878: 1874: 1855: 1852: 1848: 1843: 1840: 1835: 1829: 1826: 1819: 1816: 1813: 1808: 1805: 1802: 1798: 1791: 1787: 1782: 1779: 1773: 1767: 1760: 1759: 1758: 1756: 1737: 1732: 1729: 1725: 1720: 1715: 1712: 1707: 1696: 1693: 1690: 1686: 1682: 1676: 1670: 1663: 1662: 1661: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1624: 1622: 1618: 1614: 1608: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1579:on primes in 1578: 1573: 1571: 1567: 1563: 1559: 1549: 1523: 1520: 1511: 1508: 1482: 1479: 1470: 1467: 1452: 1448: 1442: 1438: 1421: 1418: 1409: 1406: 1380: 1377: 1374: 1365: 1362: 1347: 1343: 1337: 1333: 1316: 1313: 1310: 1307: 1298: 1295: 1277: 1276:Jacobi symbol 1268: 1266: 1261: 1259: 1255: 1239: 1236: 1227: 1223: 1220: 1205: 1201: 1194: 1164: 1156: 1148: 1145: 1139: 1129: 1126: 1119: 1111: 1103: 1100: 1094: 1084: 1081: 1074: 1066: 1056: 1047: 1042: 1038: 1033: 1030: 1025: 1017: 1016: 1015: 1010: 1009:prime numbers 1002: 998: 975:for example, 974: 973: 972: 956: 953: 951: 947: 943: 939: 935: 931: 927: 922: 920: 916: 915:zero divisors 892: 888: 870: 868: 864: 840: 836: 820: 816: 812: 806: 803: 801: 797: 793: 789: 785: 781: 775: 771: 768: 766: 762: 758: 754: 748: 742: 738: 734: 730: 726: 722: 718: 715: 711: 707: 703: 699: 695: 691: 690: 689: 681: 679: 674: 672: 668: 664: 660: 656: 652: 648: 643: 635: 631: 627: 623: 619: 616: 612: 608: 604: 600: 597: 593: 589: 585: 583: 579: 575: 571: 570: 569: 566: 562: 561: 560: 558: 553: 551: 547: 543: 539: 534: 532: 523: 520: 517: 516: 515: 509: 506: 503: 500: 499: 498: 494: 493:≡ 1 (mod 8). 492: 488: 484: 480: 476: 466: 464: 460: 455: 453: 449: 444: 442: 438: 434: 430: 426: 421: 418: 415: 412: 410: 386: 382: 366: 362: 358: 354: 350: 346: 343: 338: 333:Prime modulus 330: 327: 325: 321: 317: 313: 309: 305: 281: 258: 254: 248: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 197: 192: 188: 183: 181: 180: 175: 171: 167: 163: 159: 150: 148: 144: 140: 136: 132: 127: 125: 121: 118:is called a 117: 98: 91: 87: 79: 76: 71: 67: 59: 58: 57: 55: 51: 47: 43: 39: 36: 33: 29: 26: 22: 21:number theory 14743:Order theory 14733:Field theory 14599:Affine space 14532:Vector space 14387:Order theory 14180:Trigonometry 13992:Discriminant 13911:Multivariate 13746: 13544:Ultraproduct 13391:Model theory 13356:Independence 13292:Formal proof 13284:Proof theory 13267: 13240: 13197:real numbers 13169:second-order 13080:Substitution 12957:Metalanguage 12898:conservative 12871:Axiom schema 12815:Constructive 12785:Morse–Kelley 12751:Set theories 12730:Aleph number 12723:inaccessible 12629:Grothendieck 12513:intersection 12400:Higher-order 12388:Second-order 12334:Truth tables 12291:Venn diagram 12074:Formal proof 11810:Key concepts 11737:sieve theory 11633: 11600: 11596: 11592: 11570: 11552: 11528: 11519:Hardy, G. H. 11498: 11471: 11453: 11431: 11413: 11409: 11387: 11356: 11354: 11340: 11332: 11324: 11312: 11300:. Retrieved 11286: 11262: 11258: 11248: 11239: 11230: 11224: 11213: 11204: 11196: 11188: 11180: 11172: 11163: 11155: 11151: 11108: 11100: 11096: 11092: 11084: 11057: 11048: 11017: 11008: 10977: 10953: 10948: 10935: 10923: 10915: 10911: 10906: 10899: 10895: 10890: 10881: 10872: 10860: 10844: 10832: 10823: 10818:for examples 10810: 10802: 10797: 10788: 10779: 10770: 10765:, p. 50 10757: 10748: 10727: 10718: 10685: 10676: 10667: 8539: 8457: 7249:, 7, 9, 11, 6864:, 7, 9, 13, 6290: 6284: 6279: 6273: 6268: 6262: 6233: 6229: 6213: 6185: 6176: 6174: 6164: 6160: 6156: 6146: 6137: 6133: 6129: 6125: 6121: 6117: 6113: 6109: 6105: 6101: 6097: 6093: 6089: 6081: 6077: 6073: 6069: 6065: 6061: 6056: 6044: 6026:such as the 6020:hard problem 6015: 6013: 6010:Cryptography 6005: 5996: 5994: 5978: 5975:Paley graphs 5973: 5970:Graph theory 5958: 5943: 5941: 5921: 5917: 5915: 5905: 5899: 5895: 5891: 5887: 5883: 5879: 5873: 5869: 5865: 5859: 5857: 5851: 5845: 5840: 5834: 5827: 5823: 5767: 5763: 5759: 5752: 5748: 5740: 5737: 5732: 5728: 5726: 5721: 5709: 5705: 5703: 5690: 5686: 5681: 5677: 5671: 5667: 5662: 5658: 5656: 5650: 5646: 5642: 5637: 5633: 5626: 5622: 5618: 5609: 5607: 5601: 5540: 5536: 5489: 5487: 5429: 5382: 5322: 5269: 5267: 5262: 5260: 5246: 5242: 5238: 5234: 5227: 5225: 5181: 5177: 5173: 5161: 5159: 4943: 4937: 4849: 4754: 4752: 4704: 4694: 4692: 4687: 4680: 4674: 4667: 4660: 4656: 4654: 4649: 4645: 4641: 4637: 4633: 4629: 4625: 4621: 4617: 4613: 4609: 4607: 4598: 4594: 4590: 4586: 4578: 4574: 4572: 4562: 4558: 4554: 4550: 4546: 4542: 4531:) (sequence 4528: 4524: 4520: 4516: 4512: 4509: 4505: 4503: 4478: 4474: 4472: 4467: 4463: 4459: 4455: 4450: 4445: 4441: 4437: 4431: 4415: 4411: 4407: 4405: 4400: 4394: 4389: 4384: 4380: 4376: 4374: 4364: 4362: 4241: 4130: 4000: 3861: 3755: 3686: 3682: 3680: 3617: 3502: 3498: 3494: 3490: 3470: 3433: 3423: 3419: 3415: 3411: 3407: 3403: 3401: 3389: 3380: 3371: 3362: 3356: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3324: 3319: 3308: 3299: 3290: 3281: 3276: 3272: 3268: 3264: 3260: 3256: 3252: 3248: 3243: 3238: 3236: 3118:≡ 3 (mod 4) 3115: 3113: 2999:≡ 1 (mod 4) 2996: 2994: 2961: 2896: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2655: 2645:≡ 1 (mod 3) 2642: 2633: 2622: 2613: 2602: 2593: 2585:≡ 1 (mod 4) 2582: 2573: 2561: 2552: 2541: 2532: 2521: 2512: 2501: 2492: 2484:≡ 1 (mod 4) 2481: 2472: 2463:≡ 1 (mod 3) 2460: 2451: 2440: 2431: 2423:≡ 1 (mod 4) 2420: 2411: 2399: 2395: 2390: 2384: 2380: 2375: 2366: 2362: 2358: 2356: 2314: 2197: 2192: 2188: 2184: 2180: 2176: 2172: 2170: 2165: 2161: 2159: 2145: 2141: 2135: 2133: 1984: 1982: 1933: 1929: 1925: 1921: 1919: 1907: 1903: 1899: 1895: 1891: 1887: 1882: 1876: 1872: 1870: 1754: 1752: 1653: 1649: 1642:class number 1631: 1620: 1616: 1612: 1610: 1604: 1600: 1596: 1592: 1574: 1570:cryptography 1562:applications 1557: 1555: 1450: 1446: 1440: 1436: 1345: 1341: 1335: 1331: 1269: 1262: 1193:homomorphism 1186: 994: 962: 954: 949: 945: 941: 937: 933: 925: 923: 918: 913:, which has 871: 808: 804: 799: 795: 791: 787: 783: 779: 777: 773: 769: 764: 760: 756: 752: 750: 746: 740: 737:at least one 736: 732: 728: 724: 720: 713: 709: 705: 701: 697: 693: 687: 675: 670: 666: 662: 658: 654: 650: 646: 644: 641: 633: 632:is even and 629: 625: 621: 617:is a residue 614: 613:is even and 610: 606: 602: 595: 591: 587: 581: 577: 573: 567: 564: 556: 554: 549: 545: 541: 537: 535: 530: 528: 513: 496: 490: 486: 482: 478: 474: 472: 462: 458: 456: 451: 447: 445: 440: 436: 432: 428: 422: 419: 416: 413: 408: 352: 348: 344: 342:prime number 339: 336: 328: 323: 319: 315: 311: 307: 303: 279: 256: 252: 246: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 201: 195: 190: 186: 185:For a given 184: 177: 156: 143:cryptography 131:mathematical 128: 123: 119: 115: 113: 53: 49: 37: 31: 30:is called a 27: 18: 14748:Ring theory 14710:Topic lists 14670:Multivector 14656:Free object 14574:Dot product 14560:Determinant 14546:Linear and 13941:Homogeneous 13936:Square-free 13931:Irreducible 13796:Polynomials 13654:Type theory 13602:undecidable 13534:Truth value 13421:equivalence 13100:non-logical 12713:Enumeration 12703:Isomorphism 12650:cardinality 12634:Von Neumann 12599:Ultrafilter 12564:Uncountable 12498:equivalence 12415:Quantifiers 12405:Fixed-point 12374:First-order 12254:Consistency 12239:Proposition 12216:Traditional 12187:Lindström's 12177:Compactness 12119:Type theory 12064:Cardinality 11996:Wikiversity 11918:L-functions 11291:Walker, R. 10867:, p. 9 7460:, 1, 4, 9, 6402:, 1, 4, 7, 5848:≡ 1 (mod 8) 5837:≡ 1 (mod 4) 5714:NP-complete 5232:prime power 3287:= {1,8,15}, 3259:, 5, 6, 7, 1902:, 6, 7, 8, 1252:allows its 963:Gauss used 427:is that if 347:there are ( 114:Otherwise, 56:such that: 14781:Categories 14726:Glossaries 14680:Polynomial 14660:Free group 14585:Linear map 14442:Inequality 14164:Riemannian 14159:Projective 14144:Symplectic 14139:Hyperbolic 14072:Euclidean 13901:Univariate 13465:elementary 13158:arithmetic 13026:Quantifier 13004:functional 12876:Expression 12594:Transitive 12538:identities 12523:complement 12456:hereditary 12439:Set theory 11877:Arithmetic 11648:PlanetMath 11351:References 11302:25 October 11076:1074.11001 11040:0814.11001 11000:1226.11099 10805:functions. 8430:, 61, 64, 8422:, 46, 49, 8414:, 31, 34, 8402:, 16, 19, 8377:, 39, 41, 8369:, 29, 31, 8357:, 19, 21, 8317:, 65, 67, 8305:, 49, 53, 8261:, 21, 25, 7895:, 31, 34, 7891:, 16, 19, 7848:, 49, 52, 7820:, 13, 16, 7732:, 21, 25, 7488:, 49, 51, 7464:, 14, 16, 7301:, 22, 25, 7201:, 33, 35, 6927:, 1, 4, 7 6776:, 25, 28, 6734:, 1, 2, 4 6226:red number 6198:, and the 5160:For prime 4462:such that 4458:less than 4002:Montgomery 3622:. Setting 3483:Vinogradov 3320:Modulo 19 3244:Modulo 17 2668:+ 1 where 1644:of binary 1587:, and the 318:even) or ( 212:) implies 14452:Operation 14185:Lie group 14149:Spherical 13987:Resultant 13926:Trinomial 13906:Bivariate 13736:Supertask 13639:Recursion 13597:decidable 13431:saturated 13409:of models 13332:deductive 13327:axiomatic 13247:Hilbert's 13234:Euclidean 13215:canonical 13138:axiomatic 13070:Signature 12999:Predicate 12888:Extension 12810:Ackermann 12735:Operation 12614:Universal 12604:Recursive 12579:Singleton 12574:Inhabited 12559:Countable 12549:Types of 12533:power set 12503:partition 12420:Predicate 12366:Predicate 12281:Syllogism 12271:Soundness 12244:Inference 12234:Tautology 12136:paradoxes 11635:MathWorld 11591:(1978), " 11375:Gauss sum 8349:, 9, 11, 8321:, 71, 73 8061:, 39, 41 7915:, 9, 11, 7724:, 9, 13, 6751:, 17, 25 6382:, 43, 49 6337:, 23, 25 5987:symmetric 5955:Acoustics 5665:(denoted 5636:≠ ± 5366:− 5306:− 5088:− 5043:± 4971:± 4960:≡ 4873:± 4870:≡ 4636:≡ 0 (mod 4632:, one if 4616:has 1 + ( 4444:) ≪ (log 4345:⁡ 4339:⁡ 4273:∑ 4217:π 4162:∑ 4105:⁡ 4099:⁡ 4061:χ 4029:∑ 3964:⁡ 3943:π 3879:∑ 3862:In fact, 3841:⁡ 3773:∑ 3732:⁡ 3633:χ 3592:⁡ 3554:χ 3522:∑ 3493:) modulo 3475:coin flip 3410:≡ 2 (mod 3209:− 3191:α 3178:α 3165:α 3130:α 3090:− 3072:α 3059:α 3046:α 3029:− 3011:α 2962:That is, 2909:α 2861:− 2826:∧ 2810:− 2774:− 2765:… 2747:∈ 2289:− 2280:⋅ 2268:− 2251:− 2198:That is: 2085:− 2065:∑ 2027:− 2015:π 1956:− 1817:− 1799:∑ 1788:π 1783:− 1730:− 1702:∞ 1687:∑ 1566:acoustics 1339:, and if 1311:− 1258:semigroup 1195:from the 1146:⁡ 1127:− 1101:⁡ 959:Notations 790:, 7, 8, 536:A number 435:, and if 290:⌋ 267:⌊ 249:− 1 198:− 1 77:≡ 42:congruent 40:if it is 14766:Category 14476:Variable 14466:Relation 14456:Addition 14432:Function 14418:Equation 14367:K-theory 14246:Category 14134:Elliptic 14126:geometry 14107:Polyform 14092:Discrete 14074:geometry 14055:Timeline 14039:Geometry 13972:Division 13921:Binomial 13916:Monomial 13721:Logicism 13714:timeline 13690:Concrete 13549:Validity 13519:T-schema 13512:Kripke's 13507:Tarski's 13502:semantic 13492:Strength 13441:submodel 13436:spectrum 13404:function 13252:Tarski's 13241:Elements 13228:geometry 13184:Robinson 13105:variable 13090:function 13063:spectrum 13053:Sentence 13009:variable 12952:Language 12905:Relation 12866:Automata 12856:Alphabet 12840:language 12694:-jection 12672:codomain 12658:Function 12619:Universe 12589:Infinite 12493:Relation 12276:Validity 12266:Argument 12164:theorem, 11986:Wikibook 11956:Category 11525:(1980), 11495:(1979), 11392:Springer 11183:) steps. 11016:(1994). 10976:(2010). 10623:See also 8394:, 1, 4, 8249:, 7, 9, 8245:, 1, 3, 8085:, 5, 9, 8081:, 1, 3, 7989:, 1, 4, 7883:, 1, 4, 7775:, 5, 9, 7408:, 1, 4, 7340:, 9, 11 7289:, 1, 4, 7165:, 5, 7, 6760:, 1, 4, 6628:, 1, 4, 6346:, 1, 4, 6309:, 1, 3, 6068:) where 6030:and the 4940:Legendre 4854:Lagrange 4652:) = 1.) 4648:and gcd( 4601:) exists 4589:solving 4541:). For 4367:> 0. 3327:, 2, 3, 2995:Then if 2897:and let 1640:for the 863:subgroup 782:, 2, 3, 580:≥ 322:+ 1)/2 ( 314:/2 + 1 ( 200:. Since 170:Legendre 166:Lagrange 145:and the 14678: ( 14668: ( 14534: ( 14524: ( 14514: ( 14504: ( 14494: ( 14304:History 14299:Outline 14288:Algebra 14102:Polygon 14050:History 13663:Related 13460:Diagram 13358: ( 13337:Hilbert 13322:Systems 13317:Theorem 13195:of the 13140:systems 12920:Formula 12915:Grammar 12831: ( 12775:General 12488:Forcing 12473:Element 12393:Monadic 12168:paradox 12109:Theorem 12045:General 11817:Numbers 11367:English 11335:) steps 11279:2690536 11158:) steps 10894:Gauss, 10541:mod 25 10461:mod 24 10381:mod 23 10301:mod 22 10221:mod 21 10141:mod 20 10061:mod 19 9981:mod 18 9901:mod 17 9821:mod 16 9741:mod 15 9661:mod 14 9581:mod 13 9501:mod 12 9421:mod 11 9341:mod 10 8450:A343720 8446:A048152 6575:, 1, 4 6253:A046071 6251::  6243:A096103 6241::  6220:in the 6217:A096008 5934:in the 5931:A000224 5757:. Then 5170:Cipolla 5166:Tonelli 4803:or the 4795:can be 4557:. For 4537:in the 4534:A178153 4491:in the 4488:A053760 4420:√ 4392:√ 4006:Vaughan 3114:and if 2350:is the 1393:but if 1202:to the 817:of the 727:, then 700:, then 363:of the 240:) (mod 236:− 122:modulo 48:modulo 25:integer 14692:, ...) 14662:, ...) 14589:Matrix 14536:Vector 14526:theory 14516:theory 14512:Module 14506:theory 14496:theory 14335:Scheme 14154:Affine 14087:Convex 13809:degree 13426:finite 13189:Skolem 13142:  13117:Theory 13085:Symbol 13075:String 13058:atomic 12935:ground 12930:closed 12925:atomic 12881:ground 12844:syntax 12740:binary 12667:domain 12584:Finite 12349:finite 12207:Logics 12166:  12114:Theory 11692:Fields 11577:  11559:  11541:  11507:  11478:  11460:  11442:  11420:  11398:  11371:German 11277:  11074:  11064:  11038:  11028:  10998:  10988:  10853:Jacobi 10761:e.g., 9261:mod 9 9181:mod 8 9101:mod 7 9021:mod 6 8941:mod 5 8861:mod 4 8781:mod 3 8701:mod 2 8621:mod 1 8313:, 63, 8301:, 47, 8293:, 41, 8273:, 33, 8265:, 27, 8253:, 11, 8185:, 25, 8146:, 49, 8134:, 25, 8097:, 15, 8057:, 35, 8049:, 25, 8033:, 13, 8001:, 16, 7963:, 51, 7947:, 39, 7935:, 29, 7832:, 31, 7828:, 25, 7787:, 25, 7744:, 53, 7740:, 49, 7736:, 33, 7695:, 13, 7660:, 37, 7648:, 25, 7581:, 49, 7569:, 37, 7557:, 31, 7553:, 25, 7480:, 36, 7472:, 29, 7357:, 10, 7297:, 16, 7277:, 35, 7265:, 25, 7261:, 23, 7253:, 17, 7217:, 51, 7209:, 39, 7189:, 25, 7185:, 19, 7109:, 25, 7105:, 13, 7029:, 29, 7021:, 16, 6912:, 53, 6896:, 35, 6892:, 33, 6880:, 25, 6876:, 23, 6843:, 25, 6839:, 16, 6796:, 49, 6792:, 43, 6768:, 16, 6704:, 25, 6640:, 16, 6636:, 14, 6608:, 19, 6561:, 49, 6557:, 43, 6553:, 37, 6545:, 31, 6537:, 25, 6533:, 19, 6529:, 13, 6362:, 25, 6358:, 19, 6354:, 16, 6350:, 13, 6333:, 17, 6236:, see 6194:, the 6190:, the 6034:. The 5920:, for 5745:, and 5743:> 1 5249:using 4452:Linnik 3347:, 10, 3271:, 14, 2987:α 2980:α 2973:α 2966:α 2696:+ 1 R 2680:+ 1 R 2315:where 1648:. Let 1583:, the 1575:Using 1542:4 R 15 1538:2 N 15 1536:, but 1274:, the 1254:domain 867:cosets 598:is odd 533:+ 1). 326:odd). 158:Fermat 35:modulo 14630:Trace 14555:Basis 14502:Group 14492:Field 14313:Areas 14216:Lists 14211:Shape 14204:Lists 14173:Other 14062:Lists 13416:Model 13164:Peano 13021:Proof 12861:Arity 12790:Naive 12677:image 12609:Fuzzy 12569:Empty 12518:union 12463:Class 12104:Model 12094:Lemma 12052:Axiom 11832:Unity 11412:[ 11365:into 11296:(PDF) 11275:JSTOR 11255:(PDF) 10660:Notes 8385:, 49 8341:, 1, 8212:, 1, 8173:, 1, 8122:, 1, 8029:, 9, 8017:, 3, 8013:, 1, 7911:, 1, 7871:, 9, 7863:, 1, 7808:, 4, 7804:, 1, 7795:, 37 7771:, 1, 7716:, 1, 7687:, 7, 7683:, 1, 7616:, 1, 7525:, 1, 7503:, 1, 7432:, 9, 7428:, 1, 7389:, 9, 7385:, 1, 7353:, 4, 7349:, 1, 7324:, 1, 7313:, 58 7245:, 5, 7241:, 1, 7221:, 59 7169:, 9, 7157:, 1, 7132:, 1, 7097:, 1, 7077:, 49 7041:, 1, 6992:, 1, 6972:, 33 6936:, 1, 6916:, 57 6860:, 5, 6856:, 1, 6847:, 31 6827:, 4, 6823:, 1, 6811:, 1, 6800:, 55 6764:, 7, 6747:, 9, 6743:, 1, 6700:, 9, 6692:, 1, 6667:, 1, 6656:, 49 6632:, 9, 6584:, 1, 6521:, 7, 6517:, 1, 6479:, 25 6471:, 9, 6463:, 1, 6443:, 49 6419:, 9, 6415:, 1, 6313:, 9, 5894:(mod 5766:(mod 5755:) = 1 5625:(mod 5428:, or 5230:is a 4848:, if 4597:(mod 4481:are: 4244:Paley 4133:Schur 3986:0.61. 3479:Pólya 3359:, 18 3343:, 8, 3255:, 3, 2684:, or 1890:, 2, 1544:. If 1349:then 1329:then 1265:cubic 989:3 N 8 985:1 R 8 983:, or 981:5 N 7 977:2 R 7 811:group 786:, 5, 755:, 2, 710:every 628:< 609:< 594:< 563:then 365:field 220:(mod 208:(mod 174:Gauss 162:Euler 44:to a 23:, an 14625:Rank 14605:Norm 14522:Ring 13798:and 13539:Type 13342:list 13146:list 13123:list 13112:Term 13046:rank 12940:open 12834:list 12646:Maps 12551:sets 12410:Free 12380:list 12130:list 12057:list 11575:ISBN 11557:ISBN 11539:ISBN 11505:ISBN 11476:ISBN 11458:ISBN 11440:ISBN 11418:ISBN 11396:ISBN 11369:and 11355:The 11304:2016 11154:log 11062:ISBN 11026:ISBN 10986:ISBN 10814:See 8616:625 7507:, 9 7004:, 9 6499:, 1 6454:, 1 6393:, 1 6249:OEIS 6239:OEIS 6222:OEIS 6147:The 6045:The 5936:OEIS 5872:) = 5864:gcd( 5776:The 5747:gcd( 5738:Let 5699:hard 5631:and 5535:and 4938:and 4539:OEIS 4504:Let 4493:OEIS 4448:). 4414:) ≪ 4403:). 4399:log 4316:> 4242:and 4205:> 4004:and 3973:0.41 3934:< 3828:< 3501:and 3481:and 3239:bold 2692:and 2676:and 2639:−12 2619:−11 2599:−10 2191:and 2164:and 2116:> 1908:bold 1853:> 1568:and 1540:and 1495:and 987:and 979:and 967:and 819:ring 800:bold 765:bold 735:for 708:for 13807:By 13226:of 13208:of 13156:of 12688:Sur 12662:Map 12469:Ur- 12451:Set 11646:at 11605:doi 11267:doi 11072:Zbl 11036:Zbl 10996:Zbl 10296:16 10136:17 10056:13 9976:13 9816:10 8613:576 8610:529 8607:484 8604:441 8601:400 8598:361 8595:324 8592:289 8589:256 8586:225 8583:196 8580:169 8577:144 8574:121 8571:100 8568:81 8565:64 8562:49 8559:36 8556:25 8553:16 8534:25 8388:75 8335:50 8326:25 8239:74 8230:49 8206:24 8195:73 8167:48 8158:23 8116:72 8107:47 8075:22 8064:71 8007:46 7983:21 7905:70 7877:45 7857:20 7798:69 7765:44 7756:19 7710:68 7701:43 7677:18 7666:67 7610:42 7601:17 7519:66 7510:41 7497:16 7454:65 7422:40 7402:15 7379:64 7343:39 7318:14 7283:63 7235:38 7226:13 7151:62 7142:37 7126:12 7115:61 7091:36 7082:11 7035:60 7007:35 6986:10 6975:59 6930:34 6850:58 6817:33 6754:57 6737:32 6686:56 6677:31 6622:55 6578:30 6511:54 6502:29 6482:53 6457:28 6409:52 6396:27 6340:51 6303:26 6256:.) 6144:". 5850:if 5839:if 5826:of 5675:or 5600:of 5268:If 5112:mod 5010:mod 4912:mod 4650:a,p 4527:/2, 4429:. 4342:log 4336:log 4258:max 4147:max 4102:log 4096:log 3961:log 3838:log 3729:log 3689:is 3618:in 3589:log 2630:12 2610:11 2590:10 2579:−9 2558:−8 2538:−7 2518:−6 2498:−5 2478:−4 2457:−3 2437:−2 2417:−1 2160:If 1924:if 1660:as 1564:as 1444:or 1014:as 952:.) 936:. ( 802:). 767:). 719:if 692:if 624:if 605:if 590:if 576:if 457:If 446:If 282:/2 176:'s 141:to 88:mod 19:In 14783:: 14458:, 14424:, 13612:NP 13236:: 13230:: 13160:: 12837:), 12692:Bi 12684:In 11788:, 11764:, 11735:, 11731:, 11717:, 11713:, 11709:, 11705:, 11632:. 11601:16 11599:, 11593:NP 11537:, 11521:; 11491:; 11438:, 11394:, 11273:, 11263:69 11261:, 11257:, 11070:. 11034:. 11020:. 10994:. 10980:. 10972:; 10961:^ 10736:^ 10706:^ 10694:^ 10616:0 10604:16 10598:11 10595:24 10592:14 10583:21 10580:19 10577:19 10574:21 10565:14 10562:24 10559:11 10553:16 10536:1 10533:0 10521:16 10515:12 10509:16 10497:0 10485:16 10479:12 10473:16 10456:4 10450:0 10438:16 10432:13 10426:18 10423:12 10408:12 10405:18 10399:13 10393:16 10376:9 10367:0 10355:16 10349:14 10343:20 10340:15 10337:12 10334:11 10331:12 10328:15 10325:20 10319:14 10313:16 10284:0 10272:16 10266:15 10257:18 10254:16 10251:16 10248:18 10239:15 10233:16 10216:5 10213:16 10201:0 10189:16 10183:16 10171:0 10159:16 10153:16 10130:16 10118:0 10106:16 10100:17 10097:11 10082:11 10079:17 10073:16 10047:16 10035:0 10023:16 10014:13 10011:10 10005:10 10002:13 9993:16 9973:15 9964:16 9952:0 9940:16 9931:15 9928:13 9925:13 9922:15 9913:16 9896:1 9893:0 9869:0 9845:0 9801:10 9786:0 9771:10 9756:10 9736:9 9730:11 9718:11 9703:0 9688:11 9676:11 9656:1 9644:12 9641:10 9638:10 9635:12 9620:0 9605:12 9602:10 9599:10 9596:12 9576:1 9573:0 9555:0 9537:0 9519:0 9496:9 9487:0 9454:0 9416:5 9401:0 9371:0 9336:4 9315:0 9288:0 9256:1 9253:0 9241:0 9229:0 9217:0 9205:0 9193:0 9176:2 9164:0 9143:0 9122:0 9096:1 9093:0 9075:0 9057:0 9039:0 9016:0 9001:0 8986:0 8971:0 8956:0 8936:1 8933:0 8927:0 8921:0 8915:0 8909:0 8903:0 8897:0 8891:0 8885:0 8879:0 8873:0 8867:0 8856:1 8853:0 8844:0 8835:0 8826:0 8817:0 8808:0 8799:0 8790:0 8776:1 8773:0 8767:0 8761:0 8755:0 8749:0 8743:0 8737:0 8731:0 8725:0 8719:0 8713:0 8707:0 8696:0 8681:0 8666:0 8651:0 8636:0 8550:9 8547:4 8544:1 8531:24 8528:23 8525:22 8522:21 8519:20 8516:19 8513:18 8510:17 8507:16 8504:15 8501:14 8498:13 8495:12 8492:11 8489:10 8452:) 8448:, 8436:69 8434:, 8432:66 8428:54 8426:, 8424:51 8420:39 8418:, 8416:36 8412:25 8410:, 8408:24 8406:, 8404:21 8398:, 8383:46 8381:, 8379:44 8375:36 8373:, 8371:34 8367:26 8365:, 8363:25 8361:, 8359:24 8355:16 8353:, 8351:14 8345:, 8319:70 8315:64 8311:62 8309:, 8307:58 8303:48 8299:46 8297:, 8295:44 8291:40 8289:, 8287:38 8285:, 8283:37 8281:, 8279:36 8277:, 8275:34 8271:30 8269:, 8267:28 8263:26 8259:16 8257:, 8255:12 8251:10 8226:16 8224:, 8222:12 8220:, 8216:, 8191:36 8189:, 8187:33 8183:16 8181:, 8177:, 8152:64 8150:, 8148:52 8144:40 8142:, 8140:36 8138:, 8136:28 8132:16 8130:, 8126:, 8103:20 8101:, 8099:16 8095:14 8093:, 8091:12 8089:, 8087:11 8059:36 8055:32 8051:26 8047:24 8045:, 8043:23 8041:, 8039:18 8037:, 8035:16 8031:12 8025:, 8021:, 8003:18 7999:15 7997:, 7993:, 7977:65 7975:, 7973:64 7971:, 7969:60 7967:, 7965:56 7961:50 7959:, 7957:49 7955:, 7953:46 7951:, 7949:44 7945:36 7943:, 7941:35 7939:, 7937:30 7933:25 7931:, 7929:21 7927:, 7925:16 7923:, 7921:15 7919:, 7917:14 7901:40 7899:, 7897:36 7893:25 7889:10 7887:, 7873:16 7867:, 7850:54 7846:48 7844:, 7842:46 7840:, 7838:39 7836:, 7834:36 7830:27 7826:24 7824:, 7822:18 7818:12 7816:, 7812:, 7793:36 7791:, 7789:33 7785:20 7783:, 7781:16 7779:, 7777:12 7750:64 7748:, 7746:60 7742:52 7738:36 7734:32 7730:17 7728:, 7726:16 7720:, 7697:16 7693:10 7691:, 7662:39 7658:36 7656:, 7654:30 7652:, 7650:28 7646:22 7644:, 7642:21 7640:, 7638:18 7636:, 7634:16 7632:, 7630:15 7628:, 7624:, 7620:, 7595:64 7593:, 7591:60 7589:, 7587:58 7585:, 7583:55 7579:48 7577:, 7575:45 7573:, 7571:42 7567:36 7565:, 7563:34 7561:, 7559:33 7555:27 7551:22 7549:, 7547:16 7545:, 7543:15 7541:, 7539:12 7537:, 7533:, 7529:, 7490:55 7486:40 7484:, 7482:39 7478:35 7476:, 7474:30 7470:26 7468:, 7466:25 7462:10 7450:36 7448:, 7446:25 7444:, 7442:24 7440:, 7438:20 7436:, 7434:16 7418:10 7416:, 7412:, 7395:36 7391:16 7375:36 7373:, 7371:30 7369:, 7367:27 7363:13 7361:, 7359:12 7336:, 7332:, 7328:, 7311:49 7307:36 7305:, 7303:28 7299:18 7293:, 7279:36 7275:30 7273:, 7271:28 7269:, 7267:26 7263:24 7259:20 7257:, 7255:19 7251:16 7219:56 7215:50 7211:40 7207:38 7205:, 7203:36 7199:32 7197:, 7195:31 7193:, 7191:28 7187:20 7183:18 7181:, 7179:16 7177:, 7175:14 7173:, 7171:10 7161:, 7136:, 7111:28 7107:16 7101:, 7075:45 7073:, 7071:40 7069:, 7067:36 7065:, 7063:25 7061:, 7059:24 7057:, 7055:21 7053:, 7051:16 7049:, 7045:, 7031:30 7027:25 7025:, 7023:21 7019:15 7017:, 7015:14 7000:, 6996:, 6970:32 6968:, 6966:30 6964:, 6962:26 6958:18 6956:, 6954:17 6952:, 6950:16 6944:, 6940:, 6921:9 6914:54 6910:52 6906:42 6904:, 6902:38 6900:, 6898:36 6894:34 6890:30 6888:, 6886:29 6884:, 6882:28 6878:24 6874:22 6872:, 6870:20 6868:, 6866:16 6845:27 6841:22 6837:15 6835:, 6833:12 6831:, 6805:8 6798:54 6794:45 6790:42 6788:, 6786:39 6784:, 6782:36 6780:, 6778:30 6774:24 6772:, 6770:19 6749:16 6728:7 6722:49 6720:, 6718:44 6716:, 6714:36 6712:, 6710:32 6708:, 6706:28 6702:16 6696:, 6671:, 6661:6 6654:45 6652:, 6650:44 6646:25 6644:, 6642:20 6638:15 6634:11 6618:25 6616:, 6614:24 6612:, 6610:21 6606:16 6604:, 6602:15 6600:, 6598:10 6596:, 6592:, 6588:, 6569:5 6563:52 6559:46 6555:40 6551:36 6549:, 6547:34 6543:28 6541:, 6539:27 6535:22 6531:16 6527:10 6525:, 6493:4 6477:21 6475:, 6473:16 6467:, 6448:3 6441:48 6439:, 6437:40 6435:, 6433:36 6429:16 6427:, 6425:13 6423:, 6421:12 6387:2 6380:42 6378:, 6376:36 6374:, 6372:34 6370:, 6368:33 6366:, 6364:30 6360:21 6356:18 6352:15 6335:22 6331:16 6329:, 6327:14 6325:, 6323:13 6321:, 6319:12 6317:, 6315:10 6300:0 6297:1 6183:. 6136:, 6042:. 5992:. 5886:≡ 5762:≡ 5680:N 5670:R 5621:≡ 5237:= 5223:. 4690:. 4644:R 4628:N 4593:≡ 4549:↔ 3505:, 3489:χ( 3426:. 3393:11 3384:10 3375:01 3366:00 3357:17 3355:, 3353:16 3349:11 3339:, 3335:, 3331:, 3312:11 3303:10 3294:01 3285:00 3277:16 3275:, 3273:15 3269:13 3263:, 3251:, 3241:) 3195:11 3182:10 3169:00 3134:01 3076:11 3063:10 3050:01 3015:00 2989:11 2982:10 2975:01 2968:00 2708:, 2688:N 2672:R 2664:, 2576:) 2569:9 2549:8 2529:7 2509:6 2489:5 2475:) 2468:4 2448:3 2428:2 2414:) 2407:1 2369:: 2354:. 2171:(( 2119:0. 1980:. 1898:, 1894:, 1856:0. 1607:. 1512:15 1471:15 1449:N 1439:R 1344:R 1334:N 921:. 796:10 794:, 759:, 680:. 673:. 661:; 649:= 559:, 552:. 232:≡( 168:, 164:, 160:, 149:. 126:. 14688:( 14682:) 14672:) 14658:( 14621:) 14617:( 14611:) 14607:( 14601:) 14597:( 14591:) 14587:( 14576:) 14572:( 14538:) 14528:) 14518:) 14508:) 14498:) 14472:) 14468:( 14462:) 14454:( 14448:) 14444:( 14438:) 14434:( 14428:) 14420:( 14280:e 14273:t 14266:v 14031:e 14024:t 14017:v 13788:e 13781:t 13774:v 13692:/ 13607:P 13362:) 13148:) 13144:( 13041:∀ 13036:! 13031:∃ 12992:= 12987:↔ 12982:→ 12977:∧ 12972:∨ 12967:¬ 12690:/ 12686:/ 12660:/ 12471:) 12467:( 12354:∞ 12344:3 12132:) 12030:e 12023:t 12016:v 11873:) 11869:( 11822:0 11792:) 11784:( 11778:) 11774:( 11768:) 11760:( 11739:) 11727:( 11721:) 11701:( 11677:e 11670:t 11663:v 11650:. 11638:. 11613:. 11607:: 11333:n 11306:. 11269:: 11252:" 11249:n 11197:n 11181:n 11156:n 11152:a 11137:) 11132:n 11129:a 11124:( 11103:. 11101:n 11097:m 11093:m 11078:. 11042:. 11002:. 10916:n 10912:n 10803:L 10613:1 10610:4 10607:9 10601:0 10589:6 10586:0 10571:0 10568:6 10556:0 10550:9 10547:4 10544:1 10530:1 10527:4 10524:9 10518:1 10512:1 10506:9 10503:4 10500:1 10494:1 10491:4 10488:9 10482:1 10476:1 10470:9 10467:4 10464:1 10453:1 10447:1 10444:4 10441:9 10435:2 10429:3 10420:8 10417:6 10414:6 10411:8 10402:3 10396:2 10390:9 10387:4 10384:1 10373:4 10370:1 10364:1 10361:4 10358:9 10352:3 10346:5 10322:5 10316:3 10310:9 10307:4 10304:1 10293:9 10290:4 10287:1 10281:1 10278:4 10275:9 10269:4 10263:7 10260:1 10245:1 10242:7 10236:4 10230:9 10227:4 10224:1 10210:9 10207:4 10204:1 10198:1 10195:4 10192:9 10186:5 10180:9 10177:4 10174:1 10168:1 10165:4 10162:9 10156:5 10150:9 10147:4 10144:1 10133:6 10127:9 10124:4 10121:1 10115:1 10112:4 10109:9 10103:6 10094:7 10091:5 10088:5 10085:7 10076:6 10070:9 10067:4 10064:1 10053:0 10050:7 10044:9 10041:4 10038:1 10032:1 10029:4 10026:9 10020:7 10017:0 10008:9 9999:0 9996:7 9990:9 9987:4 9984:1 9970:2 9967:8 9961:9 9958:4 9955:1 9949:1 9946:4 9943:9 9937:8 9934:2 9919:2 9916:8 9910:9 9907:4 9904:1 9890:1 9887:4 9884:9 9881:0 9878:9 9875:4 9872:1 9866:1 9863:4 9860:9 9857:0 9854:9 9851:4 9848:1 9842:1 9839:4 9836:9 9833:0 9830:9 9827:4 9824:1 9813:6 9810:4 9807:4 9804:6 9798:1 9795:9 9792:4 9789:1 9783:1 9780:4 9777:9 9774:1 9768:6 9765:4 9762:4 9759:6 9753:1 9750:9 9747:4 9744:1 9733:2 9727:8 9724:7 9721:8 9715:2 9712:9 9709:4 9706:1 9700:1 9697:4 9694:9 9691:2 9685:8 9682:7 9679:8 9673:2 9670:9 9667:4 9664:1 9653:4 9650:9 9647:3 9632:3 9629:9 9626:4 9623:1 9617:1 9614:4 9611:9 9608:3 9593:3 9590:9 9587:4 9584:1 9570:1 9567:4 9564:9 9561:4 9558:1 9552:1 9549:4 9546:9 9543:4 9540:1 9534:1 9531:4 9528:9 9525:4 9522:1 9516:1 9513:4 9510:9 9507:4 9504:1 9493:4 9490:1 9484:1 9481:4 9478:9 9475:5 9472:3 9469:3 9466:5 9463:9 9460:4 9457:1 9451:1 9448:4 9445:9 9442:5 9439:3 9436:3 9433:5 9430:9 9427:4 9424:1 9413:6 9410:9 9407:4 9404:1 9398:1 9395:4 9392:9 9389:6 9386:5 9383:6 9380:9 9377:4 9374:1 9368:1 9365:4 9362:9 9359:6 9356:5 9353:6 9350:9 9347:4 9344:1 9333:0 9330:7 9327:7 9324:0 9321:4 9318:1 9312:1 9309:4 9306:0 9303:7 9300:7 9297:0 9294:4 9291:1 9285:1 9282:4 9279:0 9276:7 9273:7 9270:0 9267:4 9264:1 9250:1 9247:4 9244:1 9238:1 9235:4 9232:1 9226:1 9223:4 9220:1 9214:1 9211:4 9208:1 9202:1 9199:4 9196:1 9190:1 9187:4 9184:1 9173:2 9170:4 9167:1 9161:1 9158:4 9155:2 9152:2 9149:4 9146:1 9140:1 9137:4 9134:2 9131:2 9128:4 9125:1 9119:1 9116:4 9113:2 9110:2 9107:4 9104:1 9090:1 9087:4 9084:3 9081:4 9078:1 9072:1 9069:4 9066:3 9063:4 9060:1 9054:1 9051:4 9048:3 9045:4 9042:1 9036:1 9033:4 9030:3 9027:4 9024:1 9013:1 9010:4 9007:4 9004:1 8998:1 8995:4 8992:4 8989:1 8983:1 8980:4 8977:4 8974:1 8968:1 8965:4 8962:4 8959:1 8953:1 8950:4 8947:4 8944:1 8930:1 8924:1 8918:1 8912:1 8906:1 8900:1 8894:1 8888:1 8882:1 8876:1 8870:1 8864:1 8850:1 8847:1 8841:1 8838:1 8832:1 8829:1 8823:1 8820:1 8814:1 8811:1 8805:1 8802:1 8796:1 8793:1 8787:1 8784:1 8770:1 8764:1 8758:1 8752:1 8746:1 8740:1 8734:1 8728:1 8722:1 8716:1 8710:1 8704:1 8693:0 8690:0 8687:0 8684:0 8678:0 8675:0 8672:0 8669:0 8663:0 8660:0 8657:0 8654:0 8648:0 8645:0 8642:0 8639:0 8633:0 8630:0 8627:0 8624:0 8540:x 8486:9 8483:8 8480:7 8477:6 8474:5 8471:4 8468:3 8465:2 8462:1 8458:x 8400:9 8396:6 8392:0 8347:6 8343:4 8339:0 8330:0 8247:4 8243:0 8234:0 8218:9 8214:4 8210:0 8199:0 8179:9 8175:4 8171:0 8162:0 8128:9 8124:4 8120:0 8111:0 8083:4 8079:0 8068:0 8027:8 8023:6 8019:4 8015:2 8011:0 7995:9 7991:7 7987:0 7913:4 7909:0 7885:9 7881:0 7869:5 7865:4 7861:0 7814:9 7810:6 7806:3 7802:0 7773:4 7769:0 7760:0 7722:8 7718:4 7714:0 7705:0 7689:9 7685:4 7681:0 7670:0 7626:9 7622:7 7618:4 7614:0 7605:0 7535:9 7531:4 7527:3 7523:0 7514:0 7505:4 7501:0 7458:0 7430:4 7426:0 7414:9 7410:6 7406:0 7387:4 7383:0 7355:9 7351:3 7347:0 7338:8 7334:7 7330:4 7326:2 7322:0 7295:9 7291:7 7287:0 7247:6 7243:4 7239:0 7230:0 7167:8 7163:4 7159:2 7155:0 7146:0 7138:9 7134:4 7130:0 7119:0 7103:9 7099:4 7095:0 7086:0 7047:9 7043:4 7039:0 7011:0 7002:6 6998:5 6994:4 6990:0 6979:0 6946:8 6942:4 6938:2 6934:0 6925:0 6862:6 6858:4 6854:0 6829:9 6825:3 6821:0 6813:4 6809:0 6766:9 6762:6 6758:0 6745:4 6741:0 6732:0 6698:8 6694:4 6690:0 6681:0 6673:4 6669:3 6665:0 6630:5 6626:0 6594:9 6590:6 6586:4 6582:0 6573:0 6523:9 6519:4 6515:0 6506:0 6497:0 6486:0 6469:8 6465:4 6461:0 6452:0 6417:4 6413:0 6404:9 6400:0 6391:0 6348:9 6344:0 6311:4 6307:0 6291:n 6285:n 6280:n 6274:n 6269:n 6263:n 6234:n 6230:n 6165:n 6161:n 6157:n 6138:n 6134:a 6130:n 6126:n 6122:n 6118:a 6114:n 6110:n 6106:n 6102:n 6100:| 6098:a 6094:a 6090:n 6082:p 6080:| 6078:a 6074:p 6070:p 6066:p 6064:| 6062:a 6016:n 5997:p 5979:p 5944:n 5938:) 5922:n 5918:n 5906:m 5902:) 5900:m 5898:/ 5896:n 5892:m 5890:/ 5888:x 5884:m 5882:/ 5880:a 5874:m 5870:n 5868:, 5866:a 5860:n 5852:n 5846:a 5841:n 5835:a 5830:. 5828:n 5824:p 5810:1 5807:= 5803:) 5797:p 5794:a 5788:( 5770:) 5768:n 5764:a 5760:x 5753:n 5751:, 5749:a 5741:n 5733:n 5729:a 5722:c 5710:c 5706:x 5691:n 5687:n 5682:n 5678:a 5672:n 5668:a 5663:n 5659:a 5651:n 5647:n 5643:n 5638:y 5634:x 5629:) 5627:n 5623:y 5619:x 5610:n 5602:n 5584:1 5581:= 5577:) 5570:2 5566:/ 5562:n 5558:a 5552:( 5541:n 5537:n 5523:1 5520:= 5516:) 5510:n 5507:a 5501:( 5490:n 5473:1 5470:= 5466:) 5459:2 5455:/ 5451:n 5447:a 5441:( 5430:n 5416:1 5413:= 5409:) 5403:n 5400:a 5394:( 5383:n 5369:1 5363:= 5359:) 5352:2 5348:/ 5344:n 5340:a 5334:( 5323:n 5309:1 5303:= 5299:) 5293:n 5290:a 5284:( 5270:n 5263:n 5247:n 5243:p 5239:p 5235:n 5228:n 5206:) 5201:n 5198:x 5193:( 5182:x 5178:n 5174:n 5162:n 5138:n 5130:a 5119:) 5116:n 5109:( 5102:4 5098:/ 5094:) 5091:1 5085:n 5082:( 5078:2 5072:8 5068:/ 5064:) 5061:3 5058:+ 5055:n 5052:( 5048:a 5036:n 5028:a 5017:) 5014:n 5007:( 5000:8 4996:/ 4992:) 4989:3 4986:+ 4983:n 4980:( 4976:a 4965:{ 4957:x 4944:n 4923:, 4919:) 4916:n 4909:( 4902:4 4898:/ 4894:) 4891:1 4888:+ 4885:n 4882:( 4878:a 4867:x 4850:n 4836:1 4833:= 4829:) 4824:n 4821:a 4816:( 4782:) 4777:n 4774:a 4769:( 4755:n 4695:n 4688:n 4684:2 4681:n 4678:1 4675:n 4671:2 4668:n 4664:1 4661:n 4657:n 4646:p 4642:a 4638:p 4634:a 4630:p 4626:a 4622:p 4620:| 4618:a 4614:a 4610:p 4599:n 4595:a 4591:x 4587:x 4579:n 4575:a 4563:E 4559:p 4555:r 4553:− 4551:p 4547:r 4543:p 4529:p 4525:p 4521:p 4517:p 4515:( 4513:E 4506:p 4495:) 4479:p 4475:p 4468:p 4466:( 4464:n 4460:X 4456:p 4446:p 4442:p 4440:( 4438:n 4422:e 4416:p 4412:p 4410:( 4408:n 4401:p 4395:p 4385:p 4383:( 4381:n 4377:p 4365:d 4348:d 4331:d 4324:7 4321:1 4312:| 4307:) 4302:n 4299:d 4294:( 4288:N 4283:1 4280:= 4277:n 4268:| 4262:N 4225:q 4214:2 4210:1 4201:| 4196:) 4191:q 4188:n 4183:( 4177:N 4172:1 4169:= 4166:n 4157:| 4151:N 4116:. 4112:) 4108:q 4091:q 4085:( 4081:O 4078:= 4074:| 4070:) 4067:n 4064:( 4056:N 4053:+ 4050:M 4045:1 4042:+ 4039:M 4036:= 4033:n 4024:| 3983:+ 3978:q 3970:+ 3967:q 3956:q 3947:2 3939:4 3930:| 3925:) 3920:q 3917:n 3912:( 3906:N 3903:+ 3900:M 3895:1 3892:+ 3889:M 3886:= 3883:n 3874:| 3847:. 3844:q 3833:q 3824:| 3819:) 3814:q 3811:n 3806:( 3800:N 3797:+ 3794:M 3789:1 3786:+ 3783:M 3780:= 3777:n 3768:| 3741:. 3738:) 3735:q 3724:q 3719:( 3716:O 3713:+ 3710:N 3705:2 3702:1 3687:N 3683:q 3666:, 3662:) 3657:q 3654:n 3649:( 3645:= 3642:) 3639:n 3636:( 3603:, 3599:) 3595:q 3584:q 3578:( 3574:O 3571:= 3567:| 3563:) 3560:n 3557:( 3549:N 3546:+ 3543:M 3538:1 3535:+ 3532:M 3529:= 3526:n 3517:| 3503:N 3499:M 3495:q 3491:n 3471:a 3457:) 3451:p 3448:a 3442:( 3424:b 3420:a 3416:p 3412:p 3408:x 3404:p 3390:A 3381:A 3372:A 3363:A 3345:9 3341:7 3337:6 3333:5 3329:4 3325:1 3309:A 3300:A 3291:A 3282:A 3265:9 3261:8 3257:4 3253:2 3249:1 3221:. 3216:4 3212:3 3206:p 3200:= 3187:= 3174:= 3160:, 3155:4 3151:1 3148:+ 3145:p 3139:= 3116:p 3097:4 3093:1 3087:p 3081:= 3068:= 3055:= 3041:, 3036:4 3032:5 3026:p 3020:= 2997:p 2947:. 2943:| 2937:j 2934:i 2930:A 2925:| 2921:= 2916:j 2913:i 2882:, 2878:} 2872:j 2868:) 2864:1 2858:( 2855:= 2851:) 2846:p 2842:1 2839:+ 2836:k 2830:( 2821:i 2817:) 2813:1 2807:( 2804:= 2800:) 2795:p 2792:k 2787:( 2783:: 2780:} 2777:2 2771:p 2768:, 2762:, 2759:2 2756:, 2753:1 2750:{ 2744:k 2740:{ 2736:= 2731:j 2728:i 2724:A 2710:j 2706:i 2702:p 2698:p 2694:n 2690:p 2686:n 2682:p 2678:n 2674:p 2670:n 2666:n 2662:n 2658:p 2643:p 2634:p 2623:p 2614:p 2603:p 2594:p 2583:p 2574:p 2562:p 2553:p 2542:p 2533:p 2522:p 2513:p 2502:p 2493:p 2482:p 2473:p 2461:p 2452:p 2441:p 2432:p 2421:p 2412:p 2400:p 2396:a 2391:a 2385:p 2381:a 2376:a 2367:a 2363:p 2359:a 2337:) 2332:q 2329:p 2324:( 2296:2 2292:1 2286:q 2275:2 2271:1 2265:p 2258:) 2254:1 2248:( 2245:= 2241:) 2236:p 2233:q 2228:( 2223:) 2218:q 2215:p 2210:( 2193:q 2189:p 2185:p 2181:q 2177:q 2173:p 2166:q 2162:p 2136:q 2112:) 2107:q 2104:n 2099:( 2092:2 2088:1 2082:q 2075:1 2072:= 2069:n 2056:q 2049:) 2044:) 2039:q 2036:2 2031:( 2024:2 2020:( 2010:= 2007:) 2004:1 2001:( 1998:L 1985:q 1966:4 1962:) 1959:1 1953:q 1950:( 1947:q 1934:q 1930:q 1926:q 1922:q 1910:) 1904:9 1900:5 1896:4 1892:3 1888:1 1877:q 1873:q 1849:) 1844:q 1841:n 1836:( 1830:q 1827:n 1820:1 1814:q 1809:1 1806:= 1803:n 1792:q 1780:= 1777:) 1774:1 1771:( 1768:L 1755:q 1738:. 1733:s 1726:n 1721:) 1716:q 1713:n 1708:( 1697:1 1694:= 1691:n 1683:= 1680:) 1677:s 1674:( 1671:L 1654:s 1650:q 1621:p 1617:p 1613:p 1605:p 1601:M 1597:p 1593:M 1558:n 1546:m 1524:1 1521:= 1518:) 1509:4 1503:( 1483:1 1480:= 1477:) 1468:2 1462:( 1451:m 1447:a 1441:m 1437:a 1422:1 1419:= 1416:) 1410:m 1407:a 1401:( 1381:, 1378:1 1375:= 1372:) 1366:m 1363:a 1357:( 1346:m 1342:a 1336:m 1332:a 1317:, 1314:1 1308:= 1305:) 1299:m 1296:a 1290:( 1280:m 1272:p 1240:0 1237:= 1234:) 1228:p 1224:p 1221:n 1214:( 1199:p 1189:p 1165:a 1157:p 1149:p 1143:N 1140:a 1130:1 1120:a 1112:p 1104:p 1098:R 1095:a 1085:1 1082:+ 1075:a 1067:p 1057:0 1048:{ 1043:= 1039:) 1034:p 1031:a 1026:( 1012:p 1005:a 991:. 969:N 965:R 950:n 946:a 942:n 938:a 934:n 926:a 919:n 901:) 897:Z 893:n 889:/ 884:Z 880:( 849:) 845:Z 841:n 837:/ 832:Z 828:( 792:9 788:6 784:4 780:1 761:4 757:3 753:1 743:. 741:n 733:p 729:a 725:n 721:a 716:. 714:n 706:p 702:a 698:n 694:a 671:n 667:p 663:p 659:p 655:p 651:p 647:n 634:a 630:n 626:k 622:p 615:a 611:n 607:k 603:p 596:n 592:k 588:p 582:n 578:k 574:p 568:a 565:p 557:p 550:p 546:p 542:p 538:a 531:n 491:a 487:m 483:a 479:m 475:a 463:p 459:p 452:p 448:p 441:p 437:p 433:p 429:p 409:p 395:) 391:Z 387:p 383:/ 378:Z 374:( 353:p 349:p 345:p 324:n 320:n 316:n 312:n 308:n 304:n 280:n 257:n 253:n 247:n 242:n 238:a 234:n 230:a 226:n 222:n 218:b 216:≡ 214:a 210:n 206:b 204:≡ 202:a 196:n 191:n 187:n 124:n 116:q 99:. 95:) 92:n 85:( 80:q 72:2 68:x 54:x 50:n 38:n 28:q

Index

number theory
integer
modulo
congruent
perfect square
mathematical
modular arithmetic
acoustical engineering
cryptography
factoring of large numbers
Fermat
Euler
Lagrange
Legendre
Gauss
Disquisitiones Arithmeticae
prime number
Euler's criterion
multiplicative group of nonzero elements
field
law of quadratic reciprocity
Klein four-group
group
group of units
ring
subgroup
cosets
zero divisors
relatively prime
Legendre symbol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.