Knowledge

Quintuple bond

Source 📝

336:
increases dramatically and the ligand "bows" which causes a change in the orientation of the lone pairs of electrons on the nitrogen atoms. These lone pairs are what is responsible for forming bonds with the metal centers so forcing them to move closer together also forces the metal centers to be positioned closer together. Thus, decreasing the length of the quintuple bond. In the case where this ligand is bound to quintuply bonded dimolybdenum the quintuple bond length goes from 201.87 pm to 201.57 pm when the hydrogen in replaced with a phenyl group. Similar results have also been demonstrated in dichromium quintuple bond complexes as well.
493: 326: 204: 288: 172: 20: 150:
In 2007 the shortest-ever metal–metal bond (180.28 pm) was reported to exist also in a compound containing a quintuple chromium-chromium bond with diazadiene bridging ligands. Other metal–metal quintuple bond containing complexes that have been reported include quintuply bonded dichromium with
98:
methods, which were also used to elucidate the role of the terphenyl ligand, in which the flanking aryls were shown to interact very weakly with the chromium atoms, causing only a small weakening of the quintuple bond. A 2007 theoretical study identified two global minima for quintuple bonded RMMR
335:
The above example shows the ligand used in the dimolybdenum complex shown earlier. When the carbon between the two nitrogens in the ligand has a hydrogen bound to it, the steric repulsion is small. However, when the hydrogen is replaced with a much more bulky phenyl ring the steric repulsion
267:
Molecular orbital calculations have elucidated the relative energies of the orbitals created by these bonding interactions. As shown in the figure below, the lowest energy orbitals are the π bonding orbitals followed by the σ bonding orbital. The next highest are the δ bonding orbitals which
315:
to occur the metal atoms must move closer together, thereby shortening the quintuple bond length. The two ways in which to obtain shorter metal–metal distances is to either reduce the distance between the chelating atoms in the ligand by changing the structure, or by using
506:
La Macchia, Giovanni; Gagliardi, Laura; Power, Philip P.; Brynda, Marcin (2008). "Large Differences in Secondary Metal−Arene Interactions in the Transition-Metal Dimers ArMMAr (Ar = Terphenyl; M = Cr, Fe, or Co): Implications for Cr−Cr Quintuple Bonding".
81:
In some cases of high-order bonds between metal atoms, the metal-metal bonding is facilitated by ligands that link the two metal centers and reduce the interatomic distance. By contrast, the chromium dimer with quintuple bonding is stabilized by a bulky
682:
Kreisel, Kevin A.; Yap, Glenn P. A.; Dmitrenko, Olga; Landis, Clark R.; Theopold, Klaus H. (2007). "The Shortest Metal–Metal Bond Yet: Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex".
284:, they in fact are not. This is because the model shown here is a simplification and that hybridization of s, p, and d orbitals is believed to take place, causing a change in the orbital energy levels. 764:
Tsai, Yi-Chou; Hsu, Chia-Wei; Yu, Jen-Shiang K.; Lee, Gene-Hsiang; Wang, Yu; Kuo, Ting-Shen (2008). "Remarkably Short Metal–Metal Bonds: A Lantern-Type Quintuply Bonded Dichromium(I) Complex".
851:
Hsu, Chai-Wei; Yu, Jen-Shiang K.; Yen, Chun-Hsu; Lee, Gene-Hsiang; Wang, Yu; Tsa, Yi-Chou (2008). "Quintuply-Bonded Dichromium(I) Complexes Featuring Metal–Metal Bond Lengths of 1.74 Å".
808:
Tsai, Yi-Chou; Chen, Hong-Zhang; Chang, Chie-Chieh; Yu, Jen-Shiang K.; Lee, Gene-Hsiang; Wang, Yu; Kuo, Ting-Shen (2009). "Journey from Mo–Mo Quadruple Bonds to Quintuple Bonds".
320:
to force a conformational change in the ligand that bends the molecule in a way that forces the chelating atoms closer together. An example of the latter is shown below:
166:
to the metal centers, giving them the needed number of electrons to participate in quintuple bonding. Below is a figure of a typical quintuple bond synthesis.
894:
Noor, Awal; Glatz, Germund; Muller, Robert; Kaupp, Martin; Demeshko, Serhiy; Kempe, Rhett (2009). "Carboalumination of a chromium–chromium quintuple bond".
720:
Noor, Awal; Wagner, Frank R.; Kempe, Rhett (2008). "Metal–Metal Distances at the Limit: A Coordination Compound with an Ultrashort Chromium–Chromium Bond".
300:
Quintuple bond lengths are heavily dependent on the ligands bound to the metal centers. Nearly all complexes containing a metal–metal quintuple bond have
1037: 304:
bridging ligands, and even those that do not, such as the terphenyl complex mentioned earlier, have some bridging characteristic to it through metal–
986:"Low-Valent Aminopyridinato Chromium Methyl Complexes via Reductive Alkylation and via Oxidative Addition of Iodomethane by a Cr–Cr Quintuple Bond" 218:
As stated above metal-metal quintuple bonds have a σπδ configuration. Among the five bonds present between the metal centers, one is a
465: 272:. Because the 10 valence electrons of the metals are used to fill these first 5 orbitals, the next highest orbital becomes the 1275: 1030: 78:, e.g. and . In a quintuple bond, ten electrons participate in bonding between the two metal centers, allocated as σπδ. 90:. The species is stable up to 200 °C. The chromium–chromium quintuple bond has been analyzed with multireference 1068: 1023: 190:
bridging ligands was reported with a Mo–Mo bond length of 202 pm. The compound was synthesised starting from
191: 373: 1306: 305: 369:"Quintuple Bond Makes Its Debut: First stable molecule with fivefold metal–metal bonding is synthesized" 939:
Ni, Chengbao; Ellis, Bobby D.; Long, Gary J.; Power, Philip P. (2009). "Reactions of Ar′CrCrAr′ with N
1331: 1296: 1280: 95: 492: 1255: 281: 457:"Quantum Chemical Study of the Quintuple Bond between Two Chromium Centers in [PhCrCrPh]: 949: 123: 455:
Brynda, Marcin; Gagliardi, Laura; Widmark, Per-Olof; Power, Philip P.; Roos, Björn O. (2006).
158:
Synthesis of quintuple bonds is usually achieved through reduction of a dimetal species using
1215: 1210: 766: 722: 1181: 905: 621: 603: 411: 8: 1301: 1195: 909: 625: 415: 392:
Nguyen, Tailuan; Sutton, Andrew D.; Brynda, Marcin; Fettinger, James C.; Long, Gary J.;
198:
quadruple bond) and a lithium amidinate, followed by reduction with potassium graphite:
876: 833: 790: 746: 645: 581: 533: 437: 159: 104: 664: 398:"Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers" 1270: 1063: 966: 921: 868: 837: 825: 782: 738: 702: 685: 637: 573: 557: 537: 525: 509: 481: 429: 402: 368: 880: 750: 585: 441: 997: 958: 913: 896: 860: 817: 794: 774: 730: 694: 629: 612: 565: 517: 473: 419: 348: 163: 62:
are rarer and are currently known only among the transition metals, especially for
649: 325: 1220: 985: 599: 1163: 1142: 1058: 552: 317: 203: 59: 347:
Quintuple-bonded dichromium complexes appear to act like magnesium to produce
1325: 1236: 1176: 1171: 1152: 1046: 456: 39: 424: 397: 287: 248:
orbitals on each metal mixing. Finally the δ-bonds come from mixing of the d
151:(2,4,6-trimethylphenyl)amine bridging ligands and a dichromium complex with 970: 925: 872: 864: 829: 786: 778: 742: 734: 706: 641: 577: 529: 485: 477: 433: 393: 171: 1015: 1137: 1132: 1127: 277: 236:
orbital on each metal center. The first π-bond comes from mixing of the d
55: 51: 47: 633: 1119: 1103: 1093: 311:
The bidentate ligand can act as a sort of tweezer in that in order for
227: 219: 67: 1001: 917: 821: 698: 569: 521: 114:
In 2005, a quintuple bond was postulated to exist in the hypothetical
1241: 962: 312: 301: 152: 83: 35: 947:(1-Ad): complete cleavage of the Cr–Cr quintuple bond interaction". 1108: 295: 71: 63: 43: 550: 1098: 223: 115: 75: 242:
orbitals from each metal while the other π-bond comes from the d
186:
In 2009 a dimolybdenum compound with a quintuple bond and two di
604:"Quantum chemical calculations show that the uranium molecule U 126:. Diuranium compounds are rare, but do exist; for example, the 87: 505: 280:
orbital. Though the π and δ orbitals are represented as being
111:-bent geometry with the R substituent in a bridging position. 187: 551:
Merino, Gabriel; Donald, Kelling J.; D'Acchioli, Jason S.;
454: 391: 273: 269: 19: 681: 984:
Noor, Awal; Schwarz, Stefan; Kempe, Rhett (9 Feb 2015).
344:
Efforts continue to prepare shorter quintuple bonds.
893: 555:(2007). "The Many Ways To Have a Quintuple Bond". 230:. The σ-bond is the result of mixing between the d 1323: 983: 938: 296:Ligand role in metal–metal quintuple bond length 807: 719: 181: 1031: 598: 16:Chemical bond involving ten bonding electrons 763: 1045: 850: 1038: 1024: 291:MO diagram of a metal–metal quintuple bond 423: 324: 286: 254:orbitals as well as mixing between the d 202: 170: 18: 1324: 366: 1019: 602:; Roos, Björn O. (24 February 2005). 207:dimolybdenum quintuple bond synthesis 662: 329:Steric effects on a bidentate ligand 367:Ritter, Steve (26 September 2005). 13: 339: 14: 1343: 1069:Introduction to quantum mechanics 663:Dumé, Belle (23 February 2005). 491: 977: 932: 887: 844: 801: 757: 374:Chemical & Engineering News 192:potassium octachlorodimolybdate 42:, first reported in 2005 for a 713: 675: 656: 592: 544: 499: 448: 385: 360: 175:Cr–Cr quintuple bond synthesis 58:are commonplace in chemistry. 1: 665:"New look for chemical bonds" 461:-Bent versus Linear Geometry" 354: 194:(which already contains a Mo 182:Dimolybdenum quintuple bonds 7: 1011: 10: 1348: 264:orbitals from each metal. 213: 1289: 1263: 1254: 1229: 1203: 1194: 1161: 1117: 1086: 1079: 1054: 107:and surprisingly another 1256:Molecular orbital theory 950:Chemical Communications 425:10.1126/science.1116789 124:computational chemistry 865:10.1002/anie.200803859 779:10.1002/anie.200801286 735:10.1002/anie.200801160 478:10.1002/anie.200600110 330: 308:-carbon interactions. 292: 208: 176: 38:is an unusual type of 27: 767:Angew. Chem. Int. Ed. 723:Angew. Chem. Int. Ed. 608:has a quintuple bond" 466:Angew. Chem. Int. Ed. 328: 290: 206: 174: 22: 853:Angew. Chem. Int. Ed 1196:Valence bond theory 910:2009NatCh...1..322N 816:(35): 12534–12535. 693:(46): 14162–14163. 634:10.1038/nature03249 626:2005Natur.433..848G 564:(49): 15295–15302. 416:2005Sci...310..844N 331: 293: 209: 177: 160:potassium graphite 155:bridging ligands. 105:molecular geometry 28: 1319: 1318: 1315: 1314: 1290:Constituent units 1271:Molecular orbital 1250: 1249: 1230:Constituent units 1190: 1189: 1064:Quantum mechanics 1002:10.1021/om501230g 996:(11): 2122–2125. 957:(17): 2332–2334. 918:10.1038/NCHEM.255 859:(51): 9933–9936. 822:10.1021/ja905035f 773:(38): 7250–7253. 729:(38): 7246–7249. 699:10.1021/ja076356t 689:(Communication). 686:J. Am. Chem. Soc. 620:(7028): 848–851. 570:10.1021/ja075454b 558:J. Am. Chem. Soc. 522:10.1021/ja0771890 516:(15): 5104–5114. 510:J. Am. Chem. Soc. 472:(23): 3804–3807. 410:(5749): 844–847. 349:Grignard reagents 164:valence electrons 23:The structure of 1339: 1332:Chemical bonding 1261: 1260: 1201: 1200: 1182:Exchange-coupled 1084: 1083: 1047:Chemical bonding 1040: 1033: 1026: 1017: 1016: 1006: 1005: 981: 975: 974: 963:10.1039/b901494b 936: 930: 929: 897:Nature Chemistry 891: 885: 884: 848: 842: 841: 810:J. Am. Chem. Soc 805: 799: 798: 761: 755: 754: 717: 711: 710: 679: 673: 672: 660: 654: 653: 600:Gagliardi, Laura 596: 590: 589: 548: 542: 541: 503: 497: 496: 495: 489: 452: 446: 445: 427: 394:Power, Philip P. 389: 383: 382: 364: 276:which is the δ* 146: 145: 144: 136: 135: 1347: 1346: 1342: 1341: 1340: 1338: 1337: 1336: 1322: 1321: 1320: 1311: 1285: 1246: 1225: 1221:Lewis structure 1186: 1157: 1113: 1075: 1050: 1044: 1014: 1009: 990:Organometallics 982: 978: 946: 942: 937: 933: 892: 888: 849: 845: 806: 802: 762: 758: 718: 714: 680: 676: 661: 657: 607: 597: 593: 553:Hoffmann, Roald 549: 545: 504: 500: 490: 453: 449: 390: 386: 365: 361: 357: 342: 340:Research trends 298: 263: 253: 247: 241: 235: 216: 197: 184: 143: 140: 139: 138: 134: 131: 130: 129: 127: 121: 60:Quadruple bonds 26: 17: 12: 11: 5: 1345: 1335: 1334: 1317: 1316: 1313: 1312: 1310: 1309: 1307:Antibonding MO 1304: 1302:Non-bonding MO 1299: 1293: 1291: 1287: 1286: 1284: 1283: 1278: 1273: 1267: 1265: 1258: 1252: 1251: 1248: 1247: 1245: 1244: 1239: 1233: 1231: 1227: 1226: 1224: 1223: 1218: 1213: 1211:Hybrid orbital 1207: 1205: 1198: 1192: 1191: 1188: 1187: 1185: 1184: 1179: 1174: 1168: 1166: 1159: 1158: 1156: 1155: 1150: 1145: 1140: 1135: 1130: 1124: 1122: 1115: 1114: 1112: 1111: 1106: 1101: 1096: 1090: 1088: 1081: 1080:Types of bonds 1077: 1076: 1074: 1073: 1072: 1071: 1061: 1059:Atomic orbital 1055: 1052: 1051: 1043: 1042: 1035: 1028: 1020: 1013: 1010: 1008: 1007: 976: 944: 940: 931: 904:(4): 322–325. 886: 843: 800: 756: 712: 674: 655: 605: 591: 543: 498: 447: 384: 358: 356: 353: 341: 338: 333: 332: 318:steric effects 297: 294: 268:represent the 255: 249: 243: 237: 231: 226:, and two are 215: 212: 211: 210: 195: 183: 180: 179: 178: 141: 132: 119: 32:quintuple bond 24: 15: 9: 6: 4: 3: 2: 1344: 1333: 1330: 1329: 1327: 1308: 1305: 1303: 1300: 1298: 1295: 1294: 1292: 1288: 1282: 1279: 1277: 1274: 1272: 1269: 1268: 1266: 1262: 1259: 1257: 1253: 1243: 1240: 1238: 1237:Covalent bond 1235: 1234: 1232: 1228: 1222: 1219: 1217: 1214: 1212: 1209: 1208: 1206: 1202: 1199: 1197: 1193: 1183: 1180: 1178: 1175: 1173: 1170: 1169: 1167: 1165: 1160: 1154: 1151: 1149: 1148:5 (quintuple) 1146: 1144: 1143:4 (quadruple) 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1125: 1123: 1121: 1116: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1091: 1089: 1085: 1082: 1078: 1070: 1067: 1066: 1065: 1062: 1060: 1057: 1056: 1053: 1048: 1041: 1036: 1034: 1029: 1027: 1022: 1021: 1018: 1003: 999: 995: 991: 987: 980: 972: 968: 964: 960: 956: 952: 951: 935: 927: 923: 919: 915: 911: 907: 903: 899: 898: 890: 882: 878: 874: 870: 866: 862: 858: 854: 847: 839: 835: 831: 827: 823: 819: 815: 811: 804: 796: 792: 788: 784: 780: 776: 772: 769: 768: 760: 752: 748: 744: 740: 736: 732: 728: 725: 724: 716: 708: 704: 700: 696: 692: 688: 687: 678: 670: 666: 659: 651: 647: 643: 639: 635: 631: 627: 623: 619: 615: 614: 609: 601: 595: 587: 583: 579: 575: 571: 567: 563: 560: 559: 554: 547: 539: 535: 531: 527: 523: 519: 515: 512: 511: 502: 494: 487: 483: 479: 475: 471: 468: 467: 462: 460: 451: 443: 439: 435: 431: 426: 421: 417: 413: 409: 405: 404: 399: 395: 388: 380: 376: 375: 370: 363: 359: 352: 350: 345: 337: 327: 323: 322: 321: 319: 314: 309: 307: 303: 289: 285: 283: 279: 275: 271: 265: 262: 258: 252: 246: 240: 234: 229: 225: 221: 205: 201: 200: 199: 193: 189: 173: 169: 168: 167: 165: 161: 156: 154: 148: 125: 117: 112: 110: 106: 102: 99:compounds: a 97: 93: 89: 86:(2,6-phenyl) 85: 79: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 40:chemical bond 37: 33: 21: 1153:6 (sextuple) 1147: 1120:multiplicity 993: 989: 979: 954: 948: 934: 901: 895: 889: 856: 852: 846: 813: 809: 803: 770: 765: 759: 726: 721: 715: 690: 684: 677: 668: 658: 617: 611: 594: 561: 556: 546: 513: 508: 501: 469: 464: 458: 450: 407: 401: 387: 378: 372: 362: 346: 343: 334: 310: 299: 266: 260: 256: 250: 244: 238: 232: 217: 185: 162:. This adds 157: 149: 113: 108: 100: 91: 80: 56:triple bonds 52:double bonds 48:Single bonds 31: 29: 1087:By symmetry 278:antibonding 228:delta bonds 1297:Bonding MO 1281:MO diagram 1138:3 (triple) 1133:2 (double) 1128:1 (single) 669:PhysicsWeb 355:References 282:degenerate 222:, two are 220:sigma bond 118:molecule U 46:compound. 44:dichromium 1242:Lone pair 1216:Resonance 1104:Delta (δ) 1094:Sigma (σ) 838:207144833 538:207046428 313:chelation 302:bidentate 153:amidinate 122:based on 92:ab initio 84:terphenyl 36:chemistry 1326:Category 1264:Concepts 1204:Concepts 1012:See also 971:19377676 926:21500603 881:46033904 873:19016281 830:19685872 787:18683844 751:30480347 743:18698657 707:17967028 642:15729337 586:18838267 578:18004851 530:18335988 486:16671122 442:42853922 434:16179432 396:(2005). 224:pi bonds 1177:Singlet 1172:Triplet 1109:Phi (φ) 906:Bibcode 795:5510753 622:Bibcode 412:Bibcode 403:Science 214:Bonding 147:anion. 116:uranium 88:ligands 1099:Pi (π) 1049:theory 969:  943:O or N 924:  879:  871:  836:  828:  793:  785:  749:  741:  705:  650:421380 648:  640:  613:Nature 584:  576:  536:  528:  484:  440:  432:  103:-bent 74:, and 54:, and 877:S2CID 834:S2CID 791:S2CID 747:S2CID 646:S2CID 582:S2CID 534:S2CID 459:trans 438:S2CID 381:(39). 188:amido 109:trans 101:trans 1276:LCAO 1164:spin 967:PMID 955:2009 922:PMID 869:PMID 826:PMID 783:PMID 739:PMID 703:PMID 638:PMID 574:PMID 526:PMID 482:PMID 430:PMID 306:ipso 274:LUMO 270:HOMO 94:and 1162:By 1118:By 998:doi 959:doi 914:doi 861:doi 818:doi 814:131 775:doi 731:doi 695:doi 691:129 630:doi 618:433 566:doi 562:129 518:doi 514:130 474:doi 420:doi 408:310 96:DFT 34:in 1328:: 994:34 992:. 988:. 965:. 953:. 920:. 912:. 900:. 875:. 867:. 857:47 855:. 832:. 824:. 812:. 789:. 781:. 771:47 745:. 737:. 727:47 701:. 667:. 644:. 636:. 628:. 616:. 610:. 580:. 572:. 532:. 524:. 480:. 470:45 463:. 436:. 428:. 418:. 406:. 400:. 379:83 377:. 371:. 351:. 251:xy 245:xz 239:yz 137:Cl 76:Re 70:, 68:Mo 66:, 64:Cr 50:, 30:A 1039:e 1032:t 1025:v 1004:. 1000:: 973:. 961:: 945:3 941:2 928:. 916:: 908:: 902:1 883:. 863:: 840:. 820:: 797:. 777:: 753:. 733:: 709:. 697:: 671:. 652:. 632:: 624:: 606:2 588:. 568:: 540:. 520:: 488:. 476:: 444:. 422:: 414:: 261:y 259:− 257:x 233:z 196:2 142:8 133:2 128:U 120:2 72:W 25:2

Index


chemistry
chemical bond
dichromium
Single bonds
double bonds
triple bonds
Quadruple bonds
Cr
Mo
W
Re
terphenyl
ligands
DFT
molecular geometry
uranium
computational chemistry
amidinate
potassium graphite
valence electrons

amido
potassium octachlorodimolybdate

sigma bond
pi bonds
delta bonds
HOMO
LUMO

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.