Knowledge

Raman scattering

Source 📝

403: 391: 33: 3322: 1045: 316: 1070:, the lower state will be more populated than the upper state. Therefore, the rate of transitions from the more populated lower state to the upper state (Stokes transitions) will be higher than in the opposite direction (anti-Stokes transitions). Correspondingly, Stokes scattering peaks are stronger than anti-Stokes scattering peaks. Their ratio depends on the temperature, and can therefore be exploited to measure it: 3334: 804:. A molecule can be excited to a higher vibrational mode through the direct absorption of a photon of the appropriate energy, which falls in the terahertz or infrared range. This forms the basis of infrared spectroscopy. Alternatively, the same vibrational excitation can be produced by an inelastic scattering process. This is called Stokes Raman scattering, by analogy with the 1292: 1802:
In an optically anisotropic crystal, a light ray may have two modes of propagation with different polarizations and different indices of refraction. If energy may be transferred between these modes by a quadrupolar (Raman) resonance, phases remain coherent along the whole path, transfer of energy may
1858:
In the original description of the inverse Raman effect, the authors discuss both absorption from a continuum of higher frequencies and absorption from a continuum of lower frequencies. They note that absorption from a continuum of lower frequencies will not be observed if the Raman frequency of the
840:
which corresponds to the energy of the exciting laser photons. Absorption of a photon excites the molecule to the imaginary state and re-emission leads to Raman or Rayleigh scattering. In all three cases the final state has the same electronic energy as the initial state but is higher in vibrational
1810:
Light may be pulsed, so that beats do not appear. In Impulsive Stimulated Raman Scattering (ISRS), the length of the pulses must be shorter than all relevant time constants. Interference of Raman and incident lights is too short to allow beats, so that it produces a frequency shift roughly, in best
1302:
In contrast to IR spectroscopy, where there is a requirement for a change in dipole moment for vibrational excitation to take place, Raman scattering requires a change in polarizability. A Raman transition from one state to another is allowed only if the molecular polarizability of those states is
1076: 1664:
the intensity of Raman scattering when the analyzer is aligned with the polarization of the incident laser. When polarized light interacts with a molecule, it distorts the molecule which induces an equal and opposite effect in the plane-wave, causing it to be rotated by the difference between the
1036:
A classical physics based model is able to account for Raman scattering and predicts an increase in the intensity which scales with the fourth-power of the light frequency. Light scattering by a molecule is associated with oscillations of an induced electric dipole. The oscillating electric field
1048:
The different possibilities of light scattering: Rayleigh scattering (no exchange of energy: incident and scattered photons have the same energy), Stokes Raman scattering (atom or molecule absorbs energy: scattered photon has less energy than the incident photon) and anti-Stokes Raman scattering
1065:
line. The frequency shifts are symmetric because they correspond to the energy difference between the same upper and lower resonant states. The intensities of the pairs of features will typically differ, though. They depend on the populations of the initial states of the material, which in turn
1906:
employs the Raman effect for substances analysis. The spectrum of the Raman-scattered light depends on the molecular constituents present and their state, allowing the spectrum to be used for material identification and analysis. Raman spectroscopy is used to analyze a wide range of materials,
1883:
energies. The initial Raman spectrum is built up with spontaneous emission and is amplified later on. At high pumping levels in long fibers, higher-order Raman spectra can be generated by using the Raman spectrum as a new starting point, thereby building a chain of new spectra with decreasing
327:
The elastic light scattering phenomena called Rayleigh scattering, in which light retains its energy, was described in the 19th century. The intensity of Rayleigh scattering is about 10 to 10 compared to the intensity of the exciting source. In 1908, another form of elastic scattering, called
343:
published his work on the "Molecular Diffraction of Light", the first of a series of investigations with his collaborators that ultimately led to his discovery (on 16 February 1928) of the radiation effect that bears his name. The Raman effect was first reported by Raman and his coworker
1727:
can take place when some Stokes photons have previously been generated by spontaneous Raman scattering (and somehow forced to remain in the material), or when deliberately injecting Stokes photons ("signal light") together with the original light ("pump light"). In that case, the total
257:, and therefore color) as the incident photons, but different direction. Rayleigh scattering usually has an intensity in the range 0.1% to 0.01% relative to that of a radiation source. An even smaller fraction of the scattered photons (about 1 in a million) can be scattered 1884:
amplitude. The disadvantage of intrinsic noise due to the initial spontaneous process can be overcome by seeding a spectrum at the beginning, or even using a feedback loop as in a resonator to stabilize the process. Since this technology easily fits into the fast evolving
360:
on 21 February 1928 (5 days after Raman and Krishnan). In the former Soviet Union, Raman's contribution was always disputed; thus in Russian scientific literature the effect is usually referred to as "combination scattering" or "combinatory scattering". Raman received the
1552:
and Raman activity which may assist in assigning peaks in Raman spectra. Light polarized in a single direction only gives access to some Raman–active modes, but rotating the polarization gives access to other modes. Each mode is separated according to its symmetry.
728: 1037:
component of electromagnetic radiation may bring about an induced dipole in a molecule which follows the alternating electric field which is modulated by the molecular vibrations. Oscillations at the external field frequency are therefore observed along with
1728:
Raman-scattering rate is increased beyond that of spontaneous Raman scattering: pump photons are converted more rapidly into additional Stokes photons. The more Stokes photons that are already present, the faster more of them are added. Effectively, this
570:
only have two rotations because rotations along the bond axis do not change the positions of the atoms in the molecule. The remaining degrees of freedom correspond to molecular vibrational modes. These modes include stretching and bending motions of the
506:, and vibrational motion. Three of the degrees of freedom correspond to translational motion of the molecule as a whole (along each of the three spatial dimensions). Similarly, three degrees of freedom correspond to rotations of the molecule about the 422:
to record spectra. Early spectra took hours or even days to acquire due to weak light sources, poor sensitivity of the detectors and the weak Raman scattering cross-sections of most materials. The most common modern detectors are
1287:{\displaystyle {\frac {I_{\text{Stokes}}}{I_{\text{anti-Stokes}}}}={\frac {({\tilde {\nu }}_{0}-{\tilde {\nu }}_{M})^{4}}{({\tilde {\nu }}_{0}+{\tilde {\nu }}_{M})^{4}}}\exp \left({\frac {hc\,{\tilde {\nu }}_{M}}{k_{B}T}}\right)} 1888:
field and there is demand for transversal coherent high-intensity light sources (i.e., broadband telecommunication, imaging applications), Raman amplification and spectrum generation might be widely used in the near-future.
738:
is a quantum number. Since the selection rules for Raman and infrared absorption generally dictate that only fundamental vibrations are observed, infrared excitation or Stokes Raman excitation results in an energy change of
498:. This number arises from the ability of each atom in a molecule to move in three dimensions. When dealing with molecules, it is more common to consider the movement of the molecule as a whole. Consequently, the 3 2812:
Kosloff, Ronnie; Hammerich, Audrey Dell; Tannor, David (1992). "Excitation without demolition: Radiative excitation of ground-surface vibration by impulsive stimulated Raman scattering with damage control".
841:
energy in the case of Stokes Raman scattering, lower in the case of anti-Stokes Raman scattering or the same in the case of Rayleigh scattering. Normally this is thought of in terms of wavenumbers, where
1344: 796: 1815:
In labs, femtosecond laser pulses must be used because the ISRS becomes very weak if the pulses are too long. Thus ISRS cannot be observed using nanosecond pulses making ordinary time-incoherent light.
1716:
The Raman-scattering process as described above takes place spontaneously; i.e., in random time intervals, one of the many incoming photons is scattered by the material. This process is thus called
969: 1828:. In some circumstances, Stokes scattering can exceed anti-Stokes scattering; in these cases the continuum (on leaving the material) is observed to have an absorption line (a dip in intensity) at ν 1027: 2555:. 75th Birthday of Christian Colliex, 85th Birthday of Archie Howie, and 75th Birthday of Hannes Lichte / PICO 2019 - Fifth Conference on Frontiers of Aberration Corrected Electron Microscopy. 611: 1608: 1430: 1960:: 'Rayleigh scattering of molecular nitrogen and oxygen in the atmosphere includes elastic scattering as well as the inelastic contribution from rotational Raman scattering in air'). 1696: 2604:
Itoh, Yuki; Hasegawa, Takeshi (2 May 2012). "Polarization Dependence of Raman Scattering from a Thin Film Involving Optical Anisotropy Theorized for Molecular Orientation Analysis".
911: 875: 800:
The energy range for vibrations is in the range of approximately 5 to 3500 cm. The fraction of molecules occupying a given vibrational mode at a given temperature follows a
3372: 3090: 1466: 1527:
is the rotational state. This generally is only relevant to molecules in the gas phase where the Raman linewidths are small enough for rotational transitions to be resolved.
3170: 1505: 2277: 457:
Raman scattering generally gives information about vibrations within a molecule. In the case of gases, information about rotational energy can also be gleaned. For solids,
1563:, which is the ratio of the Raman scattering with polarization orthogonal to the incident laser and the Raman scattering with the same polarization as the incident laser: 1061:
to the incident photons, more commonly called a Raman shift. The locations of corresponding Stokes and anti-Stokes peaks form a symmetric pattern around the Rayleigh
2722: 1662: 1635: 1525: 1303:
different. For a vibration, this means that the derivative of the polarizability with respect to the normal coordinate associated to the vibration is non-zero:
564: 544: 524: 2740:
Weiner, A. M.; Wiederrecht, Gary P.; Nelson, Keith A.; Leaird, D. E. (1991). "Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy".
2547:
Krivanek, O. L.; Dellby, N.; Hachtel, J. A.; Idrobo, J. -C.; Hotz, M. T.; Plotkin-Swing, B.; Bacon, N. J.; Bleloch, A. L.; Corbin, G. J. (1 August 2019).
414:
as an exciting light source. Because lasers were not available until more than three decades after the discovery of the effect, Raman and Krishnan used a
1907:
including gases, liquids, and solids. Highly complex materials such as biological organisms and human tissue can also be analyzed by Raman spectroscopy.
1879:, in which the frequencies of the two incident photons are equal and the emitted spectra are found in two bands separated from the incident light by the 261:, with the scattered photons having an energy different (usually lower) from those of the incident photons—these are Raman scattered photons. Because of 2864:
Voehringer, Peter; Scherer, Norbert F. (1995). "Transient Grating Optical Heterodyne Detected Impulsive Stimulated Raman Scattering in Simple Liquids".
402: 1530:
A selection rule relevant only to ordered solid materials states that only phonons with zero phase angle can be observed by IR and Raman, except when
2647:
Iliev, M. N.; Abrashev, M. V.; Laverdiere, J.; Jandi, S.; et al. (16 February 2006). "Distortion-dependent Raman spectra and mode mixing in RMnO
825: 828:
rather than light. An increase in photon energy which leaves the molecule in a lower vibrational energy state is called anti-Stokes scattering.
268:
The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of
3132: 1637:
is the intensity of Raman scattering when the analyzer is rotated 90 degrees with respect to the incident light's polarization axis, and
439:
The following focuses on the theory of normal (non-resonant, spontaneous, vibrational) Raman scattering of light by discrete molecules.
2285: 487: 478: 3105: 1306: 742: 3155: 1982: 1029:
is given for anti-Stokes. When the exciting laser energy corresponds to an actual electronic excitation of the molecule then the
339:
in 1923 and in older German-language literature it has been referred to as the Smekal-Raman-Effekt. In 1922, Indian physicist
2706: 2072: 1921:
is used in atmospheric physics to measure the atmospheric extinction coefficient and the water vapour vertical distribution.
1761:. Generally, as the exciting frequency is not equal to the scattered Raman frequency, the corresponding relative wavelengths 916: 1988: 369: 159: 820:(now known to correspond to lower energy) than the absorbed incident light. Conceptually similar effects can be caused by 3377: 3338: 3185: 3175: 3059: 2041: 1860: 974: 281: 222:, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves 3236: 2926:
Jones, W. J.; Stoicheff, B. P. (30 November 1964). "Inverse Raman Spectra: Induced Absorption at Optical Frequencies".
2785:
Dhar, Lisa; Rogers, John A.; Nelson, Keith A. (1994). "Time-resolved vibrational spectroscopy in the impulsive limit".
2419: 723:{\displaystyle E_{n}=h\left(n+{1 \over 2}\right)\nu =h\left(n+{1 \over 2}\right){1 \over {2\pi }}{\sqrt {k \over m}}\!} 73: 2535: 1871:
For high-intensity continuous wave (CW) lasers, stimulated Raman scattering can be used to produce a broad bandwidth
3125: 2004: 1566: 1349: 3195: 3190: 1924:
Stimulated Raman transitions are also widely used for manipulating a trapped ion's energy levels, and thus basis
277: 2505: 2477: 2444: 2100: 813: 241:
Light has a certain probability of being scattered by a material. When photons are scattered, most of them are
1668: 3299: 3180: 3075: 1804: 1711: 78: 2891:
Lamb, G. L. (1971). "Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium".
3165: 2030: 1346:. In general, a normal mode is Raman active if it transforms with the same symmetry of the quadratic forms 1030: 821: 376:
in recognition of its significance as a tool for analyzing the composition of liquids, gases, and solids.
3326: 3118: 2360:"Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions" 1548:
Monitoring the polarization of the scattered photons is useful for understanding the connections between
880: 844: 598: 592: 2989:"Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes" 1472:, which states that vibrational modes cannot be both IR and Raman active, applies to certain molecules. 1439: 443:
is conceptually similar but involves excitation of electronic, rather than vibrational, energy levels.
385: 3085: 3367: 2281: 1733: 1067: 567: 373: 2762: 1898: 1478: 3306: 3277: 2222:
Inaugural Address delivered to the South Indian Science Association on Friday, the 16th March, 1928
1469: 1468:) are allowed according to the QHO. There are however many cases where overtones are observed. The 440: 152: 68: 32: 3160: 2757: 801: 424: 300: 262: 113: 3080: 913:
is the wavenumber of the vibrational transition. Thus Stokes scattering gives a wavenumber of
462: 133: 108: 3100: 2987:
Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei (16 August 2016).
1910:
For solid materials, Raman scattering is used as a tool to detect high-frequency phonon and
3252: 2935: 2900: 2822: 2749: 2660: 2613: 2316: 2243: 2125: 2009: 1994: 1977: 1640: 1613: 1557: 1543: 211: 58: 2969: 1057:. It shows the intensity of the scattered light as a function of its frequency difference 1049:(atom or molecule loses energy: scattered photon has more energy than the incident photon) 8: 3272: 3211: 1957: 1946: 1940: 1531: 605:
when anharmonicity is important. The vibrational energy levels according to the QHO are
452: 246: 145: 103: 2939: 2904: 2826: 2753: 2664: 2617: 2320: 2247: 2129: 1784:, the scattered amplitudes are opposite, so that the Raman scattered beam remains weak. 406:
Schematic of a dispersive Raman spectroscopy setup in a 180° backscattering arrangement.
3141: 3021: 2988: 2846: 2676: 2340: 2259: 2186: 2141: 2025: 1903: 1847: 1825: 1549: 1510: 1054: 549: 529: 509: 419: 269: 242: 223: 123: 93: 88: 63: 1824:
The inverse Raman effect is a form of Raman scattering first noted by W. J. Jones and
1436:
of the molecule's point group. As with IR spectroscopy, only fundamental excitations (
303:
for his discovery of Raman scattering. The effect had been predicted theoretically by
3055: 3026: 3008: 2951: 2850: 2838: 2702: 2680: 2629: 2586: 2578: 2570: 2531: 2501: 2473: 2450: 2440: 2415: 2381: 2332: 2263: 2096: 2068: 1950: 503: 353: 349: 273: 2145: 3262: 3257: 3226: 3016: 3000: 2943: 2908: 2873: 2830: 2794: 2767: 2668: 2621: 2565: 2560: 2523: 2407: 2371: 2344: 2324: 2251: 2213: 2190: 2176: 2133: 2015: 1956:
The Raman effect is also involved in producing the appearance of the blue sky (see
1876: 1744: 602: 597:
Molecular vibrational energy is known to be quantized and can be modeled using the
428: 187: 3049: 3004: 1999: 1433: 466: 38: 2834: 1665:
orientation of the molecule and the angle of polarization of the light wave. If
2947: 2672: 1932: 1872: 1475:
The specific selection rules state that the allowed rotational transitions are
1038: 345: 329: 296: 118: 83: 53: 1963:
Raman spectroscopy has been used to chemically image small molecules, such as
390: 3361: 3216: 3012: 2955: 2912: 2574: 2385: 2336: 2307:
K. S. Krishnan; Raman, C. V. (1928). "The Negative Absorption of Radiation".
1964: 837: 572: 2454: 2376: 2359: 1755:
Suppose that the distance between two points A and B of an exciting beam is
575:
of the molecule. For a linear molecule, the number of vibrational modes is 3
3345: 3282: 3030: 2842: 2771: 2633: 2590: 809: 805: 415: 336: 304: 285: 2255: 1732:
the Stokes light in the presence of the pump light, which is exploited in
579:-5, whereas for a non-linear molecule the number of vibrational modes is 3 3221: 2020: 1936: 1885: 1737: 817: 362: 340: 292: 128: 2877: 2798: 284:, in addition to other possibilities. More complex techniques involving 2411: 2234:
Singh, R. (2002). "C. V. Raman and the Discovery of the Raman Effect".
2137: 2036: 254: 24: 3054:. Graduate Texts in Physics (4 ed.). Springer. pp. 285–288. 2625: 2582: 2548: 2496:
Everall, Neil J. (2002). "Raman Spectroscopy of the Condensed Phase".
2181: 2160: 1705: 465:
regarding molecular vibrations apply to Raman scattering although the
3110: 2328: 2217: 431:
and photomultiplier tubes were common prior to the adoption of CCDs.
250: 1811:
conditions, inversely proportional to the cube of the pulse length.
227: 1044: 3231: 502:
degrees of freedom are partitioned into molecular translational,
395: 173: 3091:
Prof. R. W. Wood Demonstrating the New "Raman Effect" in Physics
1911: 1880: 458: 357: 219: 215: 42: 1041:
resulting from the external field and normal mode vibrations.
202: 3171:
Rotating-polarization coherent anti-Stokes Raman spectroscopy
3081:
Explanation from Hyperphysics in Astronomy section of gsu.edu
2739: 1925: 1918: 411: 295:, who discovered it in 1928 with assistance from his student 231: 196: 41:
of scattering between two electrons by emission of a virtual
2646: 1859:
material is vibrational in origin and if the material is in
1339:{\displaystyle {\frac {\partial \alpha }{\partial Q}}\neq 0} 791:{\displaystyle E=h\nu ={h \over {2\pi }}{\sqrt {k \over m}}} 410:
Modern Raman spectroscopy nearly always involves the use of
265:, the material either gains or loses energy in the process. 2546: 495: 315: 2970:"Painless laser device could spot early signs of disease" 249:), such that the scattered photons have the same energy ( 2357: 2116:
Smekal, A. (1923). "Zur Quantentheorie der Dispersion".
2091:
Keresztury, Gábor (2002). "Raman Spectroscopy: Theory".
1556:
The symmetry of a vibrational mode is deduced from the
964:{\displaystyle {\tilde {\nu }}_{0}-{\tilde {\nu }}_{M}} 3373:
Scattering, absorption and radiative transfer (optics)
2811: 1844:; the application of the phenomenon is referred to as 1798:
Several tricks may be used to get a larger amplitude:
977: 2468:
Weber, Alfons (2002). "Raman Spectroscopy of Gases".
2062: 1875:. This process can also be seen as a special case of 1851:, and a record of the continuum is referred to as an 1671: 1643: 1616: 1569: 1513: 1481: 1442: 1352: 1309: 1079: 919: 883: 847: 745: 614: 552: 532: 512: 2434: 1053:
The spectrum of the scattered photons is termed the
1022:{\textstyle {\tilde {\nu }}_{0}+{\tilde {\nu }}_{M}} 193: 3101:
A short description of spontaneous Raman scattering
2306: 1706:
Stimulated Raman scattering and Raman amplification
335:The inelastic scattering of light was predicted by 199: 190: 1750: 1690: 1656: 1629: 1602: 1519: 1499: 1460: 1424: 1338: 1286: 1021: 963: 905: 869: 836:Raman scattering is conceptualized as involving a 790: 722: 558: 538: 518: 272:. Many other variants of Raman spectroscopy allow 2863: 719: 365:in 1930 for his work on the scattering of light. 291:The Raman effect is named after Indian scientist 3359: 2784: 2723:"What is polarised Raman spectroscopy? - HORIBA" 1931:Raman spectroscopy can be used to determine the 2651:perovskites (R=La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y)". 2925: 2549:"Progress in ultrahigh energy resolution EELS" 1967:, in biological systems by a vibrational tag. 483:For any given molecule, there are a total of 3 3126: 2986: 2701:(4th ed.). McGraw–Hill. pp. 117–8. 2697:Banwell, Colin N.; McCash, Elaine M. (1994). 2696: 276:to be examined, if gas samples are used, and 153: 2603: 2270: 2086: 2084: 1866: 1698:, then the vibrations at that frequency are 1603:{\displaystyle \rho ={\frac {I_{r}}{I_{u}}}} 1537: 1425:{\displaystyle (x^{2},y^{2},z^{2},xy,xz,yz)} 288:, multiple laser beams and so on are known. 234:are shifted to lower energy. This is called 2742:Journal of the Optical Society of America B 1939:for molecules that do not have an infrared 1788:A crossing of the beams may limit the path 3133: 3119: 3047: 2692: 2690: 2519: 2517: 2491: 2489: 2090: 1702:; meaning they are not totally symmetric. 479:Degrees of freedom (physics and chemistry) 461:modes may also be observed. The basics of 368:In 1998 the Raman effect was designated a 160: 146: 3106:Raman Effect: fingerprinting the universe 3086:Raman Spectroscopy – Tutorial at Kosi.com 3020: 2761: 2564: 2375: 2180: 2081: 1840:. This phenomenon is referred to as the 1242: 386:Raman spectroscopy § Instrumentation 16:Inelastic scattering of photons by matter 2437:Raman spectroscopy for chemical analysis 2428: 2204:Raman, C. V. (1928). "A new radiation". 2197: 1691:{\displaystyle \rho \geq {\frac {3}{4}}} 1043: 401: 389: 314: 3156:Coherent anti-Stokes Raman spectroscopy 2919: 2687: 2514: 2495: 2486: 2397: 2395: 2351: 1983:Coherent anti-Stokes Raman spectroscopy 1819: 446: 3360: 3140: 2699:Fundamentals of Molecular Spectroscopy 2158: 2115: 1899:Raman spectroscopy § Applications 3114: 2467: 2461: 2233: 2203: 2109: 586: 472: 3333: 2890: 2498:Handbook of Vibrational Spectroscopy 2470:Handbook of Vibrational Spectroscopy 2401: 2392: 2093:Handbook of Vibrational Spectroscopy 1989:Coherent Raman Scattering Microscopy 3186:Surface-enhanced Raman spectroscopy 3176:Spatially offset Raman spectroscopy 2606:The Journal of Physical Chemistry A 2530:(Benjamin/Cummings 1982), pp.646-7 2439:. New York: John Wiley & Sons. 2358:Thomas Schmid; Petra Dariz (2019). 2042:Surface Enhanced Raman Spectroscopy 1769:are not equal. Thus, a phase-shift 906:{\displaystyle {\tilde {\nu }}_{M}} 877:is the wavenumber of the laser and 870:{\displaystyle {\tilde {\nu }}_{0}} 831: 370:National Historic Chemical Landmark 230:as incident photons from a visible 13: 3237:Stimulated Raman adiabatic passage 3041: 2500:. Vol. 1. Chichester: Wiley. 2472:. Vol. 1. Chichester: Wiley. 2095:. Vol. 1. Chichester: Wiley. 1482: 1443: 1321: 1313: 1297: 379: 14: 3389: 3069: 2866:The Journal of Physical Chemistry 1743:Stimulated Raman scattering is a 1461:{\displaystyle \Delta \nu =\pm 1} 1432:, which can be verified from the 3332: 3321: 3320: 2005:List of surface analysis methods 816:in 1852, with light emission at 398:published by Raman and Krishnan. 186: 31: 3196:Transmission Raman spectroscopy 3191:Tip-enhanced Raman spectroscopy 3076:Raman Effect - Classical Theory 2980: 2962: 2884: 2857: 2805: 2778: 2733: 2715: 2640: 2597: 2540: 2278:"C. V. Raman: The Raman Effect" 1892: 1751:Requirement for space-coherence 838:virtual electronic energy level 2566:10.1016/j.ultramic.2018.12.006 2406:. John Wiley & Sons, Ltd. 2300: 2227: 2152: 2063:Harris and Bertolucci (1989). 2056: 1500:{\displaystyle \Delta J=\pm 2} 1419: 1353: 1250: 1211: 1198: 1176: 1166: 1155: 1142: 1120: 1110: 1066:depend on the temperature. In 1007: 985: 949: 927: 891: 855: 321:Molecular Diffraction of Light 236:normal Stokes-Raman scattering 1: 3300:Journal of Raman Spectroscopy 3181:Stimulated Raman spectroscopy 3048:Klingshirn, Claus F. (2012). 2993:Accounts of Chemical Research 2435:McCreery, Richard L. (2000). 2049: 1805:Optical parametric generation 1712:Stimulated Raman spectroscopy 299:. Raman was awarded the 1930 79:Light scattering by particles 3166:Resonance Raman spectroscopy 3005:10.1021/acs.accounts.6b00210 2031:Resonance Raman spectroscopy 1718:spontaneous Raman scattering 7: 2835:10.1103/PhysRevLett.69.2172 2161:"A review of the 1931 book 2159:Nature (19 December 1931). 1970: 1725:stimulated Raman scattering 599:quantum harmonic oscillator 593:Quantum harmonic oscillator 394:An early Raman spectrum of 10: 3394: 3378:Fiber-optic communications 2948:10.1103/PhysRevLett.13.657 2673:10.1103/physrevb.73.064302 1896: 1709: 1541: 590: 476: 450: 383: 310: 282:if an X-ray source is used 3316: 3291: 3245: 3204: 3148: 2893:Reviews of Modern Physics 2282:American Chemical Society 2206:Indian Journal of Physics 2065:Symmetry and Spectroscopy 1867:Supercontinuum generation 1538:Symmetry and polarization 1068:thermodynamic equilibrium 601:(QHO) approximation or a 434: 374:American Chemical Society 3307:Vibrational Spectroscopy 3278:Rule of mutual exclusion 2913:10.1103/RevModPhys.43.99 1470:rule of mutual exclusion 441:X-ray Raman spectroscopy 278:electronic energy levels 2928:Physical Review Letters 2815:Physical Review Letters 2402:Long, Derek A. (2002). 2377:10.3390/heritage2020102 2163:Der Smekal-Raman-Effekt 348:, and independently by 3161:Raman optical activity 2772:10.1364/JOSAB.8.001264 2236:Physics in Perspective 2067:. Dover Publications. 1853:inverse Raman spectrum 1775:(1/λ − 1/λ') 1692: 1658: 1631: 1604: 1521: 1501: 1462: 1426: 1340: 1288: 1050: 1023: 965: 907: 871: 802:Boltzmann distribution 792: 724: 560: 540: 520: 425:charge-coupled devices 407: 399: 324: 301:Nobel Prize in Physics 263:conservation of energy 2256:10.1007/s000160200002 1693: 1659: 1657:{\displaystyle I_{u}} 1632: 1630:{\displaystyle I_{r}} 1605: 1522: 1502: 1463: 1427: 1341: 1289: 1047: 1024: 966: 908: 872: 793: 725: 561: 541: 521: 405: 393: 318: 243:elastically scattered 134:X-ray crystallography 3253:Depolarization ratio 3095:Scientific American, 3051:Semiconductor Optics 2976:. 27 September 2010. 2526:and John H. Meiser, 2010:National Science Day 1995:Depolarization ratio 1978:Brillouin scattering 1842:inverse Raman effect 1820:Inverse Raman effect 1669: 1641: 1614: 1567: 1558:depolarization ratio 1544:Depolarization ratio 1511: 1479: 1440: 1350: 1307: 1077: 975: 917: 881: 845: 743: 612: 550: 530: 510: 447:Molecular vibrations 212:inelastic scattering 3273:Rayleigh scattering 3212:Raman amplification 2940:1964PhRvL..13..657J 2905:1971RvMP...43...99L 2878:10.1021/j100009a027 2827:1992PhRvL..69.2172K 2799:10.1021/cr00025a006 2754:1991JOSAB...8.1264W 2665:2006PhRvB..73f4302I 2618:2012JPCA..116.5560I 2321:1928Natur.122...12R 2248:2002PhP.....4..399S 2130:1923NW.....11..873S 2118:Naturwissenschaften 1958:Rayleigh Scattering 1947:Raman amplification 1941:absorption spectrum 1861:thermal equilibrium 1803:be large. It is an 1723:On the other hand, 463:infrared absorption 453:Molecular vibration 420:photographic plates 247:Rayleigh scattering 3142:Raman spectroscopy 2528:Physical Chemistry 2412:10.1002/0470845767 2288:on 12 January 2013 2138:10.1007/BF01576902 2026:Raman spectroscopy 1951:optical amplifiers 1904:Raman spectroscopy 1848:Raman spectroscopy 1826:Boris P. Stoicheff 1688: 1654: 1627: 1600: 1550:molecular symmetry 1532:phonon confinement 1517: 1497: 1458: 1422: 1336: 1284: 1051: 1019: 961: 903: 867: 788: 720: 587:Vibrational energy 556: 536: 516: 488:degrees of freedom 473:Degrees of freedom 408: 400: 325: 270:Raman spectroscopy 226:being gained by a 224:vibrational energy 94:Powder diffraction 3355: 3354: 2821:(15): 2172–2175. 2708:978-0-07-707976-5 2653:Physical Review B 2626:10.1021/jp301070a 2612:(23): 5560–5570. 2182:10.1038/1281026c0 2074:978-0-486-66144-5 1745:nonlinear optical 1686: 1598: 1520:{\displaystyle J} 1328: 1278: 1253: 1221: 1201: 1179: 1145: 1123: 1102: 1099: 1089: 1010: 988: 952: 930: 894: 858: 818:longer wavelength 786: 785: 774: 717: 716: 705: 685: 650: 559:{\displaystyle z} 539:{\displaystyle y} 519:{\displaystyle x} 494:is the number of 429:Photodiode arrays 354:Leonid Mandelstam 350:Grigory Landsberg 274:rotational energy 170: 169: 54:Bragg diffraction 3385: 3368:Raman scattering 3336: 3335: 3324: 3323: 3268:Raman scattering 3263:Nonlinear optics 3258:Four-wave mixing 3227:Raman microscope 3135: 3128: 3121: 3112: 3111: 3065: 3035: 3034: 3024: 2999:(8): 1494–1502. 2984: 2978: 2977: 2966: 2960: 2959: 2923: 2917: 2916: 2888: 2882: 2881: 2872:(9): 2684–2695. 2861: 2855: 2854: 2809: 2803: 2802: 2787:Chemical Reviews 2782: 2776: 2775: 2765: 2737: 2731: 2730: 2719: 2713: 2712: 2694: 2685: 2684: 2644: 2638: 2637: 2601: 2595: 2594: 2568: 2544: 2538: 2524:Keith J. Laidler 2521: 2512: 2511: 2493: 2484: 2483: 2465: 2459: 2458: 2432: 2426: 2425: 2404:The Raman Effect 2399: 2390: 2389: 2379: 2370:(2): 1662–1683. 2355: 2349: 2348: 2329:10.1038/122012b0 2304: 2298: 2297: 2295: 2293: 2284:. Archived from 2274: 2268: 2267: 2231: 2225: 2224: 2201: 2195: 2194: 2184: 2156: 2150: 2149: 2113: 2107: 2106: 2088: 2079: 2078: 2060: 2016:Nonlinear optics 1877:four-wave mixing 1793: 1783: 1776: 1771:Θ = 2π 1768: 1764: 1760: 1734:Raman amplifiers 1697: 1695: 1694: 1689: 1687: 1679: 1663: 1661: 1660: 1655: 1653: 1652: 1636: 1634: 1633: 1628: 1626: 1625: 1609: 1607: 1606: 1601: 1599: 1597: 1596: 1587: 1586: 1577: 1562: 1526: 1524: 1523: 1518: 1506: 1504: 1503: 1498: 1467: 1465: 1464: 1459: 1431: 1429: 1428: 1423: 1391: 1390: 1378: 1377: 1365: 1364: 1345: 1343: 1342: 1337: 1329: 1327: 1319: 1311: 1293: 1291: 1290: 1285: 1283: 1279: 1277: 1273: 1272: 1262: 1261: 1260: 1255: 1254: 1246: 1234: 1222: 1220: 1219: 1218: 1209: 1208: 1203: 1202: 1194: 1187: 1186: 1181: 1180: 1172: 1164: 1163: 1162: 1153: 1152: 1147: 1146: 1138: 1131: 1130: 1125: 1124: 1116: 1108: 1103: 1101: 1100: 1097: 1091: 1090: 1087: 1081: 1039:beat frequencies 1028: 1026: 1025: 1020: 1018: 1017: 1012: 1011: 1003: 996: 995: 990: 989: 981: 970: 968: 967: 962: 960: 959: 954: 953: 945: 938: 937: 932: 931: 923: 912: 910: 909: 904: 902: 901: 896: 895: 887: 876: 874: 873: 868: 866: 865: 860: 859: 851: 832:Raman scattering 797: 795: 794: 789: 787: 778: 777: 775: 773: 762: 729: 727: 726: 721: 718: 709: 708: 706: 704: 693: 691: 687: 686: 678: 656: 652: 651: 643: 624: 623: 603:Dunham expansion 582: 578: 568:Linear molecules 565: 563: 562: 557: 545: 543: 542: 537: 525: 523: 522: 517: 501: 493: 486: 332:was discovered. 280:may be examined 209: 208: 205: 204: 201: 198: 195: 192: 178:Raman scattering 162: 155: 148: 35: 21: 20: 3393: 3392: 3388: 3387: 3386: 3384: 3383: 3382: 3358: 3357: 3356: 3351: 3312: 3287: 3241: 3200: 3144: 3139: 3072: 3062: 3061:978-364228362-8 3044: 3042:Further reading 3039: 3038: 2985: 2981: 2968: 2967: 2963: 2934:(22): 657–659. 2924: 2920: 2889: 2885: 2862: 2858: 2810: 2806: 2783: 2779: 2763:10.1.1.474.7172 2738: 2734: 2721: 2720: 2716: 2709: 2695: 2688: 2650: 2645: 2641: 2602: 2598: 2553:Ultramicroscopy 2545: 2541: 2522: 2515: 2508: 2494: 2487: 2480: 2466: 2462: 2447: 2433: 2429: 2422: 2400: 2393: 2356: 2352: 2315:(3062): 12–13. 2305: 2301: 2291: 2289: 2276: 2275: 2271: 2232: 2228: 2202: 2198: 2157: 2153: 2124:(43): 873–875. 2114: 2110: 2103: 2089: 2082: 2075: 2061: 2057: 2052: 2047: 2000:Fiber amplifier 1973: 1901: 1895: 1869: 1839: 1833: 1822: 1789: 1778: 1770: 1766: 1762: 1756: 1753: 1714: 1708: 1678: 1670: 1667: 1666: 1648: 1644: 1642: 1639: 1638: 1621: 1617: 1615: 1612: 1611: 1592: 1588: 1582: 1578: 1576: 1568: 1565: 1564: 1560: 1546: 1540: 1512: 1509: 1508: 1480: 1477: 1476: 1441: 1438: 1437: 1434:character table 1386: 1382: 1373: 1369: 1360: 1356: 1351: 1348: 1347: 1320: 1312: 1310: 1308: 1305: 1304: 1300: 1298:Selection rules 1268: 1264: 1263: 1256: 1245: 1244: 1243: 1235: 1233: 1229: 1214: 1210: 1204: 1193: 1192: 1191: 1182: 1171: 1170: 1169: 1165: 1158: 1154: 1148: 1137: 1136: 1135: 1126: 1115: 1114: 1113: 1109: 1107: 1096: 1092: 1086: 1082: 1080: 1078: 1075: 1074: 1033:effect occurs. 1031:resonance Raman 1013: 1002: 1001: 1000: 991: 980: 979: 978: 976: 973: 972: 955: 944: 943: 942: 933: 922: 921: 920: 918: 915: 914: 897: 886: 885: 884: 882: 879: 878: 861: 850: 849: 848: 846: 843: 842: 834: 776: 766: 761: 744: 741: 740: 707: 697: 692: 677: 670: 666: 642: 635: 631: 619: 615: 613: 610: 609: 595: 589: 580: 576: 551: 548: 547: 531: 528: 527: 511: 508: 507: 499: 491: 484: 481: 475: 469:are different. 467:selection rules 455: 449: 437: 388: 382: 380:Instrumentation 313: 189: 185: 166: 46: 45: 39:Feynman diagram 17: 12: 11: 5: 3391: 3381: 3380: 3375: 3370: 3353: 3352: 3350: 3349: 3342: 3330: 3317: 3314: 3313: 3311: 3310: 3303: 3295: 3293: 3289: 3288: 3286: 3285: 3280: 3275: 3270: 3265: 3260: 3255: 3249: 3247: 3243: 3242: 3240: 3239: 3234: 3229: 3224: 3219: 3214: 3208: 3206: 3202: 3201: 3199: 3198: 3193: 3188: 3183: 3178: 3173: 3168: 3163: 3158: 3152: 3150: 3146: 3145: 3138: 3137: 3130: 3123: 3115: 3109: 3108: 3103: 3098: 3097:December 1930) 3088: 3083: 3078: 3071: 3070:External links 3068: 3067: 3066: 3060: 3043: 3040: 3037: 3036: 2979: 2961: 2918: 2883: 2856: 2804: 2793:(1): 157–193. 2777: 2732: 2727:www.horiba.com 2714: 2707: 2686: 2648: 2639: 2596: 2539: 2513: 2506: 2485: 2478: 2460: 2445: 2427: 2421:978-0471490289 2420: 2391: 2350: 2299: 2269: 2242:(4): 399–420. 2226: 2196: 2175:(3242): 1026. 2151: 2108: 2101: 2080: 2073: 2054: 2053: 2051: 2048: 2046: 2045: 2039: 2034: 2028: 2023: 2018: 2013: 2007: 2002: 1997: 1992: 1986: 1980: 1974: 1972: 1969: 1933:force constant 1897:Main article: 1894: 1891: 1873:supercontinuum 1868: 1865: 1835: 1829: 1821: 1818: 1813: 1812: 1808: 1796: 1795: 1752: 1749: 1710:Main article: 1707: 1704: 1685: 1682: 1677: 1674: 1651: 1647: 1624: 1620: 1595: 1591: 1585: 1581: 1575: 1572: 1542:Main article: 1539: 1536: 1516: 1496: 1493: 1490: 1487: 1484: 1457: 1454: 1451: 1448: 1445: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1389: 1385: 1381: 1376: 1372: 1368: 1363: 1359: 1355: 1335: 1332: 1326: 1323: 1318: 1315: 1299: 1296: 1295: 1294: 1282: 1276: 1271: 1267: 1259: 1252: 1249: 1241: 1238: 1232: 1228: 1225: 1217: 1213: 1207: 1200: 1197: 1190: 1185: 1178: 1175: 1168: 1161: 1157: 1151: 1144: 1141: 1134: 1129: 1122: 1119: 1112: 1106: 1095: 1085: 1055:Raman spectrum 1016: 1009: 1006: 999: 994: 987: 984: 958: 951: 948: 941: 936: 929: 926: 900: 893: 890: 864: 857: 854: 833: 830: 812:discovered by 784: 781: 772: 769: 765: 760: 757: 754: 751: 748: 732: 731: 715: 712: 703: 700: 696: 690: 684: 681: 676: 673: 669: 665: 662: 659: 655: 649: 646: 641: 638: 634: 630: 627: 622: 618: 591:Main article: 588: 585: 573:chemical bonds 555: 535: 515: 477:Main article: 474: 471: 451:Main article: 448: 445: 436: 433: 384:Main article: 381: 378: 346:K. S. Krishnan 330:Mie scattering 319:First page of 312: 309: 297:K. S. Krishnan 168: 167: 165: 164: 157: 150: 142: 139: 138: 137: 136: 131: 126: 121: 116: 111: 106: 101: 96: 91: 86: 81: 76: 71: 66: 61: 56: 48: 47: 37: 36: 28: 27: 15: 9: 6: 4: 3: 2: 3390: 3379: 3376: 3374: 3371: 3369: 3366: 3365: 3363: 3348: 3347: 3343: 3341: 3340: 3331: 3329: 3328: 3319: 3318: 3315: 3309: 3308: 3304: 3302: 3301: 3297: 3296: 3294: 3290: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3250: 3248: 3244: 3238: 3235: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3217:Raman cooling 3215: 3213: 3210: 3209: 3207: 3203: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3153: 3151: 3147: 3143: 3136: 3131: 3129: 3124: 3122: 3117: 3116: 3113: 3107: 3104: 3102: 3099: 3096: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3073: 3063: 3057: 3053: 3052: 3046: 3045: 3032: 3028: 3023: 3018: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2983: 2975: 2971: 2965: 2957: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2922: 2914: 2910: 2906: 2902: 2899:(2): 99–124. 2898: 2894: 2887: 2879: 2875: 2871: 2867: 2860: 2852: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2808: 2800: 2796: 2792: 2788: 2781: 2773: 2769: 2764: 2759: 2755: 2751: 2747: 2743: 2736: 2728: 2724: 2718: 2710: 2704: 2700: 2693: 2691: 2682: 2678: 2674: 2670: 2666: 2662: 2659:(6): 064302. 2658: 2654: 2643: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2600: 2592: 2588: 2584: 2580: 2576: 2572: 2567: 2562: 2558: 2554: 2550: 2543: 2537: 2536:0-8053-5682-7 2533: 2529: 2525: 2520: 2518: 2509: 2503: 2499: 2492: 2490: 2481: 2475: 2471: 2464: 2456: 2452: 2448: 2442: 2438: 2431: 2423: 2417: 2413: 2409: 2405: 2398: 2396: 2387: 2383: 2378: 2373: 2369: 2365: 2361: 2354: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2303: 2287: 2283: 2279: 2273: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2223: 2219: 2215: 2211: 2207: 2200: 2192: 2188: 2183: 2178: 2174: 2170: 2166: 2164: 2155: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2104: 2098: 2094: 2087: 2085: 2076: 2070: 2066: 2059: 2055: 2043: 2040: 2038: 2035: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2011: 2008: 2006: 2003: 2001: 1998: 1996: 1993: 1990: 1987: 1984: 1981: 1979: 1976: 1975: 1968: 1966: 1965:nucleic acids 1961: 1959: 1954: 1952: 1948: 1944: 1942: 1938: 1934: 1929: 1927: 1922: 1920: 1915: 1914:excitations. 1913: 1908: 1905: 1900: 1890: 1887: 1882: 1878: 1874: 1864: 1862: 1856: 1854: 1850: 1849: 1843: 1838: 1832: 1827: 1817: 1809: 1806: 1801: 1800: 1799: 1792: 1787: 1786: 1785: 1782: 1777:appears. For 1774: 1759: 1748: 1746: 1741: 1739: 1735: 1731: 1726: 1721: 1719: 1713: 1703: 1701: 1683: 1680: 1675: 1672: 1649: 1645: 1622: 1618: 1593: 1589: 1583: 1579: 1573: 1570: 1559: 1554: 1551: 1545: 1535: 1534:is manifest. 1533: 1528: 1514: 1494: 1491: 1488: 1485: 1473: 1471: 1455: 1452: 1449: 1446: 1435: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1387: 1383: 1379: 1374: 1370: 1366: 1361: 1357: 1333: 1330: 1324: 1316: 1280: 1274: 1269: 1265: 1257: 1247: 1239: 1236: 1230: 1226: 1223: 1215: 1205: 1195: 1188: 1183: 1173: 1159: 1149: 1139: 1132: 1127: 1117: 1104: 1093: 1083: 1073: 1072: 1071: 1069: 1064: 1060: 1056: 1046: 1042: 1040: 1034: 1032: 1014: 1004: 997: 992: 982: 956: 946: 939: 934: 924: 898: 888: 862: 852: 839: 829: 827: 823: 819: 815: 814:George Stokes 811: 807: 803: 798: 782: 779: 770: 767: 763: 758: 755: 752: 749: 746: 737: 713: 710: 701: 698: 694: 688: 682: 679: 674: 671: 667: 663: 660: 657: 653: 647: 644: 639: 636: 632: 628: 625: 620: 616: 608: 607: 606: 604: 600: 594: 584: 574: 569: 553: 533: 513: 505: 497: 489: 480: 470: 468: 464: 460: 454: 444: 442: 432: 430: 426: 421: 417: 413: 404: 397: 392: 387: 377: 375: 371: 366: 364: 359: 355: 351: 347: 342: 338: 333: 331: 322: 317: 308: 306: 302: 298: 294: 289: 287: 286:pulsed lasers 283: 279: 275: 271: 266: 264: 260: 259:inelastically 256: 252: 248: 244: 239: 237: 233: 229: 225: 221: 217: 213: 207: 183: 179: 175: 163: 158: 156: 151: 149: 144: 143: 141: 140: 135: 132: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 74:Kikuchi lines 72: 70: 69:Dynamic light 67: 65: 62: 60: 57: 55: 52: 51: 50: 49: 44: 40: 34: 30: 29: 26: 23: 22: 19: 3346:Spectroscopy 3344: 3337: 3325: 3305: 3298: 3283:Stokes shift 3267: 3205:Applications 3094: 3050: 2996: 2992: 2982: 2973: 2964: 2931: 2927: 2921: 2896: 2892: 2886: 2869: 2865: 2859: 2818: 2814: 2807: 2790: 2786: 2780: 2745: 2741: 2735: 2726: 2717: 2698: 2656: 2652: 2642: 2609: 2605: 2599: 2556: 2552: 2542: 2527: 2497: 2469: 2463: 2436: 2430: 2403: 2367: 2363: 2353: 2312: 2308: 2302: 2290:. Retrieved 2286:the original 2272: 2239: 2235: 2229: 2221: 2209: 2205: 2199: 2172: 2168: 2162: 2154: 2121: 2117: 2111: 2092: 2064: 2058: 1962: 1955: 1945: 1930: 1923: 1916: 1909: 1902: 1893:Applications 1870: 1857: 1852: 1845: 1841: 1836: 1830: 1823: 1814: 1797: 1790: 1780: 1772: 1757: 1754: 1742: 1738:Raman lasers 1729: 1724: 1722: 1717: 1715: 1699: 1555: 1547: 1529: 1474: 1301: 1062: 1058: 1052: 1035: 835: 810:fluorescence 806:Stokes shift 799: 735: 733: 596: 482: 456: 438: 416:mercury lamp 409: 367: 337:Adolf Smekal 334: 326: 320: 305:Adolf Smekal 290: 267: 258: 240: 235: 182:Raman effect 181: 177: 171: 98: 18: 3222:Raman laser 2748:(6): 1264. 2212:: 387–398. 2021:Raman laser 1949:is used in 1937:bond length 1886:fiber laser 1700:depolarized 1098:anti-Stokes 363:Nobel Prize 341:C. V. Raman 293:C. V. Raman 129:Wolf effect 114:Small-angle 3362:Categories 3149:Techniques 2507:0471988472 2479:0471988472 2446:0471231878 2102:0471988472 2050:References 2037:Scattering 504:rotational 255:wavelength 109:Rutherford 25:Scattering 3013:0001-4842 2956:0031-9007 2851:206323493 2758:CiteSeerX 2681:117290748 2575:0304-3991 2559:: 60–67. 2386:2571-9408 2337:1476-4687 2264:121785335 2218:10821/377 1779:Θ = 1730:amplifies 1676:≥ 1673:ρ 1571:ρ 1492:± 1483:Δ 1453:± 1447:ν 1444:Δ 1331:≠ 1322:∂ 1317:α 1314:∂ 1251:~ 1248:ν 1227:⁡ 1199:~ 1196:ν 1177:~ 1174:ν 1143:~ 1140:ν 1133:− 1121:~ 1118:ν 1008:~ 1005:ν 986:~ 983:ν 950:~ 947:ν 940:− 928:~ 925:ν 892:~ 889:ν 856:~ 853:ν 826:electrons 771:π 756:ν 702:π 658:ν 307:in 1923. 251:frequency 210:) is the 59:Brillouin 3327:Category 3292:Journals 3031:27486796 2974:BBC News 2843:10046417 2634:22551093 2591:30577954 2455:58463983 2364:Heritage 2146:20086350 1971:See also 1928:states. 1846:inverse 1747:effect. 1507:, where 822:neutrons 490:, where 427:(CCDs). 228:molecule 104:Rayleigh 3339:Commons 3232:SHERLOC 3022:5704954 2936:Bibcode 2901:Bibcode 2823:Bibcode 2750:Bibcode 2661:Bibcode 2614:Bibcode 2583:1530104 2345:4071281 2317:Bibcode 2244:Bibcode 2191:4125108 2126:Bibcode 2012:(India) 1767:λ' 566:-axes. 396:benzene 372:by the 311:History 216:photons 180:or the 174:physics 124:Thomson 119:Tyndall 89:Neutron 64:Compton 3246:Theory 3058:  3029:  3019:  3011:  2954:  2849:  2841:  2760:  2705:  2679:  2632:  2589:  2581:  2573:  2534:  2504:  2476:  2453:  2443:  2418:  2384:  2343:  2335:  2309:Nature 2292:6 June 2262:  2189:  2169:Nature 2144:  2099:  2071:  2044:(SERS) 1985:(CARS) 1917:Raman 1912:magnon 1881:phonon 1781:π 1763:λ 1088:Stokes 971:while 734:where 546:, and 459:phonon 435:Theory 412:lasers 358:Moscow 323:(1922) 220:matter 43:photon 2847:S2CID 2677:S2CID 2341:S2CID 2260:S2CID 2187:S2CID 2142:S2CID 1991:(CRS) 1926:qubit 1919:lidar 1610:Here 496:atoms 356:, in 232:laser 99:Raman 3056:ISBN 3027:PMID 3009:ISSN 2952:ISSN 2839:PMID 2703:ISBN 2630:PMID 2587:PMID 2579:OSTI 2571:ISSN 2532:ISBN 2502:ISBN 2474:ISBN 2451:OCLC 2441:ISBN 2416:ISBN 2382:ISSN 2333:ISSN 2294:2012 2097:ISBN 2069:ISBN 2033:(RR) 1935:and 1765:and 1736:and 1063:Δν=0 583:-6. 418:and 352:and 3017:PMC 3001:doi 2944:doi 2909:doi 2874:doi 2831:doi 2795:doi 2768:doi 2669:doi 2622:doi 2610:116 2561:doi 2557:203 2408:doi 2372:doi 2325:doi 2313:122 2252:doi 2214:hdl 2177:doi 2173:128 2134:doi 1224:exp 824:or 808:in 238:. 218:by 214:of 172:In 84:Mie 3364:: 3025:. 3015:. 3007:. 2997:49 2995:. 2991:. 2972:. 2950:. 2942:. 2932:13 2930:. 2907:. 2897:43 2895:. 2870:99 2868:. 2845:. 2837:. 2829:. 2819:69 2817:. 2791:94 2789:. 2766:. 2756:. 2744:. 2725:. 2689:^ 2675:. 2667:. 2657:73 2655:. 2628:. 2620:. 2608:. 2585:. 2577:. 2569:. 2551:. 2516:^ 2488:^ 2449:. 2414:. 2394:^ 2380:. 2366:. 2362:. 2339:. 2331:. 2323:. 2311:. 2280:. 2258:. 2250:. 2238:. 2220:. 2208:. 2185:. 2171:. 2167:. 2140:. 2132:. 2122:11 2120:. 2083:^ 1953:. 1943:. 1863:. 1855:. 1834:+ν 1740:. 1720:. 1059:Δν 526:, 253:, 203:ən 197:ɑː 176:, 3134:e 3127:t 3120:v 3093:( 3064:. 3033:. 3003:: 2958:. 2946:: 2938:: 2915:. 2911:: 2903:: 2880:. 2876:: 2853:. 2833:: 2825:: 2801:. 2797:: 2774:. 2770:: 2752:: 2746:8 2729:. 2711:. 2683:. 2671:: 2663:: 2649:3 2636:. 2624:: 2616:: 2593:. 2563:: 2510:. 2482:. 2457:. 2424:. 2410:: 2388:. 2374:: 2368:2 2347:. 2327:: 2319:: 2296:. 2266:. 2254:: 2246:: 2240:4 2216:: 2210:2 2193:. 2179:: 2165:" 2148:. 2136:: 2128:: 2105:. 2077:. 1837:M 1831:L 1807:. 1794:. 1791:x 1773:x 1758:x 1684:4 1681:3 1650:u 1646:I 1623:r 1619:I 1594:u 1590:I 1584:r 1580:I 1574:= 1561:ρ 1515:J 1495:2 1489:= 1486:J 1456:1 1450:= 1420:) 1417:z 1414:y 1411:, 1408:z 1405:x 1402:, 1399:y 1396:x 1393:, 1388:2 1384:z 1380:, 1375:2 1371:y 1367:, 1362:2 1358:x 1354:( 1334:0 1325:Q 1281:) 1275:T 1270:B 1266:k 1258:M 1240:c 1237:h 1231:( 1216:4 1212:) 1206:M 1189:+ 1184:0 1167:( 1160:4 1156:) 1150:M 1128:0 1111:( 1105:= 1094:I 1084:I 1015:M 998:+ 993:0 957:M 935:0 899:M 863:0 783:m 780:k 768:2 764:h 759:= 753:h 750:= 747:E 736:n 730:, 714:m 711:k 699:2 695:1 689:) 683:2 680:1 675:+ 672:n 668:( 664:h 661:= 654:) 648:2 645:1 640:+ 637:n 633:( 629:h 626:= 621:n 617:E 581:N 577:N 554:z 534:y 514:x 500:N 492:N 485:N 245:( 206:/ 200:m 194:r 191:ˈ 188:/ 184:( 161:e 154:t 147:v

Index

Scattering
Electron scattering
Feynman diagram
photon
Bragg diffraction
Brillouin
Compton
Dynamic light
Kikuchi lines
Light scattering by particles
Mie
Neutron
Powder diffraction
Raman
Rayleigh
Rutherford
Small-angle
Tyndall
Thomson
Wolf effect
X-ray crystallography
v
t
e
physics
/ˈrɑːmən/
inelastic scattering
photons
matter
vibrational energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.