Knowledge

Resistive random-access memory

Source 📝

1913:
physical characteristics. However, the fragile nature and high cost of the fabrication process limit the wide applications of these ABO3-type inorganic perovskite materials for memristors. Recently, ABX3-type lead trihalide perovskites have received extensive research interest for using in optoelectronic devices such as photovoltaics, photodetectors, and light-emitting diodes (LED). In these structures, A is a monovalent organic or inorganic (MA:CH3NH3+, FA: CH(NH2)2+, Cs+, Rb+), B is a divalent metal cation (Pb2+, Sn2+), and X is a halide anion (Cl, Br, I). The A cation resides at the eight corners of the cubic unit and the B cation locates at the center of the octahedral cluster 4 to form the 3D perovskite structure. According to the different A-site cations, these structures can be classified into organic-inorganic hybrid perovskites and all-inorganic perovskites. Moreover, this type of perovskite can be obtained readily by solution-processable methods at a low cost. Nevertheless, owing to the inclusion of organic cations, it was commonly found that the intrinsic thermal instability of methylammonium (MA) and formamidinium (FA) lead trihalide perovskites was really a bottleneck for the development of hybrid perovskite-based electronic devices. Therefore, to resolve this issue, the organic cations must be substituted by other ions such as Cesium (Cs) cations. Interestingly, there are some reports of Cesium/Cesium hybridization solar cells that give us many new clues for the improved stability of all-inorganic perovskite-based electronic devices. More and more publications demonstrate that inorganic Cs cation-based all-inorganic perovskites could be both structurally and thermally stable above 100 °C, while hybrid perovskites thermally degraded to lead iodide above 85 °C. Therefore, it has been implied that all-inorganic perovskites could be excellent candidates for the fabrication of stable and highly efficient resistive switching memory devices using a low-cost process. Considering the CsPbX3 perovskites are usually prepared by solution method, point defects such as vacancies, interstitials, and antisites are possible in the crystals. These defects are essential for the defect drift-dominated resistive switching memory. Thus, these CsPbX3 perovskites have great potential for application in memory devices. Given the fact that resistance switching in halide perovskite-based RRAM is caused by migrations of halide atoms through vacancies, the migration characteristics of a vacancy within the RRAM are one of the most important material properties of the RRAM determining the key features of it. However, despite its importance, the activation energy of halide vacancy in RRAMs has been no serious study topic at all. Obviously, a small activation barrier of halide vacancy expected in halide perovskite-based RRAMs plays a central role in allowing this RRAM to operate at low voltages and thus at low power consumption mode.
1561:(PCM) in that they change dielectric material properties. CBRAM involves one electrode providing ions that dissolve readily in an electrolyte material, while PCM involves generating sufficient Joule heating to effect amorphous-to-crystalline or crystalline-to-amorphous phase changes. By contrast, ReRAM involves generating defects in a thin oxide layer, known as oxygen vacancies (oxide bond locations where the oxygen has been removed), which can subsequently charge and drift under an electric field. The motion of oxygen ions and vacancies in the oxide would be analogous to the motion of electrons and holes in a semiconductor. 2088:, one of the largest nanotechnology research institutes in Europe to further ReRAM technology. Beginning in November, 2017, the company has demonstrated the manufacturability in 40 nm SiOx ReRAM cells, followed by demonstrations of working arrays in 2018 and discrete components in 2020. In July 2021, the company taped out its first embedded ReRAM modules. In September 2021, Weebit, together with Leti, produced, tested and characterized a 1 Mb ReRAM array, using a 28 nm FDSOI process on 300mm wafers. 1719: 1778:, in series with the memory element or by the memory element itself. Such isolation capabilities are inferior to the use of transistors if the on/off ratio for the selector is not sufficient, limiting the ability to operate very large arrays in this architecture. Thin film based threshold switch can work as a selector for bipolar and unipolar ReRAM. Threshold switch-based selector was demonstrated for 64 Mb array. The cross-point architecture requires 5464: 1701:
mesa structures), and bulk switching, in which oxygen vacancy filaments are generated within the bulk of the oxide. The former mode suffers from oxidation of the filaments in air, requiring hermetic sealing to enable switching. The latter requires no sealing. In 2014 researchers from Rice University announced a silicon filament-based device that used a porous
1705:
dielectric with no external edge structure - rather, filaments were formed at internal edges within pores. Devices can be manufactured at room temperature and have a sub-2V forming voltage, high on-off ratio, low power consumption, nine-bit capacity per cell, high switching speeds and good endurance.
1961:
with a Ti buffer layer, showing switching times less than 10 ns and currents less than 30μA. At IEDM 2010, ITRI again broke the speed record, showing <0.3 ns switching time, while also showing process and operation improvements to allow yield up to 100% and endurance up to 10 billion cycles.
1773:
For random-access type memories, a 1T1R (one transistor, one resistor) architecture is preferred because the transistor isolates current to cells that are selected from cells that are not. On the other hand, a cross-point architecture is more compact and may enable vertically stacking memory layers,
2169:
ITRI has shown that ReRAM is scalable below 30 nm. The motion of oxygen atoms is a key phenomenon for oxide-based ReRAM; one study indicated that oxygen motion may take place in regions as small as 2 nm. It is believed that if a filament is responsible, it would not exhibit direct scaling
3988:
Wei, Z.; Kanzawa, Y.; Arita, K.; Katoh, Y.; Kawai, K.; Muraoka, S.; Mitani, S.; Fujii, S.; Katayama, K.; Iijima, M.; Mikawa, T.; Ninomiya, T.; Miyanaga, R.; Kawashima, Y.; Tsuji, K.; Himeno, A.; Okada, T.; Azuma, R.; Shimakawa, K.; Sugaya, H.; Takagi, T.; Yasuhara, R.; Horiba, K.; Kumigashira, H.;
1700:
Silicon oxide presents an interesting case of resistance switching. Two distinct modes of intrinsic switching have been reported - surface-based, in which conductive silicon filaments are generated at exposed edges (which may be internal—within pores—or external—on the surface of
2180:
A drawback to the initial CRS solution is the requirement for switching endurance caused by conventional destructive readout based on current measurements. A new approach for a nondestructive readout based on capacity measurement potentially lowers the requirements for both material endurance and
2142:
based non-volatile resistive memory device with a switching speed of 10 ns and ON/OFF ratio of 10 000. The device showed excellent endurance characteristics for 100 000 switching cycles. Retention tests showed good stability and the devices are reproducible. Memory operating mechanism is proposed
1597:
An energy-efficient chip called NeuRRAM fixes an old design flaw to run large-scale AI algorithms on smaller devices, reaching the same accuracy as digital computers, at least for applications needing only a few million bits of neural state. As NeuRRAM is an analog technology, it suffers from the
2165:
Compared to PRAM, ReRAM operates at a faster timescale (switching time can be less than 10 ns), while compared to MRAM, it has a simpler, smaller cell structure (less than 8F² MIM stack). A vertical 1D1R (one diode, one resistive switching device) integration can be used for crossbar memory
1912:
ABO3-type inorganic perovskite materials such as BaTiO3, SrRuO3, SrZrO3, and SrTiO3 have attracted extensive research interest as the storage media in memristors due to their remarkable resistance switching effects and various functionalities such as ferroelectric, dielectric, and semiconducting
2099:
implements an Ag filament in amorphous Si along with a threshold switching system to achieve a diode+ReRAM. Their system includes the use of a transistor in 1T1R or 1TNR architecture. Crossbar started producing samples at SMIC on the 40 nm process in 2017. The Ag filament diameter has been
1764:
Under certain conditions, the forming operation may be bypassed. It is expected that under these conditions, the initial current is already quite high compared to insulating oxide layers. ReRAM cells generally do not require high voltage forming if Cu ions are already present in the dielectric,
4529:
Chen, Y. S.; Lee, H. Y.; Chen, P. S.; Gu, P. Y.; Chen, C. W.; Lin, W. P.; Liu, W. H.; Hsu, Y. Y.; Sheu, S. S.; Chiang, P. C.; Chen, W. S.; Chen, F. T.; Lien, C. H.; Tsai, M. J. (2009). "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity".
1760:
The low-resistance path can be either localized (filamentary) or homogeneous. Both effects can occur either throughout the entire distance between the electrodes or only in proximity to one of the electrodes. Filamentary and homogenous conduction path switching effects can be distinguished by
2020:. This system has been associated with high endurance demonstration (trillion cycles), but products are specified at 100K cycles. Filament diameters as large as ~100 nm have been observed. Panasonic released a 4Mb part with Fujitsu, and is developing 40 nm embedded memory with UMC. 1629:
introduced an ReRAM prototype as a chip about the size of a postage stamp that could store 1 TB of data. In August 2013, the company claimed that large-scale production of their ReRAM chips was scheduled for 2015. The memory structure (Ag/a-Si/Si) closely resembles a silver-based CBRAM.
2181:
power consumption. Bi-layer structure is used to produce the nonlinearity in LRS to avoid the sneak path problem. A single-layer device exhibiting a strong nonlinear conduction in LRS was reported. Another bi-layer structure was introduced for bipolar ReRAM to improve the HRS and stability.
2177:(CRS) was introduced as a possible solution to sneak-path current interference. In the CRS approach, the information storing states are pairs of high- and low-resistance states (HRS/LRS and LRS/HRS) so that the overall resistance is always high, allowing larger passive crossbar arrays. 1765:
having already been driven-in by a designed photo-diffusion or annealing process; such cells may also readily return to their initial state. In the absence of such Cu initially being in the dielectric, the voltage applied directly to the electrolyte has a strong possibility of forming.
2028:
On 30 April 2008, HP announced that they had discovered the memristor, originally envisioned as a missing 4th fundamental circuit element by Chua in 1971. On 8 July they announced they would begin prototyping ReRAM using their memristors. HP first demonstrated its memristor using
2065:. The tellurium filament achieved better stability as compared to silver. Adesto has targeted the ultralow power memory for Internet-of-Things (IoT) applications. Adesto has released products manufactured at Altis foundry and entered into a 45 nm foundry agreement with 1940:
A 16 Gb 27 nm ReRAM (actually CBRAM) was published by Micron and Sony in 2014. Instead of a 1T1R structure for one bit, two bits were split between two transistors and bottom electrodes while sharing the top portions (electrolyte, copper reservoir, and top electrode).
1785:
Polarity can be either binary or unary. Bipolar effects cause polarity to reverse when switching from low to high resistance (reset operation) compared to switching high to low (set operation). Unipolar switching leaves polarity unaffected, but uses different voltages.
3857:
Tsunoda, K.; Kinoshita, K.; Noshiro, H.; Yamazaki, Y.; Iizuka, T.; Ito, Y.; Takahashi, A.; Okano, A.; Sato, Y.; Fukano, T.; Aoki, M.; Sugiyama, Y. (2007). "Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V".
3697:
Pan, Chengbin; Ji, Yanfeng; Xiao, Na; Hui, Fei; Tang, Kechao; Guo, Yuzheng; Xie, Xiaoming; Puglisi, Francesco M.; Larcher, Luca (2017-01-01). "Coexistence of Grain-Boundaries-Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride".
2242:
Researchers at School of Engineering of Stanford University have built up a RRAM that "does the AI processing within the memory itself, thereby eliminating the separation between the compute and memory units." It is twice as energy efficient as state-of-the-art.
1697:. However, others challenged this terminology and the applicability of memristor theory to any physically realizable device is open to question. Whether redox-based resistively switching elements (ReRAM) are covered by the current memristor theory is disputed. 1745:, which is normally insulating, can form a conduction path after application of a sufficiently high voltage. The conduction path can arise from different mechanisms, including vacancy or metal defect migration. Once the conduction path is formed, it may be 1606:
In the early 2000s, ReRAMs were under development by a number of companies, some of which filed patent applications claiming various implementations of this technology. ReRAM has entered commercialization on an initially limited KB-capacity scale.
3349:
Shi, Yuanyuan; Ji, Yanfeng; Hui, Fei; Nafria, Montserrat; Porti, Marc; Bersuker, Gennadi; Lanza, Mario (2015-04-01). "In Situ Demonstration of the Link Between Mechanical Strength and Resistive Switching in Resistive Random-Access Memories".
2259:
Lee, H. Y.; Chen, P. S.; Wu, T. Y.; Chen, Y. S.; Wang, C. C.; Tzeng, P. J.; Lin, C. H.; Chen, F.; Lien, C. H.; Tsai, M. J. (2008). "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM".
4765:
Joshua Yang, J.; Zhang, M.-X.; Pickett, Matthew D.; Miao, Feng; Paul Strachan, John; Li, Wen-Di; Yi, Wei; Ohlberg, Douglas A. A.; Joon Choi, Byung; Wu, Wei; Nickel, Janice H.; Medeiros-Ribeiro, Gilberto; Stanley Williams, R. (2012).
2812:
Jung, K. B.; Lee, J. W.; Park, Y. D.; Childress, J. R.; Pearton, S. J.; Jenson, M.; Hurst, A. T. (1 November 1997). "Electron cyclotron resonance plasma etching of materials for magneto-resistive random access memory applications".
1753:(re-formed, resulting in lower resistance) by another lower voltage. Many current paths, rather than a single filament, are possibly involved. The presence of these current paths in the dielectric can be in situ demonstrated via 1568:, the cost and performance benefits of ReRAM have not been enough for companies to proceed with the replacement. Apparently, a broad range of materials can be used for ReRAM. However, the discovery that the popular 1710:) since 2012, offers low electroforming voltages (2.5V), switching voltages around 1V, switching times in the nanoseconds regime, and more than 10,000,000 cycles without device failure - all in ambient conditions. 3809:
Li, B., Hui, W., Ran, X., Xia, Y., Xia, F., Chao, L., ... & Huang, W. (2019). Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 7(25),
4094: 2085: 2166:
structure to reduce the unit cell size to 4F² (F is the feature dimension). Compared to flash memory and racetrack memory, a lower voltage is sufficient, and hence it can be used in low-power applications.
3791:
S.C. Lee, Q. Hu, Y.-J. Baek, Y.J. Choi, C.J. Kang, H.H. Lee, T.-S. Yoon, Analog and bipolar resistive switching in pn junction of n-type ZnO nanowires on p-type Si substrate, J. Appl. Phys. 114 (2013) 1–5.
2799:
A thin-film resistive memory array based upon voltage-controlled negative resistance in SiO, was first proposed by Nielsen and Bashara (1964) and such a device has been described by Simmons and Verderber
2414: 1737:
the instance of filament forming when the current abruptly increases beyond a certain voltage. A transistor is often used to limit current to prevent a runaway breakdown following the filament formation.
3837:
Liu, D., Lin, Q., Zang, Z., Wang, M., Wangyang, P., Tang, X., ... & Hu, W. (2017). Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Applied Materials & Interfaces, 9(7),
4145: 4486:
Zhang, Yang; Duan, Ziqing; Li, Rui; Ku, Chieh-Jen; Reyes, Pavel I; Ashrafi, Almamun; Zhong, Jian; Lu, Yicheng (2013). "Vertically integrated ZnO-Based 1D1R structure for resistive switching".
4807:
Mehonic, Adnan; Cueff, Sébastien; Wojdak, Maciej; Hudziak, Stephen; Labbé, Christophe; Rizk, Richard; Kenyon, Anthony J (2012). "Electrically tailored resistance switching in silicon oxide".
4714:
Tappertzhofen, S; Linn, E; Nielen, L; Rosezin, R; Lentz, F; Bruchhaus, R; Valov, I; Böttger, U; Waser, R (2011). "Capacity based nondestructive readout for complementary resistive switches".
3591:
V. S. S. Srinivasan et al., Punchthrough-Diode-Based Bipolar RRAM Selector by Si Epitaxy," Electron Device Letters, IEEE, vol.33, no.10, pp.1396,1398, Oct. 2012 doi: 10.1109/LED.2012.2209394
1637:, and predicted that 100 TB SSDs based on the technology could be available in 2018 with 1.5 PB capacities available in 2020, just in time for the stop in growth of NAND flash capacities. 2174: 1984:
A Chinese group presented the largest 1T1R RRAM to date, a 64 Mb chip on a 130 nm process. 10 million cycles were achieved, as well as an extrapolated retention of 10 yrs at 75 C.
1973:
system since its first publication in 2008. ITRI's patent 8362454 has since been sold to TSMC; the number of prior licensees is unknown. On the other hand, IMEC focused mainly on Hf/HfO
1598:
same analog noise problems that plague other analog semiconductors. While this is a handicap, many neural processors do not need bit-perfect state storage to do useful work.
4920:
Chen, F. T.; Chen, Y. S.; Wu, T. Y.; Ku, T. K. (2014). "Write Scheme Allowing Reduced LRS Nonlinearity Requirement in a 3D-RRAM Array With Selector-Less 1TNR Architecture".
3819:
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050−6051.
3800:
D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications, Chem. Rev. 110 (2009) 389–458.
1726: 3603:
Mandapati, R.; Shrivastava, S.; Das, B.; Sushama; Ostwal, V.; Schulze, J.; Ganguly, U. (2014). "High performance sub-430°C epitaxial silicon PIN selector for 3D RRAM".
3580: 2125:
calls it conductive-bridging RAM(CBRAM), NEC has a variant called "Nanobridge" and Sony calls their version "electrolytic memory". New research suggests CBRAM can be
2200:
ReRAM cells situated above a select transistor, only the intrinsic nonlinearity of the HRS is required to be sufficiently large, since the number of vertical levels
3267:
Lee, D.; Seong, D. J.; Jo, I.; Xiang, F.; Dong, R.; Oh, S.; Hwang, H. (2007). "Resistance switching of copper doped MoO films for nonvolatile memory applications".
621: 3499:
Balakrishnan, M.; Thermadam, S. C. P.; Mitkova, M.; Kozicki, M. N. (2006). "A Low Power Non-Volatile Memory Element Based on Copper in Deposited Silicon Oxide".
2418: 2143:
based on charge trapping in quantum dots with AlOx acting as barrier. This mechanism is supported by marked variation in capacitance value in ON and OFF states.
2494:
Park, In-Sung; Kim, Kyong-Rae; Lee, Sangsul; Ahn, Jinho (2007). "Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides".
5201: 3540:
Sills, S.; Yasuda, S.; Strand, J.; Calderoni, A.; Aratani, K.; Johnson, A.; Ramaswamy, N. (2014). "A copper ReRAM cell for Storage Class Memory applications".
2744: 2170:
with cell size. Instead, the current compliance limit (set by an outside resistor, for example) could define the current-carrying capacity of the filament.
2041:-based device has some material similarity to Panasonic's ReRAM, but the operation characteristics are different. The Hf/HfOx system was similarly studied. 1937:
A 32 Gb 24 nm ReRAM was published by SanDisk in 2013 without many details other than a non-transistor access device, and metal oxide RRAM composition.
1706:
Problems with their inoperability in air can be overcome by hermetic sealing of devices. Bulk switching in silicon oxide, pioneered by researchers at UCL (
4901:
Yoon, Hong Sik; Baek, In-Gyu; Zhao, Jinshi; Sim, Hyunjun; Park, Min Young; Lee, Hansin; Oh, Gyu-Hwan; Shin, Jong Chan; Yeo, In-Seok; Chung, U.-In (2009).
1794:
Multiple inorganic and organic material systems display thermal or ionic resistive switching effects. These can be grouped into the following categories:
3847:
Hur, J. H. (2020). First principles study of oxygen vacancy activation energy barrier in zirconia-based resistive memory. Scientific reports, 10(1), 1-8.
4434: 4149: 3015:
Kim, J.; Pershin, Y. V.; Yin, M.; Datta, T.; Di Ventra, M. (July 2020). "An experimental proof that resistance-switching memories are not memristors".
1966:
presented updates of their ReRAM program at the 2012 Symposia on VLSI Technology and Circuits, including a solution with a 500 nA operating current.
4858:
Zhang, Yang; Duan, Ziqing; Li, Rui; Ku, Chieh-Jen; Reyes, Pavel; Ashrafi, Almamun; Lu, Yicheng (2012). "FeZnO-Based Resistive Switching Devices".
5074: 4111: 1774:
ideal suited for mass-storage devices. However, in the absence of any transistors, isolation must be provided by a "selector" device, such as a
4636:
Lin, Chih-Yang; Wu, Chen-Yu; Wu, Chung-Yi; Hu, Chenming; Tseng, Tseung-Yuen (2007). "Bistable Resistive Switching in Al2O3 Memory Thin Films".
3454:
Chen, Yu-Sheng; Wu, Tai-Yuan; Tzeng, Pei-Jer; Chen, Pang-Shiu; Lee, H. Y.; Lin, Cha-Hsin; Chen, F.; Tsai, Ming-Jinn (2009). "Forming-free HfO
3421: 4671:
Linn, Eike; Rosezin, Roland; Kügeler, Carsten; Waser, Rainer (2010). "Complementary resistive switches for passive nanocrossbar memories".
3939: 2614:
Nielsen, P. H.; Bashara, N. M. (1964). "The reversible voltage-induced initial resistance in the negative resistance sandwich structure".
5490: 5500: 2944:
Di Ventra, Massimiliano; Pershin, Yuriy V. (2013). "On the physical properties of memristive, memcapacitive and meminductive systems".
1679:
reported a manufacturing method for "magneto-resistive random access memory" by utilizing electron cyclotron resonance plasma etching.
5099: 4280: 2096: 1626: 2053:
CBRAM is based on filaments generated from the electrode metal rather than oxygen vacancies. The original material system was Ag/GeS
1929:
without sacrificing programming performance, retention or endurance. Some commonly cited ReRAM systems are described further below.
1996:-based ReRAM at IEDM 2008. A key requirement was the need for a high work function metal such as Pt or Ir to interface with the TaO 616: 2173:
A significant hurdle to realizing the potential of ReRAM is the sneak path problem that occurs in larger passive arrays. In 2010,
636: 5169: 5127: 2319: 4973: 5318: 4418: 1510: 4077:"Fujitsu Semiconductor Launches World's Largest Density 4 Mbit ReRAM Product for Mass Production : FUJITSU SEMICONDUCTOR" 4547: 4006: 3875: 3768: 3620: 3557: 3516: 3475: 3402: 2598: 2277: 2212: 1051: 5288: 3210:"A Review on Resistive Switching in High-k Dielectrics: A Nanoscale Point of View Using Conductive Atomic Force Microscope" 1664: 31: 2701: 5407: 5147: 5067: 4298: 2658: 2540:
Mehonic, A.; Cueff, S. B.; Wojdak, M.; Hudziak, S.; Jambois, O.; Labbé, C.; Garrido, B.; Rizk, R.; Kenyon, A. J. (2012).
3751:
Puglisi, F. M.; Larcher, L.; Pan, C.; Xiao, N.; Shi, Y.; Hui, F.; Lanza, M. (2016-12-01). "2D h-BN based RRAM devices".
4095:"Panasonic and United Microelectronics Corporation Agreed to Develop Mass Production Process for Next Generation ReRAM" 4076: 1921:
Papers at the IEDM Conference in 2007 suggested for the first time that ReRAM exhibits lower programming currents than
1754: 1660: 1260: 212: 3152:"the Foresight Institute » Blog Archive » Nanotechnology-based next generation memory nears mass production" 257: 2392: 999: 942: 262: 4580:
Cen, C.; Thiel, S.; Hammerl, G.; Schneider, C. W.; Andersen, K. E.; Hellberg, C. S.; Mannhart, J.; Levy, J. (2008).
1663:. Further work on this new thin-film resistive memory was reported by J.G. Simmons in 1967. In 1970, members of the 3172:
Mehonic, A.; Munde, M. S.; Ng, W. H.; Buckwell, M.; Montesi, L.; Bosman, M.; Shluger, A. L.; Kenyon, A. J. (2017).
2000:
layer. The change of O content results in resistance change as well as Schottky barrier change. More recently, a Ta
110: 4581: 5209: 4226: 2791: 2117: 1554: 1325: 985: 929: 5271: 5060: 5043: 492: 88: 2459:
Lamb, D R; Rundle, P C (1967). "A non-filamentary switching action in thermally grown silicon dioxide films".
1782:
compatible two terminal selectors like punch-through diode for bipolar ReRAM or PIN diode for unipolar ReRAM.
5468: 5434: 4422: 1360: 4922: 4262: 711: 606: 507: 2377: 4988:"RRAM-based Hardware Implementation of Artificial Neural Networks: Progress Updates and Challenges Ahead" 4244: 668: 5439: 5375: 4903:"Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications" 2211:
Modeling of 2D and 3D caches designed with ReRAM and other non-volatile random access memories such as
1550:. One major advantage of ReRAM over other NVRAM technologies is the ability to scale below 10 nm. 1503: 1300: 1199: 1071: 701: 690: 4987: 3060:
Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. (2013).
799: 5422: 5382: 2581:
Bashara, N. M.; Nielsen, P. H. (1963). "Memory effects in thin film negative resistance structures".
2231:
have led many to speculate that ReRAM implementations could be extremely useful hardware for running
1707: 1640:
Different forms of ReRAM have been disclosed, based on different dielectric materials, spanning from
562: 497: 392: 2976: 5495: 5194: 3174:"Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices" 2924:
Meuffels, P.; Soni, R. (2012), "Fundamental Issues and Problems in the Realization of Memristors",
2901: 1372: 1355: 844: 130: 5387: 5360: 5189: 5122: 4395: 3989:
Oshima, M. (2008). "Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism".
2232: 2228: 1645: 1579:
can be used as a low-voltage ReRAM has encouraged researchers to investigate more possibilities.
1367: 1184: 907: 312: 147: 125: 105: 58: 4986:
Prezioso, M.; et al. (2016). Teherani, Ferechteh H; Look, David C; Rogers, David J (eds.).
4353: 2301: 1656:
was shown to exhibit resistive switching as early as May 1966, and has recently been revisited.
5397: 5392: 5365: 5283: 2971: 1240: 457: 327: 267: 1685:
argued that all two-terminal non-volatile memory devices including ReRAM should be considered
589: 5505: 5323: 5184: 5083: 4195:
D. Kanter, "Adesto Targets IoT Using CBRAM, The Linley Group Microprocessor Report, Feb 2016.
4055: 2122: 2012:
layer was implemented, which still requires the high work function metal to interface with Ta
1672: 1590:, a Japanese electronic components manufacturer, in some countries, including members of the 1496: 743: 661: 447: 252: 232: 222: 78: 43: 17: 4449:"Ultra-fast switching in solution processed quantum dot based non-volatile resistive memory" 2441: 5370: 5333: 5313: 5229: 5110: 5002: 4931: 4867: 4816: 4779: 4723: 4680: 4645: 4593: 4495: 4460: 4281:"Weebit Nano completed its first embedded RRAM module design and tape-out | RRAM-Info" 3828:
Gratzel, M. The Light and Shade of Perovskite Solar Cells. ̈ Nat. Mater. 2014, 13, 838−842.
3655: 3315: 3276: 3221: 3083: 2963: 2873: 2822: 2759: 2623: 2553: 2503: 2468: 1926: 1539: 1439: 1307: 1086: 1046: 969: 582: 487: 377: 272: 135: 115: 98: 93: 3581:
I.V. Karpov, D. Kencke, D. Kau, S. Tang and G. Spadini, MRS Proceedings, Volume 1250, 2010
1659:
In 1963 and 1964, a thin-film resistive memory array was first proposed by members of the
1569: 8: 5427: 5402: 5239: 5214: 5132: 4828: 4735: 4507: 2985: 2541: 2216: 2066: 2050: 1922: 1668: 1634: 1558: 1345: 1036: 974: 959: 826: 778: 631: 442: 140: 5006: 4935: 4871: 4820: 4783: 4727: 4684: 4649: 4597: 4499: 4464: 3659: 3319: 3302:
Lanza, M.; Bersuker, G.; Porti, M.; Miranda, E.; Nafría, M.; Aymerich, X. (2012-11-05).
3280: 3225: 3087: 2967: 2877: 2826: 2763: 2627: 2557: 2507: 2472: 1671:
attempted to explain the mechanism theoretically. In May 1997, a research team from the
5444: 5157: 5142: 5115: 5018: 4955: 4883: 4840: 4747: 4553: 4511: 4012: 3881: 3774: 3733: 3644:
Waser, Rainer; Aono, Masakazu (2007). "Nanoionics-based resistive switching memories".
3626: 3563: 3522: 3481: 3375: 3244: 3209: 3104: 3073: 3062:"Nanobatteries in redox-based resistive switches require extension of memristor theory" 3061: 3042: 3024: 2997: 2953: 2925: 2846: 2783: 2519: 2283: 1445: 1410: 1056: 482: 467: 412: 407: 397: 372: 297: 4209:"Dialog Semiconductor: Advancing the connected world through technology | Dialog" 2415:"Next-gen storage wars: In the battle of RRAM vs 3D NAND flash, all of us are winners" 5266: 5219: 4947: 4832: 4739: 4696: 4609: 4543: 4515: 4341: 4002: 3871: 3764: 3737: 3725: 3679: 3671: 3616: 3553: 3512: 3471: 3398: 3379: 3367: 3331: 3304:"Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries" 3249: 3109: 3046: 2989: 2838: 2775: 2771: 2721: 2678: 2639: 2594: 2523: 2480: 2273: 2208: = 8–32), and this has been shown possible for a low-current ReRAM system. 2152:
Panasonic AM13L-STK2 : MN101LR05D 8-bit MCU with built in ReRAM for evaluation,
1587: 1573: 1122: 1117: 1041: 1006: 860: 838: 737: 696: 599: 437: 162: 5022: 4887: 4844: 4751: 4582:"Nanoscale control of an interfacial metal–insulator transition at room temperature" 4557: 4016: 3885: 3778: 3630: 3526: 3001: 2850: 2787: 2287: 5412: 5328: 5244: 5224: 5179: 5174: 5010: 4959: 4939: 4875: 4824: 4787: 4731: 4688: 4653: 4601: 4535: 4503: 4468: 3994: 3863: 3756: 3715: 3707: 3663: 3646: 3608: 3567: 3545: 3504: 3485: 3463: 3425: 3359: 3323: 3284: 3239: 3229: 3185: 3099: 3091: 3034: 2981: 2881: 2830: 2767: 2713: 2670: 2631: 2586: 2561: 2511: 2476: 2265: 2236: 1457: 1451: 1377: 1340: 1330: 1295: 1107: 1061: 1029: 804: 787: 472: 432: 192: 177: 73: 63: 4448: 1730: 1702: 1653: 1350: 1177: 1164: 855: 850: 706: 573: 552: 527: 387: 307: 237: 207: 182: 68: 39: 3592: 3429: 1977:. Winbond had done more recent work toward advancing and commercializing the HfO 5417: 5137: 4902: 3549: 3542:
2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers
2729: 2686: 1619: 1591: 1469: 1387: 1230: 887: 749: 685: 557: 542: 522: 517: 462: 427: 382: 332: 322: 317: 302: 197: 187: 120: 4879: 4539: 3998: 3867: 3760: 3467: 3190: 3173: 2886: 2834: 2363: 2350: 2337: 2269: 1953:
At IEDM 2008, the first high-performance ReRAM technology was demonstrated by
5484: 5449: 5276: 4951: 4943: 3729: 3675: 3612: 3508: 3371: 3335: 2842: 2779: 2725: 2682: 2643: 2590: 2196:
on selected cells. In this case, for a 3D-ReRAM 1TNR array, with a column of
1475: 1102: 1097: 1066: 821: 731: 547: 537: 532: 512: 347: 337: 217: 202: 4768:"Engineering nonlinearity into memristors for passive crossbar applications" 2635: 5353: 5152: 5044:"Stanford engineers present new chip that ramps up AI computing efficiency" 4836: 4743: 4700: 4613: 3711: 3683: 3363: 3253: 3151: 3113: 3038: 2993: 1903:
two dimensional (layered) insulating materials like hexagonal boron nitride
1649: 1565: 1535: 1422: 1416: 1382: 1250: 1205: 1189: 1081: 877: 872: 832: 794: 477: 452: 352: 287: 242: 227: 3460:
2009 International Symposium on VLSI Technology, Systems, and Applications
2717: 2674: 2108:
A UK based that company plans to create cells using common silicon-oxide.
1718: 5348: 5343: 5164: 4263:"Weebit Nano packaged its RRAM chips for the first time | RRAM-Info" 3720: 2515: 2139: 2081: 1481: 1433: 867: 402: 342: 247: 5052: 4208: 2442:"HP 100TB Memristor drives by 2018 – if you're lucky, admits tech titan" 2227:
The increasing computational demands necessary for many improvements in
2222: 5308: 5014: 4227:"Weebit announced working 40nm SiOx RRAM cell samples | RRAM-Info" 3458:
bipolar RRAM device with improved endurance and high speed operation".
3095: 2126: 1742: 1686: 1641: 1543: 1076: 902: 656: 422: 417: 292: 157: 83: 4792: 4767: 4657: 4472: 3327: 3288: 3234: 2566: 5338: 4692: 4605: 3667: 2070: 1694: 1682: 1676: 1615: 1583: 1547: 1542:(RAM) computer memory that works by changing the resistance across a 1463: 1428: 1265: 1194: 1092: 963: 954: 651: 594: 362: 282: 2864:
Chua, L. O. (2011), "Resistance switching memories are memristors",
1614:
bought a ReRAM company called Unity Semiconductor for $ 35 million.
5259: 5234: 3498: 3303: 3029: 1633:
Also in 2013, Hewlett-Packard demonstrated a memristor-based ReRAM
1392: 1335: 1270: 1225: 1210: 980: 949: 922: 897: 755: 641: 367: 277: 172: 167: 3078: 2958: 2930: 2192:
operations in parallel across an entire row of cells, while using
1564:
Although ReRAM was initially seen as a replacement technology for
4370: 3395:
Conductive Atomic Force Microscopy: Applications in Nanomaterials
3127: 2393:"the new microcontrollers with on-chip non-volatile memory ReRAM" 1690: 1290: 1280: 1275: 1235: 1137: 1132: 1112: 917: 892: 882: 673: 3856: 3059: 1611: 1285: 1245: 1127: 1016: 814: 357: 4713: 3602: 1789: 5254: 4974:
DESTINY: A Tool for Modeling Emerging 3D NVM and eDRAM caches
3433: 1775: 1220: 1157: 1152: 1147: 809: 766: 760: 646: 626: 611: 3929:, 2012 Symp. on VLSI Tech. Dig. of Tech. Papers, 159 (2012). 4764: 2535: 2533: 1963: 1954: 1779: 1761:
measuring the area dependence of the low-resistance state.
1622:
1T1R (1 transistor – 1 resistor) memory cell architecture.
1215: 502: 152: 3539: 2943: 2184:
Another solution to the sneak current issue is to perform
4806: 3301: 2539: 2417:(Press release). PC World. August 9, 2013. Archived from 1255: 1142: 912: 4579: 3501:
2006 7th Annual Non-Volatile Memory Technology Symposium
2702:"A thin film, cold cathode, alpha-numeric display panel" 2530: 1618:
launched a ReRAM evaluation kit in May 2012, based on a
4670: 4570:
New Non-Volatile Memory Workshop 2008, Hsinchu, Taiwan.
4532:
2009 IEEE International Electron Devices Meeting (IEDM)
3753:
2016 IEEE International Electron Devices Meeting (IEDM)
3422:"Advanced Engineering Materials – Wiley Online Library" 2742: 3171: 2743:
Dearnaley, G.; Stoneham, A. M.; Morgan, D. V. (1970).
2583:
Annual Report 1963 Conference on Electrical Insulation
3750: 3053: 2902:"HP and Hynix to produce the memristor goods by 2013" 2223:
Proposed role in artificial intelligence applications
3987: 2811: 3416: 3414: 3014: 2111: 3492: 5482: 3991:2008 IEEE International Electron Devices Meeting 3860:2007 IEEE International Electron Devices Meeting 2657:Simmons, J. G.; Verderber, R. R. (August 1967). 2656: 2262:2008 IEEE International Electron Devices Meeting 1897:organic charge-transfer complexes such as CuTCNQ 4900: 3453: 3411: 3266: 2745:"Electrical phenomena in amorphous oxide films" 2542:"Resistive switching in silicon suboxide films" 2100:visualized on the scale of tens of nanometers. 1900:organic donor–acceptor systems such as Al AIDCN 4446: 4419:Fully inkjet printed flexible resistive memory 3397:. Berlin, Germany: Wiley-VCH. pp. 10–30. 3348: 2736: 2613: 2580: 2369: 1831:binary transition metal oxides such as NiO, Ta 5068: 4857: 4528: 4485: 4146:"Comparison of Pt/TiOx/Pt vs Pt/TaOx/TaOy/Pt" 4112:EETimes.com – Memristors ready for prime time 2937: 2917: 2493: 2258: 2037:, possibly due to improved stability. The TaO 1546:solid-state material, often referred to as a 1504: 4919: 3696: 2923: 2699: 2693: 2650: 2607: 2574: 1868:solid-state electrolytes such as GeS, GeSe, 3940:"United States Patent and Trademark Office" 1907: 1790:Material systems for resistive memory cells 5463: 5075: 5061: 4396:"Taking a look at the ReRAM state of play" 3637: 3533: 2893: 2458: 2379:Rambus drops $ 35m for Unity Semiconductor 1749:(broken, resulting in high resistance) or 1511: 1497: 5082: 4997:. Oxide-based Materials and Devices VII. 4791: 4635: 4135:, IEEE Trans. Elec. Dev. 60, 2194 (2013). 4056:Panasonic ReRAM-based product description 3719: 3643: 3447: 3243: 3233: 3189: 3103: 3077: 3028: 2975: 2957: 2929: 2885: 2805: 2565: 4985: 3008: 2395:(Press release). Panasonic. May 15, 2012 1725:A 50 nm × 50 nm ReRAM cell by Crossbar ( 1717: 5170:Carbon nanotube field-effect transistor 5128:Applications of artificial intelligence 4203: 4201: 2326:. Simon's Foundation. 10 November 2022. 14: 5483: 5319:Differential technological development 4638:Journal of the Electrochemical Society 4447:Kannan, V; Rhee J K (6 October 2011). 4393: 2899: 2857: 2375: 2160: 2044: 5056: 4488:Journal of Physics D: Applied Physics 4122:D. B. Strukov, Nature 453, 80 (2008). 3392: 3207: 3203: 3201: 2700:Lomax, R. W.; Simmons, J. G. (1968). 2616:IEEE Transactions on Electron Devices 1052:Vision Electronic Recording Apparatus 5289:Three-dimensional integrated circuit 4245:"SiOx ReRAM reaches 1Mbit milestone" 4198: 4033:, 2015 Symposium on VLSI Technology. 3969:, 2016 Symposium on VLSI Technology. 2863: 2146: 1665:Atomic Energy Research Establishment 32:Electrochemical random-access memory 5408:Future-oriented technology analysis 5148:Progress in artificial intelligence 2496:Japanese Journal of Applied Physics 2134:Quantum dot resistive memory device 1944: 1798:phase-change chalcogenides such as 1768: 24: 5491:Solid-state computer storage media 4435:Mass Producing Printed Electronics 4299:"Weebit Nano ReRAM scaled to 28nm" 3198: 2461:British Journal of Applied Physics 2439: 2057:but eventually migrated to ZrTe/Al 1755:conductive atomic force microscopy 213:Data validation and reconciliation 25: 5517: 5501:Non-volatile random-access memory 4907:2009 Symposium on VLSI Technology 2900:Mellor, Chris (10 October 2011), 2376:Mellor, Chris (7 February 2012), 2175:complementary resistive switching 1932: 1916: 1553:ReRAM bears some similarities to 263:Distributed file system for cloud 5462: 5036: 4979: 4966: 4913: 4894: 2659:"New thin-film resistive memory" 2219:can be done using DESTINY tool. 111:Areal density (computer storage) 5185:Fourth-generation optical discs 4860:Journal of Electronic Materials 4851: 4800: 4758: 4707: 4664: 4629: 4620: 4573: 4564: 4522: 4479: 4440: 4428: 4412: 4387: 4363: 4346: 4335: 4322: 4309: 4291: 4273: 4255: 4237: 4219: 4189: 4176: 4163: 4138: 4125: 4116: 4105: 4087: 4069: 4060: 4049: 4036: 4023: 3981: 3972: 3959: 3946: 3932: 3919: 3910: 3901: 3892: 3850: 3841: 3831: 3822: 3813: 3803: 3794: 3785: 3744: 3690: 3605:72nd Device Research Conference 3596: 3585: 3574: 3386: 3342: 3295: 3260: 3165: 3144: 3120: 2815:Journal of Electronic Materials 2487: 2452: 2433: 2118:Programmable metallization cell 2112:Programmable metallization cell 2023: 930:Programmable metallization cell 4829:10.1088/0957-4484/23/45/455201 4736:10.1088/0957-4484/22/39/395203 4508:10.1088/0022-3727/46/14/145101 4342:Crossbar sampling 40nm at SMIC 2986:10.1088/0957-4484/24/25/255201 2752:Reports on Progress in Physics 2407: 2385: 2356: 2343: 2330: 2312: 2294: 2252: 2076: 1969:ITRI had focused on the Ti/HfO 1661:University of Nebraska–Lincoln 1524:Resistive random-access memory 493:Persistence (computer science) 13: 1: 5435:Technology in science fiction 4626:I. G. Baek et al., IEDM 2004. 3907:J. Zahurak et al., IEDM 2014. 3700:Advanced Functional Materials 3352:Advanced Electronic Materials 3017:Advanced Electronic Materials 2706:Radio and Electronic Engineer 2663:Radio and Electronic Engineer 2246: 1693:also argued that ReRAM was a 1361:Electronic quantum holography 27:Novel type of computer memory 4923:IEEE Electron Device Letters 4394:Mellor, Chris (2023-03-16). 4319:, Nano. Lett. 8, 386 (2008). 4213:www.dialog-semiconductor.com 4173:, ACS Nano 10, 11205 (2016). 2103: 1987: 712:Video RAM (dual-ported DRAM) 508:Non-RAID drive architectures 7: 4046:, Nat. Mat. 10, 625 (2011). 3916:H-Y. Lee et al., IEDM 2010. 3178:Microelectronic Engineering 3154:. Foresight.org. 2014-08-10 2302:"RRAM: Trademark 003062791" 2091: 2033:, but later migrated to TaO 10: 5522: 5440:Technology readiness level 5376:Technological unemployment 3898:T. Liu et al., ISSCC 2013. 3755:. pp. 34.8.1–34.8.4. 3550:10.1109/VLSIT.2014.6894368 2772:10.1088/0034-4885/33/3/306 2546:Journal of Applied Physics 2481:10.1088/0508-3443/18/1/306 2115: 1992:Panasonic revealed its TaO 1853:perovskites such as Sr(Zr) 1713: 1601: 1301:Holographic Versatile Disc 1200:Compact Disc Digital Audio 1072:Magnetic-tape data storage 691:Content-addressable memory 29: 5458: 5423:Technological singularity 5383:Technological convergence 5301: 5097: 5090: 4880:10.1007/s11664-012-2045-2 4540:10.1109/IEDM.2009.5424411 4303:www.electronicsweekly.com 3999:10.1109/IEDM.2008.4796676 3978:X. Han et al., CICC 2017. 3868:10.1109/IEDM.2007.4419060 3761:10.1109/IEDM.2016.7838544 3468:10.1109/VTSA.2009.5159281 3191:10.1016/j.mee.2017.04.033 2887:10.1007/s00339-011-6264-9 2835:10.1007/s11664-997-0076-x 2270:10.1109/IEDM.2008.4796677 1741:The basic idea is that a 1708:University College London 498:Persistent data structure 393:Digital rights management 5195:Holographic data storage 4944:10.1109/LED.2013.2294809 4371:"Intrinsic AI Solutions" 3613:10.1109/DRC.2014.6872387 3509:10.1109/NVMT.2006.378887 3128:"Intrinsic AI Solutions" 2591:10.1109/EIC.1963.7466544 1908:RRAM Based on Perovskite 1373:DNA digital data storage 1356:Holographic data storage 845:Solid-state hybrid drive 131:Network-attached storage 5388:Technological evolution 5361:Exploratory engineering 5190:3D optical data storage 5123:Artificial intelligence 4772:Applied Physics Letters 4453:Applied Physics Letters 3430:10.1002/(ISSN)1527-2648 3308:Applied Physics Letters 3269:Applied Physics Letters 2636:10.1109/T-ED.1964.15319 2233:artificial intelligence 2229:artificial intelligence 1646:transition metal oxides 1582:RRAM is the registered 1555:conductive-bridging RAM 1368:5D optical data storage 1185:3D optical data storage 908:Universal Flash Storage 313:Replication (computing) 258:Distributed file system 148:Single-instance storage 126:Direct-attached storage 106:Continuous availability 5398:Technology forecasting 5393:Technological paradigm 5366:Proactionary principle 5284:Software-defined radio 4375:Intrinsic AI Solutions 3712:10.1002/adfm.201604811 3364:10.1002/aelm.201400058 3132:Intrinsic AI Solutions 3039:10.1002/aelm.202000010 2552:(7): 074507–074507–9. 2324:www.quantamagazine.org 2084:has been working with 1738: 1241:Nintendo optical discs 458:Storage virtualization 328:Information repository 268:Distributed data store 5324:Disruptive innovation 5084:Emerging technologies 4354:"TEMs of Ag filament" 3393:Lanza, Mario (2017). 3208:Lanza, Mario (2014). 3066:Nature Communications 2718:10.1049/ree.1968.0039 2675:10.1049/ree.1967.0069 2364:U.S. patent 6,867,996 2351:U.S. patent 7,292,469 2338:U.S. patent 6,531,371 2123:Infineon Technologies 1729:19 March 2015 at the 1721: 1673:University of Florida 744:Mellon optical memory 732:Williams–Kilburn tube 448:Locality of reference 253:Clustered file system 79:Memory access pattern 5371:Technological change 5314:Collingridge dilemma 5111:Ambient intelligence 4099:www.businesswire.com 3862:. pp. 767–770. 3607:. pp. 241–242. 3503:. pp. 104–110. 2516:10.1143/JJAP.46.2172 1440:Magnetic-core memory 1087:Digital Data Storage 1047:Quadruplex videotape 488:In-memory processing 378:Information transfer 273:Distributed database 136:Storage area network 116:Block (data storage) 5428:Technology scouting 5403:Accelerating change 5133:Machine translation 5007:2016SPIE.9749E..18P 4936:2014IEDL...35..223C 4872:2012JEMat..41.2880Z 4821:2012Nanot..23S5201M 4784:2012ApPhL.100k3501J 4728:2011Nanot..22M5203T 4685:2010NatMa...9..403L 4650:2007JElS..154G.189L 4598:2008NatMa...7..298C 4500:2013JPhD...46n5101Z 4465:2011ApPhL..99n3504K 4101:. February 6, 2017. 3660:2007NatMa...6..833W 3424:. Aem-journal.com. 3320:2012ApPhL.101s3502L 3281:2007ApPhL..90l2104L 3226:2014Mate....7.2155L 3088:2013NatCo...4.1771V 2968:2013Nanot..24y5201D 2878:2011ApPhA.102..765C 2827:1997JEMat..26.1310J 2764:1970RPPh...33.1129D 2689:on January 1, 2017. 2628:1964ITED...11..243N 2558:2012JAP...111g4507M 2508:2007JaJAP..46.2172P 2473:1967BJAP...18...29L 2446:www.theregister.com 2421:on February 2, 2014 2161:Future applications 2051:Adesto Technologies 2045:Adesto Technologies 1689:. Stan Williams of 1669:University of Leeds 1559:phase-change memory 1037:Phonograph cylinder 975:Electrochemical RAM 827:Solid-state storage 443:Memory segmentation 141:Block-level storage 5445:Technology roadmap 5158:Speech recognition 5143:Mobile translation 5116:Internet of things 5046:. August 18, 2022. 5015:10.1117/12.2235089 4995:SPIE Annual Review 3462:. pp. 37–38. 3096:10.1038/ncomms2784 2732:on March 20, 2018. 2585:. pp. 29–32. 2204:is limited (e.g., 1739: 1610:In February 2012, 1446:Plated-wire memory 1411:Paper data storage 1057:Magnetic recording 483:In-memory database 468:Memory-mapped file 413:Volume boot record 408:Master boot record 398:Volume (computing) 373:Data communication 298:Data deduplication 5478: 5477: 5297: 5296: 5267:Optical computing 4972:Poremba et al., " 4793:10.1063/1.3693392 4658:10.1149/1.2750450 4549:978-1-4244-5639-0 4473:10.1063/1.3647629 4285:www.rram-info.com 4267:www.rram-info.com 4231:www.rram-info.com 4066:Z. Wei, IMW 2013. 4008:978-1-4244-2377-4 3877:978-1-4244-1507-6 3770:978-1-5090-3902-9 3622:978-1-4799-5406-3 3559:978-1-4799-3332-7 3518:978-0-7803-9738-5 3477:978-1-4244-2784-0 3404:978-3-527-34091-0 3328:10.1063/1.4765342 3289:10.1063/1.2715002 3235:10.3390/ma7032155 2866:Applied Physics A 2821:(11): 1310–1313. 2600:978-1-5090-3119-1 2567:10.1063/1.3701581 2279:978-1-4244-2377-4 2147:ReRam test boards 1723:Filament forming: 1588:Sharp Corporation 1521: 1520: 1118:8 mm video format 1042:Phonograph record 861:Flash Core Module 839:Solid-state drive 738:Delay-line memory 697:Computational RAM 600:Scratchpad memory 438:Disk partitioning 163:Unstructured data 89:Secondary storage 16:(Redirected from 5513: 5466: 5465: 5413:Horizon scanning 5329:Ephemeralization 5245:Racetrack memory 5180:Extended reality 5175:Cybermethodology 5095: 5094: 5077: 5070: 5063: 5054: 5053: 5048: 5047: 5040: 5034: 5033: 5031: 5029: 4992: 4983: 4977: 4970: 4964: 4963: 4917: 4911: 4910: 4898: 4892: 4891: 4855: 4849: 4848: 4804: 4798: 4797: 4795: 4762: 4756: 4755: 4711: 4705: 4704: 4693:10.1038/nmat2748 4673:Nature Materials 4668: 4662: 4661: 4633: 4627: 4624: 4618: 4617: 4606:10.1038/nmat2136 4586:Nature Materials 4577: 4571: 4568: 4562: 4561: 4534:. pp. 1–4. 4526: 4520: 4519: 4483: 4477: 4476: 4475:– via AIP. 4444: 4438: 4437:-Engineering.com 4432: 4426: 4416: 4410: 4409: 4407: 4406: 4400:Blocks and Files 4391: 4385: 4384: 4382: 4381: 4367: 4361: 4360: 4358: 4350: 4344: 4339: 4333: 4326: 4320: 4313: 4307: 4306: 4295: 4289: 4288: 4277: 4271: 4270: 4259: 4253: 4252: 4241: 4235: 4234: 4223: 4217: 4216: 4205: 4196: 4193: 4187: 4180: 4174: 4167: 4161: 4160: 4158: 4157: 4148:. Archived from 4142: 4136: 4129: 4123: 4120: 4114: 4109: 4103: 4102: 4091: 4085: 4084: 4073: 4067: 4064: 4058: 4053: 4047: 4040: 4034: 4027: 4021: 4020: 3993:. pp. 1–4. 3985: 3979: 3976: 3970: 3963: 3957: 3950: 3944: 3943: 3936: 3930: 3923: 3917: 3914: 3908: 3905: 3899: 3896: 3890: 3889: 3854: 3848: 3845: 3839: 3835: 3829: 3826: 3820: 3817: 3811: 3807: 3801: 3798: 3792: 3789: 3783: 3782: 3748: 3742: 3741: 3723: 3694: 3688: 3687: 3668:10.1038/nmat2023 3647:Nature Materials 3641: 3635: 3634: 3600: 3594: 3589: 3583: 3578: 3572: 3571: 3544:. pp. 1–2. 3537: 3531: 3530: 3496: 3490: 3489: 3451: 3445: 3444: 3442: 3441: 3432:. Archived from 3418: 3409: 3408: 3390: 3384: 3383: 3346: 3340: 3339: 3299: 3293: 3292: 3264: 3258: 3257: 3247: 3237: 3220:(3): 2155–2182. 3205: 3196: 3195: 3193: 3169: 3163: 3162: 3160: 3159: 3148: 3142: 3141: 3139: 3138: 3124: 3118: 3117: 3107: 3081: 3057: 3051: 3050: 3032: 3012: 3006: 3005: 2979: 2961: 2941: 2935: 2934: 2933: 2921: 2915: 2914: 2913: 2912: 2897: 2891: 2890: 2889: 2861: 2855: 2854: 2809: 2803: 2802: 2796: 2790:. Archived from 2758:(3): 1129–1191. 2749: 2740: 2734: 2733: 2728:. Archived from 2697: 2691: 2690: 2685:. Archived from 2654: 2648: 2647: 2611: 2605: 2604: 2578: 2572: 2571: 2569: 2537: 2528: 2527: 2491: 2485: 2484: 2456: 2450: 2449: 2437: 2431: 2430: 2428: 2426: 2411: 2405: 2404: 2402: 2400: 2389: 2383: 2382: 2373: 2367: 2366: 2360: 2354: 2353: 2347: 2341: 2340: 2334: 2328: 2327: 2316: 2310: 2309: 2298: 2292: 2291: 2264:. pp. 1–4. 2256: 2237:machine learning 2155: 1894: 1892: 1891: 1881: 1880: 1879: 1864: 1863: 1862: 1850: 1849: 1848: 1827: 1826: 1825: 1817: 1816: 1808: 1807: 1769:Operation styles 1736: 1572:gate dielectric 1513: 1506: 1499: 1458:Thin-film memory 1452:Core rope memory 1378:Universal memory 1341:Millipede memory 1331:Racetrack memory 1296:Ultra HD Blu-ray 1108:Linear Tape-Open 1062:Magnetic storage 1030:Analog recording 473:Software entropy 433:Disk aggregation 193:Data degradation 178:Data compression 74:Memory hierarchy 64:Memory coherence 36: 35: 21: 5521: 5520: 5516: 5515: 5514: 5512: 5511: 5510: 5496:Computer memory 5481: 5480: 5479: 5474: 5454: 5293: 5104: 5101: 5100:Information and 5086: 5081: 5051: 5042: 5041: 5037: 5027: 5025: 4990: 4984: 4980: 4971: 4967: 4918: 4914: 4899: 4895: 4856: 4852: 4805: 4801: 4763: 4759: 4712: 4708: 4669: 4665: 4634: 4630: 4625: 4621: 4578: 4574: 4569: 4565: 4550: 4527: 4523: 4484: 4480: 4445: 4441: 4433: 4429: 4417: 4413: 4404: 4402: 4392: 4388: 4379: 4377: 4369: 4368: 4364: 4356: 4352: 4351: 4347: 4340: 4336: 4327: 4323: 4314: 4310: 4305:. October 2021. 4297: 4296: 4292: 4279: 4278: 4274: 4261: 4260: 4256: 4251:. July 4, 2018. 4243: 4242: 4238: 4225: 4224: 4220: 4207: 4206: 4199: 4194: 4190: 4181: 4177: 4168: 4164: 4155: 4153: 4144: 4143: 4139: 4131:J. P. Strachan 4130: 4126: 4121: 4117: 4110: 4106: 4093: 4092: 4088: 4081:www.fujitsu.com 4075: 4074: 4070: 4065: 4061: 4054: 4050: 4041: 4037: 4028: 4024: 4009: 3986: 3982: 3977: 3973: 3964: 3960: 3951: 3947: 3938: 3937: 3933: 3924: 3920: 3915: 3911: 3906: 3902: 3897: 3893: 3878: 3855: 3851: 3846: 3842: 3836: 3832: 3827: 3823: 3818: 3814: 3808: 3804: 3799: 3795: 3790: 3786: 3771: 3749: 3745: 3695: 3691: 3654:(11): 833–840. 3642: 3638: 3623: 3601: 3597: 3590: 3586: 3579: 3575: 3560: 3538: 3534: 3519: 3497: 3493: 3478: 3457: 3452: 3448: 3439: 3437: 3420: 3419: 3412: 3405: 3391: 3387: 3347: 3343: 3300: 3296: 3265: 3261: 3206: 3199: 3170: 3166: 3157: 3155: 3150: 3149: 3145: 3136: 3134: 3126: 3125: 3121: 3058: 3054: 3013: 3009: 2977:10.1.1.745.8657 2942: 2938: 2922: 2918: 2910: 2908: 2898: 2894: 2862: 2858: 2810: 2806: 2797:on 2018-03-20. 2794: 2747: 2741: 2737: 2698: 2694: 2655: 2651: 2612: 2608: 2601: 2579: 2575: 2538: 2531: 2492: 2488: 2457: 2453: 2440:Mellor, Chris. 2438: 2434: 2424: 2422: 2413: 2412: 2408: 2398: 2396: 2391: 2390: 2386: 2374: 2370: 2362: 2361: 2357: 2349: 2348: 2344: 2336: 2335: 2331: 2318: 2317: 2313: 2306:euipo.europa.eu 2300: 2299: 2295: 2280: 2257: 2253: 2249: 2225: 2163: 2153: 2149: 2135: 2120: 2114: 2106: 2094: 2079: 2064: 2060: 2056: 2047: 2040: 2036: 2032: 2026: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1990: 1980: 1976: 1972: 1960: 1951: 1948: 1935: 1919: 1910: 1890: 1887: 1886: 1885: 1883: 1878: 1873: 1872: 1871: 1869: 1861: 1858: 1857: 1856: 1854: 1847: 1844: 1843: 1842: 1840: 1838: 1834: 1824: 1821: 1820: 1819: 1815: 1812: 1811: 1810: 1806: 1803: 1802: 1801: 1799: 1792: 1771: 1734: 1731:Wayback Machine 1716: 1654:Silicon dioxide 1604: 1577: 1534:) is a type of 1517: 1488: 1487: 1406: 1398: 1397: 1351:Patterned media 1321: 1313: 1312: 1180: 1170: 1169: 1165:Hard disk drive 1032: 1022: 1021: 1002: 991: 990: 945: 935: 934: 856:IBM FlashSystem 851:USB flash drive 790: 773: 772: 727: 719: 718: 707:Dual-ported RAM 585: 568: 567: 528:Cloud computing 388:Copy protection 308:Data redundancy 238:Shared resource 208:Data validation 183:Data corruption 158:Structured data 69:Cache coherence 54: 40:Computer memory 34: 28: 23: 22: 15: 12: 11: 5: 5519: 5509: 5508: 5503: 5498: 5493: 5476: 5475: 5473: 5472: 5459: 5456: 5455: 5453: 5452: 5447: 5442: 5437: 5432: 5431: 5430: 5425: 5420: 5415: 5410: 5405: 5395: 5390: 5385: 5380: 5379: 5378: 5368: 5363: 5358: 5357: 5356: 5351: 5346: 5341: 5331: 5326: 5321: 5316: 5311: 5305: 5303: 5299: 5298: 5295: 5294: 5292: 5291: 5286: 5281: 5280: 5279: 5269: 5264: 5263: 5262: 5257: 5252: 5247: 5242: 5237: 5232: 5227: 5222: 5217: 5212: 5204: 5199: 5198: 5197: 5192: 5182: 5177: 5172: 5167: 5162: 5161: 5160: 5155: 5150: 5145: 5140: 5138:Machine vision 5135: 5130: 5120: 5119: 5118: 5107: 5105: 5102:communications 5098: 5092: 5088: 5087: 5080: 5079: 5072: 5065: 5057: 5050: 5049: 5035: 4978: 4976:", DATE, 2015. 4965: 4930:(2): 223–225. 4912: 4893: 4850: 4815:(45): 455201. 4809:Nanotechnology 4799: 4778:(11): 113501. 4757: 4722:(39): 395203. 4716:Nanotechnology 4706: 4663: 4628: 4619: 4592:(4): 298–302. 4572: 4563: 4548: 4521: 4494:(14): 145101. 4478: 4459:(14): 143504. 4439: 4427: 4411: 4386: 4362: 4345: 4334: 4332:, ASPDAC 2015. 4321: 4308: 4290: 4272: 4254: 4236: 4218: 4197: 4188: 4182:J. R. Jameson 4175: 4162: 4137: 4124: 4115: 4104: 4086: 4068: 4059: 4048: 4035: 4022: 4007: 3980: 3971: 3958: 3945: 3931: 3918: 3909: 3900: 3891: 3876: 3849: 3840: 3830: 3821: 3812: 3802: 3793: 3784: 3769: 3743: 3689: 3636: 3621: 3595: 3584: 3573: 3558: 3532: 3517: 3491: 3476: 3455: 3446: 3410: 3403: 3385: 3341: 3314:(19): 193502. 3294: 3275:(12): 122104. 3259: 3197: 3164: 3143: 3119: 3052: 3007: 2952:(25): 255201. 2946:Nanotechnology 2936: 2916: 2892: 2872:(4): 765–783, 2856: 2804: 2735: 2712:(5): 265–272. 2692: 2649: 2622:(5): 243–244. 2606: 2599: 2573: 2529: 2486: 2451: 2432: 2406: 2384: 2368: 2355: 2342: 2329: 2311: 2293: 2278: 2250: 2248: 2245: 2239:applications. 2224: 2221: 2162: 2159: 2158: 2157: 2148: 2145: 2133: 2116:Main article: 2113: 2110: 2105: 2102: 2093: 2090: 2078: 2075: 2062: 2058: 2054: 2046: 2043: 2038: 2034: 2030: 2025: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1986: 1981:-based ReRAM. 1978: 1974: 1970: 1958: 1950: 1946: 1943: 1934: 1933:Gb-scale ReRAM 1931: 1918: 1917:Demonstrations 1915: 1909: 1906: 1905: 1904: 1901: 1898: 1895: 1888: 1874: 1866: 1859: 1851: 1845: 1836: 1832: 1829: 1822: 1813: 1804: 1791: 1788: 1770: 1767: 1715: 1712: 1620:tantalum oxide 1603: 1600: 1592:European Union 1575: 1519: 1518: 1516: 1515: 1508: 1501: 1493: 1490: 1489: 1486: 1485: 1479: 1473: 1470:Twistor memory 1467: 1461: 1455: 1449: 1443: 1437: 1431: 1426: 1420: 1414: 1407: 1404: 1403: 1400: 1399: 1396: 1395: 1390: 1388:Quantum memory 1385: 1380: 1375: 1370: 1365: 1364: 1363: 1353: 1348: 1343: 1338: 1333: 1328: 1322: 1320:In development 1319: 1318: 1315: 1314: 1311: 1310: 1305: 1304: 1303: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1243: 1238: 1233: 1231:Super Video CD 1228: 1223: 1218: 1213: 1208: 1203: 1197: 1192: 1181: 1176: 1175: 1172: 1171: 1168: 1167: 1162: 1161: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1084: 1079: 1074: 1069: 1064: 1054: 1049: 1044: 1039: 1033: 1028: 1027: 1024: 1023: 1020: 1019: 1014: 1009: 1003: 997: 996: 993: 992: 989: 988: 983: 978: 972: 967: 957: 952: 946: 941: 940: 937: 936: 933: 932: 927: 926: 925: 920: 915: 910: 905: 900: 895: 890: 888:MultiMediaCard 885: 880: 875: 865: 864: 863: 858: 853: 848: 842: 836: 824: 819: 818: 817: 812: 802: 797: 791: 786: 785: 782: 781: 775: 774: 771: 770: 764: 758: 753: 750:Selectron tube 747: 741: 735: 728: 725: 724: 721: 720: 717: 716: 715: 714: 704: 699: 694: 688: 683: 678: 677: 676: 666: 665: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 604: 603: 602: 597: 590:Hardware cache 586: 581: 580: 577: 576: 570: 569: 566: 565: 560: 555: 550: 545: 543:Edge computing 540: 535: 530: 525: 523:Grid computing 520: 518:Bank switching 515: 510: 505: 500: 495: 490: 485: 480: 475: 470: 465: 463:Virtual memory 460: 455: 450: 445: 440: 435: 430: 428:Disk mirroring 425: 420: 415: 410: 405: 400: 395: 390: 385: 383:Temporary file 380: 375: 370: 365: 360: 355: 350: 345: 340: 335: 333:Knowledge base 330: 325: 323:Storage record 320: 318:Memory refresh 315: 310: 305: 303:Data structure 300: 295: 290: 285: 280: 275: 270: 265: 260: 255: 250: 245: 240: 235: 230: 225: 220: 215: 210: 205: 200: 198:Data integrity 195: 190: 188:Data cleansing 185: 180: 175: 170: 165: 160: 155: 150: 145: 144: 143: 138: 128: 123: 121:Object storage 118: 113: 108: 103: 102: 101: 91: 86: 81: 76: 71: 66: 61: 55: 52: 51: 48: 47: 26: 9: 6: 4: 3: 2: 5518: 5507: 5504: 5502: 5499: 5497: 5494: 5492: 5489: 5488: 5486: 5471: 5470: 5461: 5460: 5457: 5451: 5450:Transhumanism 5448: 5446: 5443: 5441: 5438: 5436: 5433: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5409: 5406: 5404: 5401: 5400: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5377: 5374: 5373: 5372: 5369: 5367: 5364: 5362: 5359: 5355: 5352: 5350: 5347: 5345: 5342: 5340: 5337: 5336: 5335: 5332: 5330: 5327: 5325: 5322: 5320: 5317: 5315: 5312: 5310: 5307: 5306: 5304: 5300: 5290: 5287: 5285: 5282: 5278: 5277:Chipless RFID 5275: 5274: 5273: 5270: 5268: 5265: 5261: 5258: 5256: 5253: 5251: 5248: 5246: 5243: 5241: 5238: 5236: 5233: 5231: 5228: 5226: 5223: 5221: 5218: 5216: 5213: 5211: 5208: 5207: 5205: 5203: 5200: 5196: 5193: 5191: 5188: 5187: 5186: 5183: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5159: 5156: 5154: 5151: 5149: 5146: 5144: 5141: 5139: 5136: 5134: 5131: 5129: 5126: 5125: 5124: 5121: 5117: 5114: 5113: 5112: 5109: 5108: 5106: 5103: 5096: 5093: 5089: 5085: 5078: 5073: 5071: 5066: 5064: 5059: 5058: 5055: 5045: 5039: 5024: 5020: 5016: 5012: 5008: 5004: 5000: 4996: 4989: 4982: 4975: 4969: 4961: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4924: 4916: 4908: 4904: 4897: 4889: 4885: 4881: 4877: 4873: 4869: 4865: 4861: 4854: 4846: 4842: 4838: 4834: 4830: 4826: 4822: 4818: 4814: 4810: 4803: 4794: 4789: 4785: 4781: 4777: 4773: 4769: 4761: 4753: 4749: 4745: 4741: 4737: 4733: 4729: 4725: 4721: 4717: 4710: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4667: 4659: 4655: 4651: 4647: 4643: 4639: 4632: 4623: 4615: 4611: 4607: 4603: 4599: 4595: 4591: 4587: 4583: 4576: 4567: 4559: 4555: 4551: 4545: 4541: 4537: 4533: 4525: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4482: 4474: 4470: 4466: 4462: 4458: 4454: 4450: 4443: 4436: 4431: 4424: 4420: 4415: 4401: 4397: 4390: 4376: 4372: 4366: 4355: 4349: 4343: 4338: 4331: 4325: 4318: 4312: 4304: 4300: 4294: 4286: 4282: 4276: 4268: 4264: 4258: 4250: 4249:eeNews Europe 4246: 4240: 4232: 4228: 4222: 4214: 4210: 4204: 4202: 4192: 4185: 4179: 4172: 4166: 4152:on 2017-02-13 4151: 4147: 4141: 4134: 4128: 4119: 4113: 4108: 4100: 4096: 4090: 4082: 4078: 4072: 4063: 4057: 4052: 4045: 4039: 4032: 4026: 4018: 4014: 4010: 4004: 4000: 3996: 3992: 3984: 3975: 3968: 3962: 3955: 3949: 3941: 3935: 3928: 3922: 3913: 3904: 3895: 3887: 3883: 3879: 3873: 3869: 3865: 3861: 3853: 3844: 3834: 3825: 3816: 3806: 3797: 3788: 3780: 3776: 3772: 3766: 3762: 3758: 3754: 3747: 3739: 3735: 3731: 3727: 3722: 3721:11380/1129421 3717: 3713: 3709: 3705: 3701: 3693: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3648: 3640: 3632: 3628: 3624: 3618: 3614: 3610: 3606: 3599: 3593: 3588: 3582: 3577: 3569: 3565: 3561: 3555: 3551: 3547: 3543: 3536: 3528: 3524: 3520: 3514: 3510: 3506: 3502: 3495: 3487: 3483: 3479: 3473: 3469: 3465: 3461: 3450: 3436:on 2013-04-30 3435: 3431: 3427: 3423: 3417: 3415: 3406: 3400: 3396: 3389: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3345: 3337: 3333: 3329: 3325: 3321: 3317: 3313: 3309: 3305: 3298: 3290: 3286: 3282: 3278: 3274: 3270: 3263: 3255: 3251: 3246: 3241: 3236: 3231: 3227: 3223: 3219: 3215: 3211: 3204: 3202: 3192: 3187: 3183: 3179: 3175: 3168: 3153: 3147: 3133: 3129: 3123: 3115: 3111: 3106: 3101: 3097: 3093: 3089: 3085: 3080: 3075: 3071: 3067: 3063: 3056: 3048: 3044: 3040: 3036: 3031: 3026: 3022: 3018: 3011: 3003: 2999: 2995: 2991: 2987: 2983: 2978: 2973: 2969: 2965: 2960: 2955: 2951: 2947: 2940: 2932: 2927: 2920: 2907: 2903: 2896: 2888: 2883: 2879: 2875: 2871: 2867: 2860: 2852: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2808: 2801: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2746: 2739: 2731: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2696: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2653: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2610: 2602: 2596: 2592: 2588: 2584: 2577: 2568: 2563: 2559: 2555: 2551: 2547: 2543: 2536: 2534: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2490: 2482: 2478: 2474: 2470: 2466: 2462: 2455: 2447: 2443: 2436: 2420: 2416: 2410: 2394: 2388: 2381: 2380: 2372: 2365: 2359: 2352: 2346: 2339: 2333: 2325: 2321: 2315: 2307: 2303: 2297: 2289: 2285: 2281: 2275: 2271: 2267: 2263: 2255: 2251: 2244: 2240: 2238: 2234: 2230: 2220: 2218: 2214: 2209: 2207: 2203: 2199: 2195: 2191: 2187: 2182: 2178: 2176: 2171: 2167: 2151: 2150: 2144: 2141: 2137: 2136: 2130: 2128: 2124: 2119: 2109: 2101: 2098: 2089: 2087: 2083: 2074: 2072: 2068: 2052: 2042: 2021: 1985: 1982: 1967: 1965: 1956: 1942: 1938: 1930: 1928: 1924: 1914: 1902: 1899: 1896: 1877: 1867: 1852: 1830: 1797: 1796: 1795: 1787: 1783: 1781: 1777: 1766: 1762: 1758: 1756: 1752: 1748: 1744: 1732: 1728: 1724: 1720: 1711: 1709: 1704: 1703:silicon oxide 1698: 1696: 1692: 1688: 1684: 1680: 1678: 1674: 1670: 1666: 1662: 1657: 1655: 1651: 1650:chalcogenides 1647: 1643: 1638: 1636: 1631: 1628: 1623: 1621: 1617: 1613: 1608: 1599: 1595: 1593: 1589: 1585: 1580: 1578: 1571: 1567: 1562: 1560: 1556: 1551: 1549: 1545: 1541: 1540:random-access 1537: 1533: 1529: 1525: 1514: 1509: 1507: 1502: 1500: 1495: 1494: 1492: 1491: 1483: 1480: 1477: 1476:Bubble memory 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1408: 1402: 1401: 1394: 1391: 1389: 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1362: 1359: 1358: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1323: 1317: 1316: 1309: 1306: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1201: 1198: 1196: 1193: 1191: 1188: 1187: 1186: 1183: 1182: 1179: 1174: 1173: 1166: 1163: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1103:Cassette tape 1101: 1099: 1098:Videocassette 1096: 1094: 1091: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1067:Magnetic tape 1065: 1063: 1060: 1059: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1034: 1031: 1026: 1025: 1018: 1015: 1013: 1010: 1008: 1005: 1004: 1001: 995: 994: 987: 984: 982: 979: 976: 973: 971: 968: 965: 961: 958: 956: 953: 951: 948: 947: 944: 939: 938: 931: 928: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 870: 869: 866: 862: 859: 857: 854: 852: 849: 846: 843: 840: 837: 834: 831: 830: 828: 825: 823: 822:ROM cartridge 820: 816: 813: 811: 808: 807: 806: 803: 801: 798: 796: 793: 792: 789: 784: 783: 780: 777: 776: 768: 765: 762: 759: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 729: 723: 722: 713: 710: 709: 708: 705: 703: 700: 698: 695: 692: 689: 687: 684: 682: 679: 675: 672: 671: 670: 667: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 609: 608: 605: 601: 598: 596: 593: 592: 591: 588: 587: 584: 579: 578: 575: 572: 571: 564: 561: 559: 556: 554: 551: 549: 548:Dew computing 546: 544: 541: 539: 538:Fog computing 536: 534: 533:Cloud storage 531: 529: 526: 524: 521: 519: 516: 514: 513:Memory paging 511: 509: 506: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 349: 348:File deletion 346: 344: 341: 339: 338:Computer file 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 266: 264: 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 218:Data recovery 216: 214: 211: 209: 206: 204: 203:Data security 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 142: 139: 137: 134: 133: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 100: 99:floating-gate 97: 96: 95: 92: 90: 87: 85: 82: 80: 77: 75: 72: 70: 67: 65: 62: 60: 57: 56: 50: 49: 45: 41: 38: 37: 33: 19: 5506:Types of RAM 5467: 5354:Robot ethics 5249: 5153:Semantic Web 5038: 5026:. Retrieved 4998: 4994: 4981: 4968: 4927: 4921: 4915: 4906: 4896: 4866:(10): 2880. 4863: 4859: 4853: 4812: 4808: 4802: 4775: 4771: 4760: 4719: 4715: 4709: 4679:(5): 403–6. 4676: 4672: 4666: 4641: 4637: 4631: 4622: 4589: 4585: 4575: 4566: 4531: 4524: 4491: 4487: 4481: 4456: 4452: 4442: 4430: 4414: 4403:. Retrieved 4399: 4389: 4378:. Retrieved 4374: 4365: 4348: 4337: 4329: 4324: 4316: 4311: 4302: 4293: 4284: 4275: 4266: 4257: 4248: 4239: 4230: 4221: 4212: 4191: 4186:, IEDM 2013. 4183: 4178: 4170: 4165: 4154:. Retrieved 4150:the original 4140: 4132: 4127: 4118: 4107: 4098: 4089: 4080: 4071: 4062: 4051: 4043: 4038: 4030: 4029:Y. Hayakawa 4025: 3990: 3983: 3974: 3966: 3961: 3956:, IEDM 2013. 3953: 3948: 3934: 3926: 3921: 3912: 3903: 3894: 3859: 3852: 3843: 3833: 3824: 3815: 3805: 3796: 3787: 3752: 3746: 3703: 3699: 3692: 3651: 3645: 3639: 3604: 3598: 3587: 3576: 3541: 3535: 3500: 3494: 3459: 3449: 3438:. Retrieved 3434:the original 3394: 3388: 3355: 3351: 3344: 3311: 3307: 3297: 3272: 3268: 3262: 3217: 3213: 3181: 3177: 3167: 3156:. Retrieved 3146: 3135:. Retrieved 3131: 3122: 3069: 3065: 3055: 3020: 3016: 3010: 2949: 2945: 2939: 2919: 2909:, retrieved 2906:The Register 2905: 2895: 2869: 2865: 2859: 2818: 2814: 2807: 2798: 2792:the original 2755: 2751: 2738: 2730:the original 2709: 2705: 2695: 2687:the original 2669:(2): 81–89. 2666: 2662: 2652: 2619: 2615: 2609: 2582: 2576: 2549: 2545: 2502:(4B): 2172. 2499: 2495: 2489: 2467:(1): 29–32. 2464: 2460: 2454: 2445: 2435: 2423:. Retrieved 2419:the original 2409: 2397:. Retrieved 2387: 2378: 2371: 2358: 2345: 2332: 2323: 2314: 2305: 2296: 2261: 2254: 2241: 2226: 2210: 2205: 2201: 2197: 2193: 2189: 2185: 2183: 2179: 2172: 2168: 2164: 2138: 2132: 2131: 2121: 2107: 2095: 2080: 2048: 2027: 2024:HP memristor 1991: 1983: 1968: 1952: 1949:-based ReRAM 1939: 1936: 1920: 1911: 1875: 1793: 1784: 1772: 1763: 1759: 1750: 1746: 1740: 1722: 1699: 1681: 1658: 1639: 1632: 1624: 1609: 1605: 1596: 1581: 1566:flash memory 1563: 1557:(CBRAM) and 1552: 1536:non-volatile 1531: 1527: 1523: 1522: 1423:Punched tape 1417:Punched card 1383:Time crystal 1251:Hyper CD-ROM 1190:Optical disc 1082:Tape library 1017:FeFET memory 1011: 998:Early-stage 878:CompactFlash 873:Memory Stick 833:Flash memory 795:Diode matrix 779:Non-volatile 680: 563:Kryder's law 553:Amdahl's law 478:Software rot 453:Logical disk 353:File copying 288:Data storage 243:File sharing 228:Data cluster 44:data storage 5418:Moore's law 5349:Neuroethics 5344:Cyberethics 5165:Atomtronics 4644:(9): G189. 3952:Y. Y. Chen 3706:(10): n/a. 2425:January 28, 2140:Quantum dot 2082:Weebit Nano 2077:Weebit Nano 1828:or AgInSbTe 1642:perovskites 1482:Floppy disk 1434:Drum memory 868:Memory card 835:is used in: 769:(2002–2010) 734:(1946–1947) 558:Moore's law 403:Boot sector 343:Object file 248:File system 59:Memory cell 5485:Categories 5309:Automation 5001:: 974918. 4405:2023-11-03 4380:2023-11-03 4156:2017-02-13 3838:6171-6176. 3810:7476-7493. 3440:2014-08-13 3358:(4): n/a. 3184:: 98–103. 3158:2014-08-13 3137:2023-11-02 3030:1909.07238 2911:2012-03-07 2247:References 2127:3D printed 1743:dielectric 1687:memristors 1544:dielectric 1405:Historical 1077:Tape drive 903:SmartMedia 726:Historical 423:Disk image 418:Disk array 293:Data store 94:MOS memory 84:Memory map 30:See also: 5339:Bioethics 5225:Millipede 4952:0741-3106 4516:121110610 4425:Scitation 4328:S. H. Jo 4169:S. Kumar 4042:M-J. Lee 3738:100500198 3730:1616-3028 3676:1476-4660 3380:110305072 3372:2199-160X 3336:0003-6951 3214:Materials 3079:1303.2589 3047:202577242 2972:CiteSeerX 2959:1302.7063 2931:1207.7319 2843:0361-5235 2780:0034-4885 2726:0033-7722 2683:0033-7722 2644:0018-9383 2524:122024553 2320:"NeuRRAM" 2156:connector 2104:IntrinSic 2071:Panasonic 2067:TowerJazz 1988:Panasonic 1957:using HfO 1695:memristor 1683:Leon Chua 1677:Honeywell 1625:In 2013, 1616:Panasonic 1584:trademark 1548:memristor 1464:Disk pack 1429:Plugboard 1266:DVD-Video 1195:LaserDisc 1093:Videotape 964:3D XPoint 955:Memristor 595:CPU cache 363:Core dump 283:Data bank 233:Directory 5260:UltraRAM 5028:June 13, 5023:20633281 4909:: 26–27. 4888:95921756 4845:12528923 4837:23064085 4752:12305490 4744:21891857 4701:20400954 4614:18311143 4558:36391893 4315:Y. Dong 4017:30862029 3965:C-H. Ho 3925:L. Goux 3886:40684267 3779:28059875 3684:17972938 3631:31770873 3527:27573769 3254:28788561 3114:23612312 3072:: 1771. 3002:14892809 2994:23708238 2851:93702602 2788:14500522 2308:. EUIPO. 2288:26927991 2097:Crossbar 2092:Crossbar 2086:CEA-Leti 1727:Archived 1627:Crossbar 1586:name of 1393:UltraRAM 1271:DVD card 1226:Video CD 1211:CD Video 981:Nano-RAM 950:Memistor 923:XQD card 898:SIM card 756:Dekatron 642:XDR DRAM 637:EDO DRAM 574:Volatile 368:Hex dump 278:Database 173:Metadata 168:Big data 5206:Memory 5003:Bibcode 4960:1126533 4932:Bibcode 4868:Bibcode 4817:Bibcode 4780:Bibcode 4724:Bibcode 4681:Bibcode 4646:Bibcode 4594:Bibcode 4496:Bibcode 4461:Bibcode 3656:Bibcode 3568:9690870 3486:7590725 3316:Bibcode 3277:Bibcode 3245:5453275 3222:Bibcode 3105:3644102 3084:Bibcode 2964:Bibcode 2874:Bibcode 2823:Bibcode 2800:(1968). 2760:Bibcode 2624:Bibcode 2554:Bibcode 2504:Bibcode 2469:Bibcode 2399:May 16, 2154:USB 2.0 1865:or PCMO 1714:Forming 1691:HP Labs 1602:History 1478:(~1970) 1472:(~1968) 1454:(1960s) 1291:Blu-ray 1281:MiniDVD 1276:DVD-RAM 1236:Mini CD 1178:Optical 1138:U-matic 1133:MicroMV 1113:Betamax 977:(ECRAM) 918:MicroP2 893:SD card 883:PC Card 674:1T-SRAM 632:QDRSRAM 223:Storage 53:General 5334:Ethics 5302:Topics 5091:Fields 5021:  4958:  4950:  4886:  4843:  4835:  4750:  4742:  4699:  4612:  4556:  4546:  4514:  4330:et al. 4317:et al. 4184:et al. 4171:et al. 4133:et al. 4044:et al. 4031:et al. 4015:  4005:  3967:et al. 3954:et al. 3927:et al. 3884:  3874:  3777:  3767:  3736:  3728:  3682:  3674:  3629:  3619:  3566:  3556:  3525:  3515:  3484:  3474:  3401:  3378:  3370:  3334:  3252:  3242:  3112:  3102:  3045:  3000:  2992:  2974:  2849:  2841:  2786:  2778:  2724:  2681:  2642:  2597:  2522:  2286:  2276:  1612:Rambus 1570:high-κ 1484:(1971) 1466:(1962) 1460:(1962) 1448:(1957) 1442:(1949) 1436:(1932) 1425:(1725) 1419:(1725) 1413:(1725) 1286:HD DVD 1246:CD-ROM 1202:(CDDA) 1128:MiniDV 847:(SSHD) 829:(SSS) 815:EEPROM 763:(2009) 752:(1952) 746:(1951) 740:(1947) 358:Backup 5255:SONOS 5215:ECRAM 5210:CBRAM 5202:GPGPU 5019:S2CID 4991:(PDF) 4956:S2CID 4884:S2CID 4841:S2CID 4748:S2CID 4554:S2CID 4512:S2CID 4357:(PDF) 4013:S2CID 3882:S2CID 3775:S2CID 3734:S2CID 3627:S2CID 3564:S2CID 3523:S2CID 3482:S2CID 3376:S2CID 3074:arXiv 3043:S2CID 3025:arXiv 3023:(7). 2998:S2CID 2954:arXiv 2926:arXiv 2847:S2CID 2795:(PDF) 2784:S2CID 2748:(PDF) 2520:S2CID 2284:S2CID 2190:reset 1839:, or 1776:diode 1747:reset 1735:shows 1635:wafer 1538:(NV) 1528:ReRAM 1346:ECRAM 1326:CBRAM 1261:DVD+R 1221:CD-RW 1158:D-VHS 1153:VHS-C 1148:S-VHS 1089:(DDS) 1012:ReRAM 1007:FeRAM 1000:NVRAM 986:CBRAM 943:NVRAM 841:(SSD) 810:EPROM 767:Z-RAM 761:T-RAM 693:(CAM) 681:ReRAM 647:RDRAM 627:LPDDR 622:SGRAM 617:SDRAM 612:eDRAM 46:types 18:ReRAM 5469:List 5272:RFID 5250:RRAM 5240:PRAM 5235:NRAM 5230:MRAM 5220:FRAM 5030:2021 4999:9749 4948:ISSN 4833:PMID 4740:PMID 4697:PMID 4610:PMID 4544:ISBN 4003:ISBN 3872:ISBN 3765:ISBN 3726:ISSN 3680:PMID 3672:ISSN 3617:ISBN 3554:ISBN 3513:ISBN 3472:ISBN 3399:ISBN 3368:ISSN 3332:ISSN 3250:PMID 3110:PMID 2990:PMID 2839:ISSN 2776:ISSN 2722:ISSN 2679:ISSN 2640:ISSN 2595:ISBN 2427:2014 2401:2012 2274:ISBN 2235:and 2215:and 2213:MRAM 2188:and 2186:read 2049:The 2008:/TaO 1964:IMEC 1955:ITRI 1927:MRAM 1923:PRAM 1780:BEOL 1675:and 1667:and 1532:RRAM 1336:NRAM 1308:WORM 1216:CD-R 970:MRAM 805:PROM 800:MROM 702:VRAM 686:QRAM 669:SRAM 657:GDDR 607:DRAM 503:RAID 153:Data 42:and 5011:doi 4940:doi 4876:doi 4825:doi 4788:doi 4776:100 4732:doi 4689:doi 4654:doi 4642:154 4602:doi 4536:doi 4504:doi 4469:doi 4423:AIP 3995:doi 3864:doi 3757:doi 3716:hdl 3708:doi 3664:doi 3609:doi 3546:doi 3505:doi 3464:doi 3426:doi 3360:doi 3324:doi 3312:101 3285:doi 3240:PMC 3230:doi 3186:doi 3182:178 3100:PMC 3092:doi 3035:doi 2982:doi 2882:doi 2870:102 2831:doi 2768:doi 2714:doi 2671:doi 2632:doi 2587:doi 2562:doi 2550:111 2512:doi 2477:doi 2266:doi 2217:PCM 2194:set 2029:TiO 1945:HfO 1925:or 1882:or 1870:SiO 1855:TiO 1841:TiO 1751:set 1648:to 1644:to 1574:HfO 1530:or 1256:DVD 1143:VHS 960:PCM 913:SxS 788:ROM 662:HBM 652:DDR 583:RAM 5487:: 5017:. 5009:. 4993:. 4954:. 4946:. 4938:. 4928:35 4926:. 4905:. 4882:. 4874:. 4864:41 4862:. 4839:. 4831:. 4823:. 4813:23 4811:. 4786:. 4774:. 4770:. 4746:. 4738:. 4730:. 4720:22 4718:. 4695:. 4687:. 4675:. 4652:. 4640:. 4608:. 4600:. 4588:. 4584:. 4552:. 4542:. 4510:. 4502:. 4492:46 4490:. 4467:. 4457:99 4455:. 4451:. 4398:. 4373:. 4301:. 4283:. 4265:. 4247:. 4229:. 4211:. 4200:^ 4097:. 4079:. 4011:. 4001:. 3880:. 3870:. 3773:. 3763:. 3732:. 3724:. 3714:. 3704:27 3702:. 3678:. 3670:. 3662:. 3650:. 3625:. 3615:. 3562:. 3552:. 3521:. 3511:. 3480:. 3470:. 3413:^ 3374:. 3366:. 3354:. 3330:. 3322:. 3310:. 3306:. 3283:. 3273:90 3271:. 3248:. 3238:. 3228:. 3216:. 3212:. 3200:^ 3180:. 3176:. 3130:. 3108:. 3098:. 3090:. 3082:. 3068:. 3064:. 3041:. 3033:. 3019:. 2996:. 2988:. 2980:. 2970:. 2962:. 2950:24 2948:. 2904:, 2880:, 2868:, 2845:. 2837:. 2829:. 2819:26 2817:. 2782:. 2774:. 2766:. 2756:33 2754:. 2750:. 2720:. 2710:35 2708:. 2704:. 2677:. 2667:34 2665:. 2661:. 2638:. 2630:. 2620:11 2618:. 2593:. 2560:. 2548:. 2544:. 2532:^ 2518:. 2510:. 2500:46 2498:. 2475:. 2465:18 2463:. 2444:. 2322:. 2304:. 2282:. 2272:. 2129:. 2073:. 1884:Cu 1818:Te 1809:Sb 1800:Ge 1757:. 1733:) 1652:. 1594:. 1206:CD 1123:DV 5076:e 5069:t 5062:v 5032:. 5013:: 5005:: 4962:. 4942:: 4934:: 4890:. 4878:: 4870:: 4847:. 4827:: 4819:: 4796:. 4790:: 4782:: 4754:. 4734:: 4726:: 4703:. 4691:: 4683:: 4677:9 4660:. 4656:: 4648:: 4616:. 4604:: 4596:: 4590:7 4560:. 4538:: 4518:. 4506:: 4498:: 4471:: 4463:: 4421:- 4408:. 4383:. 4359:. 4287:. 4269:. 4233:. 4215:. 4159:. 4083:. 4019:. 3997:: 3942:. 3888:. 3866:: 3781:. 3759:: 3740:. 3718:: 3710:: 3686:. 3666:: 3658:: 3652:6 3633:. 3611:: 3570:. 3548:: 3529:. 3507:: 3488:. 3466:: 3456:2 3443:. 3428:: 3407:. 3382:. 3362:: 3356:1 3338:. 3326:: 3318:: 3291:. 3287:: 3279:: 3256:. 3232:: 3224:: 3218:7 3194:. 3188:: 3161:. 3140:. 3116:. 3094:: 3086:: 3076:: 3070:4 3049:. 3037:: 3027:: 3021:6 3004:. 2984:: 2966:: 2956:: 2928:: 2884:: 2876:: 2853:. 2833:: 2825:: 2770:: 2762:: 2716:: 2673:: 2646:. 2634:: 2626:: 2603:. 2589:: 2570:. 2564:: 2556:: 2526:. 2514:: 2506:: 2483:. 2479:: 2471:: 2448:. 2429:. 2403:. 2290:. 2268:: 2206:N 2202:N 2198:N 2069:/ 2063:3 2061:O 2059:2 2055:2 2039:x 2035:x 2031:x 2018:5 2016:O 2014:2 2010:x 2006:5 2004:O 2002:2 1998:x 1994:x 1979:2 1975:2 1971:2 1959:2 1947:2 1893:S 1889:2 1876:x 1860:3 1846:2 1837:5 1835:O 1833:2 1823:5 1814:2 1805:2 1576:2 1526:( 1512:e 1505:t 1498:v 966:) 962:( 20:)

Index

ReRAM
Electrochemical random-access memory
Computer memory
data storage
Memory cell
Memory coherence
Cache coherence
Memory hierarchy
Memory access pattern
Memory map
Secondary storage
MOS memory
floating-gate
Continuous availability
Areal density (computer storage)
Block (data storage)
Object storage
Direct-attached storage
Network-attached storage
Storage area network
Block-level storage
Single-instance storage
Data
Structured data
Unstructured data
Big data
Metadata
Data compression
Data corruption
Data cleansing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.