Knowledge

Reductive group

Source 📝

4262: 41: 4269:
Chevalley showed in 1958 that the reductive groups over any algebraically closed field are classified up to isomorphism by root data. In particular, the semisimple groups over an algebraically closed field are classified up to central isogenies by their Dynkin diagram, and the simple groups
4044: 2741:, that is, they are direct sums of irreducible representations. That is the source of the name "reductive". Note, however, that complete reducibility fails for reductive groups in positive characteristic (apart from tori). In more detail: an affine group scheme 3549: 3747:(with some edges directed or multiple). The set of vertices of the Dynkin diagram is the set of simple roots. In short, the Dynkin diagram describes the angles between the simple roots and their relative lengths, with respect to a Weyl group-invariant 3187: 4716: 7472: 5303:
and unitary representations have been developed for real reductive groups in this generality. The main differences between this definition and the definition of a reductive algebraic group have to do with the fact that an algebraic group
2305: 5033: 4919: 5851:
As discussed above, the classification of split reductive groups is the same over any field. By contrast, the classification of arbitrary reductive groups can be hard, depending on the base field. Some examples among the
4216: 2667:, which is a complex reductive algebraic group. In fact, this construction gives a one-to-one correspondence between compact connected Lie groups and complex reductive groups, up to isomorphism. For a compact Lie group 2653: 4326:. It is remarkable that the classification of reductive groups is independent of the characteristic. For comparison, there are many more simple Lie algebras in positive characteristic than in characteristic zero. 3924: 7220:, the Galois action on its Dynkin diagram, and a Galois-invariant subset of the vertices of the Dynkin diagram. Traditionally, the Tits index is drawn by circling the Galois orbits in the given subset. 1569: 2171: 8198: 8004: 5783:) of the Schur module ∇(λ), but it need not be equal to the Schur module. The dimension and character of the Schur module are given by the Weyl character formula (as in characteristic zero), by 5697:
has a unique highest weight vector up to scalars; the corresponding "highest weight" λ is dominant; and every dominant weight λ is the highest weight of a unique irreducible representation
3477: 3626: 3298: 3240: 3122: 6019: 7117:
reduces the classification of central simple algebras over a field to the case of division algebras. Generalizing these results, Tits showed that a reductive group over a field
7630: 7598: 7566: 6120: 5918: 5123: 1691: 1266: 2438: 2347: 2094: 7200: 6588:-point of a maximal torus), a graph automorphism (corresponding to an automorphism of the Dynkin diagram), and a field automorphism (coming from an automorphism of the field 6586: 6155: 5953: 5162: 3588: 3114: 3082: 3054: 3030: 3006: 2966: 2409: 2200: 2127: 2057: 1763: 1659: 1293: 5791:(λ) are in general unknown, although a large body of theory has been developed to analyze these representations. One important result is that the dimension and character of 486: 461: 424: 4540: 1425:. (Some authors call this property "almost simple".) This differs slightly from the terminology for abstract groups, in that a simple algebraic group may have nontrivial 2547: 2503: 1207: 7384: 1383: 2380: 2208: 3847:
are in one-to-one correspondence with the subsets of the set Δ of simple roots (or equivalently, the subsets of the set of vertices of the Dynkin diagram). Let
2458: 1353: 1227: 1167: 1139: 1119: 1088: 7235:
with the given action. (For a quasi-split group, every Galois orbit in the Dynkin diagram is circled.) Moreover, any other simply connected semisimple group
7113:
says that a nondegenerate quadratic form over a field is determined up to isomorphism by its Witt index together with its anisotropic kernel. Likewise, the
4956: 4776: 8222:
Building on the Hasse principle, the classification of semisimple groups over number fields is well understood. For example, there are exactly three
7381:
is nontrivial, then it is encoded in the Galois action on the Dynkin diagram: the index-2 subgroup of the Galois group that acts as the identity is
1477:
scheme. Every reductive group over a field admits a central isogeny from the product of a torus and some simple groups. For example, over any field
6253:
algebraically closed, and they are understood for some other fields such as number fields, but for arbitrary fields there are many open questions.
4146: 2004:
is algebraically closed, any two (nondegenerate) quadratic forms of the same dimension are isomorphic, and so it is reasonable to call this group
8216: 2555: 7109:, which reduces the problem to the case of anisotropic groups. This reduction generalizes several fundamental theorems in algebra. For example, 4039:{\displaystyle \left\{{\begin{bmatrix}*&*&*&*\\*&*&*&*\\0&0&*&*\\0&0&0&*\end{bmatrix}}\right\}} 788: 5288:*. The problem of classifying the real reductive groups largely reduces to classifying the simple Lie groups. These are classified by their 1574:
It is slightly awkward that the definition of a reductive group over a field involves passage to the algebraic closure. For a perfect field
9338: 4322:
in the 1880s and 1890s. In particular, the dimensions, centers, and other properties of the simple algebraic groups can be read from the
4438:
with a given Dynkin diagram, with simple groups corresponding to the connected diagrams. At the other extreme, a semisimple group is of
7223:
There is a full classification of quasi-split groups in these terms. Namely, for each action of the absolute Galois group of a field
2942: 8284: 5272:
In particular, every connected semisimple Lie group (meaning that its Lie algebra is semisimple) is reductive. Also, the Lie group
4221:
For the orthogonal group or the symplectic group, the projective homogeneous varieties have a similar description as varieties of
2821:, as in the theories of complex semisimple Lie algebras or compact Lie groups. Here is the way roots appear for reductive groups. 6354: 8306: 1709:. These kinds of groups are useful because their classification can be described through combinatorical data called root data. 923: 346: 9216: 9048: 9009: 8922: 8850: 3373:; this is a combinatorial structure which can be completely classified. More generally, the roots of a reductive group form a 1487: 9398: 9312: 9242: 9091: 9017: 8930: 8858: 7121:
is determined up to isomorphism by its Tits index together with its anisotropic kernel, an associated anisotropic semisimple
2132: 8116: 7922: 3864: 3456: 9056: 4314:. This result is essentially identical to the classifications of compact Lie groups or complex semisimple Lie algebras, by 2746: 296: 1450: 3918:
above are the groups of invertible matrices with zero entries below a given set of squares along the diagonal, such as:
9132: 8977: 8891: 7869: 7847: 5444:
of non-compact type. In fact, every symmetric space of non-compact type arises this way. These are central examples in
781: 291: 9275: 9167: 8818: 8728: 3665:
means a positive root that is not a sum of two other positive roots. Write Δ for the set of simple roots. The number
9490: 8961: 7359: 7080: 3300:
as the direct sum of the diagonal matrices and the 1-dimensional subspaces indexed by the off-diagonal positions (
7110: 6999: 3544:{\displaystyle {\mathfrak {b}}={\mathfrak {t}}\oplus \bigoplus _{\alpha \in \Phi ^{+}}{\mathfrak {g}}_{\alpha }.} 9206: 9153: 1146: 8802: 7889: 5828: 1938: 707: 9382: 9267: 9198: 9083: 8328: 5244:) (in the classical topology). It is also standard to assume that the image of the adjoint representation Ad( 5176:
are classified by root data. This statement includes the existence of Chevalley groups as group schemes over
3182:{\displaystyle {\mathfrak {g}}={\mathfrak {t}}\oplus \bigoplus _{\alpha \in \Phi }{\mathfrak {g}}_{\alpha }.} 774: 8075:
of positive characteristic was proved earlier by Harder (1975): for every simply connected semisimple group
9473:
Schémas en groupes (SGA 3), II: Groupes de type multiplicatif, et structure des schémas en groupes généraux
8958:
Schémas en groupes (SGA 3), II: Groupes de type multiplicatif, et structure des schémas en groupes généraux
7114: 3744: 3593: 3265: 3207: 2664: 1335:
Over fields of characteristic zero another equivalent definition of a reductive group is a connected group
3751:
on the weight lattice. The connected Dynkin diagrams (corresponding to simple groups) are pictured below.
9193: 9108: 8301: 7055: 6389: 5990: 3762:, an important point is that a root α determines not just a 1-dimensional subspace of the Lie algebra of 391: 205: 1316: 9116: 8315: 8274: 7603: 7571: 7539: 7529: 6093: 5891: 5775:
are typically not direct sums of irreducibles. For a dominant weight λ, the irreducible representation
5096: 1664: 1239: 993: 893: 838: 123: 5708:
There remains the problem of describing the irreducible representation with given highest weight. For
2414: 2323: 2070: 9188: 7178: 6564: 6133: 5931: 5300: 5293: 5140: 4323: 3569: 3095: 3063: 3035: 3011: 2987: 2947: 2738: 2730: 2385: 2176: 2129:
through the diagonal, and from this representation, their unipotent radical is trivial. For example,
2103: 2035: 1739: 1637: 1271: 5712:
of characteristic zero, there are essentially complete answers. For a dominant weight λ, define the
4711:{\displaystyle q(x_{1},\ldots ,x_{2n+1})=x_{1}x_{2}+x_{3}x_{4}+\cdots +x_{2n-1}x_{2n}+x_{2n+1}^{2};} 1627: 1308: 8754: 8289: 8253: 5434: 4927: 4093: 1355:
admitting a faithful semisimple representation which remains semisimple over its algebraic closure
1234: 911:. Reductive groups over an arbitrary field are harder to classify, but for many fields such as the 857: 589: 323: 200: 88: 8219:, saying that a central simple algebra over a number field is determined by its local invariants. 3463:Φ ⊂ Φ, with the property that Φ is the disjoint union of Φ and −Φ. Explicitly, the Lie algebra of 469: 444: 407: 8319: 7815: 6835: 6515: 5552:, the analog of a metric with nonpositive curvature. The dimension of the affine building is the 5324: 3416:. The Weyl group is in fact a finite group generated by reflections. For example, for the group 2508: 9467: 9037: 8999: 8953: 8912: 8279: 7467:{\displaystyle \operatorname {Gal} (k_{s}/k({\sqrt {d}}))\subset \operatorname {Gal} (k_{s}/k)} 6025: 5812: 5753: 5745: 5509: 4353: 2934: 1595: 1015: 1009: 997: 989: 908: 810: 739: 529: 2472: 1176: 9420: 7137: 5411: 1426: 957: 613: 2300:{\displaystyle (a_{1},a_{2})\mapsto {\begin{bmatrix}a_{1}&0\\0&a_{2}\end{bmatrix}}.} 1358: 9449: 9408: 9359: 9322: 9285: 9230: 9177: 9142: 9101: 9073: 9066: 9027: 8987: 8940: 8901: 8868: 8828: 8783: 8763: 8738: 8323: 8293: 8257: 7866:.) It follows, for example, that every reductive group over a finite field is quasi-split. 6918: 5816: 2688: 2358: 1823: 842: 826: 553: 541: 159: 93: 8: 9495: 8839: 8310: 8250:
are the finite simple groups constructed from simple algebraic groups over finite fields.
8014: 6942: 6826:
simply connected and quasi-split, the Whitehead group is trivial, and so the whole group
5780: 5771:
of positive characteristic, the situation is far more subtle, because representations of
5574: 5449: 5445: 4225:
flags with respect to a given quadratic form or symplectic form. For any reductive group
3670: 3452: 2794: 2320:
is not reductive since its unipotent radical is itself. This includes the additive group
905: 853: 841:. Reductive groups include some of the most important groups in mathematics, such as the 814: 128: 23: 9234: 8767: 5843:-Kazhdan-Lusztig polynomials, which are even more complex, but at least are computable. 9437: 9363: 9220: 8787: 7715:. Namely, such forms (up to isomorphism) are in one-to-one correspondence with the set 7633: 6558: 6268:-rank greater than 0 (that is, if it contains a nontrivial split torus), and otherwise 5836: 5525: 5492: 4947: 4364: 4222: 4085: 2443: 1942: 1470: 1338: 1212: 1152: 1124: 1104: 1073: 113: 85: 9299:, Progress in Mathematics, vol. 9 (2nd ed.), Boston, MA: Birkhäuser Boston, 9394: 9308: 9271: 9238: 9184: 9163: 9149: 9128: 9087: 9052: 9013: 8973: 8926: 8887: 8854: 8814: 8791: 8752:(1971), "Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I.", 8724: 8366: 8297: 8265: 8247: 7863: 7839: 7256: 7227:
on a Dynkin diagram, there is a unique simply connected semisimple quasi-split group
7162: 5395: 5367: 5354:)) is a real reductive group that cannot be viewed as an algebraic group. Similarly, 5028:{\displaystyle \operatorname {Aut} (G)\cong \operatorname {Out} (G)\ltimes (G/Z)(k),} 4914:{\displaystyle q(x_{1},\ldots ,x_{2n})=x_{1}x_{2}+x_{3}x_{4}+\cdots +x_{2n-1}x_{2n}.} 4330: 1303:. (This is equivalent to the definition of reductive groups in the introduction when 1296: 901: 518: 361: 255: 9367: 7649: 5330:(2) is connected as an algebraic group over any field, but its group of real points 5172:
and Grothendieck showed that split reductive group schemes over any nonempty scheme
4092:. Thus the classification of parabolic subgroups amounts to a classification of the 2460:
on the diagonal. This is an example of a non-reductive group which is not unipotent.
684: 9429: 9386: 9374: 9347: 9333: 9329: 9300: 9120: 8965: 8884:
Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs
8798: 8771: 8716: 8261: 8227: 6986: 6511: 6187: 5757: 5725: 5465: 5221: 4427: 4368: 2782: 1908: 1874: 1474: 960:
in various contexts. First, one can study the representations of a reductive group
889: 868: 830: 669: 661: 653: 645: 637: 625: 565: 505: 495: 337: 279: 154: 9471: 9003: 8916: 7901: 4430:
in the classical topology.) Chevalley's classification gives that, over any field
9463: 9445: 9404: 9355: 9318: 9281: 9173: 9138: 9097: 9062: 9023: 8995: 8983: 8949: 8936: 8908: 8897: 8875: 8864: 8824: 8810: 8779: 8734: 8712: 7905: 7105:
In seeking to classify reductive groups which need not be split, one step is the
6958: 6930: 5853: 5598: 5441: 5399: 5169: 5090: 5054:
has a simpler description: it is the automorphism group of the Dynkin diagram of
4315: 3433: 2317: 2097: 1413:) if it is semisimple, nontrivial, and every smooth connected normal subgroup of 1098: 1067: 976:-vector spaces. But also, one can study the complex representations of the group 753: 732: 689: 577: 500: 330: 244: 184: 64: 8504:
SGA 3 (2011), v. 3, Théorème XXV.1.1; Conrad (2014), Theorems 6.1.16 and 6.1.17.
7348:, and so its automorphism group is of order 2, switching the two "legs" of the D 5358:(2) is simply connected as an algebraic group over any field, but the Lie group 5276:
is reductive in this sense, since it can be viewed as the identity component of
3879:). As a result, there are exactly 2 conjugacy classes of parabolic subgroups in 9292: 9251: 9159: 8879: 6052: 5820: 5804: 5496: 5414:, that is, the product of a semisimple Lie algebra and an abelian Lie algebra. 5383: 5289: 4415: 3740: 3448: 3388: 2907: 2817:
The classification of reductive algebraic groups is in terms of the associated
1919: 1095: 939: 897: 760: 696: 386: 366: 303: 268: 189: 179: 164: 149: 103: 80: 9304: 8720: 5621:. In particular, this parametrization is independent of the characteristic of 4319: 9484: 8270: 7897: 7641: 6377: 4270:
correspond to the connected diagrams. Thus there are simple groups of types A
4077: 3748: 2700: 1918:) is the subgroup of the general linear group that preserves a nondegenerate 1897: 1051: 1023: 822: 679: 601: 435: 308: 174: 7892:(which has cohomological dimension 2). More generally, for any number field 5839:
conjectured the irreducible characters of a reductive group in terms of the
4211:{\displaystyle 0\subset S_{a_{1}}\subset \cdots \subset S_{a_{i}}\subset V.} 2873:(as an algebraic group) is a direct sum of 1-dimensional representations. A 9415: 9005:
Schémas en groupes (SGA 3), III: Structure des schémas en groupes réductifs
8835: 8749: 8745: 8704: 8069: 6697: 6048: 5784: 5614: 5067: 2648:{\displaystyle B_{n}/(R_{u}(B_{n}))\cong \prod _{i=1}^{n}\mathbb {G} _{m}.} 1901: 1027: 947: 919: 534: 233: 222: 169: 144: 139: 98: 69: 32: 9124: 8918:
Schémas en groupes (SGA 3), I: Propriétés générales des schémas en groupes
1209:. (Some authors do not require reductive groups to be connected.) A group 9113:
Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field
8711:, Graduate Texts in Mathematics, vol. 126 (2nd ed.), New York: 7661: 6615:) is close to being simple, under mild assumptions. Namely, suppose that 6549:, Steinberg also determined the automorphism group of the abstract group 6534:(the root subgroups), with relations determined by the Dynkin diagram of 6241:
essentially includes the problem of classifying all quadratic forms over
4344:
had been constructed earlier, at least in the form of the abstract group
4261: 2818: 2353: 1838: 912: 802: 9390: 7075:-invariant measure). For example, a discrete subgroup Γ is a lattice if 2757:
if its finite-dimensional representations are completely reducible. For
892:
showed that the classification of reductive groups is the same over any
9441: 9351: 9255: 9077: 8969: 8775: 7244: 7106: 7100: 4525: 4509: 3792: 3392: 3379: 3374: 2032:, although they all have the same base change to the algebraic closure 1000:. The structure theory of reductive groups is used in all these areas. 834: 701: 429: 6842:-simple groups the Whitehead group is trivial. In all known examples, 5201: 3887:. Explicitly, the parabolic subgroup corresponding to a given subset 3116:
together with 1-dimensional subspaces indexed by the set Φ of roots:
522: 9433: 6497: 1988:) can always be defined as the maximal smooth connected subgroup of 1586:
is reductive if and only if every smooth connected unipotent normal
9225: 6707:
The exceptions for fields of order 2 or 3 are well understood. For
5787:. The dimensions and characters of the irreducible representations 4473:
For example, the simply connected split simple groups over a field
3815:
and the positive root subgroups. In fact, a split semisimple group
1429:(although the center must be finite). For example, for any integer 59: 5625:. In more detail, fix a split maximal torus and a Borel subgroup, 4116:, parametrizing sequences of linear subspaces of given dimensions 1594:
is trivial. For an arbitrary field, the latter property defines a
8960:. Lecture Notes in Mathematics. Vol. 152. Berlin; New York: 6701: 6696:) by its center is simple (as an abstract group). The proof uses 4477:
corresponding to the "classical" Dynkin diagrams are as follows:
3032:
corresponding to each root is 1-dimensional, and the subspace of
2923: 401: 315: 7632:
on itself by left translation. A torsor can also be viewed as a
5410:) is not a real reductive group, even though its Lie algebra is 4394:
reductive groups is the same over any field. A semisimple group
3787:. The root subgroup is the unique copy of the additive group in 7818:, which are invariants taking values in Galois cohomology with 7508: 5545: 5320:) is not connected, and likewise for simply connected groups. 2881:
means an isomorphism class of 1-dimensional representations of
1121:
is trivial. More generally, a connected linear algebraic group
896:. In particular, the simple algebraic groups are classified by 40: 8110:, the Hasse principle holds in a weaker form: the natural map 7727:)). For example, (nondegenerate) quadratic forms of dimension 6237:
As a result, the problem of classifying reductive groups over
5601:, which are defined as the intersection of the weight lattice 2658: 6561:, a diagonal automorphism (meaning conjugation by a suitable 6368:
of characteristic zero (such as the real numbers), the group
5752:(λ) is isomorphic to the Schur module ∇(λ). Furthermore, the 5693:). Chevalley showed that every irreducible representation of 5180:, and it says that every split reductive group over a scheme 5133:, the corresponding geometric fiber means the base change of 4938:
is isomorphic to the automorphism group of the root datum of
4387:
over a field of positive characteristic were completely new.
6388:
is reductive and anisotropic. Example: the orthogonal group
4434:, there is a unique simply connected split semisimple group 2765:
is linearly reductive if and only if the identity component
2100:. They are examples of reductive groups since they embed in 817:. One definition is that a connected linear algebraic group 7358:
on the Dynkin diagram is trivial if and only if the signed
5312:
may be connected as an algebraic group while the Lie group
5184:
is isomorphic to the base change of a Chevalley group from
4442:
if its center is trivial. The split semisimple groups over
4256: 7842:'s "Conjecture I": for a connected linear algebraic group 7153:) acts (continuously) on the "absolute" Dynkin diagram of 7094: 5760:(and in particular the dimension) of this representation. 5338:) has two connected components. The identity component of 4100:(with smooth stabilizer group; that is no restriction for 3566:), then this is the obvious decomposition of the subspace 8531:
Jantzen (2003), Proposition II.4.5 and Corollary II.5.11.
7862:) = 1. (The case of a finite field was known earlier, as 6917:) is compact in the classical topology. Since it is also 5823:'s conjecture in that case). Their character formula for 4418:, being simply connected in this sense is equivalent to 3451:
containing a given maximal torus, and they are permuted
1564:{\displaystyle GL(n)\cong (G_{m}\times SL(n))/\mu _{n}.} 2166:{\displaystyle \mathbb {G} _{m}\times \mathbb {G} _{m}} 926:
says that most finite simple groups arise as the group
8628:
Tits (1964), Main Theorem; Gille (2009), Introduction.
8193:{\displaystyle H^{1}(k,G)\to \prod _{v}H^{1}(k_{v},G)} 7999:{\displaystyle H^{1}(k,G)\to \prod _{v}H^{1}(k_{v},G)} 7872:
predicts that for a simply connected semisimple group
6941:) contains infinitely many normal subgroups of finite 6718:, Tits's simplicity theorem remains valid except when 6526:). It is generated by copies of the additive group of 5580: 3937: 3558:
is the Borel subgroup of upper-triangular matrices in
2249: 8119: 7925: 7606: 7574: 7542: 7387: 7310:
be a nondegenerate quadratic form of even dimension 2
7181: 6567: 6136: 6096: 5993: 5971:(the maximum dimension of an isotropic subspace over 5934: 5894: 5143: 5099: 4959: 4779: 4543: 4149: 3927: 3799:
and which has the given Lie algebra. The whole group
3596: 3572: 3480: 3268: 3210: 3125: 3098: 3066: 3038: 3014: 2990: 2950: 2558: 2511: 2475: 2446: 2417: 2388: 2361: 2326: 2211: 2179: 2135: 2106: 2073: 2038: 1822:
under multiplication. Another reductive group is the
1742: 1667: 1640: 1490: 1361: 1341: 1274: 1242: 1215: 1179: 1155: 1127: 1107: 1076: 472: 447: 410: 8994: 8948: 8907: 8477:
Chevalley (2005); Springer (1998), 9.6.2 and 10.1.1.
7799:)). These problems motivate the systematic study of 7354:
diagram. The action of the absolute Galois group of
6380:
in the classical topology (based on the topology of
5398:) are real reductive groups. On the other hand, the 5236:) whose kernel is finite and whose image is open in 4406:
if every central isogeny from a semisimple group to
2976:
means a nonzero weight that occurs in the action of
9477:
Revised and annotated edition of the 1970 original.
9032:
Revised and annotated edition of the 1970 original.
8945:
Revised and annotated edition of the 1970 original.
8807:
Classification des groupes algébriques semi-simples
8102:In the slightly different case of an adjoint group 7876:over a field of cohomological dimension at most 2, 6834:) is simple modulo its center. More generally, the 5831:, which are combinatorially complex. For any prime 8192: 8055:) is trivial for every nonarchimidean local field 7998: 7624: 7592: 7560: 7501: 7466: 7194: 6580: 6149: 6114: 6013: 5947: 5912: 5156: 5117: 5027: 4913: 4710: 4210: 4038: 3693:is semisimple). For example, the simple roots for 3620: 3582: 3543: 3459:). A choice of Borel subgroup determines a set of 3292: 3234: 3181: 3108: 3076: 3048: 3024: 3000: 2960: 2647: 2541: 2497: 2452: 2432: 2403: 2374: 2341: 2299: 2194: 2165: 2121: 2088: 2051: 1757: 1733:A fundamental example of a reductive group is the 1685: 1653: 1563: 1377: 1347: 1287: 1260: 1221: 1201: 1161: 1133: 1113: 1082: 480: 455: 418: 9334:"Regular elements of semisimple algebraic groups" 9148: 8420:Demazure & Gabriel (1970), Théorème IV.3.3.6. 6948: 6498:Structure of semisimple groups as abstract groups 4516:+1) associated to a quadratic form of dimension 2 4446:with given Dynkin diagram are exactly the groups 3807:and the root subgroups, while the Borel subgroup 3739:Root systems are classified by the corresponding 2469:Note that the normality of the unipotent radical 9482: 9462: 9418:(1964), "Algebraic and abstract simple groups", 5597:(as an algebraic group) are parametrized by the 5046:. For a split semisimple simply connected group 2733:zero, all finite-dimensional representations of 1578:, that can be avoided: a linear algebraic group 9204: 8874: 5520:plays the role of the symmetric space. Namely, 4755:) associated to a quadratic form of dimension 2 1169:is trivial. This normal subgroup is called the 988:is a finite field, or the infinite-dimensional 7322:≥ 5. (These restrictions can be avoided.) Let 6541:For a simply connected split semisimple group 6502:For a simply connected split semisimple group 5050:over a field, the outer automorphism group of 3324:for the standard basis for the weight lattice 3262:. Then the root-space decomposition expresses 1046:. Equivalently, a linear algebraic group over 8691:Platonov & Rapinchuk (1994), Theorem 6.4. 8682:Platonov & Rapinchuk (1994), section 6.8. 8673:Platonov & Rapinchuk (1994), Theorem 6.6. 8655:Platonov & Rapinchuk (1994), section 9.1. 8592:Platonov & Rapinchuk (1994), Theorem 3.1. 7687:Torsors arise whenever one seeks to classify 7255:is the group associated to an element of the 6486:| ≤ 1, and it is quasi-split if and only if | 6442:. A split reductive group is quasi-split. If 5846: 5736:associated to λ; this is a representation of 5681:acts on that line through its quotient group 4375:. By contrast, the Chevalley groups of type F 2464: 1896:) that preserves a nondegenerate alternating 1330: 1141:over an algebraically closed field is called 1090:over an algebraically closed field is called 1061: 953:, or as minor variants of that construction. 922:, the classification is well understood. The 782: 8233:, corresponding to the three real forms of E 7083:says, in particular: for a simple Lie group 6291:contains a copy of the multiplicative group 6008: 5994: 5212:such that there is a linear algebraic group 3669:of simple roots is equal to the rank of the 2691:, with respect to the classical topology on 968:as an algebraic group, which are actions of 9381:, University Lecture Series, vol. 66, 8549:Riche & Williamson (2018), section 1.8. 8030:is the corresponding local field (possibly 6873:) can be far from simple. For example, let 6680:) is nontrivial, and even Zariski dense in 6557:). Every automorphism is the product of an 6415:), and so it is anisotropic if and only if 6345:perfect, it is also equivalent to say that 6280:, the following conditions are equivalent: 5645:with a smooth connected unipotent subgroup 2659:Other characterizations of reductive groups 1976:) is in fact connected but not smooth over 9205:Riche, Simon; Williamson, Geordie (2018), 9183: 7908:: for a simply connected semisimple group 7904:and Vladimir Chernousov (1989) proved the 7803:-torsors, especially for reductive groups 7751:)), and central simple algebras of degree 7087:of real rank at least 2, every lattice in 6968:can be extended to an affine group scheme 6743:, or non-split (that is, unitary) of type 6070:means the square root of the dimension of 5685:, by some element λ of the weight lattice 5061: 3906:. For example, the parabolic subgroups of 3851:be the order of Δ, the semisimple rank of 3819:is generated by the root subgroups alone. 1388: 789: 775: 9373: 9328: 9224: 8797: 8744: 8346:SGA 3 (2011), v. 3, Définition XIX.1.6.1. 7684:), in the language of Galois cohomology. 6783:, in order to understand the whole group 6688:is infinite.) Then the quotient group of 5748:says that the irreducible representation 5386:. By definition, all finite coverings of 4068:-subgroup such that the quotient variety 2632: 2420: 2329: 2153: 2138: 2076: 2016:, different quadratic forms of dimension 1856: 1601: 1233:is called semisimple or reductive if the 474: 449: 412: 9291: 9260:Automorphic Forms, Representations, and 9250: 8583:Borel & Tits (1971), Corollaire 3.8. 8437: 8435: 8384:Conrad (2014), after Proposition 5.1.17. 7071:/Γ has finite volume (with respect to a 6976:, and this determines an abstract group 6647:-points of copies of the additive group 6635:) be the subgroup of the abstract group 5779:(λ) is the unique simple submodule (the 5195: 4260: 4257:Classification of split reductive groups 3803:is generated (as an algebraic group) by 3766:, but also a copy of the additive group 3467:is the direct sum of the Lie algebra of 3258:be the subgroup of diagonal matrices in 2828:be a split reductive group over a field 2663:Every compact connected Lie group has a 9072: 8561: 8559: 8557: 8555: 8486:Milne (2017), Theorems 23.25 and 23.55. 7838:). In this direction, Steinberg proved 7095:The Galois action on the Dynkin diagram 6360:For a connected linear algebraic group 3369:The roots of a semisimple group form a 2699:). For example, the inclusion from the 2020:can yield non-isomorphic simple groups 9483: 8834: 6324:contains a copy of the additive group 5795:(λ) are known when the characteristic 5093:and affine, and every geometric fiber 4942:. Moreover, the automorphism group of 4390:More generally, the classification of 3822: 924:classification of finite simple groups 347:Classification of finite simple groups 9107: 9035: 9002:(2011) . Gille, P.; Polo, P. (eds.). 8915:(2011) . Gille, P.; Polo, P. (eds.). 8703: 8432: 8285:Weil's conjecture on Tamagawa numbers 7888:) = 1. The conjecture is known for a 7810:When possible, one hopes to classify 7171:(which is also the Dynkin diagram of 6957:be a linear algebraic group over the 6438:if it contains a Borel subgroup over 5987:has the maximum possible Witt index, 5593:, the irreducible representations of 5417:For a connected real reductive group 3777:with the given Lie algebra, called a 3621:{\displaystyle {{\mathfrak {g}}l}(n)} 3293:{\displaystyle {{\mathfrak {g}}l}(n)} 3235:{\displaystyle {{\mathfrak {g}}l}(n)} 2789:is linearly reductive if and only if 1618:if it contains a split maximal torus 9414: 9339:Publications Mathématiques de l'IHÉS 8552: 7303:, as discussed in the next section. 6877:be a division algebra with center a 6245:or all central simple algebras over 6169:is isomorphic to the matrix algebra 3839:that contain a given Borel subgroup 3835:, the smooth connected subgroups of 2411:has a non-trivial unipotent radical 1469:of reductive groups is a surjective 9079:Representations of Algebraic Groups 8217:Albert–Brauer–Hasse–Noether theorem 8068:matter. The analogous result for a 7010:). (Arithmeticity of a subgroup of 6909:-simple group. As mentioned above, 6893:is finite and greater than 1. Then 6310:contains a parabolic subgroup over 6014:{\displaystyle \lfloor n/2\rfloor } 5860:Every nondegenerate quadratic form 5581:Representations of reductive groups 5491:that is complete with respect to a 5224:) is reductive, and a homomorphism 3600: 3575: 3527: 3493: 3483: 3272: 3214: 3165: 3138: 3128: 3101: 3069: 3041: 3017: 2993: 2953: 1952:) is reductive, in fact simple for 13: 9155:Algebraic Groups and Number Theory 9045:Séminaire Bourbaki. Vol. 2007/2008 7779:-forms of a given algebraic group 7018:) is independent of the choice of 6450:, then any two Borel subgroups of 4466:-subgroup scheme of the center of 4458:is the simply connected group and 4132:contained in a fixed vector space 3914:) that contain the Borel subgroup 3513: 3157: 2440:of upper-triangular matrices with 2096:and products of it are called the 1849:) is a simple algebraic group for 1598:, which is somewhat more general. 1268:is semisimple or reductive, where 992:of a real reductive group, or the 14: 9507: 9456: 8364: 8064:, and so only the real places of 7625:{\displaystyle G_{\overline {k}}} 7593:{\displaystyle G_{\overline {k}}} 7561:{\displaystyle X_{\overline {k}}} 7338:. The absolute Dynkin diagram of 7157:, that is, the Dynkin diagram of 6462:). Example: the orthogonal group 6454:are conjugate by some element of 6115:{\displaystyle G_{\overline {k}}} 5913:{\displaystyle G_{\overline {k}}} 5868:determines a reductive group G = 5720:-vector space of sections of the 5220:whose identity component (in the 5118:{\displaystyle G_{\overline {k}}} 3895:together with the root subgroups 3395:of a maximal torus by the torus, 2885:, or equivalently a homomorphism 2679:into the complex reductive group 1873:An important simple group is the 1686:{\displaystyle G_{\overline {k}}} 1449:is simple, and its center is the 1261:{\displaystyle G_{\overline {k}}} 8540:Jantzen (2003), section II.8.22. 8468:Borel (1991), Proposition 21.12. 8459:Milne (2017), Proposition 17.53. 8355:Milne (2017), Proposition 21.60. 8226:-forms of the exceptional group 6885:. Suppose that the dimension of 5819:, and Wolfgang Soergel (proving 5204:rather than algebraic groups, a 4094:projective homogeneous varieties 3590:of upper-triangular matrices in 3088:. Therefore, the Lie algebra of 2505:implies that the quotient group 2433:{\displaystyle \mathbb {U} _{n}} 2342:{\displaystyle \mathbb {G} _{a}} 2089:{\displaystyle \mathbb {G} _{m}} 1837:, the subgroup of matrices with 1693:). It is equivalent to say that 1145:if the largest smooth connected 39: 8685: 8676: 8667: 8658: 8649: 8640: 8631: 8622: 8613: 8604: 8595: 8586: 8577: 8568: 8543: 8534: 8525: 8516: 8507: 8498: 8489: 8480: 8471: 8462: 8453: 8444: 7502:Torsors and the Hasse principle 7195:{\displaystyle {\overline {k}}} 7063:means a discrete subgroup Γ of 7034:) is an arithmetic subgroup of 6933:(but not finite). As a result, 6761:, the theorem holds except for 6581:{\displaystyle {\overline {k}}} 6256:A reductive group over a field 6150:{\displaystyle {\overline {k}}} 5948:{\displaystyle {\overline {k}}} 5560:. For example, the building of 5292:; or one can just refer to the 5168:.) Extending Chevalley's work, 5157:{\displaystyle {\overline {k}}} 3891:of Δ is the group generated by 3583:{\displaystyle {\mathfrak {b}}} 3109:{\displaystyle {\mathfrak {t}}} 3077:{\displaystyle {\mathfrak {t}}} 3049:{\displaystyle {\mathfrak {g}}} 3025:{\displaystyle {\mathfrak {g}}} 3001:{\displaystyle {\mathfrak {g}}} 2961:{\displaystyle {\mathfrak {g}}} 2918:) isomorphic to the product of 2404:{\displaystyle {\text{GL}}_{n}} 2310: 2195:{\displaystyle {\text{GL}}_{2}} 2122:{\displaystyle {\text{GL}}_{n}} 2052:{\displaystyle {\overline {k}}} 1925:on a vector space over a field 1758:{\displaystyle {\text{GL}}_{n}} 1654:{\displaystyle {\overline {k}}} 1288:{\displaystyle {\overline {k}}} 9470:, Gille, P.; Polo, P. (eds.), 9217:Société Mathématique de France 9049:Société Mathématique de France 9010:Société Mathématique de France 8923:Société Mathématique de France 8851:Société Mathématique de France 8664:Steinberg (1965), Theorem 1.9. 8601:Borel (1991), Theorem 20.9(i). 8495:Milne (2017), Corollary 23.47. 8450:Milne (2017), Corollary 21.12. 8423: 8414: 8411:Milne (2017), Corollary 22.43. 8405: 8396: 8387: 8378: 8358: 8349: 8340: 8187: 8168: 8145: 8142: 8130: 7993: 7974: 7951: 7948: 7936: 7890:totally imaginary number field 7783:(sometimes called "twists" of 7711:over the algebraic closure of 7490:is quasi-split if and only if 7461: 7440: 7428: 7425: 7415: 7394: 7318:of characteristic not 2, with 7206:consists of the root datum of 7081:Margulis arithmeticity theorem 6949:Lattices and arithmetic groups 6249:. These problems are easy for 6058:* (as an algebraic group over 5448:of manifolds with nonpositive 5019: 5013: 5010: 4996: 4990: 4984: 4972: 4966: 4818: 4783: 4588: 4547: 3615: 3609: 3471:and the positive root spaces: 3287: 3281: 3229: 3223: 2603: 2600: 2587: 2574: 2536: 2530: 2492: 2486: 2241: 2238: 2212: 1814:-rational points is the group 1717: 1540: 1537: 1531: 1509: 1503: 1497: 1196: 1190: 1003: 708:Infinite dimensional Lie group 1: 9383:American Mathematical Society 9268:American Mathematical Society 9215:, Astérisque, vol. 397, 9084:American Mathematical Society 9047:, Astérisque, vol. 326, 8847:Autour des schémas en groupes 8697: 8619:Steinberg (2016), Theorem 30. 8513:Springer (1979), section 5.1. 8329:Radical of an algebraic group 8038:). Moreover, the pointed set 6627:has at least 4 elements. Let 6623:, and suppose that the field 6607:says that the abstract group 6035:determines a reductive group 5641:is the semidirect product of 4265:The connected Dynkin diagrams 4104:of characteristic zero). For 3685:(which is simply the rank of 3455:by the Weyl group (acting by 3336:, the roots are the elements 2722:) is a homotopy equivalence. 956:Reductive groups have a rich 9379:Lectures on Chevalley Groups 9152:; Rapinchuk, Andrei (1994), 9038:"Le problème de Kneser–Tits" 8610:Steinberg (2016), Theorem 8. 8441:Milne (2017), Theorem 21.11. 8429:Milne (2017), Theorem 12.12. 8402:Milne (2017), Theorem 22.42. 7691:of a given algebraic object 7616: 7584: 7552: 7486:, the maximum possible, and 7243:with the given action is an 7187: 7111:Witt's decomposition theorem 6573: 6142: 6106: 5940: 5928:) over an algebraic closure 5904: 5763:For a split reductive group 5744:of characteristic zero, the 5585:For a split reductive group 5149: 5109: 3827:For a split reductive group 3754:For a split reductive group 2836:be a split maximal torus in 2737:(as an algebraic group) are 2044: 1677: 1646: 1280: 1252: 1042:, for some positive integer 942:of a simple algebraic group 481:{\displaystyle \mathbb {Z} } 456:{\displaystyle \mathbb {Z} } 419:{\displaystyle \mathbb {Z} } 7: 9194:Encyclopedia of Mathematics 8809:, Collected Works, Vol. 3, 8646:Gille (2009), Théorème 6.1. 8574:Borel (1991), section 23.2. 8565:Borel (1991), section 23.4. 8522:Milne (2017), Theorem 22.2. 8302:geometric Langlands program 8240: 7707:which become isomorphic to 7512:for an affine group scheme 6217:) − 1. So the simple group 5829:Kazhdan–Lusztig polynomials 5480:(2) is hyperbolic 3-space. 5370:isomorphic to the integers 5265:)) (which is automatic for 5125:is reductive. (For a point 4930:of a split reductive group 3242:is the vector space of all 3060:is exactly the Lie algebra 2898:. The weights form a group 1712: 994:automorphic representations 884:semisimple algebraic groups 839:irreducible representations 206:List of group theory topics 10: 9512: 9117:Cambridge University Press 8316:Geometric invariant theory 7664:of isomorphism classes of 7175:over an algebraic closure 7098: 7022:-structure.) For example, 6664:. (By the assumption that 5847:Non-split reductive groups 5301:admissible representations 5296:(up to finite coverings). 4767:, which can be written as: 3432:)), the Weyl group is the 3377:, a slight variation. The 2869:. Every representation of 2549:is reductive. For example, 2542:{\displaystyle G/R_{u}(G)} 2465:Associated reductive group 1701:that is maximal among all 1331:With representation theory 1094:if every smooth connected 1062:With the unipotent radical 1007: 894:algebraically closed field 9305:10.1007/978-0-8176-4840-4 8840:"Reductive group schemes" 8721:10.1007/978-1-4612-0941-6 8637:Tits (1964), section 1.2. 7247:of the quasi-split group 6838:asks for which isotropic 6605:Tits's simplicity theorem 6478:is split if and only if | 6272:. For a semisimple group 6229:is a matrix algebra over 5673:maps the line spanned by 5294:list of simple Lie groups 4356:. For example, the group 4324:list of simple Lie groups 3867:to a subgroup containing 3628:. The positive roots are 2910:of representations, with 1818:* of nonzero elements of 1433:at least 2 and any field 1393:A linear algebraic group 825:is reductive if it has a 9208:Tilting Modules and the 9036:Gille, Philippe (2009), 8755:Inventiones Mathematicae 8334: 8290:Langlands classification 8254:Generalized flag variety 7846:over a perfect field of 7816:cohomological invariants 7494:has Witt index at least 7478:is split if and only if 7115:Artin–Wedderburn theorem 7091:is an arithmetic group. 6791:), one can consider the 6599:-simple algebraic group 6530:indexed by the roots of 5803:is much bigger than the 5435:maximal compact subgroup 5421:, the quotient manifold 5164:of the residue field of 5137:to an algebraic closure 4928:outer automorphism group 4410:is an isomorphism. (For 3447:There are finitely many 2812: 2761:of characteristic zero, 2498:{\displaystyle R_{u}(G)} 1964:of characteristic 2 and 1229:over an arbitrary field 1202:{\displaystyle R_{u}(G)} 858:special orthogonal group 324:Elementary abelian group 201:Glossary of group theory 9491:Linear algebraic groups 9297:Linear Algebraic Groups 8709:Linear Algebraic Groups 8368:Linear Algebraic Groups 8215:), this amounts to the 7848:cohomological dimension 7520:means an affine scheme 7067:such that the manifold 6287:is isotropic (that is, 5975:). So the simple group 5665:to be a nonzero vector 5325:projective linear group 5062:Reductive group schemes 4751:: the spin group Spin(2 4730:: the symplectic group 2062: 2012:). For a general field 1777:, for a natural number 1421:is trivial or equal to 1389:Simple reductive groups 1070:linear algebraic group 990:unitary representations 909:semisimple Lie algebras 880:Simple algebraic groups 8849:, vol. 1, Paris: 8393:Borel (1991), 18.2(i). 8280:Real form (Lie theory) 8275:Deligne–Lusztig theory 8194: 8000: 7626: 7594: 7562: 7468: 7196: 7128:For a reductive group 6990:means any subgroup of 6582: 6518:of the abstract group 6357:element other than 1. 6151: 6116: 6026:central simple algebra 6015: 5949: 5914: 5827:large is based on the 5754:Weyl character formula 5613:with a convex cone (a 5483:For a reductive group 5248:) is contained in Int( 5158: 5119: 5029: 4915: 4712: 4531:, for example the form 4266: 4229:with a Borel subgroup 4212: 4040: 3622: 3584: 3545: 3294: 3236: 3183: 3110: 3078: 3050: 3026: 3002: 2962: 2941:by conjugation on its 2935:adjoint representation 2725:For a reductive group 2671:with complexification 2656: 2649: 2629: 2543: 2499: 2454: 2434: 2405: 2376: 2343: 2308: 2301: 2196: 2167: 2123: 2090: 2053: 1968:odd, the group scheme 1929:. The algebraic group 1797:(1), and so its group 1773:matrices over a field 1759: 1687: 1661:is a maximal torus in 1655: 1602:Split-reductive groups 1596:pseudo-reductive group 1565: 1379: 1378:{\displaystyle k^{al}} 1349: 1289: 1262: 1223: 1203: 1163: 1135: 1115: 1084: 1016:linear algebraic group 1010:Linear algebraic group 998:adelic algebraic group 900:, as in the theory of 811:linear algebraic group 740:Linear algebraic group 482: 457: 420: 16:Concept in mathematics 9421:Annals of Mathematics 9125:10.1017/9781316711736 9074:Jantzen, Jens Carsten 8195: 8099:has no real places). 8001: 7870:Serre's Conjecture II 7627: 7595: 7563: 7469: 7202:). The Tits index of 7197: 7138:absolute Galois group 6865:, the abstract group 6583: 6545:over a perfect field 6152: 6117: 6047:), the kernel of the 6016: 5950: 5915: 5728:on the flag manifold 5705:, up to isomorphism. 5651:highest weight vector 5196:Real reductive groups 5159: 5120: 5030: 4916: 4713: 4264: 4213: 4056:of a reductive group 4041: 3623: 3585: 3546: 3383:of a reductive group 3295: 3237: 3184: 3111: 3079: 3051: 3027: 3003: 2963: 2675:, the inclusion from 2650: 2609: 2551: 2544: 2500: 2455: 2435: 2406: 2377: 2375:{\displaystyle B_{n}} 2344: 2302: 2204: 2197: 2168: 2124: 2091: 2054: 1781:. In particular, the 1760: 1688: 1656: 1634:whose base change to 1566: 1473:with kernel a finite 1380: 1350: 1290: 1263: 1224: 1204: 1164: 1136: 1116: 1085: 958:representation theory 882:and (more generally) 483: 458: 421: 8320:Luna's slice theorem 8294:Langlands dual group 8258:Bruhat decomposition 8117: 8106:over a number field 8095:) is trivial (since 7923: 7787:) are classified by 7640:with respect to the 7604: 7572: 7540: 7385: 7326:be the simple group 7179: 6919:totally disconnected 6905:) is an anisotropic 6565: 6446:is quasi-split over 6134: 6094: 6078:-vector space. Here 5991: 5932: 5892: 5653:in a representation 5346:) (sometimes called 5206:real reductive group 5141: 5097: 4957: 4777: 4541: 4414:semisimple over the 4147: 3925: 3743:, which is a finite 3594: 3570: 3478: 3266: 3208: 3123: 3096: 3064: 3036: 3012: 2988: 2948: 2739:completely reducible 2689:homotopy equivalence 2556: 2509: 2473: 2444: 2415: 2386: 2359: 2324: 2209: 2177: 2133: 2104: 2071: 2036: 1939:connected components 1824:special linear group 1783:multiplicative group 1740: 1735:general linear group 1697:is a split torus in 1665: 1638: 1488: 1359: 1339: 1317:multiplicative group 1272: 1240: 1213: 1177: 1153: 1125: 1105: 1074: 843:general linear group 470: 445: 408: 9235:2015arXiv151208296R 8853:, pp. 93–444, 8768:1971InMat..12...95B 8374:. pp. 381–394. 8311:essential dimension 8203:is injective. For 8009:is bijective. Here 7822:coefficient groups 7600:with the action of 7291:associated to some 7079:/Γ is compact. The 6857:For an anisotropic 6836:Kneser–Tits problem 6364:over a local field 5450:sectional curvature 5446:Riemannian geometry 5299:Useful theories of 4704: 3871:by some element of 3823:Parabolic subgroups 3671:commutator subgroup 3453:simply transitively 3204:), its Lie algebra 2805:has order prime to 2795:multiplicative type 1980:. The simple group 1462:th roots of unity. 1149:normal subgroup of 854:invertible matrices 114:Group homomorphisms 24:Algebraic structure 9352:10.1007/bf02684397 9293:Springer, Tonny A. 9256:"Reductive groups" 9252:Springer, Tonny A. 9150:Platonov, Vladimir 9051:, pp. 39–81, 8970:10.1007/BFb0059005 8776:10.1007/BF01404653 8248:groups of Lie type 8190: 8157: 7996: 7963: 7759:are classified by 7735:are classified by 7699:, meaning objects 7634:principal G-bundle 7622: 7590: 7558: 7464: 7377:*) is trivial. If 7283:. In other words, 7192: 6668:is isotropic over 6619:is isotropic over 6578: 6559:inner automorphism 6426:A reductive group 6407:has real rank min( 6147: 6112: 6090:at least 2, since 6011: 5945: 5910: 5888:at least 3, since 5837:Geordie Williamson 5835:, Simon Riche and 5746:Borel–Weil theorem 5677:into itself. Then 5528:with an action of 5526:simplicial complex 5493:discrete valuation 5200:In the context of 5154: 5115: 5025: 4948:semidirect product 4911: 4708: 4681: 4365:automorphism group 4331:exceptional groups 4267: 4208: 4084:, or equivalently 4051:parabolic subgroup 4036: 4026: 3857:parabolic subgroup 3618: 3580: 3541: 3523: 3290: 3232: 3192:For example, when 3179: 3161: 3106: 3074: 3046: 3022: 3008:. The subspace of 2998: 2958: 2844:is isomorphic to ( 2777:of characteristic 2773:is reductive. For 2755:linearly reductive 2645: 2539: 2495: 2450: 2430: 2401: 2372: 2339: 2297: 2288: 2192: 2163: 2119: 2086: 2049: 1943:identity component 1888:, the subgroup of 1755: 1683: 1651: 1606:A reductive group 1561: 1375: 1345: 1285: 1258: 1219: 1199: 1159: 1131: 1111: 1080: 1054:group scheme over 902:compact Lie groups 829:that has a finite 590:Special orthogonal 478: 453: 416: 297:Lagrange's theorem 9400:978-1-4704-3105-1 9391:10.1090/ulect/066 9375:Steinberg, Robert 9330:Steinberg, Robert 9314:978-0-8176-4021-7 9270:, pp. 3–27, 9244:978-2-85629-880-0 9189:"Reductive group" 9093:978-0-8218-3527-2 9019:978-2-85629-324-9 8932:978-2-85629-323-2 8886:, Paris: Masson, 8860:978-2-85629-794-0 8799:Chevalley, Claude 8324:Haboush's theorem 8298:Langlands program 8266:Schubert calculus 8148: 7954: 7619: 7587: 7568:is isomorphic to 7555: 7423: 7279:is the center of 7257:Galois cohomology 7190: 7163:separable closure 6722:is split of type 6576: 6514:gave an explicit 6384:) if and only if 6145: 6122:is isomorphic to 6109: 5943: 5920:is isomorphic to 5907: 5396:metaplectic group 5382:) has nontrivial 5368:fundamental group 5323:For example, the 5152: 5112: 5042:is the center of 4112:), these are the 4049:By definition, a 3501: 3146: 2937:is the action of 2453:{\displaystyle 1} 2393: 2184: 2111: 2047: 1960:at least 3. (For 1747: 1680: 1649: 1348:{\displaystyle G} 1307:is perfect.) Any 1297:algebraic closure 1283: 1255: 1222:{\displaystyle G} 1171:unipotent radical 1162:{\displaystyle G} 1134:{\displaystyle G} 1114:{\displaystyle G} 1083:{\displaystyle G} 799: 798: 374: 373: 256:Alternating group 213: 212: 9503: 9476: 9468:Grothendieck, A. 9452: 9411: 9370: 9325: 9288: 9247: 9228: 9212:-Canonical Basis 9201: 9180: 9145: 9104: 9082:(2nd ed.), 9069: 9058:978-285629-269-3 9042: 9031: 9000:Grothendieck, A. 8991: 8954:Grothendieck, A. 8944: 8913:Grothendieck, A. 8904: 8876:Demazure, Michel 8871: 8844: 8831: 8794: 8741: 8692: 8689: 8683: 8680: 8674: 8671: 8665: 8662: 8656: 8653: 8647: 8644: 8638: 8635: 8629: 8626: 8620: 8617: 8611: 8608: 8602: 8599: 8593: 8590: 8584: 8581: 8575: 8572: 8566: 8563: 8550: 8547: 8541: 8538: 8532: 8529: 8523: 8520: 8514: 8511: 8505: 8502: 8496: 8493: 8487: 8484: 8478: 8475: 8469: 8466: 8460: 8457: 8451: 8448: 8442: 8439: 8430: 8427: 8421: 8418: 8412: 8409: 8403: 8400: 8394: 8391: 8385: 8382: 8376: 8375: 8373: 8362: 8356: 8353: 8347: 8344: 8262:Schubert variety 8199: 8197: 8196: 8191: 8180: 8179: 8167: 8166: 8156: 8129: 8128: 8005: 8003: 8002: 7997: 7986: 7985: 7973: 7972: 7962: 7935: 7934: 7631: 7629: 7628: 7623: 7621: 7620: 7612: 7599: 7597: 7596: 7591: 7589: 7588: 7580: 7567: 7565: 7564: 7559: 7557: 7556: 7548: 7473: 7471: 7470: 7465: 7457: 7452: 7451: 7424: 7419: 7411: 7406: 7405: 7287:is the twist of 7201: 7199: 7198: 7193: 7191: 7183: 7049:For a Lie group 6987:arithmetic group 6959:rational numbers 6700:'s machinery of 6587: 6585: 6584: 6579: 6577: 6569: 6512:Robert Steinberg 6188:division algebra 6156: 6154: 6153: 6148: 6146: 6138: 6121: 6119: 6118: 6113: 6111: 6110: 6102: 6020: 6018: 6017: 6012: 6004: 5963:is equal to the 5954: 5952: 5951: 5946: 5944: 5936: 5919: 5917: 5916: 5911: 5909: 5908: 5900: 5854:classical groups 5813:Henning Andersen 5599:dominant weights 5466:hyperbolic plane 5222:Zariski topology 5163: 5161: 5160: 5155: 5153: 5145: 5124: 5122: 5121: 5116: 5114: 5113: 5105: 5081:if the morphism 5034: 5032: 5031: 5026: 5006: 4920: 4918: 4917: 4912: 4907: 4906: 4894: 4893: 4866: 4865: 4856: 4855: 4843: 4842: 4833: 4832: 4817: 4816: 4795: 4794: 4763:with Witt index 4717: 4715: 4714: 4709: 4703: 4698: 4677: 4676: 4664: 4663: 4636: 4635: 4626: 4625: 4613: 4612: 4603: 4602: 4587: 4586: 4559: 4558: 4428:simply connected 4404:simply connected 4369:octonion algebra 4217: 4215: 4214: 4209: 4198: 4197: 4196: 4195: 4172: 4171: 4170: 4169: 4045: 4043: 4042: 4037: 4035: 4031: 4030: 3811:is generated by 3627: 3625: 3624: 3619: 3608: 3604: 3603: 3589: 3587: 3586: 3581: 3579: 3578: 3554:For example, if 3550: 3548: 3547: 3542: 3537: 3536: 3531: 3530: 3522: 3521: 3520: 3497: 3496: 3487: 3486: 3299: 3297: 3296: 3291: 3280: 3276: 3275: 3241: 3239: 3238: 3233: 3222: 3218: 3217: 3188: 3186: 3185: 3180: 3175: 3174: 3169: 3168: 3160: 3142: 3141: 3132: 3131: 3115: 3113: 3112: 3107: 3105: 3104: 3092:decomposes into 3083: 3081: 3080: 3075: 3073: 3072: 3055: 3053: 3052: 3047: 3045: 3044: 3031: 3029: 3028: 3023: 3021: 3020: 3007: 3005: 3004: 2999: 2997: 2996: 2967: 2965: 2964: 2959: 2957: 2956: 2783:Masayoshi Nagata 2781:>0, however, 2729:over a field of 2665:complexification 2654: 2652: 2651: 2646: 2641: 2640: 2635: 2628: 2623: 2599: 2598: 2586: 2585: 2573: 2568: 2567: 2548: 2546: 2545: 2540: 2529: 2528: 2519: 2504: 2502: 2501: 2496: 2485: 2484: 2459: 2457: 2456: 2451: 2439: 2437: 2436: 2431: 2429: 2428: 2423: 2410: 2408: 2407: 2402: 2400: 2399: 2394: 2391: 2381: 2379: 2378: 2373: 2371: 2370: 2348: 2346: 2345: 2340: 2338: 2337: 2332: 2306: 2304: 2303: 2298: 2293: 2292: 2285: 2284: 2261: 2260: 2237: 2236: 2224: 2223: 2201: 2199: 2198: 2193: 2191: 2190: 2185: 2182: 2172: 2170: 2169: 2164: 2162: 2161: 2156: 2147: 2146: 2141: 2128: 2126: 2125: 2120: 2118: 2117: 2112: 2109: 2095: 2093: 2092: 2087: 2085: 2084: 2079: 2058: 2056: 2055: 2050: 2048: 2040: 1909:orthogonal group 1907:. Likewise, the 1875:symplectic group 1764: 1762: 1761: 1756: 1754: 1753: 1748: 1745: 1692: 1690: 1689: 1684: 1682: 1681: 1673: 1660: 1658: 1657: 1652: 1650: 1642: 1570: 1568: 1567: 1562: 1557: 1556: 1547: 1521: 1520: 1475:central subgroup 1384: 1382: 1381: 1376: 1374: 1373: 1354: 1352: 1351: 1346: 1327:, is reductive. 1294: 1292: 1291: 1286: 1284: 1276: 1267: 1265: 1264: 1259: 1257: 1256: 1248: 1228: 1226: 1225: 1220: 1208: 1206: 1205: 1200: 1189: 1188: 1168: 1166: 1165: 1160: 1140: 1138: 1137: 1132: 1120: 1118: 1117: 1112: 1089: 1087: 1086: 1081: 1022:is defined as a 890:Claude Chevalley 869:symplectic group 791: 784: 777: 733:Algebraic groups 506:Hyperbolic group 496:Arithmetic group 487: 485: 484: 479: 477: 462: 460: 459: 454: 452: 425: 423: 422: 417: 415: 338:Schur multiplier 292:Cauchy's theorem 280:Quaternion group 228: 227: 54: 53: 43: 30: 19: 18: 9511: 9510: 9506: 9505: 9504: 9502: 9501: 9500: 9481: 9480: 9459: 9434:10.2307/1970394 9401: 9315: 9278: 9266:, vol. 1, 9245: 9170: 9135: 9094: 9059: 9040: 9020: 8980: 8962:Springer-Verlag 8933: 8894: 8880:Gabriel, Pierre 8861: 8842: 8821: 8811:Springer Nature 8731: 8713:Springer Nature 8700: 8695: 8690: 8686: 8681: 8677: 8672: 8668: 8663: 8659: 8654: 8650: 8645: 8641: 8636: 8632: 8627: 8623: 8618: 8614: 8609: 8605: 8600: 8596: 8591: 8587: 8582: 8578: 8573: 8569: 8564: 8553: 8548: 8544: 8539: 8535: 8530: 8526: 8521: 8517: 8512: 8508: 8503: 8499: 8494: 8490: 8485: 8481: 8476: 8472: 8467: 8463: 8458: 8454: 8449: 8445: 8440: 8433: 8428: 8424: 8419: 8415: 8410: 8406: 8401: 8397: 8392: 8388: 8383: 8379: 8371: 8363: 8359: 8354: 8350: 8345: 8341: 8337: 8243: 8236: 8231: 8175: 8171: 8162: 8158: 8152: 8124: 8120: 8118: 8115: 8114: 8063: 8050: 8029: 7981: 7977: 7968: 7964: 7958: 7930: 7926: 7924: 7921: 7920: 7906:Hasse principle 7814:-torsors using 7656:is smooth over 7611: 7607: 7605: 7602: 7601: 7579: 7575: 7573: 7570: 7569: 7547: 7543: 7541: 7538: 7537: 7504: 7482:has Witt index 7453: 7447: 7443: 7418: 7407: 7401: 7397: 7386: 7383: 7382: 7353: 7347: 7251:, meaning that 7219: 7218: 7182: 7180: 7177: 7176: 7170: 7148: 7103: 7097: 6951: 6931:profinite group 6793:Whitehead group 6771: 6760: 6749: 6742: 6735: 6728: 6717: 6655: 6643:) generated by 6568: 6566: 6563: 6562: 6500: 6332: 6299: 6225:if and only if 6181: 6137: 6135: 6132: 6131: 6101: 6097: 6095: 6092: 6091: 6000: 5992: 5989: 5988: 5983:if and only if 5935: 5933: 5930: 5929: 5899: 5895: 5893: 5890: 5889: 5849: 5583: 5572: 5510:affine building 5506: 5452:. For example, 5442:symmetric space 5400:universal cover 5394:) (such as the 5384:covering spaces 5256: 5208:is a Lie group 5198: 5170:Michel Demazure 5144: 5142: 5139: 5138: 5104: 5100: 5098: 5095: 5094: 5064: 5002: 4958: 4955: 4954: 4899: 4895: 4880: 4876: 4861: 4857: 4851: 4847: 4838: 4834: 4828: 4824: 4809: 4805: 4790: 4786: 4778: 4775: 4774: 4750: 4729: 4699: 4685: 4669: 4665: 4650: 4646: 4631: 4627: 4621: 4617: 4608: 4604: 4598: 4594: 4573: 4569: 4554: 4550: 4542: 4539: 4538: 4507: 4486: 4416:complex numbers 4386: 4382: 4378: 4362: 4343: 4339: 4316:Wilhelm Killing 4313: 4309: 4305: 4301: 4297: 4293: 4287: 4281: 4275: 4259: 4191: 4187: 4186: 4182: 4165: 4161: 4160: 4156: 4148: 4145: 4144: 4131: 4122: 4025: 4024: 4019: 4014: 4009: 4003: 4002: 3997: 3992: 3987: 3981: 3980: 3975: 3970: 3965: 3959: 3958: 3953: 3948: 3943: 3933: 3932: 3928: 3926: 3923: 3922: 3901: 3825: 3786: 3772: 3727: 3717: 3679:semisimple rank 3645: 3636: 3599: 3598: 3597: 3595: 3592: 3591: 3574: 3573: 3571: 3568: 3567: 3532: 3526: 3525: 3524: 3516: 3512: 3505: 3492: 3491: 3482: 3481: 3479: 3476: 3475: 3449:Borel subgroups 3443: 3434:symmetric group 3407: 3353: 3344: 3323: 3314: 3271: 3270: 3269: 3267: 3264: 3263: 3213: 3212: 3211: 3209: 3206: 3205: 3170: 3164: 3163: 3162: 3150: 3137: 3136: 3127: 3126: 3124: 3121: 3120: 3100: 3099: 3097: 3094: 3093: 3068: 3067: 3065: 3062: 3061: 3040: 3039: 3037: 3034: 3033: 3016: 3015: 3013: 3010: 3009: 2992: 2991: 2989: 2986: 2985: 2952: 2951: 2949: 2946: 2945: 2897: 2852: 2815: 2661: 2636: 2631: 2630: 2624: 2613: 2594: 2590: 2581: 2577: 2569: 2563: 2559: 2557: 2554: 2553: 2524: 2520: 2515: 2510: 2507: 2506: 2480: 2476: 2474: 2471: 2470: 2467: 2445: 2442: 2441: 2424: 2419: 2418: 2416: 2413: 2412: 2395: 2390: 2389: 2387: 2384: 2383: 2366: 2362: 2360: 2357: 2356: 2333: 2328: 2327: 2325: 2322: 2321: 2318:unipotent group 2313: 2287: 2286: 2280: 2276: 2274: 2268: 2267: 2262: 2256: 2252: 2245: 2244: 2232: 2228: 2219: 2215: 2210: 2207: 2206: 2186: 2181: 2180: 2178: 2175: 2174: 2157: 2152: 2151: 2142: 2137: 2136: 2134: 2131: 2130: 2113: 2108: 2107: 2105: 2102: 2101: 2080: 2075: 2074: 2072: 2069: 2068: 2065: 2039: 2037: 2034: 2033: 1884:) over a field 1871: 1833:) over a field 1805: 1792: 1749: 1744: 1743: 1741: 1738: 1737: 1731: 1729: 1723: 1715: 1672: 1668: 1666: 1663: 1662: 1641: 1639: 1636: 1635: 1604: 1552: 1548: 1543: 1516: 1512: 1489: 1486: 1485: 1467:central isogeny 1456: 1391: 1366: 1362: 1360: 1357: 1356: 1340: 1337: 1336: 1333: 1326: 1275: 1273: 1270: 1269: 1247: 1243: 1241: 1238: 1237: 1214: 1211: 1210: 1184: 1180: 1178: 1175: 1174: 1173:and is denoted 1154: 1151: 1150: 1126: 1123: 1122: 1106: 1103: 1102: 1099:normal subgroup 1075: 1072: 1071: 1064: 1028:subgroup scheme 1012: 1006: 940:rational points 898:Dynkin diagrams 886:are reductive. 807:reductive group 795: 766: 765: 754:Abelian variety 747:Reductive group 735: 725: 724: 723: 722: 673: 665: 657: 649: 641: 614:Special unitary 525: 511: 510: 492: 491: 473: 471: 468: 467: 448: 446: 443: 442: 411: 409: 406: 405: 397: 396: 387:Discrete groups 376: 375: 331:Frobenius group 276: 263: 252: 245:Symmetric group 241: 225: 215: 214: 65:Normal subgroup 51: 31: 22: 17: 12: 11: 5: 9509: 9499: 9498: 9493: 9479: 9478: 9458: 9457:External links 9455: 9454: 9453: 9428:(2): 313–329, 9412: 9399: 9371: 9326: 9313: 9289: 9276: 9248: 9243: 9202: 9181: 9168: 9160:Academic Press 9146: 9134:978-1107167483 9133: 9105: 9092: 9070: 9057: 9033: 9018: 8992: 8979:978-3540051800 8978: 8946: 8931: 8905: 8893:978-2225616662 8892: 8872: 8859: 8832: 8819: 8795: 8742: 8729: 8699: 8696: 8694: 8693: 8684: 8675: 8666: 8657: 8648: 8639: 8630: 8621: 8612: 8603: 8594: 8585: 8576: 8567: 8551: 8542: 8533: 8524: 8515: 8506: 8497: 8488: 8479: 8470: 8461: 8452: 8443: 8431: 8422: 8413: 8404: 8395: 8386: 8377: 8357: 8348: 8338: 8336: 8333: 8332: 8331: 8326: 8313: 8304: 8287: 8282: 8277: 8268: 8251: 8242: 8239: 8234: 8229: 8201: 8200: 8189: 8186: 8183: 8178: 8174: 8170: 8165: 8161: 8155: 8151: 8147: 8144: 8141: 8138: 8135: 8132: 8127: 8123: 8059: 8046: 8025: 8013:runs over all 8007: 8006: 7995: 7992: 7989: 7984: 7980: 7976: 7971: 7967: 7961: 7957: 7953: 7950: 7947: 7944: 7941: 7938: 7933: 7929: 7864:Lang's theorem 7668:-torsors over 7650:étale topology 7618: 7615: 7610: 7586: 7583: 7578: 7554: 7551: 7546: 7503: 7500: 7463: 7460: 7456: 7450: 7446: 7442: 7439: 7436: 7433: 7430: 7427: 7422: 7417: 7414: 7410: 7404: 7400: 7396: 7393: 7390: 7349: 7343: 7214: 7210: 7189: 7186: 7168: 7144: 7099:Main article: 7096: 7093: 6950: 6947: 6861:-simple group 6854:) is abelian. 6779:-simple group 6769: 6758: 6747: 6740: 6733: 6726: 6715: 6651: 6575: 6572: 6499: 6496: 6339: 6338: 6328: 6319: 6305: 6295: 6235: 6234: 6221:is split over 6173: 6165:(meaning that 6144: 6141: 6108: 6105: 6100: 6053:group of units 6022: 6010: 6007: 6003: 5999: 5996: 5979:is split over 5942: 5939: 5906: 5903: 5898: 5884:has dimension 5848: 5845: 5805:Coxeter number 5582: 5579: 5568: 5544:) preserves a 5502: 5497:p-adic numbers 5290:Satake diagram 5252: 5197: 5194: 5151: 5148: 5111: 5108: 5103: 5073:over a scheme 5063: 5060: 5036: 5035: 5024: 5021: 5018: 5015: 5012: 5009: 5005: 5001: 4998: 4995: 4992: 4989: 4986: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4924: 4923: 4922: 4921: 4910: 4905: 4902: 4898: 4892: 4889: 4886: 4883: 4879: 4875: 4872: 4869: 4864: 4860: 4854: 4850: 4846: 4841: 4837: 4831: 4827: 4823: 4820: 4815: 4812: 4808: 4804: 4801: 4798: 4793: 4789: 4785: 4782: 4769: 4768: 4746: 4743: 4725: 4721: 4720: 4719: 4718: 4707: 4702: 4697: 4694: 4691: 4688: 4684: 4680: 4675: 4672: 4668: 4662: 4659: 4656: 4653: 4649: 4645: 4642: 4639: 4634: 4630: 4624: 4620: 4616: 4611: 4607: 4601: 4597: 4593: 4590: 4585: 4582: 4579: 4576: 4572: 4568: 4565: 4562: 4557: 4553: 4549: 4546: 4533: 4532: 4503: 4500: 4482: 4384: 4380: 4376: 4360: 4341: 4337: 4311: 4307: 4303: 4299: 4295: 4289: 4283: 4277: 4271: 4258: 4255: 4241:is called the 4219: 4218: 4207: 4204: 4201: 4194: 4190: 4185: 4181: 4178: 4175: 4168: 4164: 4159: 4155: 4152: 4127: 4120: 4114:flag varieties 4047: 4046: 4034: 4029: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4004: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3982: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3960: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3938: 3936: 3931: 3899: 3824: 3821: 3784: 3770: 3741:Dynkin diagram 3722: 3713: 3641: 3632: 3617: 3614: 3611: 3607: 3602: 3577: 3552: 3551: 3540: 3535: 3529: 3519: 3515: 3511: 3508: 3504: 3500: 3495: 3490: 3485: 3461:positive roots 3439: 3403: 3389:quotient group 3349: 3340: 3319: 3312: 3289: 3286: 3283: 3279: 3274: 3250:matrices over 3231: 3228: 3225: 3221: 3216: 3190: 3189: 3178: 3173: 3167: 3159: 3156: 3153: 3149: 3145: 3140: 3135: 3130: 3103: 3071: 3043: 3019: 2995: 2955: 2922:copies of the 2908:tensor product 2893: 2848: 2814: 2811: 2731:characteristic 2660: 2657: 2644: 2639: 2634: 2627: 2622: 2619: 2616: 2612: 2608: 2605: 2602: 2597: 2593: 2589: 2584: 2580: 2576: 2572: 2566: 2562: 2538: 2535: 2532: 2527: 2523: 2518: 2514: 2494: 2491: 2488: 2483: 2479: 2466: 2463: 2462: 2461: 2449: 2427: 2422: 2398: 2369: 2365: 2350: 2336: 2331: 2312: 2309: 2296: 2291: 2283: 2279: 2275: 2273: 2270: 2269: 2266: 2263: 2259: 2255: 2251: 2250: 2248: 2243: 2240: 2235: 2231: 2227: 2222: 2218: 2214: 2189: 2160: 2155: 2150: 2145: 2140: 2116: 2098:algebraic tori 2083: 2078: 2064: 2061: 2046: 2043: 1920:quadratic form 1870: 1855: 1801: 1788: 1765:of invertible 1752: 1730: 1725: 1719: 1716: 1714: 1711: 1679: 1676: 1671: 1648: 1645: 1603: 1600: 1572: 1571: 1560: 1555: 1551: 1546: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1519: 1515: 1511: 1508: 1505: 1502: 1499: 1496: 1493: 1452: 1451:group scheme μ 1390: 1387: 1372: 1369: 1365: 1344: 1332: 1329: 1322: 1315:, such as the 1282: 1279: 1254: 1251: 1246: 1218: 1198: 1195: 1192: 1187: 1183: 1158: 1130: 1110: 1079: 1063: 1060: 1008:Main article: 1005: 1002: 827:representation 797: 796: 794: 793: 786: 779: 771: 768: 767: 764: 763: 761:Elliptic curve 757: 756: 750: 749: 743: 742: 736: 731: 730: 727: 726: 721: 720: 717: 714: 710: 706: 705: 704: 699: 697:Diffeomorphism 693: 692: 687: 682: 676: 675: 671: 667: 663: 659: 655: 651: 647: 643: 639: 634: 633: 622: 621: 610: 609: 598: 597: 586: 585: 574: 573: 562: 561: 554:Special linear 550: 549: 542:General linear 538: 537: 532: 526: 517: 516: 513: 512: 509: 508: 503: 498: 490: 489: 476: 464: 451: 438: 436:Modular groups 434: 433: 432: 427: 414: 398: 395: 394: 389: 383: 382: 381: 378: 377: 372: 371: 370: 369: 364: 359: 356: 350: 349: 343: 342: 341: 340: 334: 333: 327: 326: 321: 312: 311: 309:Hall's theorem 306: 304:Sylow theorems 300: 299: 294: 286: 285: 284: 283: 277: 272: 269:Dihedral group 265: 264: 259: 253: 248: 242: 237: 226: 221: 220: 217: 216: 211: 210: 209: 208: 203: 195: 194: 193: 192: 187: 182: 177: 172: 167: 162: 160:multiplicative 157: 152: 147: 142: 134: 133: 132: 131: 126: 118: 117: 109: 108: 107: 106: 104:Wreath product 101: 96: 91: 89:direct product 83: 81:Quotient group 75: 74: 73: 72: 67: 62: 52: 49: 48: 45: 44: 36: 35: 15: 9: 6: 4: 3: 2: 9508: 9497: 9494: 9492: 9489: 9488: 9486: 9475: 9474: 9469: 9465: 9461: 9460: 9451: 9447: 9443: 9439: 9435: 9431: 9427: 9423: 9422: 9417: 9416:Tits, Jacques 9413: 9410: 9406: 9402: 9396: 9392: 9388: 9384: 9380: 9376: 9372: 9369: 9365: 9361: 9357: 9353: 9349: 9345: 9341: 9340: 9335: 9331: 9327: 9324: 9320: 9316: 9310: 9306: 9302: 9298: 9294: 9290: 9287: 9283: 9279: 9277:0-8218-3347-2 9273: 9269: 9265: 9261: 9257: 9253: 9249: 9246: 9240: 9236: 9232: 9227: 9222: 9218: 9214: 9213: 9209: 9203: 9200: 9196: 9195: 9190: 9186: 9182: 9179: 9175: 9171: 9169:0-12-558180-7 9165: 9161: 9157: 9156: 9151: 9147: 9144: 9140: 9136: 9130: 9126: 9122: 9118: 9114: 9110: 9106: 9103: 9099: 9095: 9089: 9085: 9081: 9080: 9075: 9071: 9068: 9064: 9060: 9054: 9050: 9046: 9039: 9034: 9029: 9025: 9021: 9015: 9011: 9007: 9006: 9001: 8997: 8993: 8989: 8985: 8981: 8975: 8971: 8967: 8963: 8959: 8955: 8951: 8947: 8942: 8938: 8934: 8928: 8924: 8920: 8919: 8914: 8910: 8906: 8903: 8899: 8895: 8889: 8885: 8881: 8877: 8873: 8870: 8866: 8862: 8856: 8852: 8848: 8841: 8837: 8836:Conrad, Brian 8833: 8830: 8826: 8822: 8820:3-540-23031-9 8816: 8812: 8808: 8804: 8800: 8796: 8793: 8789: 8785: 8781: 8777: 8773: 8769: 8765: 8762:(2): 95–104, 8761: 8757: 8756: 8751: 8750:Tits, Jacques 8747: 8746:Borel, Armand 8743: 8740: 8736: 8732: 8730:0-387-97370-2 8726: 8722: 8718: 8714: 8710: 8706: 8705:Borel, Armand 8702: 8701: 8688: 8679: 8670: 8661: 8652: 8643: 8634: 8625: 8616: 8607: 8598: 8589: 8580: 8571: 8562: 8560: 8558: 8556: 8546: 8537: 8528: 8519: 8510: 8501: 8492: 8483: 8474: 8465: 8456: 8447: 8438: 8436: 8426: 8417: 8408: 8399: 8390: 8381: 8370: 8369: 8361: 8352: 8343: 8339: 8330: 8327: 8325: 8321: 8317: 8314: 8312: 8308: 8307:Special group 8305: 8303: 8299: 8295: 8291: 8288: 8286: 8283: 8281: 8278: 8276: 8272: 8271:Schur algebra 8269: 8267: 8263: 8259: 8255: 8252: 8249: 8245: 8244: 8238: 8232: 8225: 8220: 8218: 8214: 8210: 8206: 8184: 8181: 8176: 8172: 8163: 8159: 8153: 8149: 8139: 8136: 8133: 8125: 8121: 8113: 8112: 8111: 8109: 8105: 8100: 8098: 8094: 8090: 8086: 8082: 8078: 8074: 8071: 8067: 8062: 8058: 8054: 8049: 8045: 8041: 8037: 8033: 8028: 8024: 8020: 8016: 8012: 7990: 7987: 7982: 7978: 7969: 7965: 7959: 7955: 7945: 7942: 7939: 7931: 7927: 7919: 7918: 7917: 7915: 7911: 7907: 7903: 7902:Günter Harder 7899: 7898:Martin Kneser 7895: 7891: 7887: 7883: 7879: 7875: 7871: 7867: 7865: 7861: 7857: 7853: 7849: 7845: 7841: 7837: 7833: 7829: 7825: 7821: 7817: 7813: 7808: 7806: 7802: 7798: 7794: 7790: 7786: 7782: 7778: 7774: 7770: 7766: 7762: 7758: 7754: 7750: 7746: 7742: 7738: 7734: 7730: 7726: 7722: 7718: 7714: 7710: 7706: 7702: 7698: 7695:over a field 7694: 7690: 7685: 7683: 7679: 7675: 7671: 7667: 7663: 7659: 7655: 7651: 7647: 7643: 7642:fppf topology 7639: 7635: 7613: 7608: 7581: 7576: 7549: 7544: 7535: 7531: 7527: 7523: 7519: 7516:over a field 7515: 7511: 7510: 7499: 7497: 7493: 7489: 7485: 7481: 7477: 7458: 7454: 7448: 7444: 7437: 7434: 7431: 7420: 7412: 7408: 7402: 7398: 7391: 7388: 7380: 7376: 7372: 7368: 7364: 7361: 7357: 7352: 7346: 7341: 7337: 7333: 7329: 7325: 7321: 7317: 7314:over a field 7313: 7309: 7306:Example: Let 7304: 7302: 7299:-torsor over 7298: 7294: 7290: 7286: 7282: 7278: 7274: 7270: 7266: 7262: 7258: 7254: 7250: 7246: 7242: 7238: 7234: 7230: 7226: 7221: 7217: 7213: 7209: 7205: 7184: 7174: 7167: 7164: 7160: 7156: 7152: 7147: 7143: 7139: 7135: 7132:over a field 7131: 7126: 7124: 7120: 7116: 7112: 7108: 7102: 7092: 7090: 7086: 7082: 7078: 7074: 7070: 7066: 7062: 7058: 7057: 7052: 7047: 7045: 7041: 7037: 7033: 7029: 7025: 7021: 7017: 7013: 7009: 7005: 7001: 7000:commensurable 6997: 6993: 6989: 6988: 6983: 6979: 6975: 6971: 6967: 6963: 6960: 6956: 6946: 6944: 6940: 6936: 6932: 6928: 6924: 6920: 6916: 6912: 6908: 6904: 6900: 6896: 6892: 6888: 6884: 6880: 6876: 6872: 6868: 6864: 6860: 6855: 6853: 6849: 6845: 6841: 6837: 6833: 6829: 6825: 6821: 6817: 6813: 6809: 6805: 6801: 6797: 6794: 6790: 6786: 6782: 6778: 6773: 6768: 6764: 6757: 6753: 6746: 6739: 6732: 6725: 6721: 6714: 6710: 6705: 6703: 6699: 6695: 6691: 6687: 6683: 6679: 6675: 6671: 6667: 6663: 6660:contained in 6659: 6654: 6650: 6646: 6642: 6638: 6634: 6630: 6626: 6622: 6618: 6614: 6610: 6606: 6602: 6598: 6593: 6591: 6570: 6560: 6556: 6552: 6548: 6544: 6539: 6537: 6533: 6529: 6525: 6521: 6517: 6513: 6509: 6506:over a field 6505: 6495: 6493: 6489: 6485: 6481: 6477: 6473: 6469: 6465: 6461: 6457: 6453: 6449: 6445: 6441: 6437: 6433: 6430:over a field 6429: 6424: 6422: 6418: 6414: 6410: 6406: 6402: 6400: 6396: 6392: 6387: 6383: 6379: 6375: 6371: 6367: 6363: 6358: 6356: 6353:) contains a 6352: 6348: 6344: 6336: 6331: 6327: 6323: 6320: 6317: 6314:not equal to 6313: 6309: 6306: 6303: 6298: 6294: 6290: 6286: 6283: 6282: 6281: 6279: 6276:over a field 6275: 6271: 6267: 6263: 6259: 6254: 6252: 6248: 6244: 6240: 6232: 6228: 6224: 6220: 6216: 6212: 6208: 6204: 6200: 6196: 6192: 6189: 6185: 6180: 6176: 6172: 6168: 6164: 6160: 6139: 6129: 6125: 6103: 6098: 6089: 6085: 6082:is simple if 6081: 6077: 6073: 6069: 6065: 6061: 6057: 6054: 6050: 6046: 6042: 6038: 6034: 6030: 6027: 6023: 6005: 6001: 5997: 5986: 5982: 5978: 5974: 5970: 5966: 5962: 5958: 5937: 5927: 5923: 5901: 5896: 5887: 5883: 5880:is simple if 5879: 5875: 5871: 5867: 5864:over a field 5863: 5859: 5858: 5857: 5855: 5844: 5842: 5838: 5834: 5830: 5826: 5822: 5818: 5814: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5778: 5774: 5770: 5767:over a field 5766: 5761: 5759: 5755: 5751: 5747: 5743: 5739: 5735: 5731: 5727: 5724:-equivariant 5723: 5719: 5715: 5711: 5706: 5704: 5700: 5696: 5692: 5688: 5684: 5680: 5676: 5672: 5668: 5664: 5660: 5656: 5652: 5648: 5644: 5640: 5636: 5632: 5628: 5624: 5620: 5616: 5612: 5608: 5604: 5600: 5596: 5592: 5589:over a field 5588: 5578: 5576: 5571: 5567: 5563: 5559: 5555: 5551: 5547: 5543: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5512: 5511: 5505: 5501: 5498: 5495:(such as the 5494: 5490: 5487:over a field 5486: 5481: 5479: 5475: 5471: 5467: 5463: 5459: 5455: 5451: 5447: 5443: 5439: 5436: 5432: 5428: 5424: 5420: 5415: 5413: 5409: 5405: 5401: 5397: 5393: 5389: 5385: 5381: 5377: 5373: 5369: 5365: 5361: 5357: 5353: 5349: 5345: 5341: 5337: 5333: 5329: 5326: 5321: 5319: 5315: 5311: 5307: 5302: 5297: 5295: 5291: 5287: 5283: 5279: 5275: 5270: 5268: 5264: 5260: 5255: 5251: 5247: 5243: 5239: 5235: 5231: 5227: 5223: 5219: 5215: 5211: 5207: 5203: 5193: 5191: 5187: 5183: 5179: 5175: 5171: 5167: 5146: 5136: 5132: 5128: 5106: 5101: 5092: 5088: 5084: 5080: 5076: 5072: 5069: 5059: 5057: 5053: 5049: 5045: 5041: 5022: 5016: 5007: 5003: 4999: 4993: 4987: 4981: 4978: 4975: 4969: 4963: 4960: 4953: 4952: 4951: 4949: 4945: 4941: 4937: 4934:over a field 4933: 4929: 4908: 4903: 4900: 4896: 4890: 4887: 4884: 4881: 4877: 4873: 4870: 4867: 4862: 4858: 4852: 4848: 4844: 4839: 4835: 4829: 4825: 4821: 4813: 4810: 4806: 4802: 4799: 4796: 4791: 4787: 4780: 4773: 4772: 4771: 4770: 4766: 4762: 4758: 4754: 4749: 4744: 4741: 4737: 4733: 4728: 4723: 4722: 4705: 4700: 4695: 4692: 4689: 4686: 4682: 4678: 4673: 4670: 4666: 4660: 4657: 4654: 4651: 4647: 4643: 4640: 4637: 4632: 4628: 4622: 4618: 4614: 4609: 4605: 4599: 4595: 4591: 4583: 4580: 4577: 4574: 4570: 4566: 4563: 4560: 4555: 4551: 4544: 4537: 4536: 4535: 4534: 4530: 4527: 4523: 4519: 4515: 4511: 4506: 4501: 4498: 4494: 4490: 4485: 4480: 4479: 4478: 4476: 4471: 4469: 4465: 4461: 4457: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4409: 4405: 4401: 4398:over a field 4397: 4393: 4388: 4374: 4370: 4366: 4359: 4355: 4354:L. E. Dickson 4351: 4347: 4335: 4332: 4327: 4325: 4321: 4317: 4292: 4286: 4280: 4274: 4263: 4254: 4252: 4248: 4247:flag manifold 4244: 4240: 4236: 4232: 4228: 4224: 4205: 4202: 4199: 4192: 4188: 4183: 4179: 4176: 4173: 4166: 4162: 4157: 4153: 4150: 4143: 4142: 4141: 4139: 4136:of dimension 4135: 4130: 4126: 4119: 4115: 4111: 4107: 4103: 4099: 4095: 4091: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4060:over a field 4059: 4055: 4052: 4032: 4027: 4021: 4016: 4011: 4006: 3999: 3994: 3989: 3984: 3977: 3972: 3967: 3962: 3955: 3950: 3945: 3940: 3934: 3929: 3921: 3920: 3919: 3917: 3913: 3909: 3905: 3898: 3894: 3890: 3886: 3882: 3878: 3874: 3870: 3866: 3862: 3858: 3854: 3850: 3846: 3842: 3838: 3834: 3831:over a field 3830: 3820: 3818: 3814: 3810: 3806: 3802: 3798: 3794: 3790: 3783: 3780: 3779:root subgroup 3776: 3769: 3765: 3761: 3758:over a field 3757: 3752: 3750: 3749:inner product 3746: 3742: 3737: 3735: 3731: 3725: 3721: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3684: 3680: 3677:, called the 3676: 3672: 3668: 3664: 3659: 3657: 3653: 3649: 3644: 3640: 3635: 3631: 3612: 3605: 3565: 3561: 3557: 3538: 3533: 3517: 3509: 3506: 3502: 3498: 3488: 3474: 3473: 3472: 3470: 3466: 3462: 3458: 3454: 3450: 3445: 3442: 3438: 3435: 3431: 3427: 3423: 3419: 3415: 3411: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3381: 3376: 3372: 3367: 3365: 3361: 3357: 3352: 3348: 3343: 3339: 3335: 3331: 3327: 3322: 3318: 3311: 3307: 3303: 3284: 3277: 3261: 3257: 3253: 3249: 3245: 3226: 3219: 3203: 3199: 3196:is the group 3195: 3176: 3171: 3154: 3151: 3147: 3143: 3133: 3119: 3118: 3117: 3091: 3087: 3059: 2983: 2979: 2975: 2971: 2944: 2940: 2936: 2931: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2901: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2822: 2820: 2810: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2749:over a field 2748: 2744: 2740: 2736: 2732: 2728: 2723: 2721: 2717: 2713: 2709: 2705: 2702: 2701:unitary group 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2655: 2642: 2637: 2625: 2620: 2617: 2614: 2610: 2606: 2595: 2591: 2582: 2578: 2570: 2564: 2560: 2550: 2533: 2525: 2521: 2516: 2512: 2489: 2481: 2477: 2447: 2425: 2396: 2367: 2363: 2355: 2351: 2334: 2319: 2315: 2314: 2307: 2294: 2289: 2281: 2277: 2271: 2264: 2257: 2253: 2246: 2233: 2229: 2225: 2220: 2216: 2203: 2187: 2158: 2148: 2143: 2114: 2099: 2081: 2060: 2041: 2031: 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1956:of dimension 1955: 1951: 1947: 1944: 1940: 1936: 1932: 1928: 1924: 1921: 1917: 1913: 1910: 1906: 1903: 1899: 1898:bilinear form 1895: 1891: 1887: 1883: 1879: 1876: 1868: 1864: 1860: 1854: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1825: 1821: 1817: 1813: 1809: 1804: 1800: 1796: 1793:is the group 1791: 1787: 1784: 1780: 1776: 1772: 1768: 1750: 1736: 1728: 1722: 1710: 1708: 1704: 1700: 1696: 1674: 1669: 1643: 1633: 1629: 1625: 1621: 1617: 1613: 1610:over a field 1609: 1599: 1597: 1593: 1590:-subgroup of 1589: 1585: 1581: 1577: 1558: 1553: 1549: 1544: 1534: 1528: 1525: 1522: 1517: 1513: 1506: 1500: 1494: 1491: 1484: 1483: 1482: 1480: 1476: 1472: 1468: 1463: 1461: 1457: 1455: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1397:over a field 1396: 1386: 1370: 1367: 1363: 1342: 1328: 1325: 1321: 1318: 1314: 1310: 1306: 1302: 1298: 1277: 1249: 1244: 1236: 1232: 1216: 1193: 1185: 1181: 1172: 1156: 1148: 1144: 1128: 1108: 1100: 1097: 1093: 1077: 1069: 1059: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1018:over a field 1017: 1011: 1001: 999: 995: 991: 987: 983: 979: 975: 971: 967: 964:over a field 963: 959: 954: 952: 949: 945: 941: 937: 933: 929: 925: 921: 917: 914: 910: 907: 903: 899: 895: 891: 887: 885: 881: 877: 873: 870: 866: 862: 859: 855: 851: 847: 844: 840: 836: 832: 828: 824: 823:perfect field 820: 816: 812: 809:is a type of 808: 804: 792: 787: 785: 780: 778: 773: 772: 770: 769: 762: 759: 758: 755: 752: 751: 748: 745: 744: 741: 738: 737: 734: 729: 728: 718: 715: 712: 711: 709: 703: 700: 698: 695: 694: 691: 688: 686: 683: 681: 678: 677: 674: 668: 666: 660: 658: 652: 650: 644: 642: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 607: 603: 600: 599: 595: 591: 588: 587: 583: 579: 576: 575: 571: 567: 564: 563: 559: 555: 552: 551: 547: 543: 540: 539: 536: 533: 531: 528: 527: 524: 520: 515: 514: 507: 504: 502: 499: 497: 494: 493: 465: 440: 439: 437: 431: 428: 403: 400: 399: 393: 390: 388: 385: 384: 380: 379: 368: 365: 363: 360: 357: 354: 353: 352: 351: 348: 345: 344: 339: 336: 335: 332: 329: 328: 325: 322: 320: 318: 314: 313: 310: 307: 305: 302: 301: 298: 295: 293: 290: 289: 288: 287: 281: 278: 275: 270: 267: 266: 262: 257: 254: 251: 246: 243: 240: 235: 232: 231: 230: 229: 224: 223:Finite groups 219: 218: 207: 204: 202: 199: 198: 197: 196: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 138: 137: 136: 135: 130: 127: 125: 122: 121: 120: 119: 116: 115: 111: 110: 105: 102: 100: 97: 95: 92: 90: 87: 84: 82: 79: 78: 77: 76: 71: 68: 66: 63: 61: 58: 57: 56: 55: 50:Basic notions 47: 46: 42: 38: 37: 34: 29: 25: 21: 20: 9472: 9464:Demazure, M. 9425: 9419: 9378: 9343: 9337: 9296: 9263: 9259: 9211: 9207: 9192: 9154: 9112: 9109:Milne, J. S. 9078: 9044: 9004: 8996:Demazure, M. 8957: 8950:Demazure, M. 8917: 8909:Demazure, M. 8883: 8846: 8806: 8759: 8753: 8708: 8687: 8678: 8669: 8660: 8651: 8642: 8633: 8624: 8615: 8606: 8597: 8588: 8579: 8570: 8545: 8536: 8527: 8518: 8509: 8500: 8491: 8482: 8473: 8464: 8455: 8446: 8425: 8416: 8407: 8398: 8389: 8380: 8367: 8360: 8351: 8342: 8223: 8221: 8212: 8208: 8204: 8202: 8107: 8103: 8101: 8096: 8092: 8088: 8084: 8080: 8076: 8072: 8070:global field 8065: 8060: 8056: 8052: 8047: 8043: 8039: 8035: 8031: 8026: 8022: 8018: 8010: 8008: 7913: 7909: 7893: 7885: 7881: 7877: 7873: 7868: 7859: 7855: 7851: 7843: 7835: 7831: 7827: 7823: 7819: 7811: 7809: 7804: 7800: 7796: 7792: 7788: 7784: 7780: 7776: 7772: 7768: 7764: 7760: 7756: 7752: 7748: 7744: 7740: 7736: 7732: 7728: 7724: 7720: 7716: 7712: 7708: 7704: 7700: 7696: 7692: 7688: 7686: 7681: 7677: 7673: 7669: 7665: 7657: 7653: 7645: 7637: 7533: 7525: 7521: 7517: 7513: 7507: 7505: 7495: 7491: 7487: 7483: 7479: 7475: 7474:. The group 7378: 7374: 7370: 7366: 7362: 7360:discriminant 7355: 7350: 7344: 7342:is of type D 7339: 7335: 7331: 7327: 7323: 7319: 7315: 7311: 7307: 7305: 7300: 7296: 7292: 7288: 7284: 7280: 7276: 7272: 7268: 7264: 7260: 7252: 7248: 7240: 7236: 7232: 7228: 7224: 7222: 7215: 7211: 7207: 7203: 7172: 7165: 7158: 7154: 7150: 7145: 7141: 7133: 7129: 7127: 7122: 7118: 7104: 7088: 7084: 7076: 7072: 7068: 7064: 7060: 7054: 7050: 7048: 7043: 7039: 7035: 7031: 7027: 7023: 7019: 7015: 7011: 7007: 7003: 6995: 6991: 6985: 6981: 6977: 6973: 6969: 6965: 6961: 6954: 6952: 6938: 6934: 6926: 6922: 6914: 6910: 6906: 6902: 6898: 6894: 6890: 6886: 6882: 6881:-adic field 6878: 6874: 6870: 6866: 6862: 6858: 6856: 6851: 6847: 6843: 6839: 6831: 6827: 6823: 6819: 6815: 6811: 6807: 6803: 6799: 6795: 6792: 6788: 6784: 6780: 6776: 6774: 6766: 6762: 6755: 6751: 6744: 6737: 6730: 6723: 6719: 6712: 6708: 6706: 6698:Jacques Tits 6693: 6689: 6685: 6681: 6677: 6673: 6672:, the group 6669: 6665: 6661: 6657: 6652: 6648: 6644: 6640: 6636: 6632: 6628: 6624: 6620: 6616: 6612: 6608: 6604: 6600: 6596: 6594: 6589: 6554: 6550: 6546: 6542: 6540: 6535: 6531: 6527: 6523: 6519: 6516:presentation 6507: 6503: 6501: 6491: 6487: 6483: 6479: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6447: 6443: 6439: 6435: 6431: 6427: 6425: 6420: 6416: 6412: 6408: 6404: 6398: 6394: 6390: 6385: 6381: 6373: 6369: 6365: 6361: 6359: 6350: 6346: 6342: 6340: 6334: 6329: 6325: 6321: 6315: 6311: 6307: 6301: 6296: 6292: 6288: 6284: 6277: 6273: 6269: 6265: 6261: 6257: 6255: 6250: 6246: 6242: 6238: 6236: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6202: 6201:), then the 6198: 6194: 6190: 6183: 6178: 6174: 6170: 6166: 6162: 6158: 6127: 6123: 6087: 6083: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6049:reduced norm 6044: 6040: 6036: 6032: 6028: 5984: 5980: 5976: 5972: 5968: 5964: 5960: 5956: 5925: 5921: 5885: 5881: 5877: 5873: 5869: 5865: 5861: 5850: 5840: 5832: 5824: 5817:Jens Jantzen 5808: 5800: 5796: 5792: 5788: 5785:George Kempf 5776: 5772: 5768: 5764: 5762: 5749: 5741: 5737: 5733: 5729: 5721: 5717: 5716:∇(λ) as the 5714:Schur module 5713: 5709: 5707: 5702: 5698: 5694: 5690: 5686: 5682: 5678: 5674: 5670: 5666: 5662: 5658: 5654: 5650: 5646: 5642: 5638: 5634: 5630: 5626: 5622: 5618: 5615:Weyl chamber 5610: 5606: 5602: 5594: 5590: 5586: 5584: 5569: 5565: 5561: 5557: 5553: 5549: 5541: 5537: 5533: 5529: 5521: 5517: 5513: 5508: 5503: 5499: 5488: 5484: 5482: 5477: 5473: 5469: 5461: 5457: 5453: 5437: 5430: 5426: 5422: 5418: 5416: 5407: 5403: 5391: 5387: 5379: 5375: 5371: 5363: 5359: 5355: 5351: 5347: 5343: 5339: 5335: 5331: 5327: 5322: 5317: 5313: 5309: 5305: 5298: 5285: 5281: 5277: 5273: 5271: 5269:connected). 5266: 5262: 5258: 5253: 5249: 5245: 5241: 5237: 5233: 5229: 5225: 5217: 5213: 5209: 5205: 5199: 5189: 5185: 5181: 5177: 5173: 5165: 5134: 5130: 5126: 5086: 5082: 5078: 5074: 5070: 5068:group scheme 5065: 5055: 5051: 5047: 5043: 5039: 5037: 4946:splits as a 4943: 4939: 4935: 4931: 4925: 4764: 4760: 4756: 4752: 4747: 4739: 4735: 4731: 4726: 4528: 4521: 4517: 4513: 4504: 4496: 4492: 4488: 4483: 4474: 4472: 4467: 4463: 4459: 4455: 4451: 4447: 4443: 4440:adjoint type 4439: 4435: 4431: 4423: 4419: 4411: 4407: 4403: 4399: 4395: 4391: 4389: 4372: 4357: 4349: 4345: 4333: 4328: 4290: 4284: 4278: 4272: 4268: 4250: 4246: 4243:flag variety 4242: 4238: 4234: 4230: 4226: 4220: 4137: 4133: 4128: 4124: 4117: 4113: 4109: 4105: 4101: 4097: 4089: 4081: 4073: 4069: 4065: 4064:is a smooth 4061: 4057: 4053: 4050: 4048: 3915: 3911: 3907: 3903: 3896: 3892: 3888: 3884: 3880: 3876: 3872: 3868: 3860: 3856: 3852: 3848: 3844: 3840: 3836: 3832: 3828: 3826: 3816: 3812: 3808: 3804: 3800: 3796: 3788: 3781: 3778: 3774: 3767: 3763: 3759: 3755: 3753: 3738: 3733: 3729: 3723: 3719: 3714: 3710: 3706: 3702: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3666: 3662: 3660: 3655: 3651: 3647: 3642: 3638: 3633: 3629: 3563: 3559: 3555: 3553: 3468: 3464: 3460: 3446: 3440: 3436: 3429: 3425: 3421: 3417: 3413: 3409: 3404: 3400: 3396: 3384: 3378: 3370: 3368: 3363: 3359: 3355: 3350: 3346: 3341: 3337: 3333: 3329: 3325: 3320: 3316: 3309: 3305: 3301: 3259: 3255: 3251: 3247: 3243: 3201: 3197: 3193: 3191: 3089: 3085: 3057: 2981: 2977: 2973: 2969: 2938: 2932: 2927: 2919: 2915: 2911: 2903: 2899: 2894: 2890: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2858: 2854: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2823: 2816: 2806: 2802: 2798: 2790: 2786: 2785:showed that 2778: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2742: 2734: 2726: 2724: 2719: 2715: 2711: 2707: 2703: 2696: 2692: 2684: 2680: 2676: 2672: 2668: 2662: 2552: 2468: 2311:Non-examples 2205: 2202:from the map 2066: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1934: 1930: 1926: 1922: 1915: 1911: 1904: 1902:vector space 1893: 1889: 1885: 1881: 1877: 1872: 1866: 1862: 1858: 1853:at least 2. 1850: 1846: 1842: 1841:1. In fact, 1834: 1830: 1826: 1819: 1815: 1811: 1807: 1802: 1798: 1794: 1789: 1785: 1782: 1778: 1774: 1770: 1766: 1734: 1732: 1726: 1720: 1706: 1702: 1698: 1694: 1631: 1626:(that is, a 1623: 1619: 1615: 1611: 1607: 1605: 1591: 1587: 1583: 1579: 1575: 1573: 1478: 1471:homomorphism 1466: 1464: 1459: 1453: 1446: 1442: 1438: 1437:, the group 1434: 1430: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1392: 1334: 1323: 1319: 1312: 1304: 1300: 1230: 1170: 1142: 1091: 1065: 1055: 1050:is a smooth 1047: 1043: 1039: 1035: 1031: 1019: 1013: 985: 981: 977: 973: 969: 965: 961: 955: 950: 948:finite field 943: 935: 931: 927: 920:number field 915: 913:real numbers 888: 883: 879: 875: 871: 864: 860: 849: 845: 818: 806: 800: 746: 629: 617: 605: 593: 581: 569: 557: 545: 316: 273: 260: 249: 238: 234:Cyclic group 112: 99:Free product 70:Group action 33:Group theory 28:Group theory 27: 8803:Cartier, P. 7850:at most 1, 7662:pointed set 6436:quasi-split 6270:anisotropic 6086:has degree 5726:line bundle 5649:. Define a 5464:(2) is the 4320:Élie Cartan 3663:simple root 3457:conjugation 3371:root system 3308:). Writing 2943:Lie algebra 2861:called the 2853:) for some 2819:root system 2747:finite type 2354:Borel group 1839:determinant 1628:split torus 1235:base change 1004:Definitions 867:), and the 803:mathematics 519:Topological 358:alternating 9496:Lie groups 9485:Categories 9264:-functions 9226:1512.08296 9185:V.L. Popov 8698:References 7916:, the map 7775:)). Also, 7672:is called 7536:such that 7245:inner form 7107:Tits index 7101:Tits index 6998:) that is 6434:is called 6264:if it has 6260:is called 6193:of degree 6161:has index 5965:Witt index 5756:gives the 5669:such that 5548:metric on 5284:) ≅ 5202:Lie groups 5077:is called 4526:Witt index 4510:spin group 4402:is called 4086:projective 3793:normalized 3393:normalizer 3387:means the 3380:Weyl group 3375:root datum 3362:from 1 to 2832:, and let 2753:is called 2173:embeds in 2067:The group 1941:, and its 1937:) has two 1865:), and Sp( 1614:is called 1401:is called 1092:semisimple 835:direct sum 626:Symplectic 566:Orthogonal 523:Lie groups 430:Free group 155:continuous 94:Direct sum 9377:(2016) , 9346:: 49–80, 9199:EMS Press 9187:(2001) , 9076:(2003) , 8801:(2005) , 8792:119837998 8707:(1991) , 8150:∏ 8146:→ 7956:∏ 7952:→ 7648:, or the 7617:¯ 7585:¯ 7553:¯ 7438:⁡ 7432:⊂ 7392:⁡ 7275:), where 7188:¯ 6574:¯ 6423:is zero. 6355:unipotent 6262:isotropic 6205:-rank of 6143:¯ 6107:¯ 6009:⌋ 5995:⌊ 5959:-rank of 5941:¯ 5905:¯ 5758:character 5556:-rank of 5412:reductive 5374:, and so 5150:¯ 5110:¯ 5079:reductive 4994:⋉ 4982:⁡ 4976:≅ 4964:⁡ 4888:− 4871:⋯ 4800:… 4658:− 4641:⋯ 4564:… 4495:+1) over 4336:of type G 4223:isotropic 4200:⊂ 4180:⊂ 4177:⋯ 4174:⊂ 4154:⊂ 4022:∗ 4000:∗ 3995:∗ 3978:∗ 3973:∗ 3968:∗ 3963:∗ 3956:∗ 3951:∗ 3946:∗ 3941:∗ 3902:for α in 3865:conjugate 3791:which is 3534:α 3514:Φ 3510:∈ 3507:α 3503:⨁ 3499:⊕ 3172:α 3158:Φ 3155:∈ 3152:α 3148:⨁ 3144:⊕ 3056:fixed by 2611:∏ 2607:≅ 2242:↦ 2149:× 2045:¯ 1705:-tori in 1678:¯ 1647:¯ 1550:μ 1523:× 1507:≅ 1281:¯ 1253:¯ 1147:unipotent 1143:reductive 1068:connected 833:and is a 690:Conformal 578:Euclidean 185:nilpotent 9368:55638217 9332:(1965), 9295:(1998), 9254:(1979), 9111:(2017), 8956:(1970). 8882:(1970), 8838:(2014), 8241:See also 7528:with an 7125:-group. 6765:of type 6702:BN-pairs 6186:) for a 5876:). Here 4520:+1 over 4454:, where 4426:) being 3855:. Every 3728:for 1 ≤ 3646:for 1 ≤ 3354:for all 2924:integers 2906:) under 2000:.) When 1713:Examples 1096:solvable 685:Poincaré 530:Solenoid 402:Integers 392:Lattices 367:sporadic 362:Lie type 190:solvable 180:dihedral 165:additive 150:infinite 60:Subgroup 9450:0164968 9442:1970394 9409:3616493 9360:0180554 9323:1642713 9286:0546587 9231:Bibcode 9178:1278263 9143:3729270 9102:2015057 9067:2605318 9028:2867622 8988:0274459 8941:2867621 8902:0302656 8869:3309122 8829:2124841 8805:(ed.), 8784:0294349 8764:Bibcode 8739:1102012 8365:Milne. 7820:abelian 7334:) over 7161:over a 7056:lattice 6964:. Then 6929:) is a 6822:). For 6494:| ≤ 2. 6474:) over 6378:compact 6130:) over 6062:). The 6051:on the 5821:Lusztig 5701:(λ) of 5637:. Then 5573:) is a 5536:), and 5507:), the 5257:) = Ad( 4738:) over 4363:is the 3709:)) are 3391:of the 2857:, with 2687:) is a 2028:) over 1996:) over 1900:on the 1445:) over 1038:) over 1026:closed 984:) when 946:over a 906:complex 821:over a 813:over a 680:Lorentz 602:Unitary 501:Lattice 441:PSL(2, 175:abelian 86:(Semi-) 9448:  9440:  9407:  9397:  9366:  9358:  9321:  9311:  9284:  9274:  9241:  9176:  9166:  9141:  9131:  9100:  9090:  9065:  9055:  9026:  9016:  8986:  8976:  8939:  8929:  8900:  8890:  8867:  8857:  8827:  8817:  8790:  8782:  8737:  8727:  8021:, and 8015:places 7660:. The 7530:action 7509:torsor 7136:, the 6984:). An 6775:For a 6750:. For 6595:For a 6064:degree 6024:Every 5955:. The 5740:. For 5546:CAT(0) 5468:, and 5366:) has 5091:smooth 5038:where 4512:Spin(2 4508:: the 4367:of an 4352:), by 4078:proper 3701:) (or 3424:) (or 3254:. Let 2875:weight 2793:is of 1861:), SO( 1724:and SL 1427:center 1411:simple 1403:simple 1295:is an 1052:affine 1024:smooth 996:of an 856:, the 831:kernel 535:Circle 466:SL(2, 355:cyclic 319:-group 170:cyclic 145:finite 140:simple 124:kernel 9438:JSTOR 9364:S2CID 9221:arXiv 9041:(PDF) 8843:(PDF) 8788:S2CID 8372:(PDF) 8335:Notes 8079:over 7912:over 7840:Serre 7795:,Aut( 7755:over 7731:over 7723:,Aut( 7703:over 7689:forms 7636:over 7524:over 7498:− 1. 7239:over 7231:over 7002:with 6972:over 6943:index 6889:over 6736:, or 6656:over 6403:over 6376:) is 6333:over 6300:over 6197:over 6157:. If 6074:as a 6031:over 5856:are: 5811:, by 5781:socle 5661:over 5617:) in 5609:) ≅ 5524:is a 5440:is a 5433:by a 5308:over 5216:over 4759:over 4524:with 4462:is a 4392:split 4371:over 4340:and E 4123:,..., 4088:over 4080:over 3883:over 3745:graph 3736:− 1. 3650:< 3315:,..., 2840:; so 2813:Roots 2710:) to 1810:) of 1622:over 1616:split 1582:over 1417:over 1311:over 1309:torus 934:) of 918:or a 852:) of 815:field 719:Sp(∞) 716:SU(∞) 129:image 9395:ISBN 9309:ISBN 9272:ISBN 9239:ISBN 9164:ISBN 9129:ISBN 9088:ISBN 9053:ISBN 9014:ISBN 8974:ISBN 8927:ISBN 8888:ISBN 8855:ISBN 8815:ISBN 8725:ISBN 8246:The 7259:set 7140:Gal( 7053:, a 6953:Let 6341:For 6209:is ( 5575:tree 4926:The 4329:The 4318:and 4294:, E 4288:, D 4276:, B 4096:for 3332:) ≅ 2970:root 2968:. A 2933:The 2877:for 2863:rank 2824:Let 2797:and 2352:The 2316:Any 2063:Tori 1405:(or 805:, a 713:O(∞) 702:Loop 521:and 9430:doi 9387:doi 9348:doi 9301:doi 9121:doi 8966:doi 8772:doi 8717:doi 8209:PGL 8034:or 8017:of 7769:PGL 7652:if 7644:on 7532:of 7435:Gal 7389:Gal 7373:*/( 7369:in 7365:of 7059:in 7046:). 6901:(1, 6684:if 6592:). 6419:or 6066:of 6043:(1, 5967:of 5807:of 5799:of 5657:of 5564:(2, 5516:of 5472:(2, 5456:(2, 5429:of 5406:(2, 5402:of 5390:(2, 5378:(2, 5362:(2, 5350:(2, 5348:PSL 5342:(2, 5340:PGL 5334:(2, 5332:PGL 5328:PGL 5280:(1, 5188:to 5129:in 5089:is 4979:Out 4961:Aut 4383:, E 4379:, E 4310:, G 4306:, F 4302:, E 4298:, E 4282:, C 4249:of 4245:or 4076:is 3863:is 3859:of 3843:of 3795:by 3773:in 3689:if 3681:of 3673:of 3084:of 2984:on 2972:of 2865:of 2769:of 2745:of 2382:of 1630:in 1458:of 1299:of 1101:of 1030:of 972:on 904:or 878:). 837:of 801:In 628:Sp( 616:SU( 592:SO( 556:SL( 544:GL( 9487:: 9466:; 9446:MR 9444:, 9436:, 9426:80 9424:, 9405:MR 9403:, 9393:, 9385:, 9362:, 9356:MR 9354:, 9344:25 9342:, 9336:, 9319:MR 9317:, 9307:, 9282:MR 9280:, 9258:, 9237:, 9229:, 9219:, 9197:, 9191:, 9174:MR 9172:, 9162:, 9158:, 9139:MR 9137:, 9127:, 9119:, 9115:, 9098:MR 9096:, 9086:, 9063:MR 9061:, 9043:, 9024:MR 9022:. 9012:. 9008:. 8998:; 8984:MR 8982:. 8972:. 8964:. 8952:; 8937:MR 8935:. 8925:. 8921:. 8911:; 8898:MR 8896:, 8878:; 8865:MR 8863:, 8845:, 8825:MR 8823:, 8813:, 8786:, 8780:MR 8778:, 8770:, 8760:12 8758:, 8748:; 8735:MR 8733:, 8723:, 8715:, 8554:^ 8434:^ 8322:, 8318:, 8309:, 8300:, 8296:, 8292:, 8273:, 8264:, 8260:, 8256:, 8237:. 8207:= 8083:, 7900:, 7896:, 7826:, 7807:. 7506:A 7328:SO 7036:SL 7024:SL 6945:. 6921:, 6899:SL 6897:= 6814:)/ 6806:)= 6772:. 6754:= 6729:, 6711:= 6704:. 6603:, 6538:. 6510:, 6464:SO 6391:SO 6304:); 6124:SL 6041:SL 6039:= 5922:SO 5870:SO 5815:, 5633:⊂ 5629:⊂ 5577:. 5562:SL 5478:SU 5476:)/ 5470:SL 5462:SO 5460:)/ 5454:SL 5404:SL 5388:SL 5376:SL 5360:SL 5356:SL 5278:GL 5228:→ 5192:. 5085:→ 5066:A 5058:. 4950:: 4734:(2 4732:Sp 4489:SL 4487:: 4470:. 4253:. 4233:, 4140:: 4106:GL 3908:GL 3900:−α 3732:≤ 3726:+1 3718:− 3703:SL 3695:GL 3661:A 3658:. 3654:≤ 3637:− 3560:GL 3444:. 3426:SL 3418:GL 3412:)/ 3399:= 3366:. 3358:≠ 3345:− 3304:, 3246:× 3198:GL 2980:⊂ 2930:. 2926:, 2889:→ 2809:. 2712:GL 2392:GL 2183:GL 2110:GL 2059:. 2022:SO 2006:SO 1982:SO 1946:SO 1892:(2 1890:GL 1880:(2 1878:Sp 1857:O( 1843:SL 1827:SL 1795:GL 1769:× 1746:GL 1718:GL 1481:, 1465:A 1439:SL 1385:. 1066:A 1058:. 1032:GL 1014:A 874:(2 872:Sp 861:SO 846:GL 604:U( 580:E( 568:O( 26:→ 9432:: 9389:: 9350:: 9303:: 9262:L 9233:: 9223:: 9210:p 9123:: 9030:. 8990:. 8968:: 8943:. 8774:: 8766:: 8719:: 8235:8 8230:8 8228:E 8224:Q 8213:n 8211:( 8205:G 8188:) 8185:G 8182:, 8177:v 8173:k 8169:( 8164:1 8160:H 8154:v 8143:) 8140:G 8137:, 8134:k 8131:( 8126:1 8122:H 8108:k 8104:G 8097:k 8093:G 8091:, 8089:k 8087:( 8085:H 8081:k 8077:G 8073:k 8066:k 8061:v 8057:k 8053:G 8051:, 8048:v 8044:k 8042:( 8040:H 8036:C 8032:R 8027:v 8023:k 8019:k 8011:v 7994:) 7991:G 7988:, 7983:v 7979:k 7975:( 7970:1 7966:H 7960:v 7949:) 7946:G 7943:, 7940:k 7937:( 7932:1 7928:H 7914:k 7910:G 7894:k 7886:G 7884:, 7882:k 7880:( 7878:H 7874:G 7860:G 7858:, 7856:k 7854:( 7852:H 7844:G 7836:M 7834:, 7832:k 7830:( 7828:H 7824:M 7812:G 7805:G 7801:G 7797:G 7793:k 7791:( 7789:H 7785:G 7781:G 7777:k 7773:n 7771:( 7767:, 7765:k 7763:( 7761:H 7757:k 7753:n 7749:n 7747:( 7745:O 7743:, 7741:k 7739:( 7737:H 7733:k 7729:n 7725:Y 7721:k 7719:( 7717:H 7713:k 7709:Y 7705:k 7701:X 7697:k 7693:Y 7682:G 7680:, 7678:k 7676:( 7674:H 7670:k 7666:G 7658:k 7654:G 7646:k 7638:k 7614:k 7609:G 7582:k 7577:G 7550:k 7545:X 7534:G 7526:k 7522:X 7518:k 7514:G 7496:n 7492:q 7488:G 7484:n 7480:q 7476:G 7462:) 7459:k 7455:/ 7449:s 7445:k 7441:( 7429:) 7426:) 7421:d 7416:( 7413:k 7409:/ 7403:s 7399:k 7395:( 7379:d 7375:k 7371:k 7367:q 7363:d 7356:k 7351:n 7345:n 7340:G 7336:k 7332:q 7330:( 7324:G 7320:n 7316:k 7312:n 7308:q 7301:k 7297:Z 7295:/ 7293:H 7289:H 7285:G 7281:H 7277:Z 7273:Z 7271:/ 7269:H 7267:, 7265:k 7263:( 7261:H 7253:G 7249:H 7241:k 7237:G 7233:k 7229:H 7225:k 7216:s 7212:k 7208:G 7204:G 7185:k 7173:G 7169:s 7166:k 7159:G 7155:G 7151:k 7149:/ 7146:s 7142:k 7134:k 7130:G 7123:k 7119:k 7089:G 7085:G 7077:G 7073:G 7069:G 7065:G 7061:G 7051:G 7044:Q 7042:, 7040:n 7038:( 7032:Z 7030:, 7028:n 7026:( 7020:Z 7016:Q 7014:( 7012:G 7008:Z 7006:( 7004:G 6996:Q 6994:( 6992:G 6982:Z 6980:( 6978:G 6974:Z 6970:G 6966:G 6962:Q 6955:G 6939:k 6937:( 6935:G 6927:k 6925:( 6923:G 6915:k 6913:( 6911:G 6907:k 6903:D 6895:G 6891:k 6887:D 6883:k 6879:p 6875:D 6871:k 6869:( 6867:G 6863:G 6859:k 6852:G 6850:, 6848:k 6846:( 6844:W 6840:k 6832:k 6830:( 6828:G 6824:G 6820:k 6818:( 6816:G 6812:k 6810:( 6808:G 6804:G 6802:, 6800:k 6798:( 6796:W 6789:k 6787:( 6785:G 6781:G 6777:k 6770:1 6767:A 6763:G 6759:3 6756:F 6752:k 6748:2 6745:A 6741:2 6738:G 6734:2 6731:B 6727:1 6724:A 6720:G 6716:2 6713:F 6709:k 6694:k 6692:( 6690:G 6686:k 6682:G 6678:k 6676:( 6674:G 6670:k 6666:G 6662:G 6658:k 6653:a 6649:G 6645:k 6641:k 6639:( 6637:G 6633:k 6631:( 6629:G 6625:k 6621:k 6617:G 6613:k 6611:( 6609:G 6601:G 6597:k 6590:k 6571:k 6555:k 6553:( 6551:G 6547:k 6543:G 6536:G 6532:G 6528:k 6524:k 6522:( 6520:G 6508:k 6504:G 6492:q 6490:− 6488:p 6484:q 6482:− 6480:p 6476:R 6472:q 6470:, 6468:p 6466:( 6460:k 6458:( 6456:G 6452:G 6448:k 6444:G 6440:k 6432:k 6428:G 6421:q 6417:p 6413:q 6411:, 6409:p 6405:R 6401:) 6399:q 6397:, 6395:p 6393:( 6386:G 6382:k 6374:k 6372:( 6370:G 6366:k 6362:G 6351:k 6349:( 6347:G 6343:k 6337:. 6335:k 6330:a 6326:G 6322:G 6318:; 6316:G 6312:k 6308:G 6302:k 6297:m 6293:G 6289:G 6285:G 6278:k 6274:G 6266:k 6258:k 6251:k 6247:k 6243:k 6239:k 6233:. 6231:k 6227:A 6223:k 6219:G 6215:r 6213:/ 6211:n 6207:G 6203:k 6199:k 6195:r 6191:D 6184:D 6182:( 6179:r 6177:/ 6175:n 6171:M 6167:A 6163:r 6159:A 6140:k 6128:n 6126:( 6104:k 6099:G 6088:n 6084:A 6080:G 6076:k 6072:A 6068:A 6060:k 6056:A 6045:A 6037:G 6033:k 6029:A 6021:. 6006:2 6002:/ 5998:n 5985:q 5981:k 5977:G 5973:k 5969:q 5961:G 5957:k 5938:k 5926:n 5924:( 5902:k 5897:G 5886:n 5882:q 5878:G 5874:q 5872:( 5866:k 5862:q 5841:p 5833:p 5825:p 5809:G 5801:k 5797:p 5793:L 5789:L 5777:L 5773:G 5769:k 5765:G 5750:L 5742:k 5738:G 5734:B 5732:/ 5730:G 5722:G 5718:k 5710:k 5703:G 5699:L 5695:G 5691:T 5689:( 5687:X 5683:T 5679:B 5675:v 5671:B 5667:v 5663:k 5659:G 5655:V 5647:U 5643:T 5639:B 5635:G 5631:B 5627:T 5623:k 5619:R 5611:Z 5607:T 5605:( 5603:X 5595:G 5591:k 5587:G 5570:p 5566:Q 5558:G 5554:k 5550:X 5542:k 5540:( 5538:G 5534:k 5532:( 5530:G 5522:X 5518:G 5514:X 5504:p 5500:Q 5489:k 5485:G 5474:C 5458:R 5438:K 5431:G 5427:K 5425:/ 5423:G 5419:G 5408:R 5392:R 5380:R 5372:Z 5364:R 5352:R 5344:R 5336:R 5318:R 5316:( 5314:G 5310:R 5306:G 5286:R 5282:R 5274:R 5267:G 5263:C 5261:( 5259:L 5254:C 5250:g 5246:G 5242:R 5240:( 5238:L 5234:R 5232:( 5230:L 5226:G 5218:R 5214:L 5210:G 5190:S 5186:Z 5182:S 5178:Z 5174:S 5166:p 5147:k 5135:G 5131:S 5127:p 5107:k 5102:G 5087:S 5083:G 5075:S 5071:G 5056:G 5052:G 5048:G 5044:G 5040:Z 5023:, 5020:) 5017:k 5014:( 5011:) 5008:Z 5004:/ 5000:G 4997:( 4991:) 4988:G 4985:( 4973:) 4970:G 4967:( 4944:G 4940:G 4936:k 4932:G 4909:. 4904:n 4901:2 4897:x 4891:1 4885:n 4882:2 4878:x 4874:+ 4868:+ 4863:4 4859:x 4853:3 4849:x 4845:+ 4840:2 4836:x 4830:1 4826:x 4822:= 4819:) 4814:n 4811:2 4807:x 4803:, 4797:, 4792:1 4788:x 4784:( 4781:q 4765:n 4761:k 4757:n 4753:n 4748:n 4745:D 4742:; 4740:k 4736:n 4727:n 4724:C 4706:; 4701:2 4696:1 4693:+ 4690:n 4687:2 4683:x 4679:+ 4674:n 4671:2 4667:x 4661:1 4655:n 4652:2 4648:x 4644:+ 4638:+ 4633:4 4629:x 4623:3 4619:x 4615:+ 4610:2 4606:x 4600:1 4596:x 4592:= 4589:) 4584:1 4581:+ 4578:n 4575:2 4571:x 4567:, 4561:, 4556:1 4552:x 4548:( 4545:q 4529:n 4522:k 4518:n 4514:n 4505:n 4502:B 4499:; 4497:k 4493:n 4491:( 4484:n 4481:A 4475:k 4468:G 4464:k 4460:A 4456:G 4452:A 4450:/ 4448:G 4444:k 4436:G 4432:k 4424:C 4422:( 4420:G 4412:G 4408:G 4400:k 4396:G 4385:8 4381:7 4377:4 4373:k 4361:2 4358:G 4350:k 4348:( 4346:G 4342:6 4338:2 4334:G 4312:2 4308:4 4304:8 4300:7 4296:6 4291:n 4285:n 4279:n 4273:n 4251:G 4239:B 4237:/ 4235:G 4231:B 4227:G 4206:. 4203:V 4193:i 4189:a 4184:S 4167:1 4163:a 4158:S 4151:0 4138:n 4134:V 4129:i 4125:a 4121:1 4118:a 4110:n 4108:( 4102:k 4098:G 4090:k 4082:k 4074:P 4072:/ 4070:G 4066:k 4062:k 4058:G 4054:P 4033:} 4028:] 4017:0 4012:0 4007:0 3990:0 3985:0 3935:[ 3930:{ 3916:B 3912:n 3910:( 3904:S 3897:U 3893:B 3889:S 3885:k 3881:G 3877:k 3875:( 3873:G 3869:B 3861:G 3853:G 3849:r 3845:G 3841:B 3837:G 3833:k 3829:G 3817:G 3813:T 3809:B 3805:T 3801:G 3797:T 3789:G 3785:α 3782:U 3775:G 3771:a 3768:G 3764:G 3760:k 3756:G 3734:n 3730:i 3724:i 3720:L 3715:i 3711:L 3707:n 3705:( 3699:n 3697:( 3691:G 3687:G 3683:G 3675:G 3667:r 3656:n 3652:j 3648:i 3643:j 3639:L 3634:i 3630:L 3616:) 3613:n 3610:( 3606:l 3601:g 3576:b 3564:n 3562:( 3556:B 3539:. 3528:g 3518:+ 3494:t 3489:= 3484:b 3469:T 3465:B 3441:n 3437:S 3430:n 3428:( 3422:n 3420:( 3414:T 3410:T 3408:( 3405:G 3401:N 3397:W 3385:G 3364:n 3360:j 3356:i 3351:j 3347:L 3342:i 3338:L 3334:Z 3330:T 3328:( 3326:X 3321:n 3317:L 3313:1 3310:L 3306:j 3302:i 3288:) 3285:n 3282:( 3278:l 3273:g 3260:G 3256:T 3252:k 3248:n 3244:n 3230:) 3227:n 3224:( 3220:l 3215:g 3202:n 3200:( 3194:G 3177:. 3166:g 3139:t 3134:= 3129:g 3102:t 3090:G 3086:T 3070:t 3058:T 3042:g 3018:g 2994:g 2982:G 2978:T 2974:G 2954:g 2939:G 2928:Z 2920:n 2916:T 2914:( 2912:X 2904:T 2902:( 2900:X 2895:m 2891:G 2887:T 2883:T 2879:G 2871:T 2867:G 2859:n 2855:n 2850:m 2846:G 2842:T 2838:G 2834:T 2830:k 2826:G 2807:p 2803:G 2801:/ 2799:G 2791:G 2787:G 2779:p 2775:k 2771:G 2767:G 2763:G 2759:k 2751:k 2743:G 2735:G 2727:G 2720:C 2718:, 2716:n 2714:( 2708:n 2706:( 2704:U 2697:C 2695:( 2693:G 2685:C 2683:( 2681:G 2677:K 2673:G 2669:K 2643:. 2638:m 2633:G 2626:n 2621:1 2618:= 2615:i 2604:) 2601:) 2596:n 2592:B 2588:( 2583:u 2579:R 2575:( 2571:/ 2565:n 2561:B 2537:) 2534:G 2531:( 2526:u 2522:R 2517:/ 2513:G 2493:) 2490:G 2487:( 2482:u 2478:R 2448:1 2426:n 2421:U 2397:n 2368:n 2364:B 2349:. 2335:a 2330:G 2295:. 2290:] 2282:2 2278:a 2272:0 2265:0 2258:1 2254:a 2247:[ 2239:) 2234:2 2230:a 2226:, 2221:1 2217:a 2213:( 2188:2 2159:m 2154:G 2144:m 2139:G 2115:n 2082:m 2077:G 2042:k 2030:k 2026:q 2024:( 2018:n 2014:k 2010:n 2008:( 2002:k 1998:k 1994:q 1992:( 1990:O 1986:q 1984:( 1978:k 1974:q 1972:( 1970:O 1966:n 1962:k 1958:n 1954:q 1950:q 1948:( 1935:q 1933:( 1931:O 1927:k 1923:q 1916:q 1914:( 1912:O 1905:k 1894:n 1886:k 1882:n 1869:) 1867:n 1863:n 1859:n 1851:n 1847:n 1845:( 1835:k 1831:n 1829:( 1820:k 1816:k 1812:k 1808:k 1806:( 1803:m 1799:G 1790:m 1786:G 1779:n 1775:k 1771:n 1767:n 1751:n 1727:n 1721:n 1707:G 1703:k 1699:G 1695:T 1675:k 1670:G 1644:k 1632:G 1624:k 1620:T 1612:k 1608:G 1592:G 1588:k 1584:k 1580:G 1576:k 1559:. 1554:n 1545:/ 1541:) 1538:) 1535:n 1532:( 1529:L 1526:S 1518:m 1514:G 1510:( 1504:) 1501:n 1498:( 1495:L 1492:G 1479:k 1460:n 1454:n 1447:k 1443:n 1441:( 1435:k 1431:n 1423:G 1419:k 1415:G 1409:- 1407:k 1399:k 1395:G 1371:l 1368:a 1364:k 1343:G 1324:m 1320:G 1313:k 1305:k 1301:k 1278:k 1250:k 1245:G 1231:k 1217:G 1197:) 1194:G 1191:( 1186:u 1182:R 1157:G 1129:G 1109:G 1078:G 1056:k 1048:k 1044:n 1040:k 1036:n 1034:( 1020:k 986:k 982:k 980:( 978:G 974:k 970:G 966:k 962:G 951:k 944:G 938:- 936:k 932:k 930:( 928:G 916:R 876:n 865:n 863:( 850:n 848:( 819:G 790:e 783:t 776:v 672:8 670:E 664:7 662:E 656:6 654:E 648:4 646:F 640:2 638:G 632:) 630:n 620:) 618:n 608:) 606:n 596:) 594:n 584:) 582:n 572:) 570:n 560:) 558:n 548:) 546:n 488:) 475:Z 463:) 450:Z 426:) 413:Z 404:( 317:p 282:Q 274:n 271:D 261:n 258:A 250:n 247:S 239:n 236:Z

Index

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups
Cyclic group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.