Knowledge

Sachs–Wolfe effect

Source 📝

1704: 570: 47: 582: 1716: 1486: 776:
Luminous Red Galaxy catalog. Their ISW detection traces the localised ISW effect produced by supervoids and superclusters have on the CMB. However, the amplitude of this localised detection is controversial, as it is significantly larger than the expectations and depends on several assumptions of
760:
to travel through them. A photon gets a kick of energy going into a potential well (a supercluster), and it keeps some of that energy after it exits, after the well has been stretched out and shallowed. Similarly, a photon has to expend energy entering a supervoid, but will not get all of it back
701:
around to affect the Universe's expansion. Although it is physically the same as the late-time ISW, for observational purposes it is usually lumped in with the primordial CMB, since the matter fluctuations that cause it are in practice undetectable.
768:
between the galaxy density (the number of galaxies per square degree) and the temperature of the CMB, because superclusters gently heat photons, while supervoids gently cool them. This correlation has been detected at moderate to high significance.
696:
There are two contributions to the ISW effect. The "early-time" ISW occurs immediately after the (non-integrated) Sachs–Wolfe effect produces the primordial CMB, as photons course through density fluctuations while there is still enough
1612: 718:, starts to govern the Universe's expansion. Unfortunately, the nomenclature is a bit confusing. Often, "late-time ISW" implicitly refers to the late-time ISW effect to 171: 947:
Fosalba, P.; et al. (2003). "Detection of the Integrated Sachs–Wolfe and Sunyaev–Zeldovich Effects from the Cosmic Microwave Background-Galaxy Correlation".
645:, causing the CMB spectrum to appear uneven. This effect is the predominant source of fluctuations in the CMB for angular scales larger than about ten degrees. 1327: 1194:
Granett, B. R.; Neyrinck, M. C.; Szapudi, I. (2008). "An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs–Wolfe Effect".
1347: 542: 1352: 1139: 772:
In May 2008, Granett, Neyrinck & Szapudi showed that the late-time ISW can be pinned to discrete supervoids and superclusters identified in the
791: 1418: 1019:
Ho, S.; et al. (2008). "Correlation of CMB with large-scale structure. I. Integrated Sachs–Wolfe tomography and cosmological implications".
1496: 665:
The integrated Sachs–Wolfe (ISW) effect is also caused by gravitational redshift, but it occurs between the surface of last scattering and the
1532: 612: 1320: 730:(linear + higher-order) late-time ISW effect, especially in the case of individual voids and clusters, is sometimes known as the 1587: 1567: 810:
Sachs, R. K.; Wolfe, A. M. (1967). "Perturbations of a Cosmological Model and Angular Variations of the Microwave Background".
17: 1074:
Giannantonio, T.; et al. (2008). "Combined analysis of the integrated Sachs–Wolfe effect and cosmological implications".
1572: 1408: 677:
is dominated in its energy density by something other than matter. If the Universe is dominated by matter, then large-scale
638: 657:. The effect is not constant across the sky due to differences in the matter/energy density at the time of last scattering. 1455: 1313: 346: 1597: 1253: 1557: 555: 726:
with only matter, but dominates over the higher-order part of the effect in a universe with dark energy. The full
605: 1703: 654: 1667: 188: 1622: 550: 274: 264: 1552: 719: 193: 116: 1542: 1388: 786: 1736: 1617: 1577: 1537: 1336: 598: 574: 121: 892:
Crittenden, R. G.; Turok, N. (1996). "Looking for a Cosmological Constant with the Rees–Sciama Effect".
1694: 1433: 1293: 534: 340: 320: 128: 73: 1378: 698: 682: 166: 1582: 1267: 995: 773: 335: 100: 894: 303: 183: 1491: 731: 642: 1305: 1527: 1196: 949: 812: 745: 715: 508: 310: 252: 1662: 1652: 1607: 1562: 1506: 1481: 1215: 1158: 1095: 1040: 968: 913: 858: 821: 765: 678: 653:
The non-integrated Sachs–Wolfe effect is caused by gravitational redshift occurring at the
521: 493: 315: 847:
Rees, M. J.; Sciama, D. W. (1968). "Large-scale Density Inhomogeneities in the Universe".
8: 1672: 1444: 1404: 1262: 413: 383: 330: 286: 178: 68: 1219: 1162: 1099: 1044: 972: 917: 862: 825: 453: 1657: 1647: 1511: 1393: 1231: 1205: 1176: 1148: 1111: 1085: 1056: 1030: 999: 958: 903: 874: 473: 443: 408: 378: 325: 269: 38: 1373: 1171: 1130: 1076: 1021: 929: 503: 1275: 1235: 1180: 1115: 1060: 1677: 1637: 1223: 1166: 1103: 1048: 976: 921: 878: 866: 849: 829: 753: 586: 388: 224: 93: 398: 373: 1368: 1299: 1131:"A reassessment of the evidence of the Integrated Sachs–Wolfe effect through the 722:
in density perturbations. This linear part of the effect entirely vanishes in a
634: 630: 513: 448: 433: 418: 403: 393: 257: 154: 1708: 1107: 1052: 925: 498: 458: 681:
wells and hills do not evolve significantly. If the Universe is dominated by
1730: 1300:"Dark Energy and the Imprint of Super-Structures on the Microwave Background" 739: 723: 483: 468: 368: 1720: 933: 749: 488: 463: 438: 423: 279: 1004: 963: 908: 735: 711: 686: 236: 229: 1602: 1592: 710:
The "late-time" ISW effect arises quite recently in cosmic history, as
478: 1627: 870: 727: 428: 689:, though, those potentials do evolve, subtly changing the energy of 1471: 1450: 1438: 1227: 993: 980: 833: 748:
due to dark energy causes even strong large-scale potential wells (
674: 161: 63: 56: 1210: 1153: 1090: 1035: 690: 1476: 1335: 757: 1642: 1547: 666: 46: 1632: 1501: 705: 670: 1067: 1193: 1122: 1692: 764:
A signature of the late-time ISW is a non-zero cross-
648: 761:upon exiting the slightly reduced potential hill. 1140:Monthly Notices of the Royal Astronomical Society 1728: 792:Cosmic microwave background spectral distortions 660: 1302:, a webpage by Granett, Neyrinck & Szapudi. 891: 1321: 1263:Sachs–Wolfe effect in some anisotropic models 998:(2003). "Physical Evidence for Dark Energy". 606: 1073: 1337:Cosmic microwave background radiation (CMB) 742:elucidated the following physical picture. 1328: 1314: 1128: 846: 809: 613: 599: 45: 1209: 1170: 1152: 1089: 1034: 1003: 962: 907: 641:(CMB), in which photons from the CMB are 1273: 946: 706:Late-time integrated Sachs–Wolfe effect 14: 1729: 669:, so it is not part of the primordial 1309: 639:cosmic microwave background radiation 1260:Aguiar, Paulo, and Paulo Crawford, 1129:Raccanelli, A.; et al. (2008). 756:) to decay over the time it takes a 27:Phenomenon of redshift in cosmology 24: 1018: 341:2dF Galaxy Redshift Survey ("2dF") 25: 1748: 1274:White, Martin; Hu, Wayne (1997). 1254:The Integrated Sachs–Wolfe Effect 1245: 649:Non-integrated Sachs–Wolfe effect 556:Timeline of cosmological theories 321:Cosmic Background Explorer (COBE) 1714: 1702: 1172:10.1111/j.1365-2966.2008.13189.x 580: 569: 568: 336:Sloan Digital Sky Survey (SDSS) 189:Future of an expanding universe 1187: 1012: 987: 940: 885: 840: 803: 679:gravitational potential energy 551:History of the Big Bang theory 347:Wilkinson Microwave Anisotropy 13: 1: 797: 661:Integrated Sachs–Wolfe effect 543:Discovery of cosmic microwave 194:Ultimate fate of the universe 1543:Arcminute Microkelvin Imager 1257:. University of Chicago, IL. 7: 1618:Mobile Anisotropy Telescope 1578:Cosmic Anisotropy Telescope 1538:Atacama Cosmology Telescope 996:et al. (SDSS collaboration) 780: 311:Black Hole Initiative (BHI) 10: 1753: 1348:Discovery of CMB radiation 1283:Astronomy and Astrophysics 1108:10.1103/PhysRevD.77.123520 1053:10.1103/PhysRevD.78.043519 926:10.1103/PhysRevLett.76.575 655:surface of last scattering 643:gravitationally redshifted 74:Chronology of the universe 1520: 1464: 1426: 1417: 1400: 1361: 1353:Timeline of CMB astronomy 1343: 167:Expansion of the universe 1583:Cosmic Background Imager 1389:Sunyaev–Zeldovich effect 1276:"The Sachs–Wolfe effect" 787:Sunyaev–Zeldovich effect 331:Planck space observatory 117:Gravitational wave (GWB) 895:Physical Review Letters 637:, is a property of the 184:Inhomogeneous cosmology 693:passing through them. 673:. It occurs when the 1197:Astrophysical Journal 950:Astrophysical Journal 813:Astrophysical Journal 746:Accelerated expansion 716:cosmological constant 275:Large-scale structure 253:Shape of the universe 1663:South Pole Telescope 1407:image (2018) of the 766:correlation function 587:Astronomy portal 545:background radiation 522:List of cosmologists 1563:BICEP (1,2,3,Array) 1220:2008ApJ...683L..99G 1163:2008MNRAS.386.2161R 1100:2008PhRvD..77l3520G 1045:2008PhRvD..78d3519H 973:2003ApJ...597L..89F 918:1996PhRvL..76..575C 863:1968Natur.217..511R 826:1967ApJ...147...73S 287:Structure formation 179:Friedmann equations 69:Age of the universe 33:Part of a series on 1737:Physical cosmology 1658:Simons Observatory 1394:Thomson scattering 1384:Sachs–Wolfe effect 1294:Sachs–Wolfe effect 1135:–NVSS correlation" 732:Rees–Sciama effect 720:linear/first order 627:Sachs–Wolfe effect 326:Dark Energy Survey 270:Large quasar group 39:Physical cosmology 18:Rees–Sciama effect 1690: 1689: 1686: 1685: 1374:Diffusion damping 1077:Physical Review D 1022:Physical Review D 857:(5128): 511–516. 623: 622: 294: 293: 136: 135: 16:(Redirected from 1744: 1719: 1718: 1717: 1707: 1706: 1698: 1678:Very Small Array 1424: 1423: 1330: 1323: 1316: 1307: 1306: 1290: 1280: 1240: 1239: 1213: 1191: 1185: 1184: 1174: 1156: 1147:(4): 2161–2166. 1126: 1120: 1119: 1093: 1071: 1065: 1064: 1038: 1016: 1010: 1009: 1007: 1005:astro-ph/0307335 991: 985: 984: 966: 964:astro-ph/0307249 944: 938: 937: 911: 909:astro-ph/9510072 889: 883: 882: 871:10.1038/217511a0 844: 838: 837: 807: 615: 608: 601: 585: 584: 583: 572: 571: 265:Galaxy formation 225:Lambda-CDM model 214: 213: 206:Components  88: 87: 49: 30: 29: 21: 1752: 1751: 1747: 1746: 1745: 1743: 1742: 1741: 1727: 1726: 1725: 1715: 1713: 1701: 1693: 1691: 1682: 1516: 1460: 1413: 1412: 1398: 1369:Cosmic variance 1357: 1339: 1334: 1278: 1248: 1243: 1204:(2): L99–L102. 1192: 1188: 1127: 1123: 1072: 1068: 1017: 1013: 992: 988: 945: 941: 890: 886: 845: 841: 808: 804: 800: 783: 708: 663: 651: 635:Arthur M. Wolfe 631:Rainer K. Sachs 619: 581: 579: 561: 560: 547: 544: 537: 535:Subject history 527: 526: 518: 363: 355: 354: 351: 348: 306: 296: 295: 258:Galaxy filament 211: 199: 198: 150: 145:Expansion  138: 137: 122:Microwave (CMB) 101:Nucleosynthesis 85: 28: 23: 22: 15: 12: 11: 5: 1750: 1740: 1739: 1724: 1723: 1711: 1688: 1687: 1684: 1683: 1681: 1680: 1675: 1670: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1565: 1560: 1555: 1550: 1545: 1540: 1535: 1530: 1524: 1522: 1518: 1517: 1515: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1474: 1468: 1466: 1462: 1461: 1459: 1458: 1453: 1448: 1441: 1436: 1430: 1428: 1421: 1415: 1414: 1402: 1401: 1399: 1397: 1396: 1391: 1386: 1381: 1376: 1371: 1365: 1363: 1359: 1358: 1356: 1355: 1350: 1344: 1341: 1340: 1333: 1332: 1325: 1318: 1310: 1304: 1303: 1297: 1291: 1271: 1258: 1247: 1246:External links 1244: 1242: 1241: 1228:10.1086/591670 1186: 1121: 1084:(12): 123520. 1066: 1011: 994:Scranton, R.; 986: 981:10.1086/379848 939: 902:(4): 575–578. 884: 839: 834:10.1086/148982 801: 799: 796: 795: 794: 789: 782: 779: 777:the analysis. 707: 704: 662: 659: 650: 647: 629:, named after 621: 620: 618: 617: 610: 603: 595: 592: 591: 590: 589: 577: 563: 562: 559: 558: 553: 548: 541: 538: 533: 532: 529: 528: 525: 524: 517: 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 461: 456: 451: 446: 441: 436: 431: 426: 421: 416: 411: 406: 401: 396: 391: 386: 381: 376: 371: 365: 364: 361: 360: 357: 356: 353: 352: 345: 343: 338: 333: 328: 323: 318: 313: 307: 302: 301: 298: 297: 292: 291: 290: 289: 277: 272: 267: 255: 247: 246: 242: 241: 240: 239: 227: 219: 218: 212: 205: 204: 201: 200: 197: 196: 191: 186: 181: 169: 164: 151: 144: 143: 140: 139: 134: 133: 132: 131: 129:Neutrino (CNB) 119: 111: 110: 106: 105: 104: 103: 86: 84:Early universe 83: 82: 79: 78: 77: 76: 71: 66: 51: 50: 42: 41: 35: 34: 26: 9: 6: 4: 3: 2: 1749: 1738: 1735: 1734: 1732: 1722: 1712: 1710: 1705: 1700: 1699: 1696: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1525: 1523: 1519: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1469: 1467: 1463: 1457: 1454: 1452: 1449: 1447: 1446: 1442: 1440: 1437: 1435: 1432: 1431: 1429: 1425: 1422: 1420: 1416: 1410: 1406: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1379:Recombination 1377: 1375: 1372: 1370: 1367: 1366: 1364: 1360: 1354: 1351: 1349: 1346: 1345: 1342: 1338: 1331: 1326: 1324: 1319: 1317: 1312: 1311: 1308: 1301: 1298: 1295: 1292: 1288: 1284: 1277: 1272: 1269: 1265: 1264: 1259: 1256: 1255: 1251:Sam LaRoque, 1250: 1249: 1237: 1233: 1229: 1225: 1221: 1217: 1212: 1207: 1203: 1199: 1198: 1190: 1182: 1178: 1173: 1168: 1164: 1160: 1155: 1150: 1146: 1142: 1141: 1136: 1134: 1125: 1117: 1113: 1109: 1105: 1101: 1097: 1092: 1087: 1083: 1079: 1078: 1070: 1062: 1058: 1054: 1050: 1046: 1042: 1037: 1032: 1029:(4): 043519. 1028: 1024: 1023: 1015: 1006: 1001: 997: 990: 982: 978: 974: 970: 965: 960: 956: 952: 951: 943: 935: 931: 927: 923: 919: 915: 910: 905: 901: 897: 896: 888: 880: 876: 872: 868: 864: 860: 856: 852: 851: 843: 835: 831: 827: 823: 819: 815: 814: 806: 802: 793: 790: 788: 785: 784: 778: 775: 770: 767: 762: 759: 755: 752:) and hills ( 751: 750:superclusters 747: 743: 741: 740:Dennis Sciama 737: 733: 729: 725: 724:flat universe 721: 717: 713: 703: 700: 694: 692: 688: 684: 680: 676: 672: 668: 658: 656: 646: 644: 640: 636: 632: 628: 616: 611: 609: 604: 602: 597: 596: 594: 593: 588: 578: 576: 567: 566: 565: 564: 557: 554: 552: 549: 546: 540: 539: 536: 531: 530: 523: 520: 519: 515: 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 366: 359: 358: 350: 344: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 308: 305: 300: 299: 288: 285: 281: 278: 276: 273: 271: 268: 266: 263: 259: 256: 254: 251: 250: 249: 248: 244: 243: 238: 235: 231: 228: 226: 223: 222: 221: 220: 216: 215: 209: 203: 202: 195: 192: 190: 187: 185: 182: 180: 177: 173: 170: 168: 165: 163: 160: 156: 153: 152: 148: 142: 141: 130: 127: 123: 120: 118: 115: 114: 113: 112: 108: 107: 102: 99: 95: 92: 91: 90: 89: 81: 80: 75: 72: 70: 67: 65: 62: 58: 55: 54: 53: 52: 48: 44: 43: 40: 37: 36: 32: 31: 19: 1443: 1383: 1286: 1282: 1261: 1252: 1201: 1195: 1189: 1144: 1138: 1132: 1124: 1081: 1075: 1069: 1026: 1020: 1014: 989: 954: 948: 942: 899: 893: 887: 854: 848: 842: 817: 811: 805: 771: 763: 744: 709: 695: 664: 652: 626: 624: 349:Probe (WMAP) 283: 280:Reionization 261: 233: 207: 175: 158: 155:Hubble's law 146: 125: 97: 60: 1419:Experiments 736:Martin Rees 712:dark energy 687:dark energy 304:Experiments 237:Dark matter 230:Dark energy 172:FLRW metric 109:Backgrounds 1613:LSPE/STRIP 1608:Keck Array 1603:GroundBIRD 1593:COSMOSOMAS 1487:LSPE/SWIPE 957:(2): L89. 798:References 384:Copernicus 362:Scientists 217:Components 1653:Saskatoon 1628:POLARBEAR 1482:BOOMERanG 1211:0805.3695 1154:0802.0084 1091:0801.4380 1036:0801.0642 728:nonlinear 714:, or the 699:radiation 683:radiation 514:Zeldovich 414:Friedmann 389:de Sitter 316:BOOMERanG 245:Structure 210:Structure 94:Inflation 1731:Category 1673:Tenerife 1472:Archeops 1451:RELIKT-1 1439:LiteBIRD 1296:Level 5. 1236:15976818 1181:15054396 1116:21763795 1061:38383124 934:10061494 781:See also 734:, since 685:, or by 675:Universe 575:Category 494:Suntzeff 454:Lemaître 404:Einstein 369:Aaronson 162:Redshift 64:Universe 57:Big Bang 1709:Physics 1695:Portals 1648:QUIJOTE 1465:Balloon 1403:4-year 1362:Effects 1270:format) 1216:Bibcode 1159:Bibcode 1096:Bibcode 1041:Bibcode 969:Bibcode 914:Bibcode 879:4168044 859:Bibcode 822:Bibcode 691:photons 499:Sunyaev 484:Schmidt 474:Penzias 469:Penrose 444:Huygens 434:Hawking 419:Galileo 1573:CAPMAP 1521:Ground 1512:TopHat 1507:Spider 1497:MAXIMA 1477:ARCADE 1445:Planck 1405:Planck 1234:  1179:  1114:  1059:  932:  877:  850:Nature 820:: 73. 758:photon 573:  509:Wilson 504:Tolman 464:Newton 459:Mather 449:Kepler 439:Hubble 399:Ehlers 379:Alpher 374:Alfvén 282:  260:  232:  174:  157:  149:Future 124:  96:  59:  1721:Space 1643:QUIET 1638:QUBIC 1588:CLASS 1548:AMiBA 1533:ACBAR 1427:Space 1289:: 89. 1279:(PDF) 1232:S2CID 1206:arXiv 1177:S2CID 1149:arXiv 1112:S2CID 1086:arXiv 1057:S2CID 1031:arXiv 1000:arXiv 959:arXiv 904:arXiv 875:S2CID 754:voids 667:Earth 489:Smoot 479:Rubin 424:Gamow 409:Ellis 394:Dicke 1633:QUaD 1623:OVRO 1598:DASI 1568:BIMA 1558:ATCA 1553:APEX 1502:QMAP 1492:EBEX 1456:WMAP 1434:COBE 1133:WMAP 930:PMID 774:SDSS 738:and 633:and 625:The 429:Guth 1668:SZA 1528:ABS 1409:CMB 1287:321 1268:PDF 1266:. ( 1224:doi 1202:683 1167:doi 1145:386 1104:doi 1049:doi 977:doi 955:597 922:doi 867:doi 855:217 830:doi 818:147 671:CMB 1733:: 1285:. 1281:. 1230:. 1222:. 1214:. 1200:. 1175:. 1165:. 1157:. 1143:. 1137:. 1110:. 1102:. 1094:. 1082:77 1080:. 1055:. 1047:. 1039:. 1027:78 1025:. 975:. 967:. 953:. 928:. 920:. 912:. 900:76 898:. 873:. 865:. 853:. 828:. 816:. 1697:: 1411:. 1329:e 1322:t 1315:v 1238:. 1226:: 1218:: 1208:: 1183:. 1169:: 1161:: 1151:: 1118:. 1106:: 1098:: 1088:: 1063:. 1051:: 1043:: 1033:: 1008:. 1002:: 983:. 979:: 971:: 961:: 936:. 924:: 916:: 906:: 881:. 869:: 861:: 836:. 832:: 824:: 614:e 607:t 600:v 284:· 262:· 234:· 208:· 176:· 159:· 147:· 126:· 98:· 61:· 20:)

Index

Rees–Sciama effect
Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.