Knowledge

Regular space

Source đź“ť

760:) will imply regularity if some weaker separation axiom, such as preregularity, is satisfied. Such conditions often come in two versions: a regular version and a Hausdorff version. Although Hausdorff spaces aren't generally regular, a Hausdorff space that is also (say) locally compact will be regular, because any Hausdorff space is preregular. Thus from a certain point of view, regularity is not really the issue here, and we could impose a weaker condition instead to get the same result. However, definitions are usually still phrased in terms of regularity, since this condition is more well known than any weaker one. 1476: 1259: 1497: 1465: 33: 1534: 1507: 1487: 435: 740:
There are many results for topological spaces that hold for both regular and Hausdorff spaces. Most of the time, these results hold for all preregular spaces; they were listed for regular and Hausdorff spaces separately because the idea of preregular spaces came later. On the other hand, those
814:(and hence not preregular) cannot be regular. Most examples of regular and nonregular spaces studied in mathematics may be found in those two articles. On the other hand, spaces that are regular but not completely regular, or preregular but not regular, are usually constructed only to provide 845:
Most interesting spaces in mathematics that are regular also satisfy some stronger condition. Thus, regular spaces are usually studied to find properties and theorems, such as the ones below, that are actually applied to completely regular spaces, typically in analysis.
639:
is a topological space where every point has an open neighbourhood that is regular. Every regular space is locally regular, but the converse is not true. A classical example of a locally regular space that is not regular is the
608:
regular space is Hausdorff: given two distinct points, at least one of them misses the closure of the other one, so (by regularity) there exist disjoint neighborhoods separating one point from (the closure of) the other.
620:" as they are used here, or use both terms interchangeably. This article uses the term "regular" freely, but will usually say "regular Hausdorff", which is unambiguous, instead of the less precise "T 1061:. In fact, this property characterises regular spaces; if the closed neighbourhoods of each point in a topological space form a local base at that point, then the space must be regular. 987: 937: 915: 873: 1007: 961: 893: 839: 1537: 1563: 677: 224: 206: 17: 576:
space is a topological space in which any two distinct points are separated by neighbourhoods.) It turns out that a space is T
616:" are not uncommon, there is significant variation in the literature: some authors switch the definitions of "regular" and "T 97: 69: 1171: 1525: 1520: 1119: 116: 76: 625: 338: 1515: 1080:. This property is actually weaker than regularity; a topological space whose regular open sets form a base is 83: 54: 50: 1417: 657: 593: 65: 917:
with empty interior with respect to the usual Euclidean topology, one can construct a finer topology on
1558: 1425: 684: 788: 1224: 803: 768: 741:
results that are truly about regularity generally don't also apply to nonregular Hausdorff spaces.
512: 966: 920: 898: 856: 446:, represented by a closed disk on the right of the picture, are separated by their neighbourhoods 1510: 1496: 43: 1445: 1366: 1243: 1231: 1204: 1164: 784: 660:
points can be separated by neighbourhoods. Since a Hausdorff space is the same as a preregular
1440: 1287: 1214: 764: 1435: 1387: 1361: 1209: 90: 8: 1282: 1065: 838:
than on regularity. An example of a regular space that is not completely regular is the
718: 1486: 1480: 1450: 1430: 1351: 1341: 1219: 1199: 992: 946: 878: 749: 137: 1568: 1475: 1468: 1334: 1292: 1157: 1115: 1082: 757: 597: 483: 388: 358: 144: 1500: 1248: 1194: 1069: 831: 827: 661: 653: 589: 501: 423: 152: 132: 1307: 1302: 1073: 940: 811: 792: 753: 744:
There are many situations where another condition of topological spaces (such as
569: 419: 260: 188: 1490: 676:). In fact, a regular Hausdorff space satisfies the slightly stronger condition 1397: 1329: 1009:
open in the usual topology. That topology will be Hausdorff, but not regular.
815: 771:, which is a stronger condition. Regular spaces should also be contrasted with 400: 1552: 1407: 1317: 1297: 1111: 1103: 733:. Thus a regular space encountered in practice can usually be assumed to be T 641: 535: 531: 369: 1392: 1312: 1258: 1135: 772: 745: 315: 295: 277: 466:, and the closed disk F has plenty of room to wiggle around the open disk 1402: 354: 1346: 1277: 1236: 1054: 850: 796: 600:
not containing the other.) Indeed, if a space is Hausdorff then it is T
596:, i.e., for every pair of distinct points, at least one of them has an 494: 849:
There exist Hausdorff spaces that are not regular. An example is the
710:(Hausdorffness); all are equivalent in the context of regular spaces. 442:, represented by a dot on the left of the picture, and the closed set 1371: 455: 32: 1356: 1324: 1273: 1180: 1136:"general topology - Preregular and locally compact implies regular" 696: 350: 170: 819: 721:. A space is regular if and only if its Kolmogorov quotient is T 434: 1042: 713:
Speaking more theoretically, the conditions of regularity and T
822:. Of course, one can easily find regular spaces that are not T 612:
Although the definitions presented here for "regular" and "T
592:
is a topological space in which any two distinct points are
1149: 647: 737:, by replacing the space with its Kolmogorov quotient. 995: 969: 949: 923: 901: 881: 859: 818:to conjectures, showing the boundaries of possible 57:. Unsourced material may be challenged and removed. 1001: 981: 955: 931: 909: 887: 867: 568:is a topological space that is both regular and a 462:has plenty of room to wiggle around the open disk 1049:. In fancier terms, the closed neighbourhoods of 830:, but these examples provide more insight on the 1550: 1068:of these closed neighbourhoods, we see that the 1165: 403:by neighborhoods. This condition is known as 778: 1533: 1506: 1172: 1158: 1021:is a regular space. Then, given any point 925: 903: 861: 117:Learn how and when to remove this message 1012: 648:Relationships to other separation axioms 534:. Concisely put, it must be possible to 433: 1102: 1076:for the open sets of the regular space 767:are regular; in fact, they are usually 580:if and only if it is both regular and T 14: 1551: 729:if and only if it's both regular and T 1153: 875:of real numbers. More generally, if 826:, and thus not Hausdorff, such as an 683:. (However, such a space need not be 652:A regular space is necessarily also 422:". These conditions are examples of 55:adding citations to reliable sources 26: 763:Most topological spaces studied in 24: 1033:, there is a closed neighbourhood 25: 1580: 973: 725:; and, as mentioned, a space is T 668:, a regular space which is also T 1564:Properties of topological spaces 1532: 1505: 1495: 1485: 1474: 1464: 1463: 1257: 626:History of the separation axioms 31: 895:is a fixed nonclosed subset of 799:. Every such space is regular. 624:". For more on this issue, see 42:needs additional citations for 1128: 1096: 429: 13: 1: 1089: 672:must be Hausdorff (and thus T 658:topologically distinguishable 594:topologically distinguishable 545:with disjoint neighborhoods. 1179: 982:{\displaystyle U\setminus C} 932:{\displaystyle \mathbb {R} } 910:{\displaystyle \mathbb {R} } 868:{\displaystyle \mathbb {R} } 687:.) Thus, the definition of T 7: 943:the collection of all sets 418:" usually means "a regular 10: 1585: 1426:Banach fixed-point theorem 1140:Mathematics Stack Exchange 1459: 1416: 1380: 1266: 1255: 1187: 789:small inductive dimension 572:. (A Hausdorff space or T 334: 314: 294: 276: 259: 241: 223: 205: 187: 169: 151: 143: 131: 804:completely regular space 802:As described above, any 779:Examples and nonexamples 507:that does not belong to 478:do not touch each other. 454:, represented by larger 564:regular Hausdorff space 18:Regular Hausdorff space 1481:Mathematics portal 1381:Metrics and properties 1367:Second-countable space 1003: 983: 957: 933: 911: 889: 869: 785:zero-dimensional space 479: 353:and related fields of 237:(completely Hausdorff) 1013:Elementary properties 1004: 984: 958: 934: 912: 890: 870: 806:is regular, and any T 765:mathematical analysis 717:-ness are related by 635:locally regular space 437: 387:have non-overlapping 1436:Invariance of domain 1388:Euler characteristic 1362:Bundle (mathematics) 993: 967: 947: 921: 899: 879: 857: 787:with respect to the 719:Kolmogorov quotients 685:completely Hausdorff 522:and a neighbourhood 51:improve this article 1446:Tychonoff's theorem 1441:PoincarĂ© conjecture 1195:General (point-set) 840:Tychonoff corkscrew 255:(regular Hausdorff) 1431:De Rham cohomology 1352:Polyhedral complex 1342:Simplicial complex 1025:and neighbourhood 999: 979: 953: 929: 907: 885: 865: 810:space that is not 769:completely regular 480: 389:open neighborhoods 308:(completely normal 290:(normal Hausdorff) 138:topological spaces 1559:Separation axioms 1546: 1545: 1335:fundamental group 1104:Munkres, James R. 1070:regular open sets 1002:{\displaystyle U} 956:{\displaystyle U} 888:{\displaystyle C} 758:local compactness 598:open neighborhood 511:, there exists a 484:topological space 424:separation axioms 383:not contained in 359:topological space 347: 346: 328:(perfectly normal 133:Separation axioms 127: 126: 119: 101: 16:(Redirected from 1576: 1536: 1535: 1509: 1508: 1499: 1489: 1479: 1478: 1467: 1466: 1261: 1174: 1167: 1160: 1151: 1150: 1144: 1143: 1132: 1126: 1125: 1110:(2nd ed.). 1100: 1008: 1006: 1005: 1000: 988: 986: 985: 980: 962: 960: 959: 954: 938: 936: 935: 930: 928: 916: 914: 913: 908: 906: 894: 892: 891: 886: 874: 872: 871: 866: 864: 828:indiscrete space 656:, i.e., any two 637: 636: 590:Kolmogorov space 566: 565: 558: 557: 330: Hausdorff) 325: 320: 310: Hausdorff) 305: 300: 287: 282: 267: 266: 252: 247: 234: 229: 214: 213: 198: 193: 180: 175: 162: 157: 129: 128: 122: 115: 111: 108: 102: 100: 59: 35: 27: 21: 1584: 1583: 1579: 1578: 1577: 1575: 1574: 1573: 1549: 1548: 1547: 1542: 1473: 1455: 1451:Urysohn's lemma 1412: 1376: 1262: 1253: 1225:low-dimensional 1183: 1178: 1148: 1147: 1134: 1133: 1129: 1122: 1101: 1097: 1092: 1015: 994: 991: 990: 968: 965: 964: 948: 945: 944: 939:by taking as a 924: 922: 919: 918: 902: 900: 897: 896: 880: 877: 876: 860: 858: 855: 854: 835: 825: 816:counterexamples 809: 781: 754:paracompactness 750:pseudonormality 736: 732: 728: 724: 716: 709: 705: 700: 694: 690: 681: 675: 671: 665: 650: 634: 633: 623: 619: 615: 607: 603: 587: 583: 579: 575: 570:Hausdorff space 563: 562: 555: 551: 550: 432: 420:Hausdorff space 415: 408: 343: 329: 323: 321: 318: 309: 303: 301: 298: 285: 283: 280: 268: 264: 263: 250: 248: 245: 232: 230: 227: 215: 211: 209: 196: 194: 191: 178: 176: 173: 160: 158: 155: 135: 123: 112: 106: 103: 66:"Regular space" 60: 58: 48: 36: 23: 22: 15: 12: 11: 5: 1582: 1572: 1571: 1566: 1561: 1544: 1543: 1541: 1540: 1530: 1529: 1528: 1523: 1518: 1503: 1493: 1483: 1471: 1460: 1457: 1456: 1454: 1453: 1448: 1443: 1438: 1433: 1428: 1422: 1420: 1414: 1413: 1411: 1410: 1405: 1400: 1398:Winding number 1395: 1390: 1384: 1382: 1378: 1377: 1375: 1374: 1369: 1364: 1359: 1354: 1349: 1344: 1339: 1338: 1337: 1332: 1330:homotopy group 1322: 1321: 1320: 1315: 1310: 1305: 1300: 1290: 1285: 1280: 1270: 1268: 1264: 1263: 1256: 1254: 1252: 1251: 1246: 1241: 1240: 1239: 1229: 1228: 1227: 1217: 1212: 1207: 1202: 1197: 1191: 1189: 1185: 1184: 1177: 1176: 1169: 1162: 1154: 1146: 1145: 1127: 1120: 1094: 1093: 1091: 1088: 1014: 1011: 998: 978: 975: 972: 952: 927: 905: 884: 863: 833: 823: 807: 795:consisting of 780: 777: 734: 730: 726: 722: 714: 707: 703: 698: 692: 688: 679: 673: 669: 663: 649: 646: 638: 621: 617: 613: 605: 601: 585: 581: 577: 573: 553: 493:if, given any 431: 428: 413: 406: 345: 344: 342: 341: 335: 332: 331: 326: 317: 312: 311: 306: 297: 292: 291: 288: 279: 274: 273: 270: 262: 257: 256: 253: 244: 239: 238: 235: 226: 221: 220: 217: 208: 203: 202: 199: 190: 185: 184: 181: 172: 167: 166: 163: 154: 149: 148: 147:classification 141: 140: 125: 124: 39: 37: 30: 9: 6: 4: 3: 2: 1581: 1570: 1567: 1565: 1562: 1560: 1557: 1556: 1554: 1539: 1531: 1527: 1524: 1522: 1519: 1517: 1514: 1513: 1512: 1504: 1502: 1498: 1494: 1492: 1488: 1484: 1482: 1477: 1472: 1470: 1462: 1461: 1458: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1423: 1421: 1419: 1415: 1409: 1408:Orientability 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1385: 1383: 1379: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1336: 1333: 1331: 1328: 1327: 1326: 1323: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1295: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1275: 1272: 1271: 1269: 1265: 1260: 1250: 1247: 1245: 1244:Set-theoretic 1242: 1238: 1235: 1234: 1233: 1230: 1226: 1223: 1222: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1205:Combinatorial 1203: 1201: 1198: 1196: 1193: 1192: 1190: 1186: 1182: 1175: 1170: 1168: 1163: 1161: 1156: 1155: 1152: 1141: 1137: 1131: 1123: 1121:0-13-181629-2 1117: 1113: 1112:Prentice Hall 1109: 1105: 1099: 1095: 1087: 1085: 1084: 1079: 1075: 1071: 1067: 1062: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1017:Suppose that 1010: 996: 976: 970: 950: 942: 882: 852: 847: 843: 841: 837: 829: 821: 817: 813: 805: 800: 798: 794: 790: 786: 776: 774: 773:normal spaces 770: 766: 761: 759: 755: 751: 747: 742: 738: 720: 711: 701: 686: 682: 667: 659: 655: 645: 643: 642:bug-eyed line 632: 629: 627: 610: 599: 595: 591: 571: 567: 559: 546: 544: 540: 537: 533: 529: 525: 521: 517: 514: 513:neighbourhood 510: 506: 503: 499: 496: 492: 491:regular space 488: 485: 477: 473: 469: 465: 461: 457: 453: 449: 445: 441: 436: 427: 425: 421: 417: 409: 402: 398: 394: 390: 386: 382: 378: 374: 371: 370:closed subset 367: 366:regular space 363: 360: 356: 352: 340: 337: 336: 333: 327: 322: 313: 307: 302: 293: 289: 284: 275: 271: 269: 258: 254: 249: 240: 236: 231: 222: 218: 216: 204: 200: 195: 186: 182: 177: 168: 164: 159: 150: 146: 142: 139: 134: 130: 121: 118: 110: 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: â€“  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 19: 1538:Publications 1403:Chern number 1393:Betti number 1276: / 1267:Key concepts 1215:Differential 1139: 1130: 1107: 1098: 1081: 1077: 1063: 1058: 1050: 1046: 1038: 1034: 1030: 1026: 1022: 1018: 1016: 848: 844: 801: 782: 762: 743: 739: 712: 706:instead of T 651: 630: 611: 604:, and each T 561: 549: 547: 542: 538: 527: 523: 519: 515: 508: 504: 497: 490: 486: 481: 475: 471: 467: 463: 459: 451: 447: 443: 439: 411: 410:. The term " 404: 396: 392: 384: 380: 379:and a point 376: 372: 365: 364:is called a 361: 348: 242: 225:completely T 165:(Kolmogorov) 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 1501:Wikiversity 1418:Key results 1083:semiregular 1064:Taking the 853:on the set 797:clopen sets 430:Definitions 355:mathematics 272:(Tychonoff) 201:(Hausdorff) 1553:Categories 1347:CW complex 1288:Continuity 1278:Closed set 1237:cohomology 1090:References 1055:local base 1041:that is a 851:K-topology 691:may cite T 654:preregular 495:closed set 458:. The dot 456:open disks 438:The point 145:Kolmogorov 107:April 2022 77:newspapers 1526:geometric 1521:algebraic 1372:Cobordism 1308:Hausdorff 1303:connected 1220:Geometric 1210:Continuum 1200:Algebraic 1066:interiors 974:∖ 812:Hausdorff 746:normality 530:that are 401:separated 368:if every 219:(Urysohn) 183:(FrĂ©chet) 1569:Topology 1491:Wikibook 1469:Category 1357:Manifold 1325:Homotopy 1283:Interior 1274:Open set 1232:Homology 1181:Topology 1108:Topology 1106:(2000). 820:theorems 536:separate 532:disjoint 500:and any 351:topology 1516:general 1318:uniform 1298:compact 1249:Digital 1072:form a 1053:form a 405:Axiom T 399:can be 391:. Thus 339:History 265:3½ 91:scholar 1511:Topics 1313:metric 1188:Fields 1118:  1043:subset 791:has a 702:, or T 584:. (A T 470:, yet 324:  304:  286:  251:  233:  212:½ 197:  179:  161:  93:  86:  79:  72:  64:  1293:Space 836:axiom 756:, or 666:space 556:space 502:point 489:is a 416:space 98:JSTOR 84:books 1116:ISBN 1074:base 989:for 963:and 941:base 793:base 541:and 474:and 450:and 395:and 357:, a 70:news 1057:at 1045:of 1037:of 1029:of 588:or 560:or 526:of 518:of 375:of 349:In 136:in 53:by 1555:: 1138:. 1114:. 1086:. 842:. 783:A 775:. 752:, 748:, 704:2½ 695:, 680:2½ 644:. 631:A 628:. 548:A 482:A 426:. 1173:e 1166:t 1159:v 1142:. 1124:. 1078:X 1059:x 1051:x 1047:G 1039:x 1035:E 1031:x 1027:G 1023:x 1019:X 997:U 977:C 971:U 951:U 926:R 904:R 883:C 862:R 834:0 832:T 824:0 808:0 735:3 731:0 727:3 723:3 715:3 708:2 699:1 697:T 693:0 689:3 678:T 674:3 670:0 664:0 662:T 622:3 618:3 614:3 606:0 602:0 586:0 582:0 578:3 574:2 554:3 552:T 543:F 539:x 528:F 524:V 520:x 516:U 509:F 505:x 498:F 487:X 476:V 472:U 468:V 464:U 460:x 452:V 448:U 444:F 440:x 414:3 412:T 407:3 397:C 393:p 385:C 381:p 377:X 373:C 362:X 319:6 316:T 299:5 296:T 281:4 278:T 261:T 246:3 243:T 228:2 210:2 207:T 192:2 189:T 174:1 171:T 156:0 153:T 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:. 20:)

Index

Regular Hausdorff space

verification
improve this article
adding citations to reliable sources
"Regular space"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Separation axioms
topological spaces
Kolmogorov
T0
T1
T2
T2½
completely T2
T3
T
T4
T5
T6
History
topology
mathematics
topological space
closed subset

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑