Knowledge

Ring dike

Source 📝

60: 20: 119:, forming a ring dike. These dikes can form as a direct result of collapse caldera formation, or through many injections around the ring fault over time. The magma of a ring dike is typically composed of acidic or intermediate composition due to the less dense melt that exists at the top of the magma chamber. 127:
It has been hypothesized that ring dikes may form when inclined sheets are captured within a ring fault system, which cause them to act as feeder dikes. The deflection of the sheets may be caused by the difference in material properties between and within the
87:. The geometry of the top of the magma chamber dictates the location and magnitude of the tension fractures. In addition, it was found that the higher the radius to depth ratio of the magma chamber, the higher the probability of forming a collapse 46:
body that is circular, oval or arcuate in plan and has steep contacts. While the widths of ring dikes differ, they can be up to several thousand meters. The most commonly accepted method of ring dike formation is directly related to collapse
205:
body forms an oval and its diameter can be measured at roughly 5.8 km by 8.5 km. The width of the dike varies throughout the profile, with a maximum width of approximately 300 meters. The composition varies from
94:
Once a tension threshold is approached, the roof of the magma chamber collapses in on itself, and is known as cauldron subsidence. Tension fractures extend deeper in the profile and shear fractures or
282:
Johnson, Scott E., S. R. Paterson, and M. C. Tate. "Structure and emplacement history of a multiple-center, cone-sheet–bearing ring complex: The Zarza Intrusive Complex, Baja California, Mexico."
83:
away from the chamber are both mechanisms that can empty a magma chamber. As pressure in the magma chamber changes, an increase in tensile stresses create tension fractures at the surface of the
140:
Whether or not a caldera ring fault dips inward or outward from the center of subsidence is a highly contentious issue. Ring faults near the surface are subject to
313: 516: 173:
subsidence appears to be the mechanism leading to the formation of some of the ring dikes, but not all of them. The composition ranges from
586: 148:, changing the morphology of the caldera walls and making it difficult to tell the dip of the fault at formation. 337: 429:"Lateral versus vertical emplacement in shallow-level intrusions? The Slieve Gullion Ring-complex revisited" 517:"Caldera faults capture and deflect inclined sheets : An alternative mechanism of ring-dike formation" 481:
Gudmundsson, Agust, Joan Marti, and Elisenda Turon. "Stress fields generating ring faults in volcanoes."
622: 617: 531: 440: 385: 325: 314:"Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence" 8: 627: 535: 444: 389: 329: 547: 464: 409: 269:
Billings, Marland P. "Section of Geology and Mineralogy: Ring-dikes and Their Origin."
116: 582: 468: 456: 427:
Emeleus, C. Henry; Troll, Valentin R.; Chew, David M.; Meade, Fiona C. (March 2012).
401: 341: 162: 551: 413: 539: 495: 448: 393: 333: 190: 219: 129: 63:
Questa Caldera ring dike, exposed in the valley of the Red River, New Mexico, US
202: 104: 96: 40: 543: 452: 611: 460: 405: 345: 166: 112: 68: 564:
Modell, David. "Ring-Dike Complex of the Belknap Mountains. New Hampshire."
428: 245: 194: 145: 108: 76: 59: 19: 397: 24: 373: 240: 215: 100: 250: 235: 174: 71:. Effusive eruptions that take place on the flanks of the associated 207: 198: 211: 178: 170: 141: 88: 84: 72: 48: 43: 514: 510: 508: 201:, serves as a classic example of a well formed ring dike. This 99:
form in a circular pattern around the caldera and are known as
374:"Formation of caldera periphery faults: an experimental study" 505: 223: 80: 312:
Troll, V. R.; Walter, T. R.; Schmincke, H.-U. (2002-02-01).
338:
10.1130/0091-7613(2002)030<0135:CCCPOP>2.0.CO;2
122: 54: 107:
faults. When they are inward dipping, they are known as
298:
Gudmundsson, Agust. "Formation of collapse calderas."
426: 372:
Walter, Thomas R.; Troll, Valentin R. (2001-06-01).
311: 111:
and when they are outward dipping they are known as
115:. Ring faults then allow magma to rise through the 609: 579:Mind Over Magma: The Story of Igneous Petrology, 360:Petrology: igneous, sedimentary, and metamorphic 271:Transactions of the New York Academy of Sciences 103:. Ring faults can be either vertical or steeply 67:Collapse calderas form due to the emptying of a 581:Princeton University Press, 2003, pp. 341–42, 358:Blatt, Harvey, Robert Tracy, and Brent Owens. 156: 371: 161:About 36 ring dikes have been found in the 597:Lockwood, John P. and Richard W. Hazlett, 515:Browning J. & Gudmundsson A. (2015). 123:Another mechanism of ring dike formation 58: 55:Caldera collapse and ring dike formation 18: 566:Geological Society of American Bulletin 610: 494:O'keefe, John A., Paul D. Lowman, and 284:Geological Society of America Bulletin 151: 498:. "Lunar Ring Dikes from Orbiter I." 294: 292: 184: 13: 14: 639: 433:Journal of the Geological Society 352: 289: 27:Ring Dike Complex in South Africa 591: 571: 558: 135: 599:Volcanoes:Global Perspectives, 488: 475: 420: 365: 305: 276: 263: 16:Type of intrusive igneous body 1: 256: 483:Geophysical Research Letters 273:5.6 Series II (1943): 131–44 7: 229: 10: 644: 544:10.1007/s00445-014-0889-4 453:10.1144/0016-76492011-044 157:Ossipee ring-dike complex 568:47.12 (1936): 1885–1932. 193:ring dike, found on the 601:Wiley-Blackwell (2010). 524:Bulletin of Volcanology 502:155.3758 (1967): 77–79. 378:Bulletin of Volcanology 286:111.4 (1999): 607–19). 64: 28: 485:24.13 (1997): 1559–62 398:10.1007/s004450100135 62: 22: 362:. Macmillan, 2006. 302:16.9 (1988): 808–10. 536:2015BVol...77....4B 496:Winifred S. Cameron 445:2012JGSoc.169..157E 390:2001BVol...63..191W 330:2002Geo....30..135T 152:Well known examples 79:system that direct 65: 29: 623:Igneous petrology 577:Young, Davis A., 185:Loch Bà ring dike 163:Ossipee Mountains 635: 602: 595: 589: 575: 569: 562: 556: 555: 521: 512: 503: 492: 486: 479: 473: 472: 424: 418: 417: 369: 363: 356: 350: 349: 309: 303: 296: 287: 280: 274: 267: 643: 642: 638: 637: 636: 634: 633: 632: 608: 607: 606: 605: 596: 592: 576: 572: 563: 559: 519: 513: 506: 493: 489: 480: 476: 425: 421: 370: 366: 357: 353: 310: 306: 297: 290: 281: 277: 268: 264: 259: 232: 220:alkali feldspar 187: 159: 154: 138: 125: 97:dip-slip faults 57: 17: 12: 11: 5: 641: 631: 630: 625: 620: 604: 603: 590: 587:978-0691102795 570: 557: 504: 487: 474: 439:(2): 157–171. 419: 364: 351: 324:(2): 135–138. 304: 288: 275: 261: 260: 258: 255: 254: 253: 248: 243: 238: 231: 228: 186: 183: 158: 155: 153: 150: 137: 134: 124: 121: 113:reverse faults 56: 53: 15: 9: 6: 4: 3: 2: 640: 629: 626: 624: 621: 619: 616: 615: 613: 600: 594: 588: 584: 580: 574: 567: 561: 553: 549: 545: 541: 537: 533: 529: 525: 518: 511: 509: 501: 497: 491: 484: 478: 470: 466: 462: 458: 454: 450: 446: 442: 438: 434: 430: 423: 415: 411: 407: 403: 399: 395: 391: 387: 383: 379: 375: 368: 361: 355: 347: 343: 339: 335: 331: 327: 323: 319: 315: 308: 301: 295: 293: 285: 279: 272: 266: 262: 252: 249: 247: 244: 242: 239: 237: 234: 233: 227: 225: 221: 217: 213: 209: 204: 200: 196: 192: 182: 180: 176: 172: 168: 167:New Hampshire 164: 149: 147: 143: 133: 131: 120: 118: 114: 110: 109:normal faults 106: 102: 98: 92: 90: 86: 82: 78: 74: 70: 69:magma chamber 61: 52: 50: 45: 42: 38: 34: 26: 21: 598: 593: 578: 573: 565: 560: 527: 523: 499: 490: 482: 477: 436: 432: 422: 381: 377: 367: 359: 354: 321: 317: 307: 299: 283: 278: 270: 265: 246:Fissure vent 195:Isle of Mull 188: 160: 146:mass wasting 139: 136:Implications 126: 93: 66: 36: 32: 30: 618:Volcanology 216:phenocrysts 101:ring faults 25:Pilanesberg 628:Ring dikes 612:Categories 384:(2): 191. 257:References 241:Cone sheet 226:minerals. 177:to quartz 469:130108022 461:0016-7649 406:1432-0819 346:0091-7613 251:Laccolith 236:Batholith 203:intrusive 175:monzonite 117:fractures 41:intrusive 37:ring dyke 33:ring dike 552:54022484 530:(4): 4. 414:59140680 230:See also 208:rhyolite 199:Scotland 49:calderas 532:Bibcode 500:Science 441:Bibcode 386:Bibcode 326:Bibcode 318:Geology 300:Geology 214:, with 212:felsite 191:Loch Bà 179:syenite 171:Caldera 142:erosion 105:dipping 89:caldera 85:volcano 77:fissure 73:volcano 44:igneous 585:  550:  467:  459:  412:  404:  344:  132:zone. 75:and a 39:is an 548:S2CID 520:(PDF) 465:S2CID 410:S2CID 224:mafic 130:fault 81:magma 583:ISBN 457:ISSN 402:ISSN 342:ISSN 222:and 189:The 144:and 23:The 540:doi 449:doi 437:169 394:doi 334:doi 218:of 210:to 197:in 165:in 35:or 614:: 546:. 538:. 528:77 526:. 522:. 507:^ 463:. 455:. 447:. 435:. 431:. 408:. 400:. 392:. 382:63 380:. 376:. 340:. 332:. 322:30 320:. 316:. 291:^ 181:. 169:. 91:. 51:. 31:A 554:. 542:: 534:: 471:. 451:: 443:: 416:. 396:: 388:: 348:. 336:: 328::

Index


Pilanesberg
intrusive
igneous
calderas

magma chamber
volcano
fissure
magma
volcano
caldera
dip-slip faults
ring faults
dipping
normal faults
reverse faults
fractures
fault
erosion
mass wasting
Ossipee Mountains
New Hampshire
Caldera
monzonite
syenite
Loch Bà
Isle of Mull
Scotland
intrusive

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.