Knowledge

Salt marsh

Source 📝

866:
disrupts turbulent eddies, and helps to dissipate wave energy. Marsh plant species are known for their tolerance to increased salt exposure due to the common inundation of marshlands. These types of plants are called halophytes. Halophytes are a crucial part of salt marsh biodiversity and their potential to adjust to elevated sea levels. With elevated sea levels, salt marsh vegetation would likely be more exposed to more frequent inundation rates and it must be adaptable or tolerant to the consequential increased salinity levels and anaerobic conditions. There is a common elevation (above the sea level) limit for these plants to survive, where anywhere below the optimal line would lead to anoxic soils due to constant submergence and too high above this line would mean harmful soil salinity levels due to the high rate of evapotranspiration as a result of decreased submergence. Along with the vertical accretion of sediment and biomass, the accommodation space for marsh land growth must also be considered. Accommodation space is the land available for additional sediments to accumulate and marsh vegetation to colonize laterally. This lateral accommodation space is often limited by anthropogenic structures such as coastal roads, sea walls and other forms of development of coastal lands. A study by Lisa M. Schile, published in 2014, found that across a range of sea level rise rates, marshlands with high plant productivity were resistant against sea level rises but all reached a pinnacle point where accommodation space was necessary for continued survival. The presence of accommodation space allows for new mid/high habitats to form, and for marshes to escape complete inundation.
862:
to both erosion and accretion, which play a role in a what is called a bio-geomorphic feedback. Salt marsh vegetation captures sediment to stay in the system which in turn allows for the plants to grow better and thus the plants are better at trapping sediment and accumulate more organic matter. This positive feedback loop potentially allows for salt marsh bed level rates to keep pace with rising sea level rates. However, this feedback is also dependent on other factors like productivity of the vegetation, sediment supply, land subsidence, biomass accumulation, and magnitude and frequency of storms. In a study published by Ü. S. N. Best in 2018, they found that bioaccumulation was the number one factor in a salt marsh's ability to keep up with SLR rates. The salt marsh's resilience depends upon its increase in bed level rate being greater than that of sea levels' increasing rate, otherwise the marsh will be overtaken and drowned.
5597: 1732:
original structure and the natural tidal cycles are shifted due to land changes. The second option suggested by Bakker et al. (1997) is to restore the destroyed habitat into its natural state either at the original site or as a replacement at a different site. Under natural conditions, recovery can take 2–10 years or even longer depending on the nature and degree of the disturbance and the relative maturity of the marsh involved. Marshes in their pioneer stages of development will recover more rapidly than mature marshes as they are often first to colonize the land. It is important to note that restoration can often be sped up through the replanting of native vegetation.
6293: 1736: 171: 6700: 1770:
reduction of the invasive species has been initiated, re-establishing the tidal-marsh vegetation along with animal species such as fish and insects. This example highlights that considerable time and effort is needed to effectively restore salt marsh systems. The timescale for salt marsh recovery is dependent on the development stage of the marsh, type and extent of the disturbance, geographical location and the environmental and physiological stress factors to the marsh-associated flora and fauna.
767:. Terrestrial soils of this nature need to adjust from fresh to saline interstitial water by a change in the chemistry and the structure of the soil, accompanied with fresh deposition of estuarine sediment, before salt marsh vegetation can establish. The vegetation structure, species richness, and plant community composition of salt marshes naturally regenerated on reclaimed agricultural land can be compared to adjacent reference salt marshes to assess the success of marsh regeneration. 429: 6707: 1782: 674: 8012: 7169: 6319: 6307: 909: 8001: 1881: 661:
elevations (closer to the creek) than finer sediments (further from the creek). Sediment size is also often correlated with particular trace metals, and thus tidal creeks can affect metal distributions and concentrations in salt marshes, in turn affecting the biota. Salt marshes do not however require tidal creeks to facilitate sediment flux over their surface although salt marshes with this morphology seem to be rarely studied.
598: 486: 5925: 482:, and a certain amount of water movement, while plants further inland in the marsh can sometimes experience dry, low-nutrient conditions. It has been found that the upper marsh zones limit species through competition and the lack of habitat protection, while lower marsh zones are determined through the ability of plants to tolerate physiological stresses such as salinity, water submergence and low oxygen levels. 57: 1774:
monitored from sedimentation, nutrient, and tidal influences, to behaviour patterns and tolerances of both flora and fauna species. Once a better understanding of these processes is acquired, and not just locally, but over a global scale, then more sound and practical management and restoration efforts can be implemented to preserve these valuable marshes and restore them to their original state.
191: 352:, for example, is made up of these sorts of animals and or living organisms belonging to this ecosystem. They have a big impact on the biodiversity of the area. Salt marsh ecology involves complex food webs which include primary producers (vascular plants, macroalgae, diatoms, epiphytes, and phytoplankton), primary consumers (zooplankton, macrozoa, molluscs, insects), and secondary consumers. 1808:, where a "friends" group worked for over a decade in trying to prevent the area from being developed. Eventually, the 5-hectare (12-acre) site was bought by the city and the group worked together to restore the area. The project involved removing of invasive species and replanting with native ones, along with public talks to other locals, frequent bird walks and clean-up events. 806:
pollution from organic, inorganic, and toxic substances from urban development or industrialisation is a worldwide problem and the sediment in salt marshes may entrain this pollution with toxic effects on floral and faunal species. Urban development of salt marshes has slowed since about 1970 owing to growing awareness by environmental groups that they provide beneficial
1750:
that ceased this practice, but despite the introduction of the act, the system was still degrading due to alterations in tidal flow. One area in Connecticut is the marshes on Barn Island. These marshes were diked then impounded with salt and brackish marsh during 1946–1966. As a result, the marsh shifted to a freshwater state and became dominated by the invasive species
1690: 37: 365:
previous estimates (2.2–40 Mha). A later study conservatively estimated global saltmarsh extent as 90,800 km (9,080,000 hectares). The most extensive saltmarshes worldwide are found outside the tropics, notably including the low-lying, ice-free coasts, bays and estuaries of the North Atlantic which are well represented in their global polygon dataset.
789: 416:
established on depositional terraces further sediment trapping and accretion can allow rapid upward growth of the marsh surface such that there is an associated rapid decrease in the depth and duration of tidal flooding. As a result, competitive species that prefer higher elevations relative to sea level can inhabit the area and often a succession of
1715:. Salt marshes are ecologically important, providing habitats for native migratory fish and acting as sheltered feeding and nursery grounds. They are now protected by legislation in many countries to prevent the loss of these ecologically important habitats. In the United States and Europe, they are now accorded a high level of protection by the 822:
restricted landward retreat. The remaining marshes surrounding these urban areas are also under immense pressure from the human population as human-induced nitrogen enrichment enters these habitats. Nitrogen loading through human-use indirectly affects salt marshes causing shifts in vegetation structure and the invasion of non-native species.
1618: 776:
surfaces in this regime may have an extensive cliff at their seaward edge. At the Plum Island estuary, Massachusetts (U.S.), stratigraphic cores revealed that during the 18th and 19th century the marsh prograded over subtidal and mudflat environments to increase in area from 6 km to 9 km after European settlers
1777:
While humans are situated along coastlines, there will always be the possibility of human-induced disturbances despite the number of restoration efforts we plan to implement. Dredging, pipelines for offshore petroleum resources, highway construction, accidental toxic spills or just plain carelessness
1064:
and biogeochemical processing. To date, the microbial community of salt marshes has not been found to change drastically due to human impacts, but the research is still ongoing. Because of the major role of microbes in these environments, it is critical to understand the different processes performed
1038:
has been given the stately name of an 'ecosystem engineer' for its ability to construct new habitats and alter the access of nutrients to other species. Their burrows provide an avenue for the transport of dissolved oxygen in the burrow water through the oxic sediment of the burrow walls and into the
608:
The factors and processes that influence the rate and spatial distribution of sediment accretion within the salt marsh are numerous. Sediment deposition can occur when marsh species provide a surface for the sediment to adhere to, followed by deposition onto the marsh surface when the sediment flakes
1836:
substrates to record the increase in overlying substrate over long time periods. In order to gauge the amount of sediment suspended in the water column, manual or automated samples of tidal water can be poured through pre-weighed filters in a laboratory then dried to determine the amount of sediment
588:
Salt marshes are quite photosynthetically active and are extremely productive habitats. They serve as depositories for a large amount of organic matter and are full of decomposition, which feeds a broad food chain of organisms from bacteria to mammals. Many of the halophytic plants such as cordgrass
1795:
In addition to restoring and managing salt marsh systems based on scientific principles, the opportunity should be taken to educate public audiences of their importance biologically and their purpose as serving as a natural buffer for flood protection. Because salt marshes are often located next to
861:
While salt marshes are susceptible to threats concerning sea level rise, they are also an extremely dynamic coastal ecosystem. Salt marshes may in fact have the capability to keep pace with a rising sea level, by 2100, mean sea level could see increases between 0.6m to 1.1m. Marshes are susceptible
664:
The elevation of marsh species is important; those species at lower elevations experience longer and more frequent tidal floods and therefore have the opportunity for more sediment deposition to occur. Species at higher elevations can benefit from a greater chance of inundation at the highest tides
355:
The low physical energy and high grasses provide a refuge for animals. Many marine fish use salt marshes as nursery grounds for their young before they move to open waters. Birds may raise their young among the high grasses, because the marsh provides both sanctuary from predators and abundant food
1043:
sediment, which creates the perfect habitat for special nitrogen cycling bacteria. These nitrate reducing (denitrifying) bacteria quickly consume the dissolved oxygen entering into the burrow walls to create the oxic mud layer that is thinner than that at the mud surface. This allows a more direct
865:
Biomass accumulation can be measured in the form of above-ground organic biomass accumulation, and below-ground inorganic accumulation by means of sediment trapping and sediment settling from suspension. Salt marsh vegetation helps to increase sediment settling because it slows current velocities,
762:
in eastern England, the mid-estuary reclamations (Angel and Bulcamp marshes) that were abandoned in the 1940s have been replaced by tidal flats with compacted soils from agricultural use overlain with a thin veneer of mud. Little vegetation colonisation has occurred in the last 60–75 years and has
718:
in the low marsh. A study published in 2022 estimates that 22% of saltmarsh loss from 1999-2019 was due to direct human drivers, defined as observable activities occurring at the location of the detected change, such as conversion to aquaculture, agriculture, coastal development, or other physical
1769:
By 1980, a restoration programme was put in place that has now been running for over 20 years. This programme has aimed to reconnect the marshes by returning tidal flow along with the ecological functions and characteristics of the marshes back to their original state. In the case of Barn Island,
1749:
This last approach is often the most practiced and generally more successful than allowing the area to naturally recover on its own. The salt marshes in the state of Connecticut in the United States have long been an area lost to fill and dredging. As of 1969, the Tidal Wetland Act was introduced
857:
and thermal expansion of the oceans, as a result of global warming, sea levels have begun to rise. As with all coastlines, this rise in water levels is predicted to negatively affect salt marshes, by flooding and eroding them. The sea level rise causes more open water zones within the salt marsh.
1731:
Bakker et al. (1997) suggests two options available for restoring salt marshes. The first is to abandon all human interference and leave the salt marsh to complete its natural development. These types of restoration projects are often unsuccessful as vegetation tends to struggle to revert to its
640:
decreased with distance from the highest levels of suspended sediment concentrations (found at the marsh edge bordering tidal creeks or the mudflats); decreased with those species at the highest elevations, which experienced the lowest frequency and depth of tidal inundations; and increased with
750:
mouth in 1913 to try and reclaim the estuary land for farming. A shift in structure from bare tidal flat to pastureland resulted from increased sedimentation and the cordgrass extended out into other estuaries around New Zealand. Native plants and animals struggled to survive as non-natives out
1820:
are often used to measure rates of marsh surface accretion when short term deployments (e.g. less than one month) are required. These circular traps consist of pre-weighed filters that are anchored to the marsh surface, then dried in a laboratory and re-weighed to determine the total deposited
805:
The conversion of marshland to upland for agriculture has in the past century been overshadowed by conversion for urban development. Coastal cities worldwide have encroached onto former salt marshes and in the U.S. the growth of cities looked to salt marshes for waste disposal sites. Estuarine
693:
The coast is a highly attractive natural feature to humans through its beauty, resources, and accessibility. As of 2002, over half of the world's population was estimated to being living within 60 km of the coastal shoreline, making coastlines highly vulnerable to human impacts from daily
364:
Saltmarshes across 99 countries (essentially worldwide) were mapped by Mcowen et al. 2017. A total of 5,495,089 hectares of mapped saltmarsh across 43 countries and territories are represented in a Geographic Information Systems polygon shapefile. This estimate is at the relatively low end of
1773:
Although much effort has gone into restoring salt marshes worldwide, further research is needed. There are many setbacks and problems associated with marsh restoration that require careful long-term monitoring. Information on all components of the salt marsh ecosystem should be understood and
1727:
or the reclamation of land has been established. However, many Asian countries such as China still need to recognise the value of marshlands. With their ever-growing populations and intense development along the coast, the value of salt marshes tends to be ignored and the land continues to be
821:
and the physical properties of the surrounding margins were strongly linked, and the majority of salt marsh was found to be living along areas with natural margins in the Avon / Ōtākaro and Ōpāwaho / Heathcote river outlets; conversely, artificial margins contained little marsh vegetation and
775:
Cultivation of land upstream from the salt marsh can introduce increased silt inputs and raise the rate of primary sediment accretion on the tidal flats, so that pioneer species can spread further onto the flats and grow rapidly upwards out of the level of tidal inundation. As a result, marsh
660:
forms provide avenues for the tide to rise and flood the marsh surface, as well as to drain water, and they may facilitate higher amounts of sediment deposition than salt marsh bordering open ocean. Sediment deposition is correlated with sediment size: coarser sediments will deposit at higher
648:
Salt marsh species also facilitate sediment accretion by decreasing current velocities and encouraging sediment to settle out of suspension. Current velocities can be reduced as the stems of tall marsh species induce hydraulic drag, with the effect of minimising re-suspension of sediment and
415:
spp.) to grow. These species retain sediment washed in from the rising tide around their stems and leaves and form low muddy mounds which eventually coalesce to form depositional terraces, whose upward growth is aided by a sub-surface root network which binds the sediment. Once vegetation is
1580:
into available carbon and nitrogen for plants to use. Actinobacteria have also been found in plant rhizosphere in costal salt marshes and help plants grow through helping plants absorb more nutrients and secreting antimicrobial compounds. In Jiangsu, China, Actinobacteria from the suborders
1628:
Another key process among microbial salt marshes is microbial decomposition activity. Nutrient cycling in salt marshes is highly promoted by the resident community of bacteria and fungi involved in remineralizing organic matter. Studies on the decomposition of a salt marsh cordgrass,
1234:
are usually dependably anoxic. However, the conditions all across the salt marsh (above the sediment) are not completely anoxic, which means the organisms living here must have some level of tolerance to oxygen. Many of the chemolithoautotrophs living outside or at the surface of the
1488:
as a byproduct. While hydrogen sulfide is toxic to most organisms, purple bacteria require it to grow and will metabolize it to either sulfate or sulfur, and by doing so allowing other organisms to inhabit the toxic environment. Purple bacteria can be further classified as either
477:
dependent on their physiological abilities. The flora of a salt marsh is differentiated into levels according to the plants' individual tolerance of salinity and water table levels. Vegetation found at the water must be able to survive high salt concentrations, periodical
609:
off at low tide. The amount of sediment adhering to salt marsh species is dependent on the type of marsh species, the proximity of the species to the sediment supply, the amount of plant biomass, and the elevation of the species. For example, in a study of the Eastern
1479:
Oxygen inhibits photosynthesis in purple bacteria, which makes estuaries a favorable habitat for them due to the low oxygen content and high levels of light present, optimizing their photosynthesis. In anoxic environments, like salt marshes, many microbes have to use
844:
is an aggressive halophyte that can invade disturbed areas in large numbers outcompeting native plants. This loss in biodiversity is not only seen in flora assemblages but also in many animals such as insects and birds as their habitat and food resources are altered.
1337:
group, AOB play a critical role within the salt marsh environment too. Increases in marsh salinity tend to favor AOB, while higher oxygen levels and lower carbon-to-nitrogen ratios favor AOA. These AOB are important in catalyzing the rate-limiting step within the
556:
into a salt marsh. Their shoots lift the main flow of the tide above the mud surface while their roots spread into the substrate and stabilize the sticky mud and carry oxygen into it so that other plants can establish themselves as well. Plants such as
1844:
of the water using optical backscatter probes, which can be calibrated against water samples containing a known suspended sediment concentration to establish a regression relationship between the two. Marsh surface elevations may be measured with a
1161:
rates, and they all lose varying amounts of organic matter to the ocean, resulting in varying carbon-inputs to the ecosystem. The results from an experiment that was done in a salt marsh in the Yangtze estuary in China, suggested that both the
1031:
seed germination and established seedling survival, either by burial or exposure of seeds, or uprooting or burial of established seedlings. However, bioturbation by crabs may also have a positive effect. In New Zealand, the tunnelling mud crab
2377:
Murray, Nicholas J.; Worthington, Thomas A.; Bunting, Pete; Duce, Stephanie; Hagger, Valerie; Lovelock, Catherine E.; Lucas, Richard; Saunders, Megan I.; Sheaves, Marcus; Spalding, Mark; Waltham, Nathan J.; Lyons, Mitchell B. (13 May 2022).
1509:
pigments a, c, d, and e, to help them absorb wavelengths of light that other organisms cannot. When co-existing with purple bacteria, they often occupy lower depths as they are less tolerant to oxygen, but more photosynthetically adept.
825:
Human impacts such as sewage, urban run-off, agricultural and industrial wastes are running into the marshes from nearby sources. Salt marshes are nitrogen limited and with an increasing level of nutrients entering the system from
1205:
of chemolithoautotrophs in salt marshes also varies temporally as a result of being somewhat dependent on the organic C-input from plants in the ecosystem. Since plants grow most throughout the summer, and usually begin to lose
1136:
can be attributed to sulfate reduction. The dominant class of sulfate-reducing bacteria in salt marshes tends to be Deltaproteobacteria. Some examples of deltaproteobacteria that are found in salt marshes are species of genera
272:
with low elevations but a vast wide area, making them hugely popular for human populations. Salt marshes are located among different landforms based on their physical and geomorphological settings. Such marsh landforms include
2972:
Valiela, Ivan; Lloret, Javier; Bowyer, Tynan; Miner, Simon; Remsen, David; Elmstrom, Elizabeth; Cogswell, Charlotte; Robert Thieler, E. (November 2018). "Transient coastal landscapes: Rising sea level threatens salt marshes".
1174:, with a higher C-input to the ecosystem was introduced. Although chemolithotrophs produce their own carbon, they still depend on the C-input from salt marshes because of the indirect impact it has on the amount of viable 814:, and when net productivity is measured in g m yr they are equalled only by tropical rainforests. Additionally, they can help reduce wave erosion on sea walls designed to protect low-lying areas of land from wave erosion. 410:
can fix silt and clay sized sediment particles to their sticky sheaths on contact which can also increase the erosion resistance of the sediments. This assists the process of sediment accretion to allow colonising species
460:
zone is fairly constant due to everyday annual tidal flow. However, in the upper marsh, variability in salinity is shown as a result of less frequent flooding and climate variations. Rainfall can reduce salinity and
397:
portions are combined with the development of suitable conditions for their germination and establishment in the process of colonisation. When rivers and streams arrive at the low gradient of the tidal flats, the
3548: 1531:
are widely associated with salt marsh plants and may even help plants grow in salt marsh soil rich in heavy metals by reducing their uptake into the plant, although the exact mechanism has yet to be determined.
735:
such as sheep and cattle grazed on the highly fertile salt marsh land. Land reclamation for agriculture has resulted in many changes such as shifts in vegetation structure, sedimentation, salinity, water flow,
1152:
The abundance and diversity of chemolithoautotrophs in salt marshes is largely determined by the composition of plant species in the salt marsh ecosystem. Each type of salt-marsh plant has varying lengths of
1493:, or purple non-sulfur bacteria. Purple sulphur bacteria are more tolerant to sulfide and store the sulfur they create intracellularly, while purple non-sulfur bacteria excrete any sulfur they produce. 2892:
Kirwan, M. L., Murray, A. B., Donnelly, J. P. and Corbett, D. (2011). "Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates".
2630:
Reed, D. J., Spencer, T., Murray, A. L., French, J. R. and Leonard, L. (1999). "Marsh surface sediment deposition and the role of tidal creeks: implications for created and managed coastal marshes".
1299:
in the water, reducing nitrate and oxidizing the reduced sulfur. As a result of human nitrate enrichment, it is predicted that sulfur-oxidizing bacteria which also reduce nitrates will increase in
830:, the plant species associated with salt marshes are being restructured through change in competition. For example, the New England salt marsh is experiencing a shift in vegetation structure where 321:. Back-barrier marshes are sensitive to the reshaping of barriers in the landward side of which they have been formed. They are common along much of the eastern coast of the United States and the 1505:) are photoautotrophic bacteria that utilize sulfide and thiosulfate for their growth, producing sulfate in the process. They are very adapted to photosynthesizing in low light environments with 719:
structures. Additionally, 30% of saltmarsh gain over this same time period were also due to direct drivers, such as restoration activities or coastal modifications to promote tidal exchange.
3371:
Alberti, J., Cebrian, J., Casariego, A. M., Canepuccia, A., Escapa, M. and Iribarne, O. (2011). "Effects of nutrient enrichment and crab herbivory on a SW Atlantic salt marsh" productivity.
1210:
around fall during their late stage, the highest input of decomposing organic matter is in the fall. Thus seasonally, the abundance of chemolithotrophs in salt marshes is highest in autumn.
3397:
Smith, S. M. and Tyrrell, M. C. (2012). "Effects of mud fiddler crabs (Uca pugnax) on the recruitment of halophyte seedlings in salt marsh dieback areas of Cape Cod" (Massachusetts, US).
3244:
Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M. L.; Wolff, C.; Lincke, D.; McOwen, C. J.; Pickering, M. D.; Reef, R.; Vafeidis, A. T.; Hinkel, J.; Nicholla, R. J.; Brown, S. (2018).
305:. In New Zealand, most salt marshes occur at the head of estuaries in areas where there is little wave action and high sedimentation. Such marshes are located in Awhitu Regional Park in 694:
activities that put pressure on these surrounding natural environments. In the past, salt marshes were perceived as coastal 'wastelands,' causing considerable loss and change of these
5140:
Bakker, JP, Esselink, P, Van Der Wal, R, Dijkema, KS (1997). 'Options for restoration and management of coastal salt marshes in Europe,' in Urbanska, KM, Webb, NR, Edwards, PJ (eds),
1112:
or salt marshes, due to not depending upon external organic carbon sources for their growth and survival. Some Chemoautotrophic bacterial microorganisms found in salt marshes include
4530: 2492:
Aspden, R. J., Vardy, S. and Paterson, D. M. (2004). Salt marsh microbial ecology: microbes, benthic mats and sediment movement. In Fagherazzi, S., Marani, M. and Blum, L. K. (Eds),
1439:
of organic nitrogen compounds, to the process of nitrogen oxidation. Further, nitrogen oxidation is important for the downstream removal of nitrates into nitrogen gas, catalyzed by
536:
Plant species diversity is relatively low, since the flora must be tolerant of salt, complete or partial submersion, and anoxic mud substrate. The most common salt marsh plants are
5756: 2313:
Mcowen, Chris; Weatherdon, Lauren; Bochove, Jan-Willem; Sullivan, Emma; Blyth, Simon; Zockler, Christoph; Stanwell-Smith, Damon; Kingston, Naomi; Martin, Corinne (21 March 2017).
731:
were often built to allow for this shift in land change and to provide flood protection further inland. In recent times intertidal flats have also been reclaimed. For centuries,
444:
flow that occurs and continuously floods the area. It is an important process in delivering sediments, nutrients and plant water supply to the marsh. At higher elevations in the
6248: 817:
De-naturalisation of the landward boundaries of salt marshes from urban or industrial encroachment can have negative effects. In the Avon-Heathcote estuary/Ihutai, New Zealand,
150:
and submersion of otherwise tidal marshes. However, recent acknowledgment by both environmentalists and larger society for the importance of saltwater marshes for biodiversity,
1711:
The perception of bay salt marshes as a coastal 'wasteland' has since changed, acknowledging that they are one of the most biologically productive habitats on earth, rivalling
2955:
Warren, RS, Fell, PE, Rozsa, R, Brawley, AH, Orsted, AC, Olson, ET, Swamy, V, Niering, WA (2002). "Salt Marsh Restoration in Connecticut: 20 years of Science and Management".
2905:
Jupp, K. (2007). Establishing a physical and biological basis for salt marsh restoration and management in the Avon-Heathcote Estuary. Christchurch, University of Canterbury.
1816:
There is a diverse range and combination of methodologies employed to understand the hydrological dynamics in salt marshes and their ability to trap and accrete sediment.
1800:. By physically seeing the marsh, people are more likely to take notice and be more aware of the environment around them. An example of public involvement occurred at the 1659: 1186:(by other organisms). Therefore if the ecosystem contains more decomposing organic matter, as with plants with high photosynthetic and littering rates, there will be more 4555:
Brodersen, Kasper Elgetti; Trevathan-Tackett, Stacey M.; Nielsen, Daniel A.; Connolly, Rod M.; Lovelock, Catherine E.; Atwood, Trisha B.; Macreadie, Peter I. (2019).
3143:
Bouma, T. J.; Van Belzen, J.; Balke, T.; van Dalen, J.; Klaassen, P.; Hartog, A. M.; Callaghan, D. P.; Hu, Z.; Stive, M. J. F.; Temmerman, S.; Herman, P.M.J. (2016).
1406:
are found to dominate in higher saline environments. In addition, the abundance of fixed-nitrogen in these environments critically influences the distribution of the
2727:
Cahoon, D. R., White, D. A. and Lynch, J. C. (2011). "Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta".
763:
been attributed to a combination of surface elevations too low for pioneer species to develop, and poor drainage from the compacted agricultural soils acting as an
656:
Inundation and sediment deposition on the marsh surface is also assisted by tidal creeks which are a common feature of salt marshes. Their typically dendritic and
505:
salt marsh is subject to strong tidal influences and shows distinct patterns of zonation. In low marsh areas with high tidal flooding, a monoculture of the smooth
3794:
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; Brulc, Jennifer M.; Johnston, Eric R.; Kemner, Kenneth M.; Antonopoulos, Dionysios A. (22 January 2016).
5751: 884:, the black salt marsh mosquito. In many locations, particularly in the northeastern United States, residents and local and state agencies dug straight-lined 1420:
are found to be more abundant in lower N and C regions. Further, factors such as temperature, pH, net primary productivity, and regions of anoxia may limit
4850:"Phylogenetic diversity and investigation of plant growth-promoting traits of actinobacteria in coastal salt marsh plant rhizospheres from Jiangsu, China" 1006:
are increasing, possibly as a result of the degradation of the coastal food web in the region. The bare areas left by the intense grazing of cordgrass by
7842: 4744:"Characterization of Bacterial Community Structure and Diversity in Rhizosphere Soils of Three Plants in Rapidly Changing Salt Marshes Using 16S rDNA" 653:
adjacent to the marsh edge, to the marsh interior, probably as a result of direct settling to the marsh surface by the influence of the marsh canopy.
3428:
Yao, Zhiyuan; Du, Shicong; Liang, Chunling; Zhao, Yueji; Dini-Andreote, Francisco; Wang, Kai; Zhang, Demin (15 March 2019). Liu, Shuang-Jiang (ed.).
1124:(SRB), sulfur-oxidizing bacteria (SOB), and ammonia-oxidizing bacteria (AOB) which play crucial roles in nutrient cycling and ecosystem functioning. 589:
are not grazed at all by higher animals but die off and decompose to become food for micro-organisms, which in turn become food for fish and birds.
533:
are seen respectively. These species all have different tolerances that make the different zones along the marsh best suited for each individual.
5781: 7785: 7870: 7795: 4978:"Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes1" 649:
encouraging deposition. Measured concentrations of suspended sediment in the water column have been shown to decrease from the open water or
5273: 1801: 834:
is spreading from the lower marsh where it predominately resides up into the upper marsh zone. Additionally, in the same marshes, the reed
1060:
of salt marshes provide strong selective pressures on the microorganisms inhabiting them. In salt marshes, microbes play the main role in
6355: 5621: 3866:
Zheng, Yu; Bu, Nai-Shun; Long, Xi-En; Sun, Jing; He, Chi-Quan; Liu, Xiao-Yan; Cui, Jun; Liu, Dong-Xiu; Chen, Xue-Ping (1 February 2017).
2656:
Wood, N. and Hine, A. C. (2007). "Spatial trends in marsh sediment deposition within a microtidal creek system, Wacasassa Bay, Florida".
1635:, have shown that fungal colonization begins the degradation process, which is then finished by the bacterial community. The carbon from 1723:
respectively. With the impacts of this habitats and their importance now realised, a growing interest in restoring salt marshes through
5366: 5231: 2850:
French, J. R. and Burningham, H. (2003). "Tidal marsh sedimentation versus sea-level rise: a southeast England estuarine perspective",
930:
Increased nitrogen uptake by marsh species into their leaves can prompt greater rates of length-specific leaf growth, and increase the
4689:"Microbial processes in the rhizosphere soil of a heavy metals-contaminated Mediterranean salt marsh: A facilitating role of AM fungi" 3868:"Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China" 3355: 2670:
Chen, Si; Torres, Raymond (21 March 2012). "Effects of Geomorphology on the Distribution of Metal Abundance in Salt Marsh Sediment".
5596: 4278:
Peng, Xuefeng; Yando, Erik; Hildebrand, Erica; Dwyer, Courtney; Kearney, Anne; Waciega, Alex; Valiela, Ivan; Bernhard, Anne (2013).
740:
and high nutrient inputs. There have been many attempts made to eradicate these problems for example, in New Zealand, the cordgrass
645:, which had the most sediment adhering to it, may contribute >10% of the total marsh surface sediment accretion by this process. 1333:(AOA) are found to be more prevalent than ammonium-oxidizing Bacteria (AOB) within salt marsh environments, predominantly from the 998:. At 12 surveyed Cape Cod salt marsh sites, 10% – 90% of creek banks experienced die-off of cordgrass in association with a highly 138:
practices, with land reclaimed for human uses or polluted by upstream agriculture or other industrial coastal uses. Additionally,
5771: 5556: 4607: 1132:
Bacterial chemolithoautotrophs in salt marshes include sulfate-reducing bacteria. In these ecosystems, up to 50% of sedimentary
8056: 7890: 7822: 1650:
material in salt marshes. However, fungal populations have been found to dominate over bacterial populations in winter months.
4486:
Madigan, Michael T.; Jung, Deborah O. (2009), Hunter, C. Neil; Daldal, Fevzi; Thurnauer, Marion C.; Beatty, J. Thomas (eds.),
2602:
Shi, Z., Hamilton, L. J. and Wolanski, E. (2000). "Near-bed currents and suspended sediment transport in saltmarsh canopies".
2252:
Bromberg-Gedan, K., Silliman, B. R., and Bertness, M. D. (2009). "Centuries of human driven change in salt marsh ecosystems",
5044: 4671: 4507: 2930:
Chambers, RM, Meyerson, LA, Saltonstall, K (1999). "Expansion of Phragmites australis into tidal wetlands of North America".
2914:
Langis, R, Zalejko, M, Zedler, JB (1991). "Nitrogen Assessments in a Constructed and a Natural Salt Marsh of San Diego Bay".
2551:
Rand, TA (2000). Seed Dispersal, Habitat Suitability and the Distribution of Halophytes across a Salt Marsh Tidal Gradient.
1471:
Cyanobacteria are important nitrogen fixers in salt marshes, and provide nitrogen to organisms like diatoms and microalgae.
858:
These zones cause erosion along their edges, further eroding the marsh into open water until the whole marsh disintegrates.
5786: 4908:
Buchan, Alison; Newell, Steven Y.; Butler, Melissa; Biers, Erin J.; Hollibaugh, James T.; Moran, Mary Ann (November 2003).
3384:
Holdredge, C., Bertness, M. D. and Altieri, A. H. (2008). "Role of crab herbivory in die-off of New England salt marshes".
3030:
Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D’Alpaos, Andrea; Carniello, Luca (23 January 2017).
1673:
class is the most prevalent class within the salt marsh environment involved in decomposition activity. The propagation of
1222:
conditions, such as in salt marshes, because they require reduced compounds to produce their energy. Since there is a high
3694:"Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China" 3622:"Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill" 7885: 5884: 5746: 4280:"Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh" 3796:"Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions" 751:
competed them. Efforts are now being made to remove these cordgrass species, as the damages are slowly being recognized.
3924:"Microbial chemolithoautotrophs are abundant in salt marsh sediment following long-term experimental nitrate enrichment" 7205: 7051: 4848:
Gong, Yuan; Bai, Juan-Luan; Yang, Huan-Ting; Zhang, Wen-Di; Xiong, You-Wei; Ding, Peng; Qin, Sheng (1 September 2018).
3576:"Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance: Chemoautotrophy in deep-sea vents" 4154:
Dollhopf, Sherry L.; Hyun, Jung-Ho; Smith, April C.; Adams, Harold J.; O'Brien, Sean; Kostka, Joel E. (January 2005).
3575: 1198:
was discovered to withstand high sulfur concentrations in the soil, which would normally be somewhat toxic to plants.
940:
frequents SW Atlantic salt marshes where high density populations can be found among populations of the marsh species
5776: 4219:
Tebbe, Dennis Alexander; Geihser, Simone; Wemheuer, Bernd; Daniel, Rolf; Schäfer, Hendrik; Engelen, Bert (May 2022).
3102:
Best, Ü. S. N.; Van Der Wegen, M.; Dijkstra, J.; Willemsen, P. W. J. M.; Borsje, B. W.; Roelvink, Dano J. A. (2018).
2130: 2084: 1642:
is made accessible to the salt marsh food web largely through these bacterial communities which are then consumed by
2532:
Bertness, MD, Ewanchuk, PJ, Silliman, BR (2002). "Anthropogenic modification of New England salt marsh landscapes".
2462:
Boorman, L., Hazelden, J., and Boorman, M. (2002). "New salt marshes for old – salt marsh creation and management".
1218:
Salt marshes are the ideal environment for sulfate-reducing bacteria. The sulfate-reducing bacteria tend to live in
5411: 5266: 977:
also reduced the length specific leaf growth rates of the leaves in summer, while increasing their length-specific
4342:
Bowen, Jennifer L.; Spivak, Amanda C.; Bernhard, Anne E.; Fulweiler, Robinson W.; Giblin, Anne E. (October 2023).
7381: 7056: 6348: 2578:
Li, H. and Yang, S. L. (2000). "Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta".
1300: 1223: 1078: 1020:
of salt marsh sediments from this crab's burrowing activity has been shown to dramatically reduce the success of
827: 683: 479: 225:
rate plus sea level change), respectively. Commonly these shorelines consist of mud or sand flats (known also as
4101:"C:N ratio is not a reliable predictor of N2O production in acidic soils after a 30-day artificial manipulation" 1778:
are examples that will for some time now and into the future be the major influences of salt marsh degradation.
7149: 7041: 6699: 6238: 5176:
Gedan, Keryn B.; Altieri, Andrew H.; Bertness, Mark D. (2011), "Uncertain future of New England salt marshes",
1443:, from the marsh environment. Hence, AOB play an indirect role in nitrogen removal into the atmosphere.   1121: 374: 179: 3199:"The relationship between inundation duration and Spartina alterniflora growth along the Jiangsu coast, China" 2154:
Simas, T; Nunes, J.P; Ferreira, J.G (March 2001). "Effects of global climate change on coastal salt marshes".
7895: 7610: 7334: 6911: 6838: 6743: 6706: 1930: 1178:, such as reduced sulfur compounds. The concentration of reduced sulfur compounds, as well as other possible 5248:
operated by the Town of Hempstead: Dept. of Conservation & Waterways, located in Oceanside, New York, US
4156:"Quantification of Ammonia-Oxidizing Bacteria and Factors Controlling Nitrification in Salt Marsh Sediments" 3245: 1824:
For longer term studies (e.g. more than one year) researchers may prefer to measure sediment accretion with
973:
plots, compared to non-fertilised plots. Regardless of whether the plots were fertilised or not, grazing by
406:
settles onto the tidal flat surface, helped by the backwater effect of the rising tide. Mats of filamentous
7905: 6258: 6243: 900:
that preyed on the killifish. These ditches can still be seen, despite some efforts to refill the ditches.
2284:
Vernberg, F. J. 1993. Salt-Marsh Processes: A Review. Environmental Toxicology and Chemistry 12:2167–2195.
1104:, also known as chemolithoautotrophs, are organisms capable of creating their own energy, from the use of 981:
rates. This may have been assisted by the increased fungal effectiveness on the wounds left by the crabs.
727:
Reclamation of land for agriculture by converting marshland to upland was historically a common practice.
7790: 6768: 6253: 5259: 5068:"Sexual Productivity and Spring Intramarsh Distribution of a Key Salt-Marsh Microbial Secondary Producer" 4977: 4557:"Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance" 4436:
Currin, Carolyn A.; Levin, Lisa A.; Talley, Theresa S.; Michener, Robert; Talley, Drew (September 2011).
1194:
of sulfate-reducing bacteria increases. The high-photosynthetic-rate, high-litter-rate salt marsh plant,
490: 5225: 5156:
Callaway, JC, Zedler, JB (2004). "Restoration of urban salt marshes: Lessons from southern California".
3411: 8051: 7875: 7172: 6341: 5561: 4437: 3198: 3104:"Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics" 2863:
Angus, G. and Wolters, M. (2008). "The natural regeneration of salt marsh on formerly reclaimed land".
2379: 237:
from inflowing rivers and streams. These typically include sheltered environments such as embankments,
4849: 4743: 4688: 4390: 4100: 3867: 3693: 5869: 5763: 1330: 969:
herbivory increased as a likely response to the increased nutrient value of the leaves of fertilised
2740:
Hinde, HP (1954). "The Vertical Distribution of Salt Marsh Phanerogams in Relation to Tide Levels".
7854: 6856: 6322: 6115: 6110: 5406: 2228:
Chapman, V. J. (1974). Salt marshes and salt deserts of the world. Phyllis Claire Chapman, Germany.
1976: 1905: 1306: 127:
and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide
7565: 6537: 6023: 5834: 5728: 5456: 5446: 4653: 3620:
Bernhard, Anne E.; Sheffer, Roberta; Giblin, Anne E.; Marton, John M.; Roberts, Brian J. (2016).
3430:"Bacterial Community Assembly in a Typical Estuarine Marsh with Multiple Environmental Gradients" 2475:
Ginsburg, R. N., and Lowenstam, H. A. (1958). "The influence of marine bottom communities on the
1869:, or with a marked wooden stake, and water velocity, often using electromagnetic current meters. 1647: 1057: 1040: 5025:"Microbial Secondary Production from Salt Marsh-Grass Shoots, and Its Known and Potential Fates" 4036:"Distribution and Diversity of Archaeal and Bacterial Ammonia Oxidizers in Salt Marsh Sediments" 7900: 7777: 7671: 7198: 6998: 6753: 5849: 5839: 5541: 5526: 3302:
Schile, L. M.; Callaway, J. C.; Morris, J. T.; Stralberg, D.; Parker, V. T.; Kelly, M. (2014).
1785: 1490: 1360: 854: 314: 195: 151: 4638: 2190: 8046: 7545: 7144: 6268: 6195: 6130: 5995: 5970: 5945: 5829: 5576: 5356: 1631: 1569: 1528: 1460: 1440: 896:, so the loss of habitat actually led to higher mosquito populations, and adversely affected 703: 678: 623: 553: 511: 399: 548:
spp.), which have worldwide distribution. They are often the first plants to take hold in a
8036: 7805: 6973: 6926: 6881: 6866: 6003: 5965: 5296: 5185: 5023:
Newell, Steven Y.; Porter, David (2000), Weinstein, Michael P.; Kreeger, Daniel A. (eds.),
4989: 4921: 4861: 4755: 4700: 4449: 4402: 4167: 4112: 4047: 3982: 3879: 3807: 3752: 3741:"Salt marsh sediment bacteria: their distribution and response to external nutrient inputs" 3705: 3506: 3495:"Salt marsh sediment bacteria: their distribution and response to external nutrient inputs" 3441: 3260: 3210: 3156: 3115: 3043: 2978: 2679: 2476: 2394: 2163: 1986: 1741: 880: 836: 755: 665:
when increased water depths and marsh surface flows can penetrate into the marsh interior.
629: 344:
Salt marshes are sometimes included in lagoons, and the difference is not very marked; the
159: 4221:"Seasonal and Zonal Succession of Bacterial Communities in North Sea Salt Marsh Sediments" 1065:
and different microbial players present in salt marshes. Salt marshes provide habitat for
874:
Earlier in the 20th century, it was believed that draining salt marshes would help reduce
36: 8: 7985: 7636: 7077: 6871: 6435: 6225: 5879: 5688: 5646: 5416: 5376: 4034:
Moin, Nicole S.; Nelson, Katelyn A.; Bush, Alexander; Bernhard, Anne E. (December 2009).
3494: 3352: 3197:
Li, Runxiang; Yu, Qian; Wang, Yunwei; Wang, Zheng Bing; Gao, Shu; Flemming, Burg (2018).
1712: 1670: 1602: 1590: 1573: 1565: 1561: 1506: 1484:
as an electron acceptor during cellular respiration instead of oxygen, producing lots of
1389: 1376: 1366: 1312: 1202: 1191: 1190:
available to the bacteria, and thus more sulfate reduction is possible. As a result, the
1167: 1117: 994: 942: 936: 24: 5189: 4993: 4925: 4865: 4825: 4790: 4759: 4704: 4453: 4406: 4171: 4116: 4051: 3986: 3883: 3811: 3756: 3709: 3510: 3445: 3264: 3214: 3160: 3119: 3047: 2982: 2683: 2398: 2214:, conservation, and engineering significance. Cambridge University Press. Cambridge, UK. 2167: 1653:
The fungi that make up the decomposition community in salt marshes come from the phylum
310: 115:. These plants are terrestrial in origin and are essential to the stability of the salt 7849: 7767: 7676: 7550: 7535: 7515: 7416: 7411: 7046: 7033: 6886: 6846: 6557: 6460: 6145: 6140: 6008: 5950: 5844: 5693: 5611: 5496: 5476: 5386: 5329: 5203: 5095: 4314: 4279: 4255: 4220: 4076: 4035: 4011: 3970: 3838: 3795: 3656: 3621: 3470: 3429: 3330: 3303: 3284: 3226: 3072: 3031: 3012: 2833: 2825: 2703: 2418: 2349: 2314: 2017: 2012: 1756: 1720: 1598: 1557: 1407: 1375:
are highly prevalent within the salt marsh environment; similarly, within the class of
1355: 1316: 1279:. Sulfate-reducing and oxidizing bacteria, however, play a role in removing the excess 1276: 1113: 1105: 840:
has been invading the area expanding to lower marshes and becoming a dominant species.
807: 715: 711: 462: 403: 135: 128: 4950: 4909: 4767: 4712: 4196: 4155: 3032:"Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes" 2175: 788: 8015: 7925: 7832: 7641: 7583: 7446: 7421: 7191: 7102: 7008: 6921: 6627: 6465: 6455: 6415: 6380: 6364: 6155: 6033: 5980: 5899: 5566: 5531: 5471: 5431: 5401: 5371: 5282: 5087: 5040: 5005: 4955: 4937: 4933: 4885: 4877: 4830: 4812: 4771: 4724: 4716: 4667: 4626: 4588: 4583: 4503: 4465: 4461: 4418: 4371: 4363: 4319: 4301: 4260: 4242: 4201: 4183: 4136: 4128: 4081: 4063: 4016: 3998: 3951: 3943: 3895: 3843: 3825: 3776: 3768: 3721: 3661: 3643: 3595: 3591: 3530: 3522: 3475: 3457: 3335: 3304:"Evaluating the Role of Vegetation, Sediment, and Upland Habitat in Marsh Resiliency" 3276: 3230: 3179: 3077: 3059: 3004: 2817: 2707: 2695: 2422: 2410: 2354: 2336: 2136: 2126: 2090: 2080: 1996: 1586: 1582: 1541: 1436: 1393: 1109: 1074: 818: 737: 687: 614: 417: 373:
The formation begins as tidal flats gain elevation relative to sea level by sediment
298: 155: 20: 5239: 4414: 4124: 3493:
Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E (1 August 2009).
3288: 3016: 2990: 2837: 1840:
Another method for estimating suspended sediment concentrations is by measuring the
1416:
are more found to be in greater abundance within high N and C environments, whereas
162:, have led to an increase in salt marsh restoration and management since the 1980s. 7646: 7560: 7441: 7250: 7097: 6931: 6906: 6901: 6876: 6826: 6652: 6512: 6430: 6395: 6263: 5955: 5859: 5811: 5723: 5616: 5314: 5193: 5079: 5032: 4997: 4945: 4929: 4869: 4820: 4802: 4763: 4708: 4663: 4659: 4578: 4568: 4495: 4457: 4410: 4355: 4309: 4291: 4250: 4237: 4232: 4191: 4175: 4120: 4071: 4055: 4006: 3990: 3935: 3887: 3833: 3815: 3760: 3713: 3651: 3633: 3587: 3514: 3465: 3449: 3325: 3315: 3268: 3218: 3174: 3164: 3123: 3067: 3051: 2994: 2986: 2809: 2687: 2402: 2344: 2326: 2171: 2037: 1485: 1163: 1133: 1127: 1061: 919: 742: 699: 610: 262: 7600: 4179: 3891: 3717: 3128: 3103: 1735: 325:. Large, shallow coastal embayments can hold salt marshes with examples including 8005: 7880: 7817: 7575: 7570: 7426: 7317: 7134: 6916: 6861: 6728: 6637: 6632: 6517: 6400: 6233: 6200: 6061: 6013: 5889: 5864: 5673: 5626: 5551: 5396: 5381: 3820: 3739:
Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E (7 May 2009).
3359: 3320: 2027: 2007: 1886: 1866: 1762: 1724: 1716: 1594: 1456: 1268: 582: 523: 517: 440:
Coastal salt marshes can be distinguished from terrestrial habitats by the daily
386: 381:
decreases so that vegetation can colonize on the exposed surface. The arrival of
345: 322: 246: 170: 147: 88: 4873: 4499: 3971:"Archaeal Diversity and the Prevalence of Crenarchaeota in Salt Marsh Sediments" 1307:
Abundance and significance of chemolithoautotroph nitrifiers within salt marshes
7955: 7762: 7436: 6527: 6522: 6485: 6425: 6405: 6097: 6051: 6046: 6018: 5985: 5854: 5713: 5641: 5631: 5481: 5426: 5344: 5339: 5334: 3222: 2211: 1971: 1925: 1825: 1665: 1606: 1553: 1284: 1248: 1227: 1187: 1179: 1175: 1158: 1154: 1101: 1066: 747: 707: 529: 378: 334: 242: 218: 143: 139: 96: 61: 5001: 4807: 4487: 4359: 3272: 2691: 2298:
Coastal wetlands of the world: geology, ecology, distribution and applications
1624:
sp. on wheat. This fungus is of the same genus common to salt marsh cordgrass.
8041: 8030: 7965: 7719: 7290: 7139: 7122: 7072: 7013: 6988: 6851: 6778: 6450: 6311: 6205: 6170: 6071: 6066: 6041: 5571: 5536: 5511: 5361: 5324: 5091: 5009: 4941: 4881: 4816: 4775: 4720: 4592: 4573: 4556: 4469: 4422: 4367: 4305: 4296: 4246: 4187: 4132: 4067: 4002: 3947: 3939: 3899: 3829: 3772: 3725: 3647: 3638: 3526: 3461: 3063: 2821: 2796:
Andresen, H.; Bakker, J. P.; Brongers, M.; Heydemann, B.; Irmler, U. (1990).
2699: 2340: 1915: 1862: 1817: 1617: 1452: 1451:
The bacterial photoautotroph community of salt marshes primarily consists of
1428: 1421: 1381: 1339: 1334: 1272: 1219: 1183: 1086: 1082: 1044:
diffusion path for the export of nitrogen (in the form of gaseous nitrogen (N
1034: 958: 914: 777: 618: 592: 453: 407: 326: 302: 214: 206: 5036: 4529:
US Department of Commerce, National Oceanic and Atmospheric Administration.
4343: 2406: 2140: 2094: 1865:). Hydrological dynamics include water depth, measured automatically with a 1745:) an invasive species in degraded marshes in the northeastern United States. 1572:. One such widespread species had a similar ribotype to the animal pathogen 1255:
pollution levels. Since humans have been adding disproportionate amounts of
710:
also play a major role in the salt marsh area. Salt marshes can suffer from
356:
sources which include fish trapped in pools, insects, shellfish, and worms.
7950: 7736: 7651: 7386: 7376: 7339: 7270: 7245: 7003: 6891: 6763: 6758: 6657: 6647: 6592: 6297: 6076: 6056: 5960: 5698: 5581: 5501: 5461: 5451: 5421: 4959: 4910:"Dynamics of Bacterial and Fungal Communities on Decaying Salt Marsh Grass" 4889: 4834: 4728: 4375: 4323: 4264: 4205: 4140: 4085: 4020: 3955: 3847: 3780: 3665: 3599: 3534: 3479: 3339: 3280: 3081: 3008: 2414: 2358: 2272: 1900: 1412: 1398: 1321: 1017: 954: 798: 793: 601: 466: 428: 338: 318: 210: 183: 99:
that is regularly flooded by the tides. It is dominated by dense stands of
16:
Coastal ecosystem between land and open saltwater that is regularly flooded
5024: 3764: 3518: 7975: 7970: 7837: 7827: 7726: 7605: 7588: 7475: 7456: 7285: 7275: 7265: 7154: 6968: 6941: 6936: 6816: 6798: 6788: 6783: 6738: 6733: 6723: 6672: 6662: 6385: 6210: 6185: 6180: 6150: 5933: 5909: 5874: 5683: 5586: 5506: 5466: 5319: 5121:
Broome, SW, Seneca, ED, Woodhouse, WW (1988). "Tidal Marsh Restoration".
4687:
Carrasco, L.; Caravaca, F.; Álvarez-Rogel, J.; Roldán, A. (1 June 2006).
4554: 4059: 3994: 3923: 3453: 2761:
King, SE, Lester, JN (1995). "The Value of Salt Marsh as a Sea Defence".
2331: 2120: 2074: 2032: 1940: 1910: 1858: 1854: 1846: 1781: 1643: 1549: 1090: 1077:
alike. These organisms contribute diverse environmental services such as
1070: 948: 897: 650: 502: 433: 274: 226: 81: 49: 5207: 4099:
Zhang, Yi; Cai, Zucong; Zhang, Jinbo; Müller, Christoph (10 July 2020).
3740: 3145:"Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics" 3055: 2829: 2797: 673: 7935: 7631: 7615: 7595: 7461: 7354: 7322: 7305: 7300: 7295: 7082: 7018: 6978: 6896: 6821: 6470: 6125: 5914: 5894: 5678: 5651: 5436: 5349: 5099: 5067: 4488:"An Overview of Purple Bacteria: Systematics, Physiology, and Habitats" 4438:"The role of cyanobacteria in Southern California salt marsh food webs" 3969:
Nelson, Katelyn A.; Moin, Nicole S.; Bernhard, Anne E. (15 June 2009).
2813: 2380:"High-resolution mapping of losses and gains of Earth's tidal wetlands" 2002: 1956: 1850: 1704: 1695: 1681:
that are released when the host plant is wetted by high tides or rain.
1654: 1612: 1524: 1012: 999: 978: 888:
deep into the marsh flats. The end result, however, was a depletion of
574: 445: 412: 382: 330: 269: 254: 222: 28: 7329: 6306: 5198: 4789:
Shobade, Samuel O.; Zabotina, Olga A.; Nilsen-Hamilton, Marit (2024).
4608:"Salt Marshes are Beautiful, Stinky, and Uncomfortable Places to Work" 3169: 3144: 2999: 1402:
are more prevalent within lower salinity or freshwater regions, while
1170:
of sulfate-reducing bacterial communities increased when a new plant,
908: 7757: 7731: 7466: 7280: 7255: 7235: 7023: 6983: 6811: 6748: 6667: 6597: 6215: 6120: 5904: 5668: 5661: 5636: 5546: 5251: 1966: 1951: 1841: 1805: 1789: 1213: 962: 931: 923: 893: 889: 811: 764: 732: 695: 578: 537: 457: 134:
Salt marshes have historically been endangered by poorly implemented
100: 45: 6333: 5083: 7945: 7940: 7930: 7752: 7704: 7699: 7682: 7540: 7520: 7485: 7364: 7359: 6951: 6946: 6773: 6688: 6547: 6372: 6165: 5975: 5521: 5516: 5441: 4976:
Benner, Ronald; Moran, Mary Ann; Hodson, Robert E. (January 1986).
4686: 2022: 1945: 1829: 1700: 1347: 1291:, reduced sulfur molecules are usually in abundance. These reduced 1288: 1236: 1231: 1010:
at Cape Cod are suitable for occupation by another burrowing crab,
992:
spp. (cordgrass) that has been attributed to herbivory by the crab
985: 875: 566: 558: 506: 494: 449: 306: 286: 258: 234: 124: 120: 92: 41: 7401: 3101: 1796:
urban areas, they are likely to receive more visitors than remote
1576:, and may be beneficial for plants as the bacteria can break down 597: 485: 290: 7980: 7960: 7525: 7490: 7312: 7214: 7087: 6961: 6806: 6682: 6677: 6587: 6582: 6572: 6492: 6175: 6135: 6105: 6083: 5703: 5491: 5391: 2466:, EUROCAST/EUCC, EUROCOAST Littoral 2002: Porto, Portugal; 35–45. 2042: 1991: 1833: 1797: 1545: 1481: 1432: 1351: 1296: 1292: 1280: 1264: 1260: 1256: 1252: 1207: 885: 759: 706:
and recreation. The indirect effects of human activities such as
657: 635: 549: 394: 297:
delta in Spain. They are also extensive within the rivers of the
250: 238: 230: 175: 108: 5924: 5294: 1259:
to coastal waters, salt marshes are one of the ecosystems where
1128:
Abundance and diversity of sulfate-reducing chemolithoautotrophs
19:
For inland salt marshes uninfluenced by seawater and tides, see
7714: 7505: 7495: 7391: 7112: 7107: 6642: 6622: 6577: 6562: 6420: 6160: 5486: 4397:. Microbial Mats in Earth's Fossil Record of Life: Geobiology. 3922:
Vineis, Joseph H; Bulseco, Ashley N; Bowen, Jennifer L (2023).
2798:"Long-Term Changes of Salt Marsh Communities by Cattle Grazing" 2795: 2312: 1961: 1646:. Bacteria are responsible for the degradation of up to 88% of 1577: 1026: 1016:, which are not known to consume live macrophytes. The intense 465:
can increase levels during dry periods. As a result, there are
4788: 3246:"Future response of global coastal wetlands to sea-level rise" 3243: 1342:
process, by using ammonium monooxygenase (AMO), produced from
988:, Massachusetts (US), are experiencing creek bank die-offs of 213:
which can be stable, emerging, or submerging depending if the
56: 7555: 7510: 7500: 7480: 7431: 7396: 7371: 7344: 7240: 6993: 6956: 6715: 6617: 6567: 6552: 6542: 6507: 6502: 6497: 6445: 6440: 6390: 3301: 3142: 1981: 1895: 1689: 1678: 780:
the land upstream and increased the rate of sediment supply.
728: 474: 470: 349: 282: 277:
marshes, estuarine, back-barrier, open coast, embayments and
202: 190: 116: 112: 85: 4791:"Plant root associated chitinases: structures and functions" 4341: 2376: 1242: 261:; an area that differs from a salt marsh in that instead of 7709: 7530: 7406: 7183: 7127: 7117: 7092: 6602: 6532: 6480: 6475: 5656: 5220: 3619: 1002:
substrate and high density of crab burrows. Populations of
441: 390: 294: 104: 4218: 3793: 3029: 2496:(pp. 115–136). American Geophysical Union, Washington, DC. 1287:. Since the sulfate-reducing bacteria is in the water and 593:
Sediment trapping, accretion, and the role of tidal creeks
448:
zone, there is much less tidal inflow, resulting in lower
7349: 7260: 6607: 6410: 5718: 5708: 4435: 1935: 1920: 1096: 783: 515:
dominate, then heading landwards, zones of the salt hay,
423: 278: 4277: 2971: 2296:
Scott, D. B., J. Frail-Gauthier, and P. J. Mudie. 2014.
1424:, and thus critically influence nitrifier distribution. 1108:, and are able to thrive in harsh environments, such as 621:, China, the amount of sediment adhering to the species 4907: 686:
of the United States. Considered a noxious weed in the
4655:
Bergey's Manual of Systematics of Archaea and Bacteria
4153: 4033: 3738: 3492: 5031:, Dordrecht: Springer Netherlands, pp. 159–185, 4742:
Wang, Meng; Chen, Jia-Kuan; Li, Bo (1 October 2007).
4528: 2372: 2370: 2368: 2147: 1247:
Sulfate-reducing bacteria play a significant role in
5175: 2292: 2290: 1876: 1828:
plots. Marker horizons consist of a mineral such as
1766:
that have little ecological connection to the area.
1613:
Microbial decomposition activity within salt marshes
1056:
The variable salinity, climate, nutrient levels and
5245: 4389:Franks, Jonathan; Stolz, John F. (1 October 2009). 4344:"Salt marsh nitrogen cycling: where land meets sea" 4098: 281:marshes. Deltaic marshes are associated with large 4494:, Dordrecht: Springer Netherlands, pp. 1–15, 3968: 3921: 3373:Journal of Experimental Marine Biology and Ecology 2514:. John Wiley & Sons Ltd, West Sussex, England. 2365: 2153: 1609:were cultured and isolated from rhizosphere soil. 1214:Why are sulfate-reducing bacteria in salt marshes? 903: 5029:Concepts and Controversies in Tidal Marsh Ecology 4975: 3692:Nie, Ming; Wang, Meng; Li, Bo (1 December 2009). 2287: 1853:, Real-Time Kinematic Global Positioning System, 1051: 8028: 5232:"Cause sought as marshes turn into barren flats" 4847: 1466: 285:where many occur in Southern Europe such as the 123:. Salt marshes play a large role in the aquatic 5142:Restoration Ecology and Sustainable Development 3412:"Marine ecosystems: more than just a crab hole" 2534:Proceedings of the National Academy of Sciences 1548:River Estuary, the most common bacteria in the 7786:A Directory of Important Wetlands in Australia 5066:Newell, Steven Y.; Wasowski, Jennifer (1995). 5065: 4652:Whitman, William B., ed. (14 September 2015). 3865: 3427: 1263:pollution remains an issue. The enrichment of 7871:Bangladesh Haor and Wetland Development Board 7796:Ramsar Classification System for Wetland Type 7199: 6349: 5557:Stable isotope analysis in aquatic ecosystems 5267: 5144:. Cambridge University Press, UK. p. 286-322. 3573: 1684: 265:, they are dominated by salt-tolerant trees. 217:is greater, equal to, or lower than relative 5022: 3549:"5.1B: Chemoautotrophs and Chemohetrotrophs" 3196: 1802:Famosa Slough State Marine Conservation Area 1446: 581:grow once the mud has been vegetated by the 377:, and subsequently the rate and duration of 5622:Freshwater environmental quality parameters 5152: 5150: 4605: 4485: 4388: 3574:Nakagawa, Satoshi; Takai, Ken (July 2008). 3097: 3095: 3093: 3091: 2528: 2526: 2524: 2522: 2520: 2114: 2112: 2110: 2108: 2106: 2104: 1311:Within salt marshes, chemolithoautotrophic 7206: 7192: 6356: 6342: 5274: 5260: 4741: 4391:"Flat laminated microbial mat communities" 2875: 2873: 2669: 2458: 2456: 2454: 2440: 2438: 2436: 2434: 2432: 2248: 2246: 2244: 2242: 2240: 2238: 2236: 2234: 2122:Coasts : form, process, and evolution 1354:(NO2-). Specifically, within the class of 1315:are also frequently identified, including 918:of New Zealand shown here, fill a special 80:, also known as a coastal salt marsh or a 5197: 5136: 5134: 5117: 5115: 5113: 5111: 5109: 4949: 4824: 4806: 4582: 4572: 4313: 4295: 4254: 4236: 4195: 4075: 4010: 3837: 3819: 3691: 3655: 3637: 3469: 3378: 3329: 3319: 3192: 3190: 3178: 3168: 3127: 3071: 2998: 2951: 2949: 2947: 2945: 2943: 2723: 2721: 2719: 2717: 2348: 2330: 2224: 2222: 2220: 2118: 1999:: contains worldwide salt marshes dataset 1243:Significance of sulfate-reducing bacteria 5147: 3088: 2924: 2789: 2517: 2469: 2446:An introduction to coastal geomorphology 2269:Te Ara – The Encyclopedia of New Zealand 2264: 2262: 2210:Allen, JRL, Pye, K (1992). Saltmarshes: 2191:"Climate Change in Coastal Environments" 2125:. New York: Cambridge University Press. 2101: 2079:. New York: Cambridge University Press. 1780: 1734: 1688: 1669:sp. strain 2. In terms of bacteria, the 1616: 1431:by AOB in salt marshes critically links 907: 787: 672: 596: 484: 427: 189: 169: 55: 35: 4651: 3365: 2870: 2778: 2776: 2774: 2757: 2755: 2753: 2652: 2650: 2648: 2646: 2644: 2642: 2640: 2626: 2624: 2622: 2620: 2618: 2616: 2614: 2612: 2547: 2545: 2506: 2504: 2502: 2451: 2429: 2231: 1832:that is buried at a known depth within 1657:, the two most prevalent species being 1513: 912:Crabs, such as the tunnelling mud crab 770: 359: 8029: 7891:Meadowview Biological Research Station 7823:Greenhouse gas emissions from wetlands 5281: 5131: 5106: 4971: 4969: 4914:Applied and Environmental Microbiology 4903: 4901: 4899: 4481: 4479: 4160:Applied and Environmental Microbiology 4040:Applied and Environmental Microbiology 3975:Applied and Environmental Microbiology 3434:Applied and Environmental Microbiology 3187: 3108:Environmental Modelling & Software 2940: 2908: 2886: 2881:Ecology of salt marshes and sand dunes 2844: 2714: 2598: 2596: 2594: 2592: 2590: 2588: 2512:Coastal geomorphology: an introduction 2486: 2300:. Cambridge University Press, New York 2217: 2182: 2068: 2066: 2064: 2062: 2060: 2058: 1097:Chemo(litho)autotrophs in salt marshes 784:Urban development and nitrogen loading 424:Tidal flooding and vegetation zonation 146:is endangering other marshes, through 84:, is a coastal ecosystem in the upper 7187: 6363: 6337: 5810: 5809: 5293: 5255: 4337: 4335: 4333: 3917: 3915: 3913: 3911: 3909: 3861: 3859: 3857: 3687: 3685: 3683: 3681: 3679: 3677: 3675: 3615: 3613: 3611: 3609: 3404: 3391: 2857: 2782:Long, S. P. and Mason, C. F. (1983). 2734: 2574: 2572: 2570: 2568: 2566: 2564: 2494:The Ecogeomorphology of Tidal Marshes 2308: 2306: 2259: 1182:, increases with more organic-matter 892:habitat. The killifish is a mosquito 746:was introduced from England into the 682:(saltmarsh cordgrass). Native to the 3203:Estuarine, Coastal and Shelf Science 2899: 2771: 2750: 2637: 2609: 2542: 2499: 2204: 2072: 702:for agriculture, urban development, 165: 7886:Irish Peatland Conservation Council 5885:Oceanic physical-biological process 5747:List of freshwater ecoregions (WWF) 4966: 4896: 4854:Systematic and Applied Microbiology 4476: 2585: 2188: 2055: 1811: 934:rates of crabs. The burrowing crab 869: 722: 13: 7052:Integrated coastal zone management 5169: 4330: 3906: 3854: 3672: 3606: 3410:Vopel, K. and Hancock, N. (2005). 3353:"Rhode Island Habitat Restoration" 2561: 2303: 1474: 1239:also exhibit this characteristic. 1048:)) into the flushing tidal water. 617:tidal marshes at the mouth of the 469:populated by different species of 432:An Atlantic coastal salt marsh in 14: 8068: 5214: 4713:10.1016/j.chemosphere.2005.11.038 2786:. Blackie & Son Ltd, Glasgow. 1496: 1385:spp. are key AOB in the marshes. 848: 201:Salt marshes occur on low-energy 8011: 8010: 7999: 7168: 7167: 6705: 6698: 6318: 6317: 6305: 6291: 5923: 5595: 5412:Colored dissolved organic matter 4934:10.1128/AEM.69.11.6676-6687.2003 4492:The Purple Phototrophic Bacteria 4462:10.1111/j.1439-0485.2011.00476.x 4105:Science of the Total Environment 3592:10.1111/j.1574-6941.2008.00502.x 2975:Science of the Total Environment 1879: 668: 7382:Flooded grasslands and savannas 5757:Latin America and the Caribbean 5059: 5016: 4841: 4782: 4735: 4680: 4645: 4599: 4548: 4522: 4429: 4415:10.1016/j.earscirev.2008.10.004 4382: 4271: 4212: 4147: 4125:10.1016/j.scitotenv.2020.138427 4092: 4027: 3962: 3787: 3732: 3567: 3541: 3486: 3421: 3346: 3295: 3237: 3136: 3023: 2991:10.1016/j.scitotenv.2018.05.235 2965: 2883:. Chapman and Hall Ltd, London. 2663: 2632:Journal of Coastal Conservation 2254:Annual Review of Marine Science 904:Crab herbivory and bioturbation 315:Avon Heathcote Estuary / Ihutai 7150:Region of freshwater influence 6239:Ecological values of mangroves 5782:North Pacific Subtropical Gyre 5226:Geography resource for schools 5178:Marine Ecology Progress Series 4664:10.1002/9781118960608.gbm00378 4238:10.3390/microorganisms10050859 2278: 1052:Microbial life in salt marshes 1: 8057:Coastal and oceanic landforms 7906:Wildfowl & Wetlands Trust 7896:Society of Wetland Scientists 6912:Large-scale coastal behaviour 6744:Beaches in estuaries and bays 4768:10.1016/S1002-0160(07)60065-4 4606:Contributor (21 March 2022). 4180:10.1128/AEM.71.1.240-246.2005 3892:10.1016/j.ecoleng.2016.11.031 3718:10.1016/j.ecoleng.2009.08.002 3362:, University of Rhode Island: 3129:10.1016/j.envsoft.2018.08.004 2894:Geological Society of America 2852:Proceedings Coastal Sediments 2315:"A global map of saltmarshes" 2176:10.1016/S0304-3800(01)00226-5 2049: 1931:California coastal salt marsh 1467:Cyanobacteria in salt marshes 1396:present within salt marshes: 1303:to sulfur-reducing bacteria. 810:. They are highly productive 268:Most salt marshes have a low 7521:Peatland, mire, and quagmire 7213: 6259:Marine conservation activism 6244:Fisheries and climate change 3821:10.1371/journal.pone.0146689 3321:10.1371/journal.pone.0088760 493:Salt Marsh Nature Center in 368: 7: 7791:National Wetlands Inventory 6254:Human impact on marine life 6131:Davidson Seamount § Ecology 5367:Aquatic population dynamics 4874:10.1016/j.syapm.2018.06.003 4561:Frontiers in Marine Science 4500:10.1007/978-1-4020-8815-5_1 2658:Journal of Coastal Research 2604:Journal of Coastal Research 2580:Journal of Coastal Research 2479:environment of sediments". 1872: 1535: 233:) which are nourished with 10: 8073: 7876:Delta Waterfowl Foundation 4982:Limnology and Oceanography 4795:Frontiers in Plant Science 3223:10.1016/j.ecss.2018.08.027 3149:Limnology and Oceanography 2865:Applied Vegetation Science 1685:Restoration and management 1675:Phaeosphaeria spartinicola 1660:Phaeosphaeria spartinicola 1319:ammonia oxidizers such as 1283:from the water to prevent 641:increasing plant biomass. 196:Sapelo Island, Georgia, US 27:. For Gandhi's march, see 18: 7994: 7918: 7863: 7813: 7804: 7776: 7745: 7692: 7664: 7624: 7228: 7221: 7163: 7065: 7032: 6837: 6797: 6714: 6696: 6371: 6285: 6224: 6096: 6032: 5994: 5941: 5932: 5921: 5870:Marine primary production 5822: 5818: 5805: 5764:List of marine ecoregions 5739: 5604: 5593: 5307: 5303: 5289: 5002:10.4319/lo.1986.31.1.0089 4808:10.3389/fpls.2024.1344142 4360:10.1016/j.tim.2023.09.010 4284:Frontiers in Microbiology 3928:FEMS Microbiology Letters 3626:Frontiers in Microbiology 3580:FEMS Microbiology Ecology 3273:10.1038/s41586-018-0476-5 3180:10067/1384590151162165141 2763:Marine Pollution Bulletin 2692:10.1007/s12237-012-9494-y 2319:Biodiversity Data Journal 2275:. Retrieved 15 March 2010 2119:Woodroffe, C. D. (2002). 1859:electronic distance meter 1447:Photoautotrophic bacteria 1331:ammonia-oxidizing Archaea 1122:sulfate-reducing bacteria 1120:, both classes including 855:melting of Arctic sea ice 544:spp.) and the cordgrass ( 180:Ōpāwaho / Heathcote River 7855:Wetland indicator status 6857:Coastal biogeomorphology 6116:Coastal biogeomorphology 6111:Marine coastal ecosystem 5246:Marine Nature Study Area 5221:Friends of Famosa Slough 4612:Office of Sustainability 4574:10.3389/fmars.2019.00014 4297:10.3389/fmicb.2012.00445 3639:10.3389/fmicb.2016.00854 2448:. Edward Arnold, London. 1977:Marine coastal ecosystem 1906:Biodiversity action plan 1849:and transit, electronic 1518: 1230:, the conditions of the 801:found in the salt marsh. 241:and the leeward side of 119:in trapping and binding 60:A coastal salt marsh in 7566:Freshwater swamp forest 6024:Paradox of the plankton 5835:Diel vertical migration 5729:Freshwater swamp forest 5447:GIS and aquatic science 5295:General components and 5037:10.1007/0-306-47534-0_9 4531:"What is a salt marsh?" 2916:Ecological Applications 2879:Ranwell, D. S. (1972). 2407:10.1126/science.abm9583 2273:"Plants of the Estuary" 1501:Green sulfur bacteria ( 1491:purple sulphur bacteria 1410:within the salt marsh: 1388:The abundance of these 1295:then react with excess 1271:, as well as microbial 1267:in the water increases 152:ecological productivity 23:. For the surname, see 7901:Wetlands International 7672:List of wetland plants 6754:Coastal morphodynamics 5850:Large marine ecosystem 5542:Shoaling and schooling 4348:Trends in Microbiology 3940:10.1093/femsle/fnad082 3872:Ecological Engineering 3698:Ecological Engineering 3416:Water & Atmosphere 3358:8 October 2022 at the 2977:. 640–641: 1148–1156. 2481:The Journal of Geology 1792: 1786:Atlantic ribbed mussel 1746: 1708: 1625: 1361:Nitrosomonas aestuarii 1067:chemo(litho)autotrophs 927: 802: 714:in the high marsh and 690: 605: 498: 437: 198: 187: 91:between land and open 65: 53: 7546:Salt pannes and pools 7145:Physical oceanography 6269:Marine protected area 6196:Salt pannes and pools 5971:Marine larval ecology 5946:Census of Marine Life 5830:Deep scattering layer 5787:San Francisco Estuary 5752:Africa and Madagascar 5577:Underwater camouflage 5357:Aquatic biomonitoring 5297:freshwater ecosystems 4658:(1 ed.). Wiley. 4584:10536/DRO/DU:30117171 4535:oceanservice.noaa.gov 4395:Earth-Science Reviews 3765:10.1038/ismej.2009.44 3519:10.1038/ismej.2009.44 3036:Nature Communications 2742:Ecological Monographs 2189:EPA (10 April 2014). 1948:(salt meadow islands) 1837:per volume of water. 1784: 1738: 1692: 1632:Spartina alterniflora 1620: 1570:Epsilonproteobacteria 1529:arbuscular mycorrhiza 1461:green sulfur bacteria 1226:and a high amount of 1022:Spartina alterniflora 911: 878:populations, such as 828:anthropogenic effects 791: 679:Spartina alterniflora 676: 643:Spartina alterniflora 624:Spartina alterniflora 600: 554:ecological succession 512:Spartina alterniflora 488: 431: 257:they are replaced by 193: 178:salt marsh along the 173: 59: 39: 6974:Submergent coastline 6927:Marine transgression 6882:Discordant coastline 6867:Concordant coastline 6004:Marine bacteriophage 5966:Marine invertebrates 5242:Project Regeneration 4060:10.1128/AEM.01001-09 3995:10.1128/AEM.00201-09 3454:10.1128/AEM.02602-18 3386:Conservation Biology 2672:Estuaries and Coasts 2444:Pethick, J. (1984). 2332:10.3897/bdj.5.e11764 2156:Ecological Modelling 1987:Mesopotamian Marshes 1742:Phragmites australis 1713:tropical rainforests 1514:Rhizosphere microbes 1435:, produced from the 1390:chemolithoautotrophs 1277:primary productivity 1058:anaerobic conditions 984:The salt marshes of 881:Aedes taeniorhynchus 837:Phragmites australis 771:Upstream agriculture 630:Phragmites australis 360:Worldwide occurrence 160:carbon sequestration 48:and very high tide ( 8006:Wetlands portal 7637:Constructed wetland 7222:Types and landforms 7078:Coastal engineering 5880:Ocean fertilization 5689:Trophic state index 5647:Lake stratification 5377:Aquatic respiration 5230:Johnson, CY (2006) 5190:2011MEPS..434..229G 4994:1986LimOc..31...89B 4926:2003ApEnM..69.6676B 4866:2018SyApM..41..516G 4760:2007Pedos..17..545W 4705:2006Chmsp..64..104C 4454:2011MarEc..32..346C 4407:2009ESRv...96..163F 4172:2005ApEnM..71..240D 4117:2020ScTEn.72538427Z 4052:2009ApEnM..75.7461M 3987:2009ApEnM..75.4211N 3884:2017EcEng..99..182Z 3812:2016PLoSO..1146689K 3757:2009ISMEJ...3..924B 3710:2009EcEng..35.1804N 3511:2009ISMEJ...3..924B 3446:2019ApEnM..85E2602Y 3399:Ecological Research 3388:, 23: (3), 672–679. 3265:2018Natur.561..231S 3215:2018ECSS..213..305L 3161:2016LimOc..61.2261B 3155:(2016): 2261–2275. 3120:2018EnvMS.109..152B 3056:10.1038/ncomms14156 3048:2017NatCo...814156G 2983:2018ScTEn.640.1148V 2957:Restoration Ecology 2896:, 39: (5), 507–510. 2684:2012EstCo..35.1018C 2660:, 23: (4), 823–833. 2606:, 16: (3), 908–914. 2483:, 66: (3), 310–318. 2399:2022Sci...376..744M 2168:2001EcMod.139....1S 2073:Adam, Paul (1990). 1867:pressure transducer 1671:alphaproteobacteria 1603:Streptosporangineae 1591:Propionibacterineae 1566:Deltaproteobacteria 1562:Gammaproteobacteria 1507:bacteriochlorophyll 1377:Gammaproteobacteria 1367:Nitrosomonas marina 1313:nitrifying bacteria 1118:Gammaproteobacteria 1106:inorganic molecules 1008:Sesarma reticulatum 1004:Sesarma reticulatum 995:Sesarma reticulatum 975:Neohelice granulata 971:Spartina densiflora 967:Neohelice granulata 955:Mar Chiquita lagoon 943:Spartina densiflora 937:Neohelice granulata 25:Saltmarsh (surname) 7850:Salt marsh die-off 7768:Salt marsh dieback 7677:List of fen plants 7516:Palustrine wetland 7417:Intertidal wetland 7412:Interdunal wetland 7047:Coastal management 6887:Emergent coastline 6558:Intertidal wetland 6461:Continental margin 6146:Intertidal wetland 6141:Intertidal ecology 6009:Marine prokaryotes 5951:Deep-sea community 5845:Iron fertilization 5768:Specific examples 5694:Upland and lowland 5612:Freshwater biology 5477:Microbial food web 5387:Aquatic toxicology 5330:Aquatic adaptation 5283:Aquatic ecosystems 5240:Tidal Salt Marshes 4637:has generic name ( 3553:Biology LibreTexts 2814:10.1007/BF00032166 2582:, 25: (4), 915–924 2553:Journal of Ecology 2464:The Changing Coast 2018:Salt marsh die-off 1793: 1757:Typha angustifolia 1747: 1721:Habitats Directive 1709: 1626: 1599:Micromonosporineae 1558:Betaproteobacteria 1408:betaproteobacteria 1394:salinity gradients 1373:Nitrosospira ureae 1356:Betaproteobacteria 1317:Betaproteobacteria 1301:relative abundance 1249:nutrient recycling 1224:sedimentation rate 1114:Betaproteobacteria 928: 808:ecosystem services 803: 794:Chaetomorpha linum 691: 606: 573:spp.), and varied 499: 489:High marsh in the 463:evapotranspiration 438: 404:suspended sediment 341:in North America. 229:or abbreviated to 199: 188: 156:ecosystem services 136:coastal management 129:coastal protection 66: 54: 40:Salt marsh during 8052:Coastal geography 8024: 8023: 7926:Aquatic ecosystem 7914: 7913: 7833:Ramsar Convention 7660: 7659: 7642:Converted wetland 7584:Peat swamp forest 7447:Inland salt marsh 7181: 7180: 7009:Wave-cut platform 6922:Marine regression 6466:Continental shelf 6456:Coastal waterfall 6365:Coastal geography 6331: 6330: 6312:Oceans portal 6281: 6280: 6277: 6276: 6156:Hydrothermal vent 6092: 6091: 5981:Seashore wildlife 5812:Marine ecosystems 5801: 5800: 5797: 5796: 5567:Thermal pollution 5532:Ramsar Convention 5472:Microbial ecology 5432:Fisheries science 5372:Aquatic predation 5199:10.3354/meps09084 5046:978-0-306-47534-4 4920:(11): 6676–6687. 4673:978-1-118-96060-8 4509:978-1-4020-8815-5 4046:(23): 7461–7468. 3981:(12): 4211–4215. 3704:(12): 1804–1808. 3418:, 13: (3), 18–19. 3259:(7722): 231–247. 3170:10.1002/lno.10374 2784:Saltmarsh ecology 2510:Bird, E. (2008). 2393:(6594): 744–749. 2076:Saltmarsh Ecology 1997:Ocean Data Viewer 1587:Corynebacterineae 1583:Pseudonocardineae 1542:16S ribosomal DNA 1525:mycorrhizal fungi 1392:varies along the 1079:sulfate reduction 819:species abundance 738:biodiversity loss 688:Pacific Northwest 615:Jiuduansha Island 418:plant communities 402:rate reduces and 299:Mississippi Delta 263:herbaceous plants 166:Basic information 44:, mean low tide, 21:Inland salt marsh 8064: 8014: 8013: 8004: 8003: 8002: 7986:Will-o'-the-wisp 7919:Related articles 7811: 7810: 7611:Whitewater river 7561:Coniferous swamp 7442:Freshwater marsh 7335:Clearwater river 7251:Blackwater river 7226: 7225: 7208: 7201: 7194: 7185: 7184: 7171: 7170: 6932:Raised shoreline 6907:Ingression coast 6902:Graded shoreline 6877:Cuspate foreland 6709: 6702: 6653:Submarine canyon 6513:Freshwater marsh 6358: 6351: 6344: 6335: 6334: 6321: 6320: 6314: 6310: 6309: 6300: 6298:Lakes portal 6296: 6295: 6294: 6264:Marine pollution 5956:Deep-water coral 5939: 5938: 5927: 5860:Marine chemistry 5820: 5819: 5807: 5806: 5724:Freshwater marsh 5617:Freshwater biome 5599: 5315:Acoustic ecology 5305: 5304: 5291: 5290: 5276: 5269: 5262: 5253: 5252: 5235:The Boston Globe 5210: 5201: 5164: 5158:Urban Ecosystems 5154: 5145: 5138: 5129: 5119: 5104: 5103: 5063: 5057: 5056: 5055: 5053: 5020: 5014: 5013: 4973: 4964: 4963: 4953: 4905: 4894: 4893: 4845: 4839: 4838: 4828: 4810: 4786: 4780: 4779: 4739: 4733: 4732: 4684: 4678: 4677: 4649: 4643: 4642: 4636: 4632: 4630: 4622: 4620: 4618: 4603: 4597: 4596: 4586: 4576: 4552: 4546: 4545: 4543: 4541: 4526: 4520: 4519: 4518: 4516: 4483: 4474: 4473: 4433: 4427: 4426: 4386: 4380: 4379: 4339: 4328: 4327: 4317: 4299: 4275: 4269: 4268: 4258: 4240: 4216: 4210: 4209: 4199: 4151: 4145: 4144: 4096: 4090: 4089: 4079: 4031: 4025: 4024: 4014: 3966: 3960: 3959: 3919: 3904: 3903: 3863: 3852: 3851: 3841: 3823: 3791: 3785: 3784: 3745:The ISME Journal 3736: 3730: 3729: 3689: 3670: 3669: 3659: 3641: 3617: 3604: 3603: 3571: 3565: 3564: 3562: 3560: 3545: 3539: 3538: 3499:The ISME Journal 3490: 3484: 3483: 3473: 3425: 3419: 3408: 3402: 3395: 3389: 3382: 3376: 3369: 3363: 3350: 3344: 3343: 3333: 3323: 3299: 3293: 3292: 3250: 3241: 3235: 3234: 3194: 3185: 3184: 3182: 3172: 3140: 3134: 3133: 3131: 3099: 3086: 3085: 3075: 3027: 3021: 3020: 3002: 2969: 2963: 2953: 2938: 2928: 2922: 2912: 2906: 2903: 2897: 2890: 2884: 2877: 2868: 2861: 2855: 2848: 2842: 2841: 2793: 2787: 2780: 2769: 2759: 2748: 2738: 2732: 2725: 2712: 2711: 2678:(4): 1018–1027. 2667: 2661: 2654: 2635: 2634:, 5: (1), 81–90. 2628: 2607: 2600: 2583: 2576: 2559: 2549: 2540: 2530: 2515: 2508: 2497: 2490: 2484: 2473: 2467: 2460: 2449: 2442: 2427: 2426: 2384: 2374: 2363: 2362: 2352: 2334: 2310: 2301: 2294: 2285: 2282: 2276: 2266: 2257: 2250: 2229: 2226: 2215: 2208: 2202: 2201: 2199: 2197: 2186: 2180: 2179: 2151: 2145: 2144: 2116: 2099: 2098: 2070: 2038:Freshwater marsh 1889: 1884: 1883: 1882: 1812:Research methods 1486:hydrogen sulfide 1251:and in reducing 1196:S. alterniflora, 1164:species richness 1134:remineralization 1062:nutrient cycling 870:Mosquito control 743:Spartina anglica 723:Land reclamation 708:nitrogen loading 700:land reclamation 684:eastern seaboard 611:Chongming Island 408:blue-green algae 311:Manawatū Estuary 289:, France in the 8072: 8071: 8067: 8066: 8065: 8063: 8062: 8061: 8027: 8026: 8025: 8020: 8000: 7998: 7990: 7910: 7881:Ducks Unlimited 7859: 7818:Clean Water Act 7800: 7778:Classifications 7772: 7741: 7688: 7656: 7620: 7571:Mangrove forest 7217: 7212: 7182: 7177: 7159: 7135:Intertidal zone 7061: 7028: 6917:Longshore drift 6862:Coastal erosion 6833: 6793: 6729:Beach evolution 6710: 6704: 6703: 6694: 6381:Anchialine pool 6367: 6362: 6332: 6327: 6304: 6303: 6292: 6290: 6289: 6273: 6234:Coral bleaching 6220: 6201:Seagrass meadow 6098:Marine habitats 6088: 6062:Coral reef fish 6028: 6014:Marine protists 5990: 5928: 5919: 5890:Ocean turbidity 5865:Marine food web 5814: 5793: 5735: 5674:River ecosystem 5627:Freshwater fish 5600: 5591: 5397:Bioluminescence 5382:Aquatic science 5299: 5285: 5280: 5217: 5172: 5170:Further reading 5167: 5155: 5148: 5139: 5132: 5120: 5107: 5084:10.2307/1352634 5064: 5060: 5051: 5049: 5047: 5021: 5017: 4974: 4967: 4906: 4897: 4846: 4842: 4787: 4783: 4740: 4736: 4685: 4681: 4674: 4650: 4646: 4634: 4633: 4624: 4623: 4616: 4614: 4604: 4600: 4553: 4549: 4539: 4537: 4527: 4523: 4514: 4512: 4510: 4484: 4477: 4434: 4430: 4387: 4383: 4340: 4331: 4276: 4272: 4217: 4213: 4152: 4148: 4097: 4093: 4032: 4028: 3967: 3963: 3920: 3907: 3864: 3855: 3806:(1): e0146689. 3792: 3788: 3737: 3733: 3690: 3673: 3618: 3607: 3572: 3568: 3558: 3556: 3547: 3546: 3542: 3491: 3487: 3426: 3422: 3409: 3405: 3396: 3392: 3383: 3379: 3370: 3366: 3360:Wayback Machine 3351: 3347: 3300: 3296: 3248: 3242: 3238: 3195: 3188: 3141: 3137: 3100: 3089: 3028: 3024: 2970: 2966: 2954: 2941: 2929: 2925: 2913: 2909: 2904: 2900: 2891: 2887: 2878: 2871: 2862: 2858: 2849: 2845: 2794: 2790: 2781: 2772: 2760: 2751: 2739: 2735: 2726: 2715: 2668: 2664: 2655: 2638: 2629: 2610: 2601: 2586: 2577: 2562: 2550: 2543: 2531: 2518: 2509: 2500: 2491: 2487: 2474: 2470: 2461: 2452: 2443: 2430: 2382: 2375: 2366: 2311: 2304: 2295: 2288: 2283: 2279: 2267: 2260: 2251: 2232: 2227: 2218: 2209: 2205: 2195: 2193: 2187: 2183: 2152: 2148: 2133: 2117: 2102: 2087: 2071: 2056: 2052: 2047: 2028:Saltwater swamp 2008:Plant community 1887:Wetlands portal 1885: 1880: 1878: 1875: 1814: 1788:, found in the 1725:managed retreat 1717:Clean Water Act 1687: 1648:lignocellulotic 1615: 1595:Streptomycineae 1538: 1521: 1516: 1499: 1477: 1475:Purple bacteria 1469: 1457:purple bacteria 1449: 1309: 1269:denitrification 1245: 1216: 1188:electron donors 1180:electron donors 1176:electron donors 1172:S. alterniflora 1155:growing seasons 1130: 1102:Chemoautotrophs 1099: 1075:photoautotrophs 1054: 1047: 906: 872: 851: 832:S. alterniflora 786: 773: 725: 704:salt production 671: 595: 583:pioneer species 524:Juncus gerardii 518:Spartina patens 426: 387:pioneer species 371: 362: 346:Venetian Lagoon 323:Frisian Islands 243:barrier islands 168: 103:plants such as 89:intertidal zone 32: 17: 12: 11: 5: 8070: 8060: 8059: 8054: 8049: 8044: 8039: 8022: 8021: 8019: 8018: 8008: 7995: 7992: 7991: 7989: 7988: 7983: 7978: 7973: 7968: 7963: 7958: 7956:Drainage basin 7953: 7948: 7943: 7938: 7933: 7928: 7922: 7920: 7916: 7915: 7912: 7911: 7909: 7908: 7903: 7898: 7893: 7888: 7883: 7878: 7873: 7867: 7865: 7861: 7860: 7858: 7857: 7852: 7847: 7846: 7845: 7835: 7830: 7825: 7820: 7814: 7808: 7802: 7801: 7799: 7798: 7793: 7788: 7782: 7780: 7774: 7773: 7771: 7770: 7765: 7763:Paludification 7760: 7755: 7749: 7747: 7743: 7742: 7740: 7739: 7734: 7729: 7724: 7723: 7722: 7717: 7715:Sapric or muck 7712: 7702: 7696: 7694: 7693:Soil mechanics 7690: 7689: 7687: 7686: 7679: 7674: 7668: 7666: 7662: 7661: 7658: 7657: 7655: 7654: 7649: 7644: 7639: 7634: 7628: 7626: 7622: 7621: 7619: 7618: 7613: 7608: 7603: 7598: 7593: 7592: 7591: 7586: 7581: 7573: 7568: 7563: 7553: 7548: 7543: 7538: 7533: 7528: 7523: 7518: 7513: 7508: 7503: 7498: 7493: 7488: 7483: 7478: 7473: 7472: 7471: 7470: 7469: 7464: 7454: 7449: 7444: 7439: 7437:Brackish marsh 7429: 7424: 7419: 7414: 7409: 7404: 7399: 7394: 7389: 7384: 7379: 7374: 7369: 7368: 7367: 7362: 7357: 7347: 7342: 7337: 7332: 7327: 7326: 7325: 7315: 7310: 7309: 7308: 7303: 7298: 7293: 7288: 7283: 7278: 7273: 7268: 7258: 7253: 7248: 7243: 7238: 7232: 7230: 7223: 7219: 7218: 7211: 7210: 7203: 7196: 7188: 7179: 7178: 7176: 7175: 7164: 7161: 7160: 7158: 7157: 7152: 7147: 7142: 7137: 7132: 7131: 7130: 7125: 7120: 7115: 7110: 7105: 7100: 7095: 7090: 7080: 7075: 7069: 7067: 7063: 7062: 7060: 7059: 7054: 7049: 7044: 7038: 7036: 7030: 7029: 7027: 7026: 7021: 7016: 7011: 7006: 7001: 6996: 6991: 6986: 6981: 6976: 6971: 6966: 6965: 6964: 6954: 6949: 6944: 6939: 6934: 6929: 6924: 6919: 6914: 6909: 6904: 6899: 6894: 6889: 6884: 6879: 6874: 6869: 6864: 6859: 6854: 6849: 6843: 6841: 6835: 6834: 6832: 6831: 6830: 6829: 6824: 6814: 6809: 6803: 6801: 6795: 6794: 6792: 6791: 6786: 6781: 6776: 6771: 6766: 6761: 6756: 6751: 6746: 6741: 6736: 6731: 6726: 6720: 6718: 6712: 6711: 6697: 6695: 6693: 6692: 6685: 6680: 6675: 6670: 6665: 6660: 6655: 6650: 6645: 6640: 6635: 6630: 6625: 6620: 6615: 6610: 6605: 6600: 6595: 6590: 6585: 6580: 6575: 6570: 6565: 6560: 6555: 6550: 6545: 6540: 6535: 6530: 6525: 6520: 6515: 6510: 6505: 6500: 6495: 6490: 6489: 6488: 6478: 6473: 6468: 6463: 6458: 6453: 6448: 6443: 6438: 6433: 6428: 6426:Brackish marsh 6423: 6418: 6413: 6408: 6406:Barrier island 6403: 6398: 6393: 6388: 6383: 6377: 6375: 6369: 6368: 6361: 6360: 6353: 6346: 6338: 6329: 6328: 6326: 6325: 6315: 6301: 6286: 6283: 6282: 6279: 6278: 6275: 6274: 6272: 6271: 6266: 6261: 6256: 6251: 6246: 6241: 6236: 6230: 6228: 6222: 6221: 6219: 6218: 6213: 6208: 6203: 6198: 6193: 6188: 6183: 6178: 6173: 6168: 6163: 6158: 6153: 6148: 6143: 6138: 6133: 6128: 6123: 6118: 6113: 6108: 6102: 6100: 6094: 6093: 6090: 6089: 6087: 6086: 6081: 6080: 6079: 6074: 6069: 6064: 6059: 6052:Saltwater fish 6049: 6047:Marine reptile 6044: 6038: 6036: 6030: 6029: 6027: 6026: 6021: 6019:Marine viruses 6016: 6011: 6006: 6000: 5998: 5996:Microorganisms 5992: 5991: 5989: 5988: 5986:Wild fisheries 5983: 5978: 5973: 5968: 5963: 5958: 5953: 5948: 5942: 5936: 5930: 5929: 5922: 5920: 5918: 5917: 5912: 5907: 5902: 5900:Thorson's rule 5897: 5892: 5887: 5882: 5877: 5872: 5867: 5862: 5857: 5855:Marine biology 5852: 5847: 5842: 5837: 5832: 5826: 5824: 5816: 5815: 5803: 5802: 5799: 5798: 5795: 5794: 5792: 5791: 5790: 5789: 5784: 5779: 5774: 5766: 5761: 5760: 5759: 5754: 5743: 5741: 5737: 5736: 5734: 5733: 5732: 5731: 5726: 5721: 5716: 5714:Brackish marsh 5711: 5701: 5696: 5691: 5686: 5681: 5676: 5671: 5666: 5665: 5664: 5654: 5649: 5644: 5642:Lake ecosystem 5639: 5634: 5632:Hyporheic zone 5629: 5624: 5619: 5614: 5608: 5606: 5602: 5601: 5594: 5592: 5590: 5589: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5524: 5519: 5514: 5509: 5504: 5499: 5494: 5489: 5484: 5482:Microbial loop 5479: 5474: 5469: 5464: 5459: 5454: 5449: 5444: 5439: 5434: 5429: 5427:Eutrophication 5424: 5419: 5414: 5409: 5407:Cascade effect 5404: 5399: 5394: 5389: 5384: 5379: 5374: 5369: 5364: 5359: 5354: 5353: 5352: 5347: 5342: 5335:Aquatic animal 5332: 5327: 5322: 5317: 5311: 5309: 5301: 5300: 5287: 5286: 5279: 5278: 5271: 5264: 5256: 5250: 5249: 5243: 5237: 5228: 5223: 5216: 5215:External links 5213: 5212: 5211: 5171: 5168: 5166: 5165: 5146: 5130: 5123:Aquatic Botany 5105: 5078:(1): 241–249. 5058: 5045: 5015: 4965: 4895: 4860:(5): 516–527. 4840: 4781: 4754:(5): 545–556. 4734: 4699:(1): 104–111. 4679: 4672: 4644: 4598: 4547: 4521: 4508: 4475: 4448:(3): 346–363. 4442:Marine Ecology 4428: 4401:(3): 163–172. 4381: 4354:(6): 565–576. 4329: 4270: 4225:Microorganisms 4211: 4166:(1): 240–246. 4146: 4091: 4026: 3961: 3905: 3853: 3786: 3751:(8): 924–934. 3731: 3671: 3605: 3566: 3540: 3505:(8): 924–934. 3485: 3420: 3403: 3401:, 27: 233–237. 3390: 3377: 3375:, 405: 99–104. 3364: 3345: 3294: 3236: 3186: 3135: 3087: 3022: 2964: 2939: 2932:Aquatic Botany 2923: 2907: 2898: 2885: 2869: 2867:, 11: 335–344. 2856: 2843: 2808:(2): 137–148. 2788: 2770: 2749: 2733: 2713: 2662: 2636: 2608: 2584: 2560: 2541: 2516: 2498: 2485: 2468: 2450: 2428: 2364: 2302: 2286: 2277: 2258: 2230: 2216: 2212:morphodynamics 2203: 2181: 2146: 2131: 2100: 2085: 2053: 2051: 2048: 2046: 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1994: 1989: 1984: 1979: 1974: 1972:Mangrove swamp 1969: 1964: 1959: 1954: 1949: 1943: 1938: 1933: 1928: 1926:Brackish marsh 1923: 1918: 1913: 1908: 1903: 1898: 1892: 1891: 1890: 1874: 1871: 1826:marker horizon 1818:Sediment traps 1813: 1810: 1699:spp.) species 1686: 1683: 1666:Mycosphaerella 1614: 1611: 1607:Micrococcineae 1554:Proteobacteria 1537: 1534: 1520: 1517: 1515: 1512: 1498: 1497:Green bacteria 1495: 1476: 1473: 1468: 1465: 1448: 1445: 1437:mineralization 1308: 1305: 1285:eutrophication 1244: 1241: 1228:organic matter 1215: 1212: 1159:photosynthetic 1143:Desulfuromonas 1129: 1126: 1110:deep sea vents 1098: 1095: 1093:interactions. 1053: 1050: 1045: 922:in salt marsh 905: 902: 871: 868: 850: 849:Sea level rise 847: 785: 782: 772: 769: 748:Manawatu River 724: 721: 670: 667: 604:in Georgia, US 594: 591: 552:and begin its 530:Iva frutescens 527:and the shrub 521:, black rush, 425: 422: 379:tidal flooding 370: 367: 361: 358: 279:drowned-valley 219:sea level rise 211:high-latitudes 194:Salt marsh on 167: 164: 144:climate change 140:sea level rise 97:brackish water 62:Perry, Florida 15: 9: 6: 4: 3: 2: 8069: 8058: 8055: 8053: 8050: 8048: 8045: 8043: 8040: 8038: 8035: 8034: 8032: 8017: 8009: 8007: 7997: 7996: 7993: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7967: 7966:Riparian zone 7964: 7962: 7959: 7957: 7954: 7952: 7949: 7947: 7944: 7942: 7939: 7937: 7934: 7932: 7929: 7927: 7924: 7923: 7921: 7917: 7907: 7904: 7902: 7899: 7897: 7894: 7892: 7889: 7887: 7884: 7882: 7879: 7877: 7874: 7872: 7869: 7868: 7866: 7864:Organizations 7862: 7856: 7853: 7851: 7848: 7844: 7841: 7840: 7839: 7836: 7834: 7831: 7829: 7826: 7824: 7821: 7819: 7816: 7815: 7812: 7809: 7807: 7803: 7797: 7794: 7792: 7789: 7787: 7784: 7783: 7781: 7779: 7775: 7769: 7766: 7764: 7761: 7759: 7756: 7754: 7751: 7750: 7748: 7744: 7738: 7735: 7733: 7730: 7728: 7725: 7721: 7720:Tropical peat 7718: 7716: 7713: 7711: 7708: 7707: 7706: 7703: 7701: 7698: 7697: 7695: 7691: 7685: 7684: 7680: 7678: 7675: 7673: 7670: 7669: 7667: 7663: 7653: 7650: 7648: 7645: 7643: 7640: 7638: 7635: 7633: 7630: 7629: 7627: 7623: 7617: 7614: 7612: 7609: 7607: 7604: 7602: 7601:Várzea forest 7599: 7597: 7594: 7590: 7587: 7585: 7582: 7580: 7578: 7574: 7572: 7569: 7567: 7564: 7562: 7559: 7558: 7557: 7554: 7552: 7549: 7547: 7544: 7542: 7539: 7537: 7534: 7532: 7529: 7527: 7524: 7522: 7519: 7517: 7514: 7512: 7509: 7507: 7504: 7502: 7499: 7497: 7494: 7492: 7489: 7487: 7484: 7482: 7479: 7477: 7474: 7468: 7465: 7463: 7460: 7459: 7458: 7455: 7453: 7450: 7448: 7445: 7443: 7440: 7438: 7435: 7434: 7433: 7430: 7428: 7425: 7423: 7420: 7418: 7415: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7393: 7390: 7388: 7385: 7383: 7380: 7378: 7375: 7373: 7370: 7366: 7363: 7361: 7358: 7356: 7353: 7352: 7351: 7348: 7346: 7343: 7341: 7338: 7336: 7333: 7331: 7328: 7324: 7321: 7320: 7319: 7316: 7314: 7311: 7307: 7304: 7302: 7299: 7297: 7294: 7292: 7291:Polygonal bog 7289: 7287: 7284: 7282: 7279: 7277: 7274: 7272: 7269: 7267: 7264: 7263: 7262: 7259: 7257: 7254: 7252: 7249: 7247: 7244: 7242: 7239: 7237: 7234: 7233: 7231: 7227: 7224: 7220: 7216: 7209: 7204: 7202: 7197: 7195: 7190: 7189: 7186: 7174: 7166: 7165: 7162: 7156: 7153: 7151: 7148: 7146: 7143: 7141: 7140:Littoral zone 7138: 7136: 7133: 7129: 7126: 7124: 7121: 7119: 7116: 7114: 7111: 7109: 7106: 7104: 7101: 7099: 7096: 7094: 7091: 7089: 7086: 7085: 7084: 7081: 7079: 7076: 7074: 7073:Bulkhead line 7071: 7070: 7068: 7064: 7058: 7055: 7053: 7050: 7048: 7045: 7043: 7040: 7039: 7037: 7035: 7031: 7025: 7022: 7020: 7017: 7015: 7014:Wave shoaling 7012: 7010: 7007: 7005: 7002: 7000: 6997: 6995: 6992: 6990: 6989:Surge channel 6987: 6985: 6982: 6980: 6977: 6975: 6972: 6970: 6967: 6963: 6960: 6959: 6958: 6955: 6953: 6950: 6948: 6945: 6943: 6940: 6938: 6935: 6933: 6930: 6928: 6925: 6923: 6920: 6918: 6915: 6913: 6910: 6908: 6905: 6903: 6900: 6898: 6895: 6893: 6890: 6888: 6885: 6883: 6880: 6878: 6875: 6873: 6870: 6868: 6865: 6863: 6860: 6858: 6855: 6853: 6852:Cliffed coast 6850: 6848: 6845: 6844: 6842: 6840: 6836: 6828: 6825: 6823: 6820: 6819: 6818: 6815: 6813: 6810: 6808: 6805: 6804: 6802: 6800: 6796: 6790: 6787: 6785: 6782: 6780: 6779:Shingle beach 6777: 6775: 6772: 6770: 6767: 6765: 6762: 6760: 6757: 6755: 6752: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6721: 6719: 6717: 6713: 6708: 6701: 6691: 6690: 6686: 6684: 6681: 6679: 6676: 6674: 6671: 6669: 6666: 6664: 6661: 6659: 6656: 6654: 6651: 6649: 6646: 6644: 6641: 6639: 6636: 6634: 6631: 6629: 6626: 6624: 6621: 6619: 6616: 6614: 6611: 6609: 6606: 6604: 6601: 6599: 6596: 6594: 6591: 6589: 6586: 6584: 6581: 6579: 6576: 6574: 6571: 6569: 6566: 6564: 6561: 6559: 6556: 6554: 6551: 6549: 6546: 6544: 6541: 6539: 6536: 6534: 6531: 6529: 6526: 6524: 6521: 6519: 6516: 6514: 6511: 6509: 6506: 6504: 6501: 6499: 6496: 6494: 6491: 6487: 6484: 6483: 6482: 6479: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6457: 6454: 6452: 6451:Coastal plain 6449: 6447: 6444: 6442: 6439: 6437: 6434: 6432: 6429: 6427: 6424: 6422: 6419: 6417: 6414: 6412: 6409: 6407: 6404: 6402: 6399: 6397: 6394: 6392: 6389: 6387: 6384: 6382: 6379: 6378: 6376: 6374: 6370: 6366: 6359: 6354: 6352: 6347: 6345: 6340: 6339: 6336: 6324: 6316: 6313: 6308: 6302: 6299: 6288: 6287: 6284: 6270: 6267: 6265: 6262: 6260: 6257: 6255: 6252: 6250: 6247: 6245: 6242: 6240: 6237: 6235: 6232: 6231: 6229: 6227: 6223: 6217: 6214: 6212: 6209: 6207: 6206:Sponge ground 6204: 6202: 6199: 6197: 6194: 6192: 6189: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6171:Marine biomes 6169: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6139: 6137: 6134: 6132: 6129: 6127: 6124: 6122: 6119: 6117: 6114: 6112: 6109: 6107: 6104: 6103: 6101: 6099: 6095: 6085: 6082: 6078: 6075: 6073: 6072:Demersal fish 6070: 6068: 6067:Deep-sea fish 6065: 6063: 6060: 6058: 6055: 6054: 6053: 6050: 6048: 6045: 6043: 6042:Marine mammal 6040: 6039: 6037: 6035: 6031: 6025: 6022: 6020: 6017: 6015: 6012: 6010: 6007: 6005: 6002: 6001: 5999: 5997: 5993: 5987: 5984: 5982: 5979: 5977: 5974: 5972: 5969: 5967: 5964: 5962: 5959: 5957: 5954: 5952: 5949: 5947: 5944: 5943: 5940: 5937: 5935: 5931: 5926: 5916: 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5866: 5863: 5861: 5858: 5856: 5853: 5851: 5848: 5846: 5843: 5841: 5838: 5836: 5833: 5831: 5828: 5827: 5825: 5821: 5817: 5813: 5808: 5804: 5788: 5785: 5783: 5780: 5778: 5775: 5773: 5770: 5769: 5767: 5765: 5762: 5758: 5755: 5753: 5750: 5749: 5748: 5745: 5744: 5742: 5738: 5730: 5727: 5725: 5722: 5720: 5717: 5715: 5712: 5710: 5707: 5706: 5705: 5702: 5700: 5697: 5695: 5692: 5690: 5687: 5685: 5682: 5680: 5677: 5675: 5672: 5670: 5667: 5663: 5660: 5659: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5638: 5635: 5633: 5630: 5628: 5625: 5623: 5620: 5618: 5615: 5613: 5610: 5609: 5607: 5603: 5598: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5572:Trophic level 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5537:Sediment trap 5535: 5533: 5530: 5528: 5525: 5523: 5520: 5518: 5515: 5513: 5512:Phytoplankton 5510: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5463: 5460: 5458: 5455: 5453: 5450: 5448: 5445: 5443: 5440: 5438: 5435: 5433: 5430: 5428: 5425: 5423: 5420: 5418: 5415: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5363: 5362:Aquatic plant 5360: 5358: 5355: 5351: 5348: 5346: 5343: 5341: 5338: 5337: 5336: 5333: 5331: 5328: 5326: 5325:Anoxic waters 5323: 5321: 5318: 5316: 5313: 5312: 5310: 5306: 5302: 5298: 5292: 5288: 5284: 5277: 5272: 5270: 5265: 5263: 5258: 5257: 5254: 5247: 5244: 5241: 5238: 5236: 5233: 5229: 5227: 5224: 5222: 5219: 5218: 5209: 5205: 5200: 5195: 5191: 5187: 5183: 5179: 5174: 5173: 5162: 5159: 5153: 5151: 5143: 5137: 5135: 5127: 5124: 5118: 5116: 5114: 5112: 5110: 5101: 5097: 5093: 5089: 5085: 5081: 5077: 5073: 5069: 5062: 5048: 5042: 5038: 5034: 5030: 5026: 5019: 5011: 5007: 5003: 4999: 4995: 4991: 4988:(1): 89–100. 4987: 4983: 4979: 4972: 4970: 4961: 4957: 4952: 4947: 4943: 4939: 4935: 4931: 4927: 4923: 4919: 4915: 4911: 4904: 4902: 4900: 4891: 4887: 4883: 4879: 4875: 4871: 4867: 4863: 4859: 4855: 4851: 4844: 4836: 4832: 4827: 4822: 4818: 4814: 4809: 4804: 4800: 4796: 4792: 4785: 4777: 4773: 4769: 4765: 4761: 4757: 4753: 4749: 4745: 4738: 4730: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4698: 4694: 4690: 4683: 4675: 4669: 4665: 4661: 4657: 4656: 4648: 4640: 4628: 4613: 4609: 4602: 4594: 4590: 4585: 4580: 4575: 4570: 4566: 4562: 4558: 4551: 4536: 4532: 4525: 4511: 4505: 4501: 4497: 4493: 4489: 4482: 4480: 4471: 4467: 4463: 4459: 4455: 4451: 4447: 4443: 4439: 4432: 4424: 4420: 4416: 4412: 4408: 4404: 4400: 4396: 4392: 4385: 4377: 4373: 4369: 4365: 4361: 4357: 4353: 4349: 4345: 4338: 4336: 4334: 4325: 4321: 4316: 4311: 4307: 4303: 4298: 4293: 4289: 4285: 4281: 4274: 4266: 4262: 4257: 4252: 4248: 4244: 4239: 4234: 4230: 4226: 4222: 4215: 4207: 4203: 4198: 4193: 4189: 4185: 4181: 4177: 4173: 4169: 4165: 4161: 4157: 4150: 4142: 4138: 4134: 4130: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4095: 4087: 4083: 4078: 4073: 4069: 4065: 4061: 4057: 4053: 4049: 4045: 4041: 4037: 4030: 4022: 4018: 4013: 4008: 4004: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3965: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3929: 3925: 3918: 3916: 3914: 3912: 3910: 3901: 3897: 3893: 3889: 3885: 3881: 3877: 3873: 3869: 3862: 3860: 3858: 3849: 3845: 3840: 3835: 3831: 3827: 3822: 3817: 3813: 3809: 3805: 3801: 3797: 3790: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3750: 3746: 3742: 3735: 3727: 3723: 3719: 3715: 3711: 3707: 3703: 3699: 3695: 3688: 3686: 3684: 3682: 3680: 3678: 3676: 3667: 3663: 3658: 3653: 3649: 3645: 3640: 3635: 3631: 3627: 3623: 3616: 3614: 3612: 3610: 3601: 3597: 3593: 3589: 3585: 3581: 3577: 3570: 3554: 3550: 3544: 3536: 3532: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3500: 3496: 3489: 3481: 3477: 3472: 3467: 3463: 3459: 3455: 3451: 3447: 3443: 3439: 3435: 3431: 3424: 3417: 3413: 3407: 3400: 3394: 3387: 3381: 3374: 3368: 3361: 3357: 3354: 3349: 3341: 3337: 3332: 3327: 3322: 3317: 3314:(2): e88760. 3313: 3309: 3305: 3298: 3290: 3286: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3247: 3240: 3232: 3228: 3224: 3220: 3216: 3212: 3208: 3204: 3200: 3193: 3191: 3181: 3176: 3171: 3166: 3162: 3158: 3154: 3150: 3146: 3139: 3130: 3125: 3121: 3117: 3113: 3109: 3105: 3098: 3096: 3094: 3092: 3083: 3079: 3074: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3026: 3018: 3014: 3010: 3006: 3001: 2996: 2992: 2988: 2984: 2980: 2976: 2968: 2961: 2958: 2952: 2950: 2948: 2946: 2944: 2936: 2933: 2927: 2920: 2917: 2911: 2902: 2895: 2889: 2882: 2876: 2874: 2866: 2860: 2853: 2847: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2803: 2799: 2792: 2785: 2779: 2777: 2775: 2767: 2764: 2758: 2756: 2754: 2746: 2743: 2737: 2731:, 131: 57–68. 2730: 2729:Geomorphology 2724: 2722: 2720: 2718: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2666: 2659: 2653: 2651: 2649: 2647: 2645: 2643: 2641: 2633: 2627: 2625: 2623: 2621: 2619: 2617: 2615: 2613: 2605: 2599: 2597: 2595: 2593: 2591: 2589: 2581: 2575: 2573: 2571: 2569: 2567: 2565: 2557: 2554: 2548: 2546: 2538: 2535: 2529: 2527: 2525: 2523: 2521: 2513: 2507: 2505: 2503: 2495: 2489: 2482: 2478: 2472: 2465: 2459: 2457: 2455: 2447: 2441: 2439: 2437: 2435: 2433: 2424: 2420: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2381: 2373: 2371: 2369: 2360: 2356: 2351: 2346: 2342: 2338: 2333: 2328: 2325:(5): e11764. 2324: 2320: 2316: 2309: 2307: 2299: 2293: 2291: 2281: 2274: 2271:(2005–2010). 2270: 2265: 2263: 2256:, 1: 117–141. 2255: 2249: 2247: 2245: 2243: 2241: 2239: 2237: 2235: 2225: 2223: 2221: 2213: 2207: 2192: 2185: 2177: 2173: 2169: 2165: 2161: 2157: 2150: 2142: 2138: 2134: 2132:0-521-81254-2 2128: 2124: 2123: 2115: 2113: 2111: 2109: 2107: 2105: 2096: 2092: 2088: 2086:0-521-24508-7 2082: 2078: 2077: 2069: 2067: 2065: 2063: 2061: 2059: 2054: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1917: 1916:Body of water 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1893: 1888: 1877: 1870: 1868: 1864: 1863:total station 1860: 1856: 1852: 1848: 1843: 1838: 1835: 1831: 1827: 1822: 1819: 1809: 1807: 1803: 1799: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1765: 1764: 1759: 1758: 1753: 1744: 1743: 1739:Common reed ( 1737: 1733: 1729: 1726: 1722: 1718: 1714: 1706: 1702: 1698: 1697: 1691: 1682: 1680: 1676: 1672: 1668: 1667: 1662: 1661: 1656: 1651: 1649: 1645: 1641: 1638: 1634: 1633: 1623: 1622:Phaeosphaeria 1619: 1610: 1608: 1604: 1600: 1596: 1592: 1588: 1584: 1579: 1575: 1574:S. marcescens 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1533: 1530: 1526: 1511: 1508: 1504: 1503:Chlorobiaceae 1494: 1492: 1487: 1483: 1472: 1464: 1462: 1458: 1454: 1453:cyanobacteria 1444: 1442: 1438: 1434: 1430: 1429:nitrification 1425: 1423: 1422:nitrification 1419: 1415: 1414: 1409: 1405: 1401: 1400: 1395: 1391: 1386: 1384: 1383: 1382:Nitrosococcus 1378: 1374: 1370: 1368: 1364: 1362: 1357: 1353: 1349: 1346:, to convert 1345: 1341: 1340:nitrification 1336: 1335:Crenarchaeota 1332: 1328: 1324: 1323: 1318: 1314: 1304: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1273:decomposition 1270: 1266: 1262: 1258: 1254: 1250: 1240: 1238: 1233: 1229: 1225: 1221: 1211: 1209: 1204: 1199: 1197: 1193: 1189: 1185: 1184:decomposition 1181: 1177: 1173: 1169: 1165: 1160: 1156: 1150: 1148: 1147:Desulfovibrio 1144: 1140: 1139:Desulfobulbus 1135: 1125: 1123: 1119: 1115: 1111: 1107: 1103: 1094: 1092: 1088: 1087:decomposition 1084: 1083:nitrification 1080: 1076: 1072: 1068: 1063: 1059: 1049: 1042: 1037: 1036: 1035:Helice crassa 1030: 1028: 1023: 1019: 1015: 1014: 1009: 1005: 1001: 997: 996: 991: 987: 982: 980: 976: 972: 968: 964: 960: 959:Mar del Plata 956: 952: 950: 945: 944: 939: 938: 933: 925: 921: 917: 916: 915:Helice crassa 910: 901: 899: 895: 891: 887: 883: 882: 877: 867: 863: 859: 856: 846: 843: 839: 838: 833: 829: 823: 820: 815: 813: 809: 800: 796: 795: 790: 781: 779: 768: 766: 761: 757: 756:Blyth estuary 752: 749: 745: 744: 739: 734: 730: 720: 717: 713: 709: 705: 701: 697: 689: 685: 681: 680: 675: 669:Human impacts 666: 662: 659: 654: 652: 646: 644: 639: 637: 632: 631: 626: 625: 620: 619:Yangtze River 616: 612: 603: 599: 590: 586: 584: 580: 576: 572: 568: 564: 560: 559:sea lavenders 555: 551: 547: 543: 539: 534: 532: 531: 526: 525: 520: 519: 514: 513: 508: 504: 496: 492: 487: 483: 481: 476: 472: 468: 467:microhabitats 464: 459: 455: 454:Soil salinity 451: 447: 443: 435: 430: 421: 419: 414: 409: 405: 401: 396: 392: 388: 384: 380: 376: 366: 357: 353: 351: 347: 342: 340: 336: 332: 328: 327:Morecambe Bay 324: 320: 316: 312: 308: 304: 303:United States 300: 296: 293:delta or the 292: 288: 284: 280: 276: 271: 266: 264: 260: 256: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 215:sedimentation 212: 208: 204: 197: 192: 186:, New Zealand 185: 181: 177: 172: 163: 161: 157: 153: 149: 145: 141: 137: 132: 130: 126: 122: 118: 114: 110: 106: 102: 101:salt-tolerant 98: 94: 90: 87: 83: 79: 75: 71: 63: 58: 51: 47: 43: 38: 34: 30: 26: 22: 8047:Salt marshes 7951:List of bogs 7806:Conservation 7737:Ombrotrophic 7681: 7652:Water-meadow 7576: 7451: 7387:Grass valley 7377:Flood-meadow 7340:Cypress dome 7271:Cataract bog 7246:Beach meadow 7004:Volcanic arc 6892:Feeder bluff 6799:River mouths 6764:Raised beach 6759:Pocket beach 6687: 6658:Tidal island 6648:Strand plain 6612: 6593:Natural arch 6226:Conservation 6190: 6077:Pelagic fish 6057:Coastal fish 5961:Marine fungi 5699:Water garden 5582:Water column 5527:Productivity 5502:Pelagic zone 5462:Macrobenthos 5452:Hydrobiology 5422:Ecohydrology 5234: 5181: 5177: 5160: 5157: 5141: 5125: 5122: 5075: 5071: 5061: 5050:, retrieved 5028: 5018: 4985: 4981: 4917: 4913: 4857: 4853: 4843: 4798: 4794: 4784: 4751: 4747: 4737: 4696: 4692: 4682: 4654: 4647: 4615:. Retrieved 4611: 4601: 4564: 4560: 4550: 4538:. Retrieved 4534: 4524: 4513:, retrieved 4491: 4445: 4441: 4431: 4398: 4394: 4384: 4351: 4347: 4287: 4283: 4273: 4228: 4224: 4214: 4163: 4159: 4149: 4108: 4104: 4094: 4043: 4039: 4029: 3978: 3974: 3964: 3931: 3927: 3875: 3871: 3803: 3799: 3789: 3748: 3744: 3734: 3701: 3697: 3629: 3625: 3583: 3579: 3569: 3557:. Retrieved 3555:. 8 May 2017 3552: 3543: 3502: 3498: 3488: 3437: 3433: 3423: 3415: 3406: 3398: 3393: 3385: 3380: 3372: 3367: 3348: 3311: 3307: 3297: 3256: 3252: 3239: 3206: 3202: 3152: 3148: 3138: 3111: 3107: 3039: 3035: 3025: 2974: 2967: 2959: 2956: 2934: 2931: 2926: 2918: 2915: 2910: 2901: 2893: 2888: 2880: 2864: 2859: 2851: 2846: 2805: 2801: 2791: 2783: 2765: 2762: 2744: 2741: 2736: 2728: 2675: 2671: 2665: 2657: 2631: 2603: 2579: 2555: 2552: 2536: 2533: 2511: 2493: 2488: 2480: 2477:depositional 2471: 2463: 2445: 2390: 2386: 2322: 2318: 2297: 2280: 2268: 2253: 2206: 2194:. Retrieved 2184: 2159: 2155: 2149: 2121: 2075: 1901:Beach meadow 1839: 1823: 1815: 1794: 1776: 1772: 1768: 1763:T. latifolia 1761: 1755: 1752:P. australis 1751: 1748: 1740: 1730: 1710: 1694: 1674: 1664: 1658: 1652: 1644:bacterivores 1640:alterniflora 1639: 1636: 1630: 1627: 1621: 1539: 1522: 1502: 1500: 1478: 1470: 1450: 1441:denitrifiers 1427:The role of 1426: 1418:Nitrosospira 1417: 1413:Nitrosomonas 1411: 1404:Nitrosospira 1403: 1399:Nitrosomonas 1397: 1387: 1380: 1372: 1365: 1359: 1350:(NH4+) into 1343: 1327:Nitrosospira 1326: 1322:Nitrosomonas 1320: 1310: 1246: 1217: 1200: 1195: 1171: 1151: 1146: 1142: 1138: 1131: 1100: 1071:heterotrophs 1055: 1039:surrounding 1033: 1025: 1021: 1018:bioturbation 1011: 1007: 1003: 993: 989: 983: 974: 970: 966: 947: 941: 935: 929: 913: 898:wading birds 879: 873: 864: 860: 852: 842:P. australis 841: 835: 831: 824: 816: 804: 799:marine algae 797:is a common 792: 774: 753: 741: 726: 692: 677: 663: 655: 651:tidal creeks 647: 642: 634: 628: 622: 607: 602:Bloody Marsh 587: 570: 562: 545: 541: 535: 528: 522: 516: 510: 500: 439: 411:(e.g.,  372: 363: 354: 343: 339:Bay of Fundy 319:Christchurch 267: 200: 184:Christchurch 133: 77: 73: 69: 67: 33: 8037:Blue carbon 7976:Telmatology 7971:River delta 7838:Ramsar site 7828:Marsh organ 7727:Hydric soil 7606:Vernal pool 7589:Shrub swamp 7457:Tidal marsh 7286:Plateau bog 7276:Coastal bog 7266:Blanket bog 7155:River plume 6969:Steep coast 6942:Rocky shore 6937:Rip current 6817:River delta 6789:Wash margin 6784:Storm beach 6774:Shell beach 6739:Beach wrack 6734:Beach ridge 6724:Beach cusps 6673:Tied island 6663:Tidal marsh 6386:Archipelago 6211:Sponge reef 6186:Rocky shore 6181:Oyster reef 6151:Kelp forest 6034:Vertebrates 5934:Marine life 5910:Viral shunt 5875:Marine snow 5777:Maharashtra 5684:Stream pool 5587:Zooplankton 5507:Photic zone 5467:Meiobenthos 5320:Algal bloom 5184:: 229–238, 4693:Chemosphere 4635:|last= 3878:: 182–190. 3586:(1): 1–14. 3209:: 305–313. 3114:: 152–166. 2162:(1): 1–15. 2033:Tidal marsh 1941:Great Marsh 1911:Blue carbon 1855:laser level 1728:reclaimed. 1693:Glasswort ( 1677:is through 1550:rhizosphere 1329:. Although 1091:rhizosphere 957:, north of 949:Sarcocornia 853:Due to the 503:New England 491:Marine Park 458:lower marsh 446:upper marsh 434:Connecticut 255:sub-tropics 227:tidal flats 82:tidal marsh 50:spring tide 8031:Categories 7936:Bog butter 7632:Bog garden 7625:Artificial 7596:Wet meadow 7462:High marsh 7452:Salt marsh 7355:Fen-meadow 7323:Alder carr 7306:Upland bog 7301:String bog 7296:Raised bog 7083:Grain size 7057:Submersion 7034:Management 7019:Wind fetch 6979:Surf break 6897:Flat coast 6827:regressive 6613:Salt marsh 6471:Coral reef 6191:Salt marsh 6126:Coral reef 5915:Whale fall 5895:Photophore 5772:Everglades 5740:Ecoregions 5679:Stream bed 5652:Macrophyte 5605:Freshwater 5437:Food chain 5350:Water bird 4748:Pedosphere 4231:(5): 859. 4111:: 138427. 3000:1912/10488 2539:1395–1398. 2196:30 October 2050:References 2003:Outwelling 1957:High marsh 1851:theodolite 1847:stadia rod 1821:sediment. 1705:high marsh 1696:Salicornia 1679:ascospores 1655:ascomycota 1540:Examining 1166:and total 1157:, varying 1013:Uca pugnax 979:senescence 924:ecosystems 812:ecosystems 778:deforested 696:ecosystems 658:meandering 638:mariqueter 542:Salicornia 538:glassworts 497:, New York 480:submersion 420:develops. 413:Salicornia 383:propagules 331:Portsmouth 313:, and the 270:topography 223:subsidence 203:shorelines 158:, such as 154:and other 142:caused by 70:salt marsh 29:Salt March 7758:Hydrosere 7746:Processes 7732:Marsh gas 7577:Myristica 7467:Low marsh 7281:Kermi bog 7256:Bofedales 7236:Backswamp 7042:Accretion 7024:Wind wave 6984:Surf zone 6839:Processes 6812:Mouth bar 6769:Recession 6749:Beachrock 6668:Tide pool 6598:Peninsula 6486:cliff-top 6373:Landforms 6216:Tide pool 6121:Cold seep 5905:Upwelling 5669:Rheotaxis 5662:Fish pond 5637:Limnology 5562:Substrate 5547:Siltation 5417:Dead zone 5092:0160-8347 5072:Estuaries 5010:0024-3590 4942:0099-2240 4882:0723-2020 4817:1664-462X 4776:1002-0160 4721:0045-6535 4593:2296-7745 4470:0173-9565 4423:0012-8252 4368:0966-842X 4306:1664-302X 4247:2076-2607 4188:0099-2240 4133:0048-9697 4068:0099-2240 4003:0099-2240 3948:1574-6968 3900:0925-8574 3830:1932-6203 3773:1751-7362 3726:0925-8574 3648:1664-302X 3527:1751-7362 3462:0099-2240 3231:135052098 3064:2041-1723 3042:: 14156. 2822:0042-3106 2802:Vegetatio 2708:129721804 2700:1559-2723 2423:248749118 2341:1314-2828 2013:Salt flat 1967:Low marsh 1952:Halophyte 1842:turbidity 1806:San Diego 1790:low marsh 1544:found in 1203:abundance 1192:abundance 1168:abundance 963:Argentina 932:herbivory 890:killifish 765:aquiclude 733:livestock 567:plantains 507:cordgrass 400:discharge 375:accretion 369:Formation 259:mangroves 249:. In the 239:estuaries 207:temperate 176:estuarine 121:sediments 111:, or low 93:saltwater 74:saltmarsh 46:high tide 8016:Category 7946:Bog-wood 7941:Bog iron 7931:Bog body 7753:Halosere 7705:Histosol 7700:Acrotelm 7683:Sphagnum 7541:Reed bed 7486:Moorland 7365:Rich fen 7360:Poor fen 7215:Wetlands 7173:Category 6999:Undertow 6952:Sea foam 6947:Sea cave 6847:Blowhole 6689:Windwatt 6548:Headland 6396:Avulsion 6323:Category 6249:HERMIONE 6166:Mangrove 5976:Seagrass 5522:Pleuston 5517:Plankton 5497:Particle 5442:Food web 5208:24875453 5163:107–124. 4960:14602628 4890:29934111 4835:38362446 4826:10867124 4729:16403557 4627:cite web 4376:37827901 4324:23346081 4265:35630305 4206:15640193 4141:32464751 4086:19801456 4021:19395565 3956:37541957 3848:26800443 3800:PLOS ONE 3781:19421233 3666:27375576 3600:18503548 3535:19421233 3480:30635381 3356:Archived 3340:24551156 3308:PLOS ONE 3289:52198604 3281:30209368 3082:28112167 3017:51703514 3009:30021280 2962:497–513. 2937:261–273. 2838:20754802 2830:20038672 2768:180–189. 2747:209–225. 2558:608–621. 2415:35549414 2359:28765720 2141:48795910 2095:20217629 2023:Seagrass 1946:Halligen 1873:See also 1830:feldspar 1798:wetlands 1719:and the 1637:Spartina 1556:such as 1536:Bacteria 1348:ammonium 1293:sulfates 1289:sediment 1281:nitrates 1265:nitrates 1257:nitrates 1237:sediment 1232:sediment 1029:maritima 990:Spartina 986:Cape Cod 951:perennis 894:predator 876:mosquito 698:through 571:Plantago 563:Limonium 546:Spartina 495:Brooklyn 452:levels. 450:salinity 389:such as 337:and the 307:Auckland 287:Camargue 235:sediment 231:mudflats 125:food web 42:low tide 7981:Turbary 7961:Estuary 7536:Pothole 7526:Pocosin 7491:Mudflat 7330:Ciénega 7313:Callows 7229:Natural 7123:shingle 7103:granule 7088:boulder 7066:Related 6962:peresyp 6872:Current 6807:Debouch 6716:Beaches 6683:Waituna 6678:Tombolo 6588:Mudflat 6583:Machair 6573:Isthmus 6493:Estuary 6436:Channel 6176:Mudflat 6136:Estuary 6106:Bay mud 6084:Seabird 5840:f-ratio 5823:General 5704:Wetland 5492:Neuston 5457:Hypoxia 5402:Biomass 5392:Benthos 5308:General 5186:Bibcode 5100:1352634 5052:4 April 4990:Bibcode 4922:Bibcode 4862:Bibcode 4756:Bibcode 4701:Bibcode 4617:7 April 4540:7 April 4515:7 April 4450:Bibcode 4403:Bibcode 4315:3551258 4290:: 445. 4256:9146408 4168:Bibcode 4113:Bibcode 4077:2786404 4048:Bibcode 4012:2698360 3983:Bibcode 3880:Bibcode 3839:4723079 3808:Bibcode 3753:Bibcode 3706:Bibcode 3657:4899434 3632:: 854. 3559:4 April 3507:Bibcode 3471:6414364 3442:Bibcode 3331:3923833 3261:Bibcode 3211:Bibcode 3157:Bibcode 3116:Bibcode 3073:5264011 3044:Bibcode 2979:Bibcode 2854:, 1–13. 2680:Bibcode 2395:Bibcode 2387:Science 2350:5515097 2164:Bibcode 2043:Wetland 1992:Mudflat 1834:wetland 1703:to the 1701:endemic 1546:Yangtze 1527:, like 1482:sulfate 1433:ammonia 1352:nitrite 1297:nitrate 1261:nitrate 1253:nitrate 1208:biomass 1000:denuded 886:ditches 760:Suffolk 754:In the 716:die-off 712:dieback 636:Scirpus 565:spp.), 550:mudflat 456:in the 395:rhizome 335:Britain 301:in the 275:deltaic 251:tropics 148:erosion 109:grasses 86:coastal 78:salting 7551:Slough 7506:Pakihi 7496:Muskeg 7422:Kettle 7392:Guelta 7113:pebble 7108:gravel 7098:cobble 6643:Strait 6623:Skerry 6578:Lagoon 6563:Island 6518:Fundus 6421:Bodden 6161:Lagoon 5487:Nekton 5345:Mammal 5340:Insect 5206:  5098:  5090:  5043:  5008:  4958:  4951:262310 4948:  4940:  4888:  4880:  4833:  4823:  4815:  4774:  4727:  4719:  4670:  4591:  4506:  4468:  4421:  4374:  4366:  4322:  4312:  4304:  4263:  4253:  4245:  4204:  4197:544235 4194:  4186:  4139:  4131:  4084:  4074:  4066:  4019:  4009:  4001:  3954:  3946:  3898:  3846:  3836:  3828:  3779:  3771:  3724:  3664:  3654:  3646:  3598:  3533:  3525:  3478:  3468:  3460:  3338:  3328:  3287:  3279:  3253:Nature 3229:  3080:  3070:  3062:  3015:  3007:  2960:10(3): 2921:40–51. 2836:  2828:  2820:  2766:30(3): 2745:24(2): 2706:  2698:  2556:88(4): 2537:99(3): 2421:  2413:  2357:  2347:  2339:  2139:  2129:  2093:  2083:  1962:Lagoon 1578:chitin 1568:, and 1459:, and 1220:anoxic 1145:, and 1073:, and 1041:anoxic 1027:Suaeda 633:, and 579:rushes 575:sedges 309:, the 283:rivers 113:shrubs 64:, USA. 7647:Swale 7616:Yaéré 7579:swamp 7556:Swamp 7511:Palsa 7501:Oasis 7481:Misse 7432:Marsh 7402:Igapó 7397:Hamun 7372:Flark 7345:Dambo 7241:Bayou 6994:Swash 6957:Shoal 6638:Stack 6628:Sound 6618:Shoal 6568:Islet 6553:Inlet 6543:Hapua 6508:Fjord 6503:Fjard 6498:Firth 6446:Coast 6441:Cliff 6416:Bight 6391:Atoll 5552:Spawn 5204:JSTOR 5128:1–22. 5096:JSTOR 3440:(6). 3285:S2CID 3249:(PDF) 3227:S2CID 3013:S2CID 2919:1(1): 2834:S2CID 2826:JSTOR 2704:S2CID 2419:S2CID 2383:(PDF) 1982:Marsh 1896:Bayou 1707:zone. 1552:were 1523:Some 1519:Fungi 953:. In 920:niche 729:Dikes 475:fauna 471:flora 442:tidal 391:seeds 350:Italy 291:Rhône 247:spits 117:marsh 105:herbs 8042:Soil 7843:List 7710:Peat 7665:Life 7531:Pond 7476:Mere 7427:Lagg 7407:Ings 7318:Carr 7128:silt 7118:sand 7093:clay 6822:mega 6633:Spit 6603:Reef 6533:Gulf 6481:Dune 6476:Cove 6431:Cape 6401:Ayre 5657:Pond 5088:ISSN 5054:2024 5041:ISBN 5006:ISSN 4956:PMID 4938:ISSN 4886:PMID 4878:ISSN 4831:PMID 4813:ISSN 4772:ISSN 4725:PMID 4717:ISSN 4668:ISBN 4639:help 4619:2024 4589:ISSN 4542:2024 4517:2024 4504:ISBN 4466:ISSN 4419:ISSN 4372:PMID 4364:ISSN 4320:PMID 4302:ISSN 4261:PMID 4243:ISSN 4202:PMID 4184:ISSN 4137:PMID 4129:ISSN 4082:PMID 4064:ISSN 4017:PMID 3999:ISSN 3952:PMID 3944:ISSN 3896:ISSN 3844:PMID 3826:ISSN 3777:PMID 3769:ISSN 3722:ISSN 3662:PMID 3644:ISSN 3596:PMID 3561:2024 3531:PMID 3523:ISSN 3476:PMID 3458:ISSN 3336:PMID 3277:PMID 3078:PMID 3060:ISSN 3005:PMID 2818:ISSN 2696:ISSN 2411:PMID 2355:PMID 2337:ISSN 2198:2023 2137:OCLC 2127:ISBN 2091:OCLC 2081:ISBN 1760:and 1663:and 1605:and 1371:and 1344:amoA 1325:and 1275:and 1201:The 1116:and 1089:and 1024:and 946:and 613:and 577:and 501:The 473:and 329:and 295:Ebro 253:and 245:and 209:and 7350:Fen 7261:Bog 6608:Ria 6538:Gut 6528:Geo 6523:Gat 6411:Bay 5719:Fen 5709:Bog 5194:doi 5182:434 5126:32: 5080:doi 5033:doi 4998:doi 4946:PMC 4930:doi 4870:doi 4821:PMC 4803:doi 4764:doi 4709:doi 4660:doi 4579:hdl 4569:doi 4496:doi 4458:doi 4411:doi 4356:doi 4310:PMC 4292:doi 4251:PMC 4233:doi 4192:PMC 4176:doi 4121:doi 4109:725 4072:PMC 4056:doi 4007:PMC 3991:doi 3936:doi 3932:370 3888:doi 3834:PMC 3816:doi 3761:doi 3714:doi 3652:PMC 3634:doi 3588:doi 3515:doi 3466:PMC 3450:doi 3326:PMC 3316:doi 3269:doi 3257:561 3219:doi 3207:213 3175:hdl 3165:doi 3124:doi 3112:109 3068:PMC 3052:doi 2995:hdl 2987:doi 2935:64: 2810:doi 2688:doi 2403:doi 2391:376 2345:PMC 2327:doi 2172:doi 2160:139 1936:Fen 1921:Bog 1857:or 1804:in 758:in 393:or 385:of 348:in 333:in 317:in 205:in 174:An 95:or 76:or 8033:: 5202:, 5192:, 5180:, 5161:7: 5149:^ 5133:^ 5108:^ 5094:. 5086:. 5076:18 5074:. 5070:. 5039:, 5027:, 5004:. 4996:. 4986:31 4984:. 4980:. 4968:^ 4954:. 4944:. 4936:. 4928:. 4918:69 4916:. 4912:. 4898:^ 4884:. 4876:. 4868:. 4858:41 4856:. 4852:. 4829:. 4819:. 4811:. 4801:. 4799:15 4797:. 4793:. 4770:. 4762:. 4752:17 4750:. 4746:. 4723:. 4715:. 4707:. 4697:64 4695:. 4691:. 4666:. 4631:: 4629:}} 4625:{{ 4610:. 4587:. 4577:. 4567:. 4563:. 4559:. 4533:. 4502:, 4490:, 4478:^ 4464:. 4456:. 4446:32 4444:. 4440:. 4417:. 4409:. 4399:96 4393:. 4370:. 4362:. 4352:32 4350:. 4346:. 4332:^ 4318:. 4308:. 4300:. 4286:. 4282:. 4259:. 4249:. 4241:. 4229:10 4227:. 4223:. 4200:. 4190:. 4182:. 4174:. 4164:71 4162:. 4158:. 4135:. 4127:. 4119:. 4107:. 4103:. 4080:. 4070:. 4062:. 4054:. 4044:75 4042:. 4038:. 4015:. 4005:. 3997:. 3989:. 3979:75 3977:. 3973:. 3950:. 3942:. 3934:. 3930:. 3926:. 3908:^ 3894:. 3886:. 3876:99 3874:. 3870:. 3856:^ 3842:. 3832:. 3824:. 3814:. 3804:11 3802:. 3798:. 3775:. 3767:. 3759:. 3747:. 3743:. 3720:. 3712:. 3702:35 3700:. 3696:. 3674:^ 3660:. 3650:. 3642:. 3628:. 3624:. 3608:^ 3594:. 3584:65 3582:. 3578:. 3551:. 3529:. 3521:. 3513:. 3501:. 3497:. 3474:. 3464:. 3456:. 3448:. 3438:85 3436:. 3432:. 3414:. 3334:. 3324:. 3310:. 3306:. 3283:. 3275:. 3267:. 3255:. 3251:. 3225:. 3217:. 3205:. 3201:. 3189:^ 3173:. 3163:. 3153:61 3151:. 3147:. 3122:. 3110:. 3106:. 3090:^ 3076:. 3066:. 3058:. 3050:. 3038:. 3034:. 3011:. 3003:. 2993:. 2985:. 2942:^ 2872:^ 2832:. 2824:. 2816:. 2806:89 2804:. 2800:. 2773:^ 2752:^ 2716:^ 2702:. 2694:. 2686:. 2676:35 2674:. 2639:^ 2611:^ 2587:^ 2563:^ 2544:^ 2519:^ 2501:^ 2453:^ 2431:^ 2417:. 2409:. 2401:. 2389:. 2385:. 2367:^ 2353:. 2343:. 2335:. 2321:. 2317:. 2305:^ 2289:^ 2261:^ 2233:^ 2219:^ 2170:. 2158:. 2135:. 2103:^ 2089:. 2057:^ 1754:, 1601:, 1597:, 1593:, 1589:, 1585:, 1564:, 1560:, 1463:. 1455:, 1379:, 1358:, 1149:. 1141:, 1085:, 1081:, 1069:, 965:, 961:, 627:, 585:. 509:, 182:, 131:. 107:, 72:, 68:A 52:). 7207:e 7200:t 7193:v 6357:e 6350:t 6343:v 5275:e 5268:t 5261:v 5196:: 5188:: 5102:. 5082:: 5035:: 5012:. 5000:: 4992:: 4962:. 4932:: 4924:: 4892:. 4872:: 4864:: 4837:. 4805:: 4778:. 4766:: 4758:: 4731:. 4711:: 4703:: 4676:. 4662:: 4641:) 4621:. 4595:. 4581:: 4571:: 4565:6 4544:. 4498:: 4472:. 4460:: 4452:: 4425:. 4413:: 4405:: 4378:. 4358:: 4326:. 4294:: 4288:3 4267:. 4235:: 4208:. 4178:: 4170:: 4143:. 4123:: 4115:: 4088:. 4058:: 4050:: 4023:. 3993:: 3985:: 3958:. 3938:: 3902:. 3890:: 3882:: 3850:. 3818:: 3810:: 3783:. 3763:: 3755:: 3749:3 3728:. 3716:: 3708:: 3668:. 3636:: 3630:7 3602:. 3590:: 3563:. 3537:. 3517:: 3509:: 3503:3 3482:. 3452:: 3444:: 3342:. 3318:: 3312:9 3291:. 3271:: 3263:: 3233:. 3221:: 3213:: 3183:. 3177:: 3167:: 3159:: 3132:. 3126:: 3118:: 3084:. 3054:: 3046:: 3040:8 3019:. 2997:: 2989:: 2981:: 2840:. 2812:: 2710:. 2690:: 2682:: 2425:. 2405:: 2397:: 2361:. 2329:: 2323:5 2200:. 2178:. 2174:: 2166:: 2143:. 2097:. 1861:( 1369:, 1363:, 1046:2 926:. 569:( 561:( 540:( 436:. 221:( 31:.

Index

Inland salt marsh
Saltmarsh (surname)
Salt March

low tide
high tide
spring tide

Perry, Florida
tidal marsh
coastal
intertidal zone
saltwater
brackish water
salt-tolerant
herbs
grasses
shrubs
marsh
sediments
food web
coastal protection
coastal management
sea level rise
climate change
erosion
ecological productivity
ecosystem services
carbon sequestration

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.