Knowledge

Schlieren

Source 📝

96: 41: 336: 27: 358:
gradient The index gradient is directly related to flow density gradient. The deflected light is compared to undeflected light at a viewing screen. The undisturbed light is partially blocked by a knife edge. The light that is deflected toward or away from the knife edge produces a shadow pattern
31: 30: 315:
is the distance from the image of the object to the lens. A knife edge at the point source-image location is positioned as to partially block some light from reaching the viewing screen. The illumination of the image is reduced uniformly. A second lens is used to image the test section to the
32: 29: 169:
is used to illuminate the test section containing the schliere. An image of this light is formed using a converging lens (also called a schlieren lens). This image is located at the conjugate distance to the lens according to the
359:
depending upon whether it was previously blocked or unblocked. This shadow pattern is a light-intensity representation of the expansions (low density regions) and compressions (high density regions) which characterize the flow.
239: 97: 153:
and two candles. One candle served as a light source. The warm air rising from the second candle provided the schliere. The conventional schlieren system is credited mostly to German physicist
375:
light valve, is used to produce schlieren distortions in a controlled manner and these are projected on a screen to produce the desired image. Projection display systems such as the now-obsolete
28: 313: 286: 259: 177: 392: 545: 36:
This video demonstrates a single-pass high-speed schlieren system capturing the transitional ballistic sequence of a handgun.
525: 161:
invented the method in 1859 that Toepler improved upon. Toepler's original system was designed to detect schlieren in
564: 77: 402: 397: 107: 44:
Colored schlieren image of the thermal plume from a burning candle, disturbed by a breeze from the right
565:
Visualisation of supersonic flows in shock tunnels using Background Oriented Schlieren (BOS) technique
316:
viewing screen. The viewing screen is located a conjugate distance from the plane of the schliere.
150: 90: 343: 20: 559: 417: 483: 291: 264: 8: 427: 407: 134: 122: 487: 499: 244: 560:
Background oriented schlieren for flow visualisation in hypersonic impulse facilities
541: 521: 412: 380: 503: 491: 355: 121:
devoid of such inhomogeneities. These inhomogeneities are localized differences in
54: 158: 589: 569: 518:
Schlieren and shadowgraph techniques: Visualizing phenomena in transparent media,
368: 103: 372: 340: 154: 110: 40: 574: 335: 583: 133:. This light deviation can produce localized brightening, darkening, or even 447: 166: 146: 126: 422: 347: 130: 354:
Schlieren flow visualization is based on the deflection of light by a
117:. Schlieren physics developed out of the need to produce high-quality 495: 171: 114: 234:{\displaystyle {\frac {1}{f}}={\frac {1}{d_{o}}}+{\frac {1}{d_{i}}}} 376: 165:
used to make lenses. In the conventional schlieren system, a
69: 66: 162: 383:
have used variations of this approach as far back as 1940.
137:
in an image, depending on the directions the rays deviate.
118: 474:
Rienitz, J. (1975). "Schlieren experiment 300 years ago".
60: 371:
technologies. The basic idea is some device, such as a
106:
for 'streaks') are optical inhomogeneities in
294: 267: 247: 180: 78: 63: 57: 445:Hooke, R. (1665), "Of a New Property in the Air", 307: 280: 253: 233: 581: 462:Beobachtungen nach einer neuen optischen Methode 288:is the distance from the object to the lens and 330: 16:Optical inhomogeneities in transparent media 536:Brennesholtz, M.S. and Stupp, E.H. (2008), 451:, Observation LVIII, pp. 217–219, London. 334: 113:that are not necessarily visible to the 39: 25: 473: 393:Background-oriented schlieren technique 582: 510: 467: 454: 367:The schlieren effect is often used in 362: 89: 540:, John Wiley & Sons, p. 259 ff. 439: 13: 464:, Maximillan Cohen und Sohn, Bonn. 339:Schlieren flow visualization of a 14: 601: 553: 261:is the focal length of the lens, 145:Schlieren were first observed by 53: 125:that cause deviations of light 570:Video on Schlieren photographs 530: 1: 433: 398:Laser schlieren deflectometry 331:Schlieren flow visualization 7: 403:Mach–Zehnder interferometer 386: 323:originates from the German 10: 606: 159:Jean Bernard Léon Foucault 140: 18: 520:Berlin:Springer-Verlag. 516:Settles, G. S. (2001), 344:Pratt & Whitney J58 351: 309: 282: 255: 235: 149:in 1665 using a large 45: 37: 21:Schlieren, Switzerland 418:Schlieren photography 338: 310: 308:{\displaystyle d_{i}} 283: 281:{\displaystyle d_{o}} 256: 236: 43: 35: 575:Schlieren on YouTube 460:Toepler, A. (1864), 327:, meaning "streak". 292: 265: 245: 178: 538:Projection Displays 488:1975Natur.254..293R 428:Synthetic schlieren 408:Moire deflectometry 123:optical path length 363:Schlieren displays 352: 305: 278: 251: 231: 91:[ˈʃliːʁn̩] 46: 38: 19:For the town, see 546:978-0-470-51803-8 482:(5498): 293–295. 413:Schlieren imaging 254:{\displaystyle f} 229: 209: 189: 33: 597: 548: 534: 528: 514: 508: 507: 496:10.1038/254293a0 471: 465: 458: 452: 443: 356:refractive index 346:engine inlet at 314: 312: 311: 306: 304: 303: 287: 285: 284: 279: 277: 276: 260: 258: 257: 252: 240: 238: 237: 232: 230: 228: 227: 215: 210: 208: 207: 195: 190: 182: 129:, especially by 101: 100: 99: 93: 88: 81: 76: 75: 72: 71: 68: 65: 62: 59: 34: 605: 604: 600: 599: 598: 596: 595: 594: 580: 579: 556: 551: 535: 531: 515: 511: 472: 468: 459: 455: 444: 440: 436: 389: 369:video projector 365: 333: 299: 295: 293: 290: 289: 272: 268: 266: 263: 262: 246: 243: 242: 223: 219: 214: 203: 199: 194: 181: 179: 176: 175: 143: 95: 94: 86: 79: 56: 52: 26: 24: 17: 12: 11: 5: 603: 593: 592: 578: 577: 572: 567: 562: 555: 554:External links 552: 550: 549: 529: 526:978-3540661559 509: 466: 453: 437: 435: 432: 431: 430: 425: 420: 415: 410: 405: 400: 395: 388: 385: 373:liquid crystal 364: 361: 341:Lockheed SR-71 332: 329: 302: 298: 275: 271: 250: 226: 222: 218: 213: 206: 202: 198: 193: 188: 185: 155:August Toepler 142: 139: 15: 9: 6: 4: 3: 2: 602: 591: 588: 587: 585: 576: 573: 571: 568: 566: 563: 561: 558: 557: 547: 543: 539: 533: 527: 523: 519: 513: 505: 501: 497: 493: 489: 485: 481: 477: 470: 463: 457: 450: 449: 442: 438: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 390: 384: 382: 378: 374: 370: 360: 357: 349: 345: 342: 337: 328: 326: 322: 317: 300: 296: 273: 269: 248: 224: 220: 216: 211: 204: 200: 196: 191: 186: 183: 173: 168: 164: 160: 156: 152: 148: 138: 136: 135:color changes 132: 128: 124: 120: 116: 112: 109: 105: 98: 92: 84: 83: 74: 50: 42: 22: 537: 532: 517: 512: 479: 475: 469: 461: 456: 448:Micrographia 446: 441: 366: 353: 324: 320: 318: 167:point source 151:concave lens 147:Robert Hooke 144: 48: 47: 423:Shadowgraph 108:transparent 434:References 174:equation: 131:refraction 321:schlieren 319:The word 172:thin lens 157:, though 115:human eye 49:Schlieren 584:Category 387:See also 377:Eidophor 325:schliere 504:4288641 484:Bibcode 381:Talaria 141:History 87:German: 590:Optics 544:  524:  502:  476:Nature 241:where 119:lenses 104:German 80:SHLEER 500:S2CID 163:glass 111:media 542:ISBN 522:ISBN 379:and 348:Mach 127:rays 492:doi 480:254 82:-ən 67:ɪər 586:: 498:. 490:. 478:. 102:, 85:; 70:ən 506:. 494:: 486:: 350:2 301:i 297:d 274:o 270:d 249:f 225:i 221:d 217:1 212:+ 205:o 201:d 197:1 192:= 187:f 184:1 73:/ 64:l 61:ʃ 58:ˈ 55:/ 51:( 23:.

Index

Schlieren, Switzerland

/ˈʃlɪərən/
SHLEER-ən
[ˈʃliːʁn̩]

German
transparent
media
human eye
lenses
optical path length
rays
refraction
color changes
Robert Hooke
concave lens
August Toepler
Jean Bernard Léon Foucault
glass
point source
thin lens

Lockheed SR-71
Pratt & Whitney J58
Mach
refractive index
video projector
liquid crystal
Eidophor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.