Knowledge

Lunar orbit

Source 📝

363: 329: 407: 313: 418: 448: 38: 290: 1892: 689:
correct the orbit, most satellites released into low lunar orbits (under about 60 miles or 100 km) will eventually crash into the Moon. ... a number of 'frozen orbits' where a spacecraft can stay in a low lunar orbit indefinitely. They occur at four inclinations: 27°, 50°, 76°, and 86° — the last one being nearly over the lunar poles. The orbit of the relatively long-lived
179:) beneath the lunar surface caused by large impacting bodies at some remote time in the past. These anomalies are large enough to cause a lunar orbit to change significantly over the course of several days. They can cause a plumb bob to hang about a third of a degree off vertical, pointing toward the mascon, and increase the force of gravity by one-half percent. The 552:(LM) landed. The combined CSM/LM would first enter an elliptical orbit, nominally 170 nautical miles (310 km; 200 mi) by 60 nautical miles (110 km; 69 mi), which was then changed to a circular parking orbit of about 60 nautical miles (110 km; 69 mi). Orbital periods vary according to the sum of 527:
of 102.1 nautical miles (189.1 km; 117.5 mi). Then the orbit was circularized at around 170 nautical miles (310 km; 200 mi) to obtain suitable imagery. Five such spacecraft were launched over a period of thirteen months, all of which successfully mapped the Moon, primarily for the
183:
first manned landing mission employed the first attempt to correct for the perturbation effect (the frozen orbits were not known at that time). The parking orbit was "circularized" at 66 nautical miles (122 km; 76 mi) by 54 nautical miles (100 km; 62 mi), which was expected to
688:
Lunar mascons make most low lunar orbits unstable ... As a satellite passes 50 or 60 miles overhead, the mascons pull it forward, back, left, right, or down, the exact direction and magnitude of the tugging depends on the satellite's trajectory. Absent any periodic boosts from onboard rockets to
188:
with the CSM. But the effect was overestimated by a factor of two; at rendezvous, the orbit was calculated to be 63.2 nautical miles (117.0 km; 72.7 mi) by 56.8 nautical miles (105.2 km; 65.4 mi).
229:, and successfully completed its mission after one and a half years. PFS-2 was placed in a particularly unstable orbital inclination of 11°, and lasted only 35 days in orbit before crashing into the lunar surface. 938: 256:
extends to a radius of 60,000 km (37,000 mi), the gravity of Earth intervenes enough to make lunar orbits unstable at a distance of 690 km (430 mi).
697:
had an inclination of 28°, which turned out to be close to the inclination of one of the frozen orbits—but poor PFS-2 was cursed with an inclination of only 11°.
934: 710:
Konopliv, A. S.; Asmar, S. W.; Carranza, E.; Sjogren, W. L.; Yuan, D. N. (2001-03-01). "Recent Gravity Models as a Result of the Lunar Prospector Mission".
884: 775: 991: 475:, on January 4, 1959. It passed within 6,000 kilometres (3,200 nmi; 3,700 mi) of the Moon's surface, but did not achieve lunar orbit. 1050: 136:) is an orbit below 100 km (62 mi) altitude. These have a period of about 2 hours. They are of particular interest in the 560:, and for the CSM were about two hours. The LM began its landing sequence with a Descent Orbit Insertion (DOI) burn to lower their 222: 1769: 642: 572:
to save more of the LM fuel for its powered descent, by using the CSM's fuel to perform the DOI burn, and later raising its
568:
reaching heights of 20,000 feet (6.1 km; 3.3 nmi). After the second landing mission, the procedure was changed on
1829: 352: 437: 958: 421: 17: 1024: 237:
For lunar orbits with altitudes in the 500 to 20,000 km (300 to 12,000 mi) range, the gravity of Earth leads to orbit
909: 508:, was launched on August 24, 1966, and studied lunar gravitational anomalies, radiation and solar wind measurements. 362: 1824: 1704: 1123: 1789: 1543: 806: 1862: 1501: 1492: 1229: 824:
The moon's Hill sphere has a radius of 60,000 kilometres, about one-sixth of the distance between it and Earth.
172: 671: 565: 545: 471:
sent the first spacecraft to the vicinity of the Moon (or any extraterrestrial object), the robotic vehicle
1809: 1279: 377: 367: 1754: 605: 317: 302: 490:
and returned to the Earth. This craft provided the first pictures of the far side of the Lunar surface.
1916: 1734: 1561: 171:
Gravitational anomalies slightly distorting the orbits of some Lunar Orbiters led to the discovery of
1872: 999: 962: 184:
become the nominal circular 60 nautical miles (110 km; 69 mi) when the LM made its return
1857: 1382: 600: 268: 238: 141: 1867: 1175: 827:
For mean distance and mass data for the bodies (for verification of the foregoing citation), see
283: 274:
Some halo orbits remain over particular regions of the lunar surface. These can be used by lunar
137: 830: 1729: 1331: 1251: 1239: 483: 480: 1058: 328: 1852: 1794: 1764: 1552: 1429: 1397: 1367: 1326: 1311: 1190: 342: 370:
trajectory around Earth. Using a direct transfer, it arrived on moon in four and a half days
1877: 1699: 1483: 1372: 1341: 1269: 1244: 1219: 1180: 1161: 1116: 858: 719: 487: 279: 753: 406: 205:: 27°, 50°, 76°, and 86°, in which a spacecraft can stay in a low orbit indefinitely. The 8: 1739: 1534: 1274: 549: 452: 425: 356: 226: 202: 1051:"CHAPTER IX: MISSIONS I, II, III: APOLLO SITE SEARCH AND VERIFICATION, The First Launch" 723: 1412: 1301: 1199: 992:"APPENDIX C [367-373] RECORD OF UNMANNED LUNAR PROBES, 1958-1968: Soviet Union" 305:, using as well a Lagrange point, have been used and are planned to be employed by the 246: 1779: 1677: 1607: 1362: 1316: 1234: 735: 638: 595: 312: 31: 1080: 1759: 1691: 1455: 1417: 1291: 1261: 1214: 811: 787: 727: 630: 516: 185: 263:
of the Earth-Moon system can provide stable orbits in the lunar vicinity, such as
1799: 1392: 1296: 1286: 1185: 1109: 512: 456: 417: 346: 286:. It was placed around Earth-Moon L2 at roughly 65,000 km (40,000 mi). 275: 225:, contributed to this discovery. PFS-1 ended up in a long-lasting orbit, at 28° 197:
Study of the mascons' effect on lunar spacecraft led to the discovery in 2001 of
123: 1028: 634: 447: 1895: 1847: 1839: 1834: 1719: 1714: 1645: 1625: 1616: 1209: 1195: 1171: 1166: 1141: 590: 585: 541: 529: 501: 260: 37: 966: 479:, launched on October 4, 1959, was the first robotic spacecraft to complete a 1910: 1749: 1744: 1663: 1306: 1224: 739: 410: 351:
There are three main ways to get to lunar orbit from Earth: direct transfer,
306: 242: 163: 41: 935:"Fifty Years Ago, This Photo Captured the First View of Earth From the Moon" 486:, still not a lunar orbit, but a figure-8 trajectory which swung around the 76:. In general these orbits are not circular. When farthest from the Moon (at 1814: 1724: 1598: 1581: 1439: 1336: 1204: 731: 468: 289: 198: 150: 109: 413:'s trajectory included multiple orbit raising maneuvers to get to the Moon 1819: 1654: 1424: 1321: 564:
to about 50,000 feet (15 km; 8.2 nmi), chosen to avoid hitting
253: 57: 455:(the Moon), and first picture of both Earth and the Moon from space, by 1387: 1101: 791: 264: 145: 320:) in cislunar space, as illustrated by A.I. Solutions, Inc. using the 1804: 1156: 690: 573: 569: 561: 557: 504:
flux, and lunar environment until May 30, 1966. A follow-on mission,
460: 321: 214: 206: 180: 93: 53: 45: 835: 553: 524: 298: 77: 876: 776:"Stable Constellations of Frozen Elliptical Inclined Lunar Orbits" 1709: 910:"45 Years Ago: How the 1st Photo of Earth From the Moon Happened" 520: 505: 493: 1057:. National Aeronautics and Space Administration. Archived from 998:. National Aeronautics and Space Administration. Archived from 625:
Woods, W.D. (2008). "Entering lunar orbit: the LOI manoeuvre".
476: 472: 293:
An example of a halo orbit at the second lunar lagrange point.
885:"It's International Moon Day! Let's talk about Cislunar Space" 629:. Space Exploration. Springer Praxis Books. pp. 189–210. 1514: 1133: 694: 523:
of 1,008 nautical miles (1,867 km; 1,160 mi) and a
359:. These take 3–4 days, months or 2.5–4 months respectively. 218: 210: 69: 709: 576:
back to a circular orbit after the LM had made its landing.
760: 497: 73: 882: 511:
The first United States spacecraft to orbit the Moon was
168:
Most lunar low orbits below 100 km (60 mi) are unstable.
1055:
DESTINATION MOON: A History of the Lunar Orbiter Program
996:
DESTINATION MOON: A History of the Lunar Orbiter Program
500:
and any extraterrestrial body in April 1966. It studied
746: 157: 144:
that make most unstable, and leave only a few orbital
431: 154:. These would be useful for long-term stays in LLO. 241:. At altitudes higher than that perturbed two-body 828: 548:(CSM) remained in a lunar parking orbit while the 496:became the first spacecraft to actually orbit the 851: 839:. Greenbelt, MD: NASA Goddard Space Flight Center 221:, both small satellites released from the Apollo 1908: 30:For the orbit of the Moon around the Earth, see 1087:. National Aeronautics and Space Administration 666: 664: 662: 660: 658: 656: 654: 1117: 804: 438:List of extraterrestrial orbiters § Moon 108:. These derive from names or epithets of the 535: 278:to communicate with surface stations on the 1027:. Encyclopedia Astronautica. Archived from 651: 515:on August 14, 1966. The first orbit was an 1891: 1124: 1110: 1018: 1016: 985: 983: 780:The Journal of the Astronautical Sciences 451:First image of Earth from around another 1131: 883:The Aerospace Corporation (2023-07-20). 446: 416: 405: 361: 327: 311: 288: 36: 1013: 952: 950: 948: 829:Williams, David R. (20 December 2021). 767: 14: 1909: 1770:Transposition, docking, and extraction 980: 126:maneuver used to achieve lunar orbit. 1105: 1078: 1072: 1048: 989: 941:from the original on August 25, 2016. 927: 907: 624: 945: 282:. The first to do this was the 2019 232: 192: 773: 459:(not to be confused with the later 336: 158:Perturbation effects and low orbits 24: 432:History of missions to lunar orbit 27:Orbit of an object around the Moon 25: 1928: 1830:Kepler's laws of planetary motion 908:Stein, Ben P. (August 23, 2011). 859:"A New Paradigm for Lunar Orbits" 442: 332:Overview of NRHOs around the Moon 1890: 1825:Interplanetary Transport Network 1705:Collision avoidance (spacecraft) 1022: 956: 805:Follows, Mike (4 October 2017). 140:, but suffer from gravitational 80:) a spacecraft is said to be at 48:above the Moon in December 2022. 1790:Astronomical coordinate systems 1544:Longitude of the ascending node 1085:Apollo 11 Lunar Surface Journal 1042: 92:. When closest to the Moon (at 1863:Retrograde and prograde motion 1049:Byers, Bruce K. (1976-12-14). 990:Byers, Bruce K. (1976-12-14). 901: 798: 703: 618: 13: 1: 1079:Jones, Eric M. (1976-12-14). 611: 316:Near-rectilinear halo orbit ( 1810:Equatorial coordinate system 528:purpose of finding suitable 378:Lunar Reconnaissance Orbiter 303:near-rectilinear halo orbits 245:models are insufficient and 72:by an object around Earth's 7: 635:10.1007/978-0-387-74066-9_8 627:How Apollo Flew to the Moon 606:Near-rectilinear halo orbit 579: 10: 1933: 1562:Longitude of the periapsis 754:"Apollo 11 Mission Report" 676:NASA Science: Science News 435: 340: 161: 29: 1886: 1873:Specific angular momentum 1778: 1690: 1634: 1570: 1523: 1463: 1454: 1350: 1260: 1149: 1140: 1081:"The First Lunar Landing" 963:Encyclopedia Astronautica 807:"Ever Decreasing Circles" 536:Crewed and later orbiters 269:distant retrograde orbits 601:Distant retrograde orbit 148:possible for indefinite 1868:Specific orbital energy 774:Ely, Todd (July 2005). 424:'s trajectory included 284:Queqiao relay satellite 138:exploration of the Moon 1280:Geostationary transfer 763:. pp. 4–3 to 4–4. 732:10.1006/icar.2000.6573 672:"Bizarre Lunar Orbits" 546:Command/Service Module 484:free return trajectory 464: 428: 414: 403: 333: 325: 294: 96:) it is said to be at 49: 1853:Orbital state vectors 1795:Characteristic energy 1765:Trans-lunar injection 1553:Argument of periapsis 1230:Prograde / Retrograde 1191:Hyperbolic trajectory 450: 436:Further information: 420: 409: 365: 343:Trans-lunar injection 331: 315: 292: 249:models are required. 162:Further information: 116:Lunar orbit insertion 40: 1700:Bi-elliptic transfer 1220:Parabolic trajectory 488:far side of the Moon 280:far side of the Moon 252:Although the Moon's 203:orbital inclinations 1740:Low-energy transfer 937:. August 23, 2016. 724:2001Icar..150....1K 453:astronomical object 426:low energy transfer 357:low-energy transfer 353:low thrust transfer 173:mass concentrations 66:selenocentric orbit 18:Selenocentric orbit 1735:Inclination change 1383:Distant retrograde 1031:on August 21, 2002 792:10.1007/BF03546355 678:. NASA. 2006-11-06 465: 429: 415: 404: 334: 326: 295: 201:occurring at four 50: 1917:Orbit of the Moon 1904: 1903: 1878:Two-line elements 1686: 1685: 1608:Eccentric anomaly 1450: 1449: 1317:Orbit of the Moon 1176:Highly elliptical 831:"Moon Fact Sheet" 644:978-0-387-71675-6 596:Orbital mechanics 233:Lunar high orbits 193:Stable low orbits 64:(also known as a 32:Orbit of the Moon 16:(Redirected from 1924: 1894: 1893: 1835:Lagrangian point 1730:Hohmann transfer 1675: 1661: 1652: 1643: 1623: 1614: 1605: 1596: 1592: 1588: 1579: 1559: 1550: 1541: 1532: 1512: 1508: 1499: 1490: 1481: 1461: 1460: 1430:Heliosynchronous 1379:Lagrange points 1332:Transatmospheric 1147: 1146: 1126: 1119: 1112: 1103: 1102: 1096: 1095: 1093: 1092: 1076: 1070: 1069: 1067: 1066: 1046: 1040: 1039: 1037: 1036: 1020: 1011: 1010: 1008: 1007: 987: 978: 977: 975: 974: 965:. Archived from 954: 943: 942: 931: 925: 924: 922: 920: 905: 899: 898: 896: 895: 880: 874: 873: 871: 870: 855: 849: 848: 846: 844: 826: 821: 819: 812:NewScientist.com 802: 796: 795: 771: 765: 764: 758: 750: 744: 743: 707: 701: 700: 684: 683: 668: 649: 648: 622: 517:elliptical orbit 402: 400: 391: 389: 380: 375: 337:Orbital transfer 276:relay satellites 21: 1932: 1931: 1927: 1926: 1925: 1923: 1922: 1921: 1907: 1906: 1905: 1900: 1882: 1800:Escape velocity 1781: 1774: 1755:Rocket equation 1682: 1674: 1668: 1659: 1650: 1641: 1630: 1621: 1612: 1603: 1594: 1590: 1586: 1577: 1566: 1557: 1548: 1539: 1530: 1519: 1510: 1506: 1502:Semi-minor axis 1497: 1493:Semi-major axis 1488: 1479: 1473: 1446: 1368:Areosynchronous 1352: 1346: 1327:Sun-synchronous 1312:Near-equatorial 1256: 1136: 1130: 1100: 1099: 1090: 1088: 1077: 1073: 1064: 1062: 1047: 1043: 1034: 1032: 1025:"Lunar Orbiter" 1021: 1014: 1005: 1003: 988: 981: 972: 970: 955: 946: 933: 932: 928: 918: 916: 906: 902: 893: 891: 881: 877: 868: 866: 857: 856: 852: 842: 840: 817: 815: 803: 799: 772: 768: 756: 752: 751: 747: 708: 704: 681: 679: 670: 669: 652: 645: 623: 619: 614: 582: 566:lunar mountains 538: 532:landing sites. 513:Lunar Orbiter 1 457:Lunar Orbiter 1 445: 440: 434: 398: 397: 387: 386: 373: 372: 371: 349: 347:orbit insertion 341:Main articles: 339: 261:Lagrange points 235: 195: 166: 160: 130:Low lunar orbit 124:orbit insertion 35: 28: 23: 22: 15: 12: 11: 5: 1930: 1920: 1919: 1902: 1901: 1899: 1898: 1896:List of orbits 1887: 1884: 1883: 1881: 1880: 1875: 1870: 1865: 1860: 1855: 1850: 1848:Orbit equation 1845: 1837: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1786: 1784: 1776: 1775: 1773: 1772: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1720:Gravity assist 1717: 1715:Delta-v budget 1712: 1707: 1702: 1696: 1694: 1688: 1687: 1684: 1683: 1681: 1680: 1672: 1666: 1657: 1648: 1646:Orbital period 1638: 1636: 1632: 1631: 1629: 1628: 1626:True longitude 1619: 1617:Mean longitude 1610: 1601: 1584: 1574: 1572: 1568: 1567: 1565: 1564: 1555: 1546: 1537: 1527: 1525: 1521: 1520: 1518: 1517: 1504: 1495: 1486: 1476: 1474: 1472: 1471: 1468: 1464: 1458: 1452: 1451: 1448: 1447: 1445: 1444: 1443: 1442: 1434: 1433: 1432: 1427: 1422: 1421: 1420: 1407: 1402: 1401: 1400: 1395: 1390: 1385: 1377: 1376: 1375: 1373:Areostationary 1370: 1365: 1356: 1354: 1348: 1347: 1345: 1344: 1342:Very low Earth 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1299: 1294: 1289: 1284: 1283: 1282: 1277: 1270:Geosynchronous 1266: 1264: 1258: 1257: 1255: 1254: 1252:Transfer orbit 1249: 1248: 1247: 1242: 1232: 1227: 1222: 1217: 1212: 1210:Lagrange point 1207: 1202: 1193: 1188: 1183: 1178: 1169: 1164: 1159: 1153: 1151: 1144: 1138: 1137: 1132:Gravitational 1129: 1128: 1121: 1114: 1106: 1098: 1097: 1071: 1041: 1012: 979: 944: 926: 900: 875: 850: 797: 786:(3): 301–316. 766: 745: 702: 650: 643: 616: 615: 613: 610: 609: 608: 603: 598: 593: 591:List of orbits 588: 586:Cislunar space 581: 578: 542:Apollo program 537: 534: 530:Apollo program 502:micrometeoroid 444: 443:First orbiters 441: 433: 430: 338: 335: 234: 231: 223:Service Module 194: 191: 159: 156: 26: 9: 6: 4: 3: 2: 1929: 1918: 1915: 1914: 1912: 1897: 1889: 1888: 1885: 1879: 1876: 1874: 1871: 1869: 1866: 1864: 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1843:-body problem 1842: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1787: 1785: 1783: 1777: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1745:Oberth effect 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1697: 1695: 1693: 1689: 1679: 1671: 1667: 1665: 1664:Orbital speed 1658: 1656: 1649: 1647: 1640: 1639: 1637: 1633: 1627: 1620: 1618: 1611: 1609: 1602: 1600: 1585: 1583: 1576: 1575: 1573: 1569: 1563: 1556: 1554: 1547: 1545: 1538: 1536: 1529: 1528: 1526: 1522: 1516: 1505: 1503: 1496: 1494: 1487: 1485: 1478: 1477: 1475: 1469: 1466: 1465: 1462: 1459: 1457: 1453: 1441: 1438: 1437: 1435: 1431: 1428: 1426: 1423: 1419: 1418:Earth's orbit 1416: 1415: 1414: 1411: 1410: 1408: 1406: 1403: 1399: 1396: 1394: 1391: 1389: 1386: 1384: 1381: 1380: 1378: 1374: 1371: 1369: 1366: 1364: 1361: 1360: 1358: 1357: 1355: 1349: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1281: 1278: 1276: 1275:Geostationary 1273: 1272: 1271: 1268: 1267: 1265: 1263: 1259: 1253: 1250: 1246: 1243: 1241: 1238: 1237: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1154: 1152: 1148: 1145: 1143: 1139: 1135: 1127: 1122: 1120: 1115: 1113: 1108: 1107: 1104: 1086: 1082: 1075: 1061:on 2020-09-27 1060: 1056: 1052: 1045: 1030: 1026: 1019: 1017: 1002:on 2021-01-26 1001: 997: 993: 986: 984: 969:on 2012-01-11 968: 964: 960: 953: 951: 949: 940: 936: 930: 915: 911: 904: 890: 886: 879: 864: 860: 854: 838: 837: 832: 825: 814: 813: 808: 801: 793: 789: 785: 781: 777: 770: 762: 755: 749: 741: 737: 733: 729: 725: 721: 717: 713: 706: 699: 698: 696: 693:subsatellite 692: 677: 673: 667: 665: 663: 661: 659: 657: 655: 646: 640: 636: 632: 628: 621: 617: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 583: 577: 575: 571: 567: 563: 559: 555: 551: 547: 543: 533: 531: 526: 522: 518: 514: 509: 507: 503: 499: 495: 491: 489: 485: 482: 478: 474: 470: 462: 458: 454: 449: 439: 427: 423: 419: 412: 411:Chandrayaan-3 408: 395: 384: 379: 369: 366:Animation of 364: 360: 358: 354: 348: 344: 330: 323: 319: 314: 310: 308: 307:Lunar Gateway 304: 300: 291: 287: 285: 281: 277: 272: 270: 266: 262: 257: 255: 250: 248: 244: 243:astrodynamics 240: 239:perturbations 230: 228: 224: 220: 217:subsatellite 216: 212: 209:subsatellite 208: 204: 200: 199:frozen orbits 190: 187: 182: 178: 174: 169: 165: 164:Lunar mascons 155: 153: 152: 151:frozen orbits 147: 143: 142:perturbations 139: 135: 131: 127: 125: 121: 117: 113: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 47: 43: 42:Orion capsule 39: 33: 19: 1858:Perturbation 1840: 1815:Ground track 1725:Gravity turn 1676:   1669: 1662:   1653:   1644:   1624:   1615:   1606:   1599:True anomaly 1597:   1582:Mean anomaly 1580:   1560:   1551:   1542:   1533:   1513:   1500:   1491:   1484:Eccentricity 1482:   1440:Lunar cycler 1413:Heliocentric 1404: 1353:other points 1302:Medium Earth 1200:Non-inclined 1089:. Retrieved 1084: 1074: 1063:. Retrieved 1059:the original 1054: 1044: 1033:. Retrieved 1029:the original 1023:Wade, Mark. 1004:. Retrieved 1000:the original 995: 971:. Retrieved 967:the original 957:Wade, Mark. 929: 917:. Retrieved 913: 903: 892:. Retrieved 888: 878: 867:. Retrieved 865:. 2006-12-01 862: 853: 841:. Retrieved 834: 823: 816:. Retrieved 810: 800: 783: 779: 769: 748: 715: 711: 705: 687: 686: 680:. Retrieved 675: 626: 620: 550:Lunar Module 539: 510: 492: 469:Soviet Union 466: 393: 382: 350: 297:Since 2022 ( 296: 273: 258: 251: 236: 196: 176: 170: 167: 149: 146:trajectories 133: 129: 128: 119: 115: 114: 110:moon goddess 105: 102:pericynthion 101: 97: 89: 85: 81: 65: 61: 51: 1820:Hill sphere 1655:Mean motion 1535:Inclination 1524:Orientation 1425:Mars cycler 1363:Areocentric 1235:Synchronous 718:(1): 1–18. 481:circumlunar 390: Earth 265:halo orbits 254:Hill sphere 227:inclination 86:apocynthion 62:lunar orbit 58:spaceflight 1760:Rendezvous 1456:Parameters 1292:High Earth 1262:Geocentric 1215:Osculating 1172:Elliptical 1091:2014-11-09 1065:2007-02-17 1035:2007-02-17 1006:2007-02-17 973:2007-02-17 919:October 7, 894:2023-11-07 869:2023-11-05 682:2012-12-09 612:References 519:, with an 401: Moon 247:three-body 186:rendezvous 106:periselene 1805:Ephemeris 1782:mechanics 1692:Maneuvers 1635:Variation 1398:Libration 1393:Lissajous 1297:Low Earth 1287:Graveyard 1186:Horseshoe 914:Space.com 740:0019-1035 691:Apollo 15 574:periapsis 570:Apollo 14 562:periapsis 558:periapsis 461:Earthrise 324:software. 322:FreeFlyer 215:Apollo 16 207:Apollo 15 181:Apollo 11 94:periapsis 90:aposelene 54:astronomy 46:Artemis 1 1911:Category 1571:Position 1196:Inclined 1167:Circular 939:Archived 863:Phys.org 836:NASA.gov 580:See also 554:apoapsis 525:perilune 463:image). 299:CAPSTONE 213:and the 175:(dubbed 122:) is an 98:perilune 78:apoapsis 68:) is an 1780:Orbital 1750:Phasing 1710:Delta-v 1515:Apsides 1509:,  1307:Molniya 1225:Parking 1162:Capture 1150:General 843:23 July 818:23 July 720:Bibcode 521:apolune 506:Luna 11 494:Luna 10 177:mascons 82:apolune 1436:Other 1337:Tundra 1205:Kepler 1181:Escape 1134:orbits 959:"Luna" 889:Medium 738:  712:Icarus 641:  477:Luna 3 473:Luna 1 399:  394:· 392:  388:  383:· 381:  376:  374:  1678:Epoch 1467:Shape 1405:Lunar 1359:Mars 1351:About 1322:Polar 1142:Types 757:(PDF) 695:PFS-1 396: 385: 219:PFS-2 211:PFS-1 104:, or 88:, or 70:orbit 1470:Size 1409:Sun 1388:Halo 1240:semi 921:2020 845:2023 820:2023 761:NASA 736:ISSN 639:ISBN 556:and 540:The 498:Moon 467:The 422:SLIM 355:and 345:and 318:NRHO 267:and 259:The 74:Moon 60:, a 56:and 1245:sub 1157:Box 788:doi 728:doi 716:150 631:doi 544:'s 368:LRO 134:LLO 120:LOI 52:In 44:of 1913:: 1593:, 1589:, 1198:/ 1174:/ 1083:. 1053:. 1015:^ 994:. 982:^ 961:. 947:^ 912:. 887:. 861:. 833:. 822:. 809:. 784:53 782:. 778:. 759:. 734:. 726:. 714:. 685:. 674:. 653:^ 637:. 309:. 301:) 271:. 112:. 100:, 84:, 1841:n 1673:0 1670:t 1660:v 1651:n 1642:T 1622:l 1613:L 1604:E 1595:f 1591:θ 1587:ν 1578:M 1558:ϖ 1549:ω 1540:Ω 1531:i 1511:q 1507:Q 1498:b 1489:a 1480:e 1125:e 1118:t 1111:v 1094:. 1068:. 1038:. 1009:. 976:. 923:. 897:. 872:. 847:. 794:. 790:: 742:. 730:: 722:: 647:. 633:: 132:( 118:( 34:. 20:)

Index

Selenocentric orbit
Orbit of the Moon

Orion capsule
Artemis 1
astronomy
spaceflight
orbit
Moon
apoapsis
periapsis
moon goddess
orbit insertion
exploration of the Moon
perturbations
trajectories
frozen orbits
Lunar mascons
mass concentrations
Apollo 11
rendezvous
frozen orbits
orbital inclinations
Apollo 15
PFS-1
Apollo 16
PFS-2
Service Module
inclination
perturbations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.