Knowledge

Separable space

Source 📝

258: 781:
is determined by limits of sequences and any convergent sequence has at most one limit, so there is a surjective map from the set of convergent sequences with values in the countable dense subset to the points of
1683: 1433: 2456: 2095: 1314: 102: 1637: 1563: 516:, p. 109, Th 16.4c). A countable product of second-countable spaces is second countable, but an uncountable product of second-countable spaces need not even be first countable. 2131: 945: 1715: 1153: 1343: 1117: 832: 307: 2369: 2255: 1249: 856: 775: 2032: 969: 446: 1997: 1837: 1585: 886: 2286: 2218: 1390: 1276: 1082: 713: 2782:
is finite, then such a measure algebra is also a metric space, with the distance between the two sets being the measure of their symmetric difference. Then, we say that
2174: 571: 1969: 406: 2740: 1430: 1410: 1363: 1195: 627: 912: 674: 598: 473: 2800: 2780: 2760: 2688: 2154: 1531: 1038: 1931: 1878: 1759: 1481:
Any topological space that is the union of a countable number of separable subspaces is separable. Together, these first two examples give a different proof that
1452:, since many theorems that can be proved for nonseparable spaces have constructive proofs only for separable spaces. Such constructive proofs can be turned into 2708: 1499: 1215: 1175: 1009: 989: 800: 647: 538: 347: 327: 278: 180: 1798: 1456:
for use in numerical analysis, and they are the only sorts of proofs acceptable in constructive analysis. A famous example of a theorem of this sort is the
2602: 188: 154:
is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the
1642: 3009: 1316:
of all functions from the real line to itself, endowed with the product topology, is a separable Hausdorff space of cardinality
2522:
Every separable metric space is isometric to a subset of C(), the separable Banach space of continuous functions  â†’ 
2978: 2944: 2860: 127:
on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset.
2344:, p. 49); if the space was a Hausdorff space then the space constructed that it embeds into is also a Hausdorff space. 520:
We can construct an example of a separable topological space that is not second countable. Consider any uncountable set
2299:
is not separable; note however that this space has very important applications in mathematics, physics and engineering.
2420: 1084:. Moreover, in a Hausdorff space, there is at most one limit to every filter base. Therefore, there is a surjection 2612: 2044: 182: 1288: 494:
of a second-countable space is second countable; subspaces of separable spaces need not be separable (see below).
56: 1596: 123:, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every 1805: 1540: 2372: 2100: 751: 917: 2926: 2494: 1449: 1688: 1122: 1319: 1087: 808: 283: 3004: 2350: 2233: 2191: 1220: 837: 756: 2013: 950: 411: 1881: 1980: 1811: 1568: 865: 2646: 2542: 2264: 2196: 1457: 1368: 1254: 1043: 679: 2347:
The set of all real-valued continuous functions on a separable space has a cardinality equal to
2159: 543: 2922: 2899: 2007: 1947: 1944:. It follows that any separable, infinite-dimensional Hilbert space is isometric to the space 1157:
The same arguments establish a more general result: suppose that a Hausdorff topological space
378: 372: 112: 2713: 2134: 1415: 1395: 1348: 1180: 603: 1685:
whose σ-algebra is countably generated and whose measure is σ-finite, are separable for any
891: 2988: 2954: 2911: 2870: 2661: 2606: 2177: 2039: 2000: 652: 576: 479:
is separable if and only if it is second countable, which is the case if and only if it is
451: 2785: 2765: 2745: 2673: 2139: 1507: 1014: 8: 2310: 1895: 1842: 1839:
of polynomials in one variable with rational coefficients is a countable dense subset of
1801: 1762: 1723: 859: 740: 491: 131: 124: 2665: 2932: 2693: 2651: 1484: 1445: 1200: 1160: 994: 974: 785: 778: 632: 523: 332: 312: 263: 165: 151: 2963: 1771: 750:, separable Hausdorff space (in particular, a separable metric space) has at most the 2974: 2940: 2918: 2856: 2296: 1941: 502: 35: 2821: 2375:. This follows since such functions are determined by their values on dense subsets. 715:
is open. Therefore, the space is separable but there cannot have a countable base.
480: 2886: 2391: 2314: 858:
is the cardinality of the continuum. For this closure is characterized in terms of
728: 723:
The property of separability does not in and of itself give any limitations on the
509: 476: 159: 47: 24: 2877:
Kleiber, Martin; Pervin, William J. (1969), "A generalized Banach-Mazur theorem",
2984: 2950: 2936: 2907: 2866: 2852: 2638: 2401: 1975: 1889: 747: 739:. The "trouble" with the trivial topology is its poor separation properties: its 736: 350: 120: 20: 2336:
In fact, every topological space is a subspace of a separable space of the same
2970: 2906:, Mathematical Expositions, No. 7, Toronto, Ont.: University of Toronto Press, 2844: 2806: 2221: 357: 2891: 2998: 2634: 2531: 2398: 1937: 1766: 1534: 1281:
The product of at most continuum many separable spaces is a separable space (
732: 43: 2557: 2527: 2512: 2505: 2490: 2486: 2463: 2387: 2330: 2292: 2258: 2228: 2035: 1885: 1475: 253:{\displaystyle {\boldsymbol {r}}=(r_{1},\ldots ,r_{n})\in \mathbb {Q} ^{n}} 2382:
is a separable space having an uncountable closed discrete subspace, then
2337: 2318: 724: 116: 105: 31: 573:, and define the topology to be the collection of all sets that contain 147: 135: 115:, separability is a "limitation on size", not necessarily in terms of 2656: 2561: 1453: 155: 1974:
An example of a separable space that is not second-countable is the
2501: 2340:. A construction adding at most countably many points is given in ( 1591: 51: 1678:{\displaystyle \left\langle X,{\mathcal {M}},\mu \right\rangle } 162:
form a countable dense subset. Similarly the set of all length-
134:, which is in general stronger but equivalent on the class of 2639:"Properties of the class of measure separable compact spaces" 2541:
Every separable metric space is isometric to a subset of the
108:
of the space contains at least one element of the sequence.
2576:, the space of real continuous functions on the product of 2378:
From the above property, one can deduce the following: If
366: 512:
of at most continuum many separable spaces is separable (
505:
of a second-countable space need not be second countable.
497:
Any continuous image of a separable space is separable (
356:
A simple example of a space that is not separable is a
260:, is a countable dense subset of the set of all length- 2809:
this metric space is separable as a topological space.
2788: 2768: 2748: 2716: 2696: 2676: 2423: 2353: 2267: 2236: 2199: 2162: 2142: 2103: 2047: 2016: 1983: 1950: 1898: 1845: 1814: 1774: 1726: 1691: 1645: 1599: 1571: 1543: 1510: 1487: 1418: 1398: 1371: 1351: 1322: 1291: 1257: 1223: 1203: 1183: 1163: 1125: 1090: 1046: 1017: 997: 977: 953: 920: 894: 868: 840: 811: 788: 759: 682: 655: 635: 606: 579: 546: 526: 454: 414: 381: 335: 315: 286: 266: 191: 168: 59: 2479: 2313:
of a separable space need not be separable (see the
1365:
is any infinite cardinal, then a product of at most
805:
A separable Hausdorff space has cardinality at most
2962: 2794: 2774: 2754: 2734: 2702: 2682: 2450: 2363: 2280: 2249: 2212: 2168: 2148: 2125: 2089: 2026: 1991: 1963: 1925: 1872: 1831: 1792: 1753: 1709: 1677: 1631: 1579: 1557: 1525: 1493: 1424: 1404: 1384: 1357: 1337: 1308: 1285:, p. 109, Th 16.4c). In particular the space 1270: 1243: 1209: 1189: 1169: 1147: 1111: 1076: 1032: 1003: 983: 963: 939: 906: 880: 850: 826: 794: 769: 707: 668: 641: 621: 592: 565: 532: 467: 440: 400: 341: 321: 301: 272: 252: 174: 104:of elements of the space such that every nonempty 96: 727:of a topological space: any set endowed with the 130:Contrast separability with the related notion of 2996: 2742:is the Boolean algebra of all Borel sets modulo 2329:, Th 16.4b). Also every subspace of a separable 1804:is a separable space, since it follows from the 2034:that is a separable space when considered as a 1940:is separable if and only if it has a countable 16:Topological space with a dense countable subset 2601: 2451:{\displaystyle {\mathcal {C}}(X,\mathbb {R} )} 475:gives a countable dense subset. Conversely, a 2935:reprint of 1978 ed.), Berlin, New York: 2876: 2632: 2618: 2581: 2090:{\displaystyle \rho (A,B)=\mu (A\triangle B)} 2917: 2325:subspace of a separable space is separable ( 1999:, the set of real numbers equipped with the 702: 683: 395: 382: 74: 60: 2515:; this is known as the FrĂ©chet embedding. ( 1439: 1309:{\displaystyle \mathbb {R} ^{\mathbb {R} }} 731:is separable, as well as second countable, 2898: 2493:. This is established in the proof of the 2341: 1501:-dimensional Euclidean space is separable. 1412:has itself a dense subset of size at most 1392:spaces with dense subsets of size at most 947:if and only if there exists a filter base 2890: 2655: 2441: 1985: 1816: 1573: 1551: 1300: 1294: 486:To further compare these two properties: 289: 240: 97:{\displaystyle \{x_{n}\}_{n=1}^{\infty }} 2819: 2535: 2516: 2261:, is not separable. The same holds for 2257:of all bounded real sequences, with the 1888:is isometrically isomorphic to a closed 1632:{\displaystyle L^{p}\left(X,\mu \right)} 1444:Separability is especially important in 2960: 2511:of all bounded real sequences with the 2458:of continuous real-valued functions on 2326: 2184: 1558:{\displaystyle K\subseteq \mathbb {R} } 1282: 1177:contains a dense subset of cardinality 513: 498: 367:Separability versus second countability 193: 2997: 2843: 649:is the smallest closed set containing 600:(or are empty). Then, the closure of 2823:Geometric embeddings of metric spaces 2126:{\displaystyle A,B\in {\mathcal {F}}} 146:Any topological space that is itself 1434:Hewitt–Marczewski–Pondiczery theorem 940:{\displaystyle z\in {\overline {Y}}} 2504:to a subset of the (non-separable) 2356: 1533:of all continuous functions from a 1478:(or metrizable space) is separable. 1468: 1463: 1329: 843: 818: 762: 13: 2426: 2273: 2242: 2163: 2118: 2078: 2019: 1710:{\displaystyle 1\leq p<\infty } 1704: 1659: 1148:{\displaystyle {\overline {Y}}=X.} 956: 408:is a countable base, choosing any 363:Further examples are given below. 89: 14: 3021: 2480:Embedding separable metric spaces 1806:Weierstrass approximation theorem 1338:{\displaystyle 2^{\mathfrak {c}}} 1112:{\displaystyle S(Y)\rightarrow X} 827:{\displaystyle 2^{\mathfrak {c}}} 141: 3010:Properties of topological spaces 2500:Every separable metric space is 2485:Every separable metric space is 2407:, the following are equivalent: 1763:continuous real-valued functions 1040:of such filter bases is at most 302:{\displaystyle \mathbb {R} ^{n}} 119:(though, in the presence of the 50:subset; that is, there exists a 2820:Heinonen, Juha (January 2003), 2613:Springer Science+Business Media 2364:{\displaystyle {\mathfrak {c}}} 2250:{\displaystyle \ell ^{\infty }} 1244:{\displaystyle 2^{2^{\kappa }}} 851:{\displaystyle {\mathfrak {c}}} 770:{\displaystyle {\mathfrak {c}}} 2729: 2717: 2626: 2595: 2580:copies of the unit interval. ( 2568:is isometric to a subspace of 2564:equal to an infinite cardinal 2445: 2431: 2297:functions of bounded variation 2084: 2072: 2063: 2051: 2027:{\displaystyle {\mathcal {F}}} 1920: 1917: 1905: 1902: 1867: 1864: 1852: 1849: 1826: 1820: 1787: 1775: 1748: 1745: 1733: 1730: 1520: 1514: 1103: 1100: 1094: 1066: 1058: 1027: 1021: 964:{\displaystyle {\mathcal {B}}} 718: 441:{\displaystyle x_{n}\in U_{n}} 232: 200: 1: 2588: 2303: 1971:of square-summable sequences. 1011:. The cardinality of the set 676:), but every set of the form 2373:cardinality of the continuum 2220:, equipped with its natural 1992:{\displaystyle \mathbb {S} } 1832:{\displaystyle \mathbb {Q} } 1580:{\displaystyle \mathbb {R} } 1131: 932: 881:{\displaystyle Y\subseteq X} 360:of uncountable cardinality. 7: 2928:Counterexamples in Topology 2495:Urysohn metrization theorem 2281:{\displaystyle L^{\infty }} 2213:{\displaystyle \omega _{1}} 1884:asserts that any separable 1385:{\displaystyle 2^{\kappa }} 1271:{\displaystyle 2^{\kappa }} 1077:{\displaystyle 2^{2^{|Y|}}} 708:{\displaystyle \{x_{0},x\}} 10: 3026: 2169:{\displaystyle \triangle } 1278:if it is first countable. 566:{\displaystyle x_{0}\in X} 18: 2961:Willard, Stephen (1970), 2892:10.1017/S0004972700041411 2879:Bull. Austral. Math. Soc. 2710:, the measure algebra of 2619: 2582:Kleiber & Pervin 1969 2192:first uncountable ordinal 1964:{\displaystyle \ell ^{2}} 971:consisting of subsets of 401:{\displaystyle \{U_{n}\}} 280:vectors of real numbers, 2735:{\displaystyle (X,\mu )} 2008:separable σ-algebra 1450:constructive mathematics 1440:Constructive mathematics 1251:and cardinality at most 1217:has cardinality at most 743:is the one-point space. 19:Not to be confused with 2647:Fundamenta Mathematicae 2550:For nonseparable spaces 2543:Urysohn universal space 1639:, over a measure space 1425:{\displaystyle \kappa } 1405:{\displaystyle \kappa } 1358:{\displaystyle \kappa } 1190:{\displaystyle \kappa } 622:{\displaystyle {x_{0}}} 2923:Seebach, J. Arthur Jr. 2796: 2776: 2756: 2736: 2704: 2690:is a Borel measure on 2684: 2452: 2390:. This shows that the 2365: 2282: 2251: 2214: 2170: 2150: 2127: 2091: 2028: 1993: 1965: 1927: 1874: 1833: 1794: 1755: 1711: 1679: 1633: 1581: 1559: 1527: 1495: 1426: 1406: 1386: 1359: 1339: 1310: 1272: 1245: 1211: 1191: 1171: 1149: 1113: 1078: 1034: 1005: 985: 965: 941: 908: 907:{\displaystyle z\in X} 882: 860:limits of filter bases 852: 828: 796: 771: 709: 670: 643: 623: 594: 567: 534: 469: 442: 402: 373:second-countable space 343: 323: 303: 274: 254: 176: 113:axioms of countability 98: 2797: 2777: 2757: 2737: 2705: 2685: 2453: 2366: 2283: 2252: 2215: 2171: 2151: 2128: 2092: 2029: 1994: 1966: 1928: 1875: 1834: 1795: 1756: 1712: 1680: 1634: 1582: 1560: 1528: 1496: 1427: 1407: 1387: 1360: 1345:. More generally, if 1340: 1311: 1273: 1246: 1212: 1192: 1172: 1150: 1114: 1079: 1035: 1006: 986: 966: 942: 909: 883: 853: 829: 797: 772: 752:continuum cardinality 710: 671: 669:{\displaystyle x_{0}} 644: 624: 595: 593:{\displaystyle x_{0}} 568: 535: 501:, Th. 16.4a); even a 470: 468:{\displaystyle U_{n}} 443: 403: 344: 324: 304: 275: 255: 185:of rational numbers, 177: 99: 2851:, Berlin, New York: 2795:{\displaystyle \mu } 2786: 2775:{\displaystyle \mu } 2766: 2755:{\displaystyle \mu } 2746: 2714: 2694: 2683:{\displaystyle \mu } 2674: 2421: 2414:is second countable. 2351: 2265: 2234: 2197: 2185:Non-separable spaces 2178:symmetric difference 2160: 2149:{\displaystyle \mu } 2140: 2101: 2045: 2014: 2010:is a σ-algebra 2001:lower limit topology 1981: 1948: 1896: 1882:Banach–Mazur theorem 1843: 1812: 1772: 1724: 1689: 1643: 1597: 1569: 1541: 1526:{\displaystyle C(K)} 1508: 1485: 1416: 1396: 1369: 1349: 1320: 1289: 1255: 1221: 1201: 1181: 1161: 1123: 1088: 1044: 1033:{\displaystyle S(Y)} 1015: 995: 975: 951: 918: 892: 866: 838: 809: 786: 757: 680: 653: 633: 629:is the whole space ( 604: 577: 544: 524: 452: 412: 379: 333: 313: 284: 264: 189: 166: 57: 2666:1994math......8201D 2489:to a subset of the 2224:, is not separable. 2133:and a given finite 1926:{\displaystyle C()} 1873:{\displaystyle C()} 1802:uniform convergence 1800:with the metric of 1754:{\displaystyle C()} 1458:Hahn–Banach theorem 777:. In such a space, 741:Kolmogorov quotient 448:from the non-empty 132:second countability 125:continuous function 93: 2919:Steen, Lynn Arthur 2900:SierpiƄski, WacƂaw 2792: 2772: 2752: 2732: 2700: 2680: 2448: 2361: 2278: 2247: 2210: 2166: 2146: 2123: 2087: 2024: 1989: 1961: 1923: 1870: 1829: 1790: 1751: 1707: 1675: 1629: 1577: 1555: 1523: 1491: 1446:numerical analysis 1422: 1402: 1382: 1355: 1335: 1306: 1268: 1241: 1207: 1187: 1167: 1145: 1109: 1074: 1030: 1001: 991:that converges to 981: 961: 937: 904: 878: 848: 824: 792: 767: 705: 666: 639: 619: 590: 563: 530: 465: 438: 398: 339: 319: 299: 270: 250: 172: 152:countably infinite 94: 73: 2980:978-0-201-08707-9 2946:978-0-486-68735-3 2862:978-0-387-90125-1 2703:{\displaystyle X} 2633:DĆŸamonja, Mirna; 2530:. This is due to 1942:orthonormal basis 1565:to the real line 1494:{\displaystyle n} 1210:{\displaystyle X} 1170:{\displaystyle X} 1134: 1004:{\displaystyle z} 984:{\displaystyle Y} 935: 795:{\displaystyle X} 642:{\displaystyle X} 533:{\displaystyle X} 375:is separable: if 342:{\displaystyle n} 322:{\displaystyle n} 273:{\displaystyle n} 175:{\displaystyle n} 42:if it contains a 36:topological space 3017: 3005:General topology 2991: 2968: 2965:General Topology 2957: 2914: 2904:General topology 2895: 2894: 2873: 2849:General Topology 2836: 2835: 2833: 2828: 2812: 2811: 2801: 2799: 2798: 2793: 2781: 2779: 2778: 2773: 2761: 2759: 2758: 2753: 2741: 2739: 2738: 2733: 2709: 2707: 2706: 2701: 2689: 2687: 2686: 2681: 2659: 2643: 2630: 2624: 2622: 2621: 2616: 2599: 2579: 2575: 2567: 2457: 2455: 2454: 2449: 2444: 2430: 2429: 2392:Sorgenfrey plane 2370: 2368: 2367: 2362: 2360: 2359: 2315:Sorgenfrey plane 2287: 2285: 2284: 2279: 2277: 2276: 2256: 2254: 2253: 2248: 2246: 2245: 2219: 2217: 2216: 2211: 2209: 2208: 2175: 2173: 2172: 2167: 2155: 2153: 2152: 2147: 2132: 2130: 2129: 2124: 2122: 2121: 2096: 2094: 2093: 2088: 2033: 2031: 2030: 2025: 2023: 2022: 1998: 1996: 1995: 1990: 1988: 1970: 1968: 1967: 1962: 1960: 1959: 1932: 1930: 1929: 1924: 1879: 1877: 1876: 1871: 1838: 1836: 1835: 1830: 1819: 1799: 1797: 1796: 1793:{\displaystyle } 1791: 1760: 1758: 1757: 1752: 1716: 1714: 1713: 1708: 1684: 1682: 1681: 1676: 1674: 1670: 1663: 1662: 1638: 1636: 1635: 1630: 1628: 1624: 1609: 1608: 1586: 1584: 1583: 1578: 1576: 1564: 1562: 1561: 1556: 1554: 1532: 1530: 1529: 1524: 1500: 1498: 1497: 1492: 1469:Separable spaces 1464:Further examples 1431: 1429: 1428: 1423: 1411: 1409: 1408: 1403: 1391: 1389: 1388: 1383: 1381: 1380: 1364: 1362: 1361: 1356: 1344: 1342: 1341: 1336: 1334: 1333: 1332: 1315: 1313: 1312: 1307: 1305: 1304: 1303: 1297: 1277: 1275: 1274: 1269: 1267: 1266: 1250: 1248: 1247: 1242: 1240: 1239: 1238: 1237: 1216: 1214: 1213: 1208: 1196: 1194: 1193: 1188: 1176: 1174: 1173: 1168: 1154: 1152: 1151: 1146: 1135: 1127: 1118: 1116: 1115: 1110: 1083: 1081: 1080: 1075: 1073: 1072: 1071: 1070: 1069: 1061: 1039: 1037: 1036: 1031: 1010: 1008: 1007: 1002: 990: 988: 987: 982: 970: 968: 967: 962: 960: 959: 946: 944: 943: 938: 936: 928: 913: 911: 910: 905: 887: 885: 884: 879: 857: 855: 854: 849: 847: 846: 833: 831: 830: 825: 823: 822: 821: 801: 799: 798: 793: 776: 774: 773: 768: 766: 765: 729:trivial topology 714: 712: 711: 706: 695: 694: 675: 673: 672: 667: 665: 664: 648: 646: 645: 640: 628: 626: 625: 620: 618: 617: 616: 599: 597: 596: 591: 589: 588: 572: 570: 569: 564: 556: 555: 539: 537: 536: 531: 477:metrizable space 474: 472: 471: 466: 464: 463: 447: 445: 444: 439: 437: 436: 424: 423: 407: 405: 404: 399: 394: 393: 348: 346: 345: 340: 328: 326: 325: 320: 308: 306: 305: 300: 298: 297: 292: 279: 277: 276: 271: 259: 257: 256: 251: 249: 248: 243: 231: 230: 212: 211: 196: 181: 179: 178: 173: 160:rational numbers 103: 101: 100: 95: 92: 87: 72: 71: 25:Separation axiom 3025: 3024: 3020: 3019: 3018: 3016: 3015: 3014: 2995: 2994: 2981: 2947: 2937:Springer-Verlag 2863: 2853:Springer-Verlag 2845:Kelley, John L. 2831: 2829: 2826: 2816: 2815: 2787: 2784: 2783: 2767: 2764: 2763: 2762:-null sets. If 2747: 2744: 2743: 2715: 2712: 2711: 2695: 2692: 2691: 2675: 2672: 2671: 2641: 2631: 2627: 2600: 2596: 2591: 2577: 2569: 2565: 2482: 2475: 2440: 2425: 2424: 2422: 2419: 2418: 2402:Hausdorff space 2355: 2354: 2352: 2349: 2348: 2342:SierpiƄski 1952 2306: 2272: 2268: 2266: 2263: 2262: 2241: 2237: 2235: 2232: 2231: 2204: 2200: 2198: 2195: 2194: 2187: 2161: 2158: 2157: 2141: 2138: 2137: 2117: 2116: 2102: 2099: 2098: 2046: 2043: 2042: 2018: 2017: 2015: 2012: 2011: 1984: 1982: 1979: 1978: 1976:Sorgenfrey line 1955: 1951: 1949: 1946: 1945: 1897: 1894: 1893: 1890:linear subspace 1844: 1841: 1840: 1815: 1813: 1810: 1809: 1773: 1770: 1769: 1725: 1722: 1721: 1690: 1687: 1686: 1658: 1657: 1650: 1646: 1644: 1641: 1640: 1614: 1610: 1604: 1600: 1598: 1595: 1594: 1592:Lebesgue spaces 1572: 1570: 1567: 1566: 1550: 1542: 1539: 1538: 1509: 1506: 1505: 1486: 1483: 1482: 1471: 1466: 1442: 1417: 1414: 1413: 1397: 1394: 1393: 1376: 1372: 1370: 1367: 1366: 1350: 1347: 1346: 1328: 1327: 1323: 1321: 1318: 1317: 1299: 1298: 1293: 1292: 1290: 1287: 1286: 1262: 1258: 1256: 1253: 1252: 1233: 1229: 1228: 1224: 1222: 1219: 1218: 1202: 1199: 1198: 1182: 1179: 1178: 1162: 1159: 1158: 1126: 1124: 1121: 1120: 1089: 1086: 1085: 1065: 1057: 1056: 1052: 1051: 1047: 1045: 1042: 1041: 1016: 1013: 1012: 996: 993: 992: 976: 973: 972: 955: 954: 952: 949: 948: 927: 919: 916: 915: 893: 890: 889: 867: 864: 863: 842: 841: 839: 836: 835: 817: 816: 812: 810: 807: 806: 787: 784: 783: 761: 760: 758: 755: 754: 748:first-countable 721: 690: 686: 681: 678: 677: 660: 656: 654: 651: 650: 634: 631: 630: 612: 608: 607: 605: 602: 601: 584: 580: 578: 575: 574: 551: 547: 545: 542: 541: 525: 522: 521: 459: 455: 453: 450: 449: 432: 428: 419: 415: 413: 410: 409: 389: 385: 380: 377: 376: 369: 351:Euclidean space 334: 331: 330: 314: 311: 310: 309:; so for every 293: 288: 287: 285: 282: 281: 265: 262: 261: 244: 239: 238: 226: 222: 207: 203: 192: 190: 187: 186: 167: 164: 163: 158:, in which the 144: 121:Hausdorff axiom 111:Like the other 88: 77: 67: 63: 58: 55: 54: 28: 21:Separated space 17: 12: 11: 5: 3023: 3013: 3012: 3007: 2993: 2992: 2979: 2971:Addison-Wesley 2958: 2945: 2915: 2896: 2885:(2): 169–173, 2874: 2861: 2838: 2837: 2814: 2813: 2791: 2771: 2751: 2731: 2728: 2725: 2722: 2719: 2699: 2679: 2635:Kunen, Kenneth 2625: 2608:Measure Theory 2603:Donald L. Cohn 2593: 2592: 2590: 2587: 2586: 2585: 2547: 2546: 2539: 2520: 2498: 2481: 2478: 2477: 2476: 2474: 2473: 2472:is metrizable. 2467: 2447: 2443: 2439: 2436: 2433: 2428: 2415: 2408: 2395: 2394:is not normal. 2376: 2358: 2345: 2334: 2305: 2302: 2301: 2300: 2289: 2275: 2271: 2244: 2240: 2225: 2222:order topology 2207: 2203: 2186: 2183: 2182: 2181: 2165: 2145: 2120: 2115: 2112: 2109: 2106: 2086: 2083: 2080: 2077: 2074: 2071: 2068: 2065: 2062: 2059: 2056: 2053: 2050: 2021: 2004: 1987: 1972: 1958: 1954: 1934: 1922: 1919: 1916: 1913: 1910: 1907: 1904: 1901: 1869: 1866: 1863: 1860: 1857: 1854: 1851: 1848: 1828: 1825: 1822: 1818: 1789: 1786: 1783: 1780: 1777: 1750: 1747: 1744: 1741: 1738: 1735: 1732: 1729: 1718: 1706: 1703: 1700: 1697: 1694: 1673: 1669: 1666: 1661: 1656: 1653: 1649: 1627: 1623: 1620: 1617: 1613: 1607: 1603: 1588: 1575: 1553: 1549: 1546: 1522: 1519: 1516: 1513: 1502: 1490: 1479: 1474:Every compact 1470: 1467: 1465: 1462: 1441: 1438: 1421: 1401: 1379: 1375: 1354: 1331: 1326: 1302: 1296: 1265: 1261: 1236: 1232: 1227: 1206: 1186: 1166: 1144: 1141: 1138: 1133: 1130: 1108: 1105: 1102: 1099: 1096: 1093: 1068: 1064: 1060: 1055: 1050: 1029: 1026: 1023: 1020: 1000: 980: 958: 934: 931: 926: 923: 903: 900: 897: 877: 874: 871: 845: 820: 815: 791: 764: 720: 717: 704: 701: 698: 693: 689: 685: 663: 659: 638: 615: 611: 587: 583: 562: 559: 554: 550: 529: 518: 517: 506: 495: 462: 458: 435: 431: 427: 422: 418: 397: 392: 388: 384: 368: 365: 358:discrete space 353:is separable. 338: 318: 296: 291: 269: 247: 242: 237: 234: 229: 225: 221: 218: 215: 210: 206: 202: 199: 195: 171: 143: 142:First examples 140: 91: 86: 83: 80: 76: 70: 66: 62: 15: 9: 6: 4: 3: 2: 3022: 3011: 3008: 3006: 3003: 3002: 3000: 2990: 2986: 2982: 2976: 2972: 2967: 2966: 2959: 2956: 2952: 2948: 2942: 2938: 2934: 2930: 2929: 2924: 2920: 2916: 2913: 2909: 2905: 2901: 2897: 2893: 2888: 2884: 2880: 2875: 2872: 2868: 2864: 2858: 2854: 2850: 2846: 2842: 2841: 2840: 2825: 2824: 2818: 2817: 2810: 2808: 2805: 2789: 2769: 2749: 2726: 2723: 2720: 2697: 2677: 2667: 2663: 2658: 2653: 2649: 2648: 2640: 2636: 2629: 2614: 2610: 2609: 2604: 2598: 2594: 2583: 2573: 2563: 2559: 2555: 2554: 2553: 2551: 2544: 2540: 2537: 2536:Heinonen 2003 2533: 2532:Stefan Banach 2529: 2528:supremum norm 2525: 2521: 2518: 2517:Heinonen 2003 2514: 2513:supremum norm 2510: 2507: 2503: 2499: 2496: 2492: 2488: 2484: 2483: 2471: 2468: 2466:is separable. 2465: 2464:supremum norm 2461: 2437: 2434: 2416: 2413: 2410: 2409: 2406: 2403: 2400: 2396: 2393: 2389: 2385: 2381: 2377: 2374: 2346: 2343: 2339: 2335: 2333:is separable. 2332: 2328: 2324: 2321:), but every 2320: 2316: 2312: 2308: 2307: 2298: 2294: 2290: 2269: 2260: 2259:supremum norm 2238: 2230: 2226: 2223: 2205: 2201: 2193: 2189: 2188: 2179: 2143: 2136: 2113: 2110: 2107: 2104: 2081: 2075: 2069: 2066: 2060: 2057: 2054: 2048: 2041: 2037: 2009: 2005: 2002: 1977: 1973: 1956: 1952: 1943: 1939: 1938:Hilbert space 1935: 1914: 1911: 1908: 1899: 1891: 1887: 1883: 1861: 1858: 1855: 1846: 1823: 1808:that the set 1807: 1803: 1784: 1781: 1778: 1768: 1767:unit interval 1764: 1742: 1739: 1736: 1727: 1719: 1701: 1698: 1695: 1692: 1671: 1667: 1664: 1654: 1651: 1647: 1625: 1621: 1618: 1615: 1611: 1605: 1601: 1593: 1589: 1587:is separable. 1547: 1544: 1536: 1517: 1511: 1503: 1488: 1480: 1477: 1473: 1472: 1461: 1459: 1455: 1451: 1447: 1437: 1435: 1419: 1399: 1377: 1373: 1352: 1324: 1284: 1279: 1263: 1259: 1234: 1230: 1225: 1204: 1184: 1164: 1155: 1142: 1139: 1136: 1128: 1106: 1097: 1091: 1062: 1053: 1048: 1024: 1018: 998: 978: 929: 924: 921: 901: 898: 895: 875: 872: 869: 861: 813: 803: 789: 780: 753: 749: 744: 742: 738: 734: 733:quasi-compact 730: 726: 716: 699: 696: 691: 687: 661: 657: 636: 613: 609: 585: 581: 560: 557: 552: 548: 527: 515: 511: 507: 504: 500: 496: 493: 490:An arbitrary 489: 488: 487: 484: 482: 478: 460: 456: 433: 429: 425: 420: 416: 390: 386: 374: 364: 361: 359: 354: 352: 349:-dimensional 336: 316: 294: 267: 245: 235: 227: 223: 219: 216: 213: 208: 204: 197: 184: 169: 161: 157: 153: 149: 139: 137: 133: 128: 126: 122: 118: 114: 109: 107: 84: 81: 78: 68: 64: 53: 49: 45: 41: 37: 33: 26: 22: 2964: 2927: 2903: 2882: 2878: 2848: 2839: 2830:, retrieved 2822: 2803: 2669: 2657:math/9408201 2645: 2628: 2607: 2597: 2571: 2558:metric space 2549: 2548: 2523: 2508: 2506:Banach space 2491:Hilbert cube 2487:homeomorphic 2469: 2459: 2411: 2404: 2383: 2379: 2331:metric space 2327:Willard 1970 2322: 2293:Banach space 2229:Banach space 2036:metric space 1886:Banach space 1476:metric space 1443: 1283:Willard 1970 1280: 1156: 804: 745: 722: 540:, pick some 519: 514:Willard 1970 499:Willard 1970 485: 370: 362: 355: 145: 129: 110: 39: 29: 2620:Proposition 2526:, with the 2338:cardinality 2319:Moore plane 725:cardinality 719:Cardinality 117:cardinality 106:open subset 32:mathematics 2999:Categories 2832:6 February 2589:References 2417:The space 2386:cannot be 2304:Properties 2180:operator). 2176:being the 2156:(and with 1720:The space 1504:The space 1454:algorithms 136:metrizable 38:is called 2925:(1995) , 2804:separable 2790:μ 2770:μ 2750:μ 2727:μ 2678:μ 2502:isometric 2462:with the 2274:∞ 2243:∞ 2239:ℓ 2202:ω 2164:△ 2144:μ 2114:∈ 2079:△ 2070:μ 2049:ρ 1953:ℓ 1705:∞ 1696:≤ 1668:μ 1622:μ 1548:⊆ 1420:κ 1400:κ 1378:κ 1353:κ 1264:κ 1235:κ 1185:κ 1132:¯ 1104:→ 933:¯ 925:∈ 899:∈ 873:⊆ 737:connected 558:∈ 426:∈ 236:∈ 217:… 156:real line 90:∞ 44:countable 40:separable 2902:(1952), 2847:(1975), 2637:(1995). 2605:(2013). 2317:and the 2311:subspace 1672:⟩ 1648:⟨ 834:, where 503:quotient 492:subspace 481:Lindelöf 138:spaces. 52:sequence 2989:0264581 2955:0507446 2912:0050870 2871:0370454 2662:Bibcode 2650:: 262. 2562:density 2399:compact 2135:measure 1765:on the 1537:subset 1535:compact 1197:. Then 914:, then 779:closure 510:product 183:vectors 2987:  2977:  2953:  2943:  2910:  2869:  2859:  2623:3.4.5. 2397:For a 2388:normal 2371:, the 2040:metric 1880:. The 735:, and 148:finite 2933:Dover 2827:(PDF) 2652:arXiv 2642:(PDF) 2038:with 1119:when 862:: if 48:dense 2975:ISBN 2941:ISBN 2857:ISBN 2834:2009 2570:C(, 2323:open 2291:The 2227:The 2190:The 2097:for 1702:< 1590:The 1448:and 888:and 371:Any 34:, a 2887:doi 2807:iff 2802:is 2670:If 2560:of 2534:. ( 2295:of 1892:of 1761:of 1436:). 150:or 30:In 23:or 3001:: 2985:MR 2983:, 2973:, 2969:, 2951:MR 2949:, 2939:, 2921:; 2908:MR 2881:, 2867:MR 2865:, 2855:, 2668:. 2660:. 2644:. 2617:, 2611:. 2556:A 2552:: 2309:A 2006:A 1936:A 1460:. 802:. 746:A 508:A 483:. 329:, 46:, 2931:( 2889:: 2883:1 2730:) 2724:, 2721:X 2718:( 2698:X 2664:: 2654:: 2615:. 2584:) 2578:α 2574:) 2572:R 2566:α 2545:. 2538:) 2524:R 2519:) 2509:l 2497:. 2470:X 2460:X 2446:) 2442:R 2438:, 2435:X 2432:( 2427:C 2412:X 2405:X 2384:X 2380:X 2357:c 2288:. 2270:L 2206:1 2119:F 2111:B 2108:, 2105:A 2085:) 2082:B 2076:A 2073:( 2067:= 2064:) 2061:B 2058:, 2055:A 2052:( 2020:F 2003:. 1986:S 1957:2 1933:. 1921:) 1918:] 1915:1 1912:, 1909:0 1906:[ 1903:( 1900:C 1868:) 1865:] 1862:1 1859:, 1856:0 1853:[ 1850:( 1847:C 1827:] 1824:x 1821:[ 1817:Q 1788:] 1785:1 1782:, 1779:0 1776:[ 1749:) 1746:] 1743:1 1740:, 1737:0 1734:[ 1731:( 1728:C 1717:. 1699:p 1693:1 1665:, 1660:M 1655:, 1652:X 1626:) 1619:, 1616:X 1612:( 1606:p 1602:L 1574:R 1552:R 1545:K 1521:) 1518:K 1515:( 1512:C 1489:n 1432:( 1374:2 1330:c 1325:2 1301:R 1295:R 1260:2 1231:2 1226:2 1205:X 1165:X 1143:. 1140:X 1137:= 1129:Y 1107:X 1101:) 1098:Y 1095:( 1092:S 1067:| 1063:Y 1059:| 1054:2 1049:2 1028:) 1025:Y 1022:( 1019:S 999:z 979:Y 957:B 930:Y 922:z 902:X 896:z 876:X 870:Y 844:c 819:c 814:2 790:X 763:c 703:} 700:x 697:, 692:0 688:x 684:{ 662:0 658:x 637:X 614:0 610:x 586:0 582:x 561:X 553:0 549:x 528:X 461:n 457:U 434:n 430:U 421:n 417:x 396:} 391:n 387:U 383:{ 337:n 317:n 295:n 290:R 268:n 246:n 241:Q 233:) 228:n 224:r 220:, 214:, 209:1 205:r 201:( 198:= 194:r 170:n 85:1 82:= 79:n 75:} 69:n 65:x 61:{ 27:.

Index

Separated space
Separation axiom
mathematics
topological space
countable
dense
sequence
open subset
axioms of countability
cardinality
Hausdorff axiom
continuous function
second countability
metrizable
finite
countably infinite
real line
rational numbers
vectors
Euclidean space
discrete space
second-countable space
metrizable space
Lindelöf
subspace
Willard 1970
quotient
product
Willard 1970
cardinality

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑