Knowledge

Series–parallel graph

Source 📝

31: 451:. It has S-nodes, which are analogous to the series composition operations in series–parallel graphs, P-nodes, which are analogous to the parallel composition operations in series–parallel graphs, and R-nodes, which do not correspond to series–parallel composition operations. A 2-connected graph is series–parallel if and only if there are no R-nodes in its SPQR tree. 360:
for general graphs. The solution capitalizes on the fact that if the answers for one of these problems are known for two SP-graphs, then one can quickly find the answer for their series and parallel compositions.
210:(TTSPG) is a graph that may be constructed by a sequence of series and parallel compositions starting from a set of copies of a single-edge graph 583: 303:
series–parallel graphs, graphs to which no additional edges can be added without destroying their series–parallel structure, are exactly the
671: 628: 333:
SP-graphs may be recognized in linear time and their series–parallel decomposition may be constructed in linear time as well.
595: 17: 295:
at most 2. Indeed, a graph has treewidth at most 2 if and only if it has branchwidth at most 2, if and only if every
69:
There are several ways to define series–parallel graphs. The following definition basically follows the one used by
340:, because a number of standard graph problems are solvable in linear time on SP-graphs, including finding of the 337: 475: 790: 311: 51: 510: 838: 710: 115: 833: 345: 587: 577: 238:, constructed from copies of single-arc graphs, with arcs directed from the source to the sink. 843: 374: 353: 349: 267:
Replacement of a pair of parallel edges with a single edge that connects their common endpoints
336:
Besides being a model of certain types of electric networks, these graphs are of interest in
296: 235: 582:. SIAM Monographs on Discrete Mathematics. and Applications. Vol. 3. Philadelphia, PA: 573: 605: 8: 448: 377:
for the mentioned problems. The class of GSP-graphs include the classes of SP-graphs and
766: 747: 619: 641: 502: 804: 785: 591: 555: 538: 523: 378: 322: 50:, formed recursively by two simple composition operations. They can be used to model 770: 799: 756: 719: 680: 645: 637: 601: 550: 519: 341: 231:, if it is a TTSPG when some two of its vertices are regarded as source and sink. 738: 470: 460: 389: 300: 699: 743:"Linear-time computability of combinatorial problems on series–parallel graphs" 498: 256: 212: 126: 70: 30: 827: 705: 701: 685: 666: 310:
2-connected series–parallel graphs are characterised by having no subgraph
270:
Replacement of a pair of edges incident to a vertex of degree 2 other than
39: 761: 742: 357: 292: 63: 665:
Hall, Rhiannon; Oxley, James; Semple, Charles; Whittle, Geoff (2002).
650: 444: 288: 34:
Series and parallel composition operations for series–parallel graphs
723: 465: 304: 812:
Notices of the BSSR Academy of Sciences, Ser. Phys.-Math. Sci.
373:(GSP-graphs) are an extension of the SP-graphs with the same 246:
The following definition specifies the same class of graphs.
392:
of a dangling vertex (vertex of degree 1). Alternatively,
321:
Series parallel graphs may also be characterized by their
447:
is a tree structure that can be defined for an arbitrary
736: 708:(1982). "The recognition of series parallel digraphs". 664: 415:
is a TTG created from the disjoint union of graphs
171:
is a TTG created from the disjoint union of graphs
572: 254:. A graph is an SP-graph, if it may be turned into 27:
Recursively-formed graph with two terminal vertices
80:(TTG) is a graph with two distinguished vertices, 46:are graphs with two distinguished vertices called 783: 543:Journal of Mathematical Analysis and Applications 825: 503:"Parallel recognition of series–parallel graphs" 234:In a similar way one may define series–parallel 786:"Combinatorial algorithms on a class of graphs" 497: 396:may be augmented with the following operation. 626:-arboretum of graphs with bounded treewidth". 584:Society for Industrial and Applied Mathematics 568: 566: 536: 57: 576:; Le, Van Bang; Spinrad, Jeremy P. (1999). 563: 328: 263:by a sequence of the following operations: 618: 493: 491: 803: 760: 684: 672:Journal of Combinatorial Theory, Series B 649: 554: 241: 29: 488: 14: 826: 539:"Topology of Series–Parallel Networks" 388:augmented with the third operation of 62:In this context, the term graph means 530: 52:series and parallel electric circuits 667:"On matroids of branch-width three" 24: 693: 371:generalized series–parallel graphs 208:two-terminal series–parallel graph 25: 855: 814:, (1984) no. 3, pp. 109–111 364: 299:is a series–parallel graph. The 287:Every series–parallel graph has 384:GSP graphs may be specified by 338:computational complexity theory 777: 730: 658: 612: 435:become the source and sink of 13: 1: 642:10.1016/S0304-3975(97)00228-4 481: 476:Series-parallel partial order 356:. Some of these problems are 282: 227:. Finally, a graph is called 805:10.1016/0166-218X(94)90022-1 791:Discrete Applied Mathematics 629:Theoretical Computer Science 556:10.1016/0022-247X(65)90125-3 524:10.1016/0890-5401(92)90041-D 7: 511:Information and Computation 454: 114:is a TTG created from the 10: 860: 784:Korneyenko, N. M. (1994). 229:series–parallel (SP-graph) 58:Definition and terminology 711:SIAM Journal on Computing 431:. The source and sink of 423:by merging the source of 219:with assigned terminals. 141:and merging the sinks of 449:2-vertex-connected graph 329:Computational complexity 137:to create the source of 116:disjoint union of graphs 579:Graph classes: a survey 346:maximum independent set 179:by merging the sink of 686:10.1006/jctb.2002.2120 537:Duffin, R. J. (1965). 375:algorithmic efficiency 354:Hamiltonian completion 350:minimum dominating set 242:Alternative definition 191:becomes the source of 149:to create the sink of 44:series–parallel graphs 35: 762:10.1145/322326.322328 297:biconnected component 33: 18:Series-parallel graph 741:; Saito, N. (1982). 199:becomes the sink of 101:parallel composition 622:(1998). "A partial 574:Brandstädt, Andreas 427:with the source of 278:with a single edge. 183:with the source of 748:Journal of the ACM 379:outerplanar graphs 323:ear decompositions 158:series composition 78:two-terminal graph 36: 706:Lawler, Eugene L. 702:Tarjan, Robert E. 597:978-0-898714-32-6 16:(Redirected from 851: 839:Graph operations 818: 817: 810:Translated from 809: 807: 798:(2–3): 215–217. 781: 775: 774: 764: 737:Takamizawa, K.; 734: 728: 727: 700:Valdes, Jacobo; 697: 691: 690: 688: 662: 656: 655: 653: 616: 610: 609: 570: 561: 560: 558: 534: 528: 527: 507: 495: 342:maximum matching 195:and the sink of 187:. The source of 96:, respectively. 21: 859: 858: 854: 853: 852: 850: 849: 848: 824: 823: 822: 821: 815: 782: 778: 735: 731: 724:10.1137/0211023 698: 694: 663: 659: 617: 613: 598: 571: 564: 535: 531: 505: 499:Eppstein, David 496: 489: 484: 471:Hanner polytope 461:Threshold graph 457: 367: 331: 317: 285: 261: 244: 217: 129:the sources of 60: 28: 23: 22: 15: 12: 11: 5: 857: 847: 846: 841: 836: 834:Graph families 820: 819: 776: 755:(3): 623–641. 729: 718:(2): 289–313. 692: 679:(1): 148–171. 657: 620:Bodlaender, H. 611: 596: 562: 549:(2): 303–313. 529: 486: 485: 483: 480: 479: 478: 473: 468: 463: 456: 453: 441: 440: 366: 365:Generalization 363: 330: 327: 315: 291:at most 2 and 284: 281: 280: 279: 268: 259: 243: 240: 215: 71:David Eppstein 59: 56: 26: 9: 6: 4: 3: 2: 856: 845: 844:Planar graphs 842: 840: 837: 835: 832: 831: 829: 813: 806: 801: 797: 793: 792: 787: 780: 772: 768: 763: 758: 754: 750: 749: 744: 740: 739:Nishizeki, T. 733: 725: 721: 717: 713: 712: 707: 703: 696: 687: 682: 678: 674: 673: 668: 661: 652: 647: 643: 639: 636:(1–2): 1–45. 635: 631: 630: 625: 621: 615: 607: 603: 599: 593: 589: 585: 581: 580: 575: 569: 567: 557: 552: 548: 544: 540: 533: 525: 521: 517: 513: 512: 504: 500: 494: 492: 487: 477: 474: 472: 469: 467: 464: 462: 459: 458: 452: 450: 446: 439:respectively. 438: 434: 430: 426: 422: 418: 414: 410: 406: 403: 399: 398: 397: 395: 391: 387: 382: 380: 376: 372: 362: 359: 355: 351: 347: 343: 339: 334: 326: 324: 319: 313: 308: 306: 302: 298: 294: 290: 277: 273: 269: 266: 265: 264: 262: 258: 253: 252: 247: 239: 237: 232: 230: 226: 225: 220: 218: 214: 209: 204: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 162: 159: 154: 152: 148: 144: 140: 136: 132: 128: 124: 120: 117: 113: 109: 105: 102: 97: 95: 91: 87: 83: 79: 74: 72: 67: 65: 55: 53: 49: 45: 41: 32: 19: 816:(in Russian) 811: 795: 789: 779: 752: 746: 732: 715: 709: 695: 676: 670: 660: 633: 627: 623: 614: 578: 546: 542: 532: 518:(1): 41–55. 515: 509: 442: 436: 432: 428: 424: 420: 416: 412: 408: 407:of two TTGs 404: 402:source merge 401: 394:Definition 1 393: 386:Definition 2 385: 383: 370: 368: 335: 332: 320: 312:homeomorphic 309: 286: 275: 271: 255: 251:Definition 2 250: 249: 248: 245: 233: 228: 224:Definition 1 223: 222: 221: 211: 207: 205: 200: 196: 192: 188: 184: 180: 176: 172: 168: 164: 163:of two TTGs 161:Sc = Sc(X,Y) 160: 157: 155: 150: 146: 142: 138: 134: 130: 122: 118: 111: 107: 106:of two TTGs 104:Pc = Pc(X,Y) 103: 100: 98: 93: 89: 85: 81: 77: 75: 68: 61: 47: 43: 40:graph theory 37: 586:. pp.  358:NP-complete 293:branchwidth 828:Categories 651:1874/18312 606:0919.05001 482:References 405:S = M(X,Y) 283:Properties 64:multigraph 445:SPQR tree 289:treewidth 48:terminals 771:16082154 501:(1992). 455:See also 390:deletion 236:digraphs 588:172–174 466:Cograph 305:2-trees 301:maximal 127:merging 88:called 769:  604:  594:  90:source 767:S2CID 506:(PDF) 592:ISBN 419:and 411:and 400:The 369:The 352:and 314:to K 175:and 167:and 156:The 145:and 133:and 121:and 110:and 99:The 94:sink 92:and 84:and 800:doi 757:doi 720:doi 681:doi 646:hdl 638:doi 634:209 602:Zbl 551:doi 520:doi 443:An 274:or 125:by 38:In 830:: 796:54 794:. 788:. 765:. 753:29 751:. 745:. 716:11 714:. 704:; 677:86 675:. 669:. 644:. 632:. 600:. 590:. 565:^ 547:10 545:. 541:. 516:98 514:. 508:. 490:^ 381:. 348:, 344:, 325:. 318:. 307:. 206:A 203:. 201:Sc 193:Sc 153:. 151:Pc 139:Pc 76:A 73:. 66:. 54:. 42:, 808:. 802:: 773:. 759:: 726:. 722:: 689:. 683:: 654:. 648:: 640:: 624:k 608:. 559:. 553:: 526:. 522:: 437:S 433:X 429:Y 425:X 421:Y 417:X 413:Y 409:X 316:4 276:t 272:s 260:2 257:K 216:2 213:K 197:Y 189:X 185:Y 181:X 177:Y 173:X 169:Y 165:X 147:Y 143:X 135:Y 131:X 123:Y 119:X 112:Y 108:X 86:t 82:s 20:)

Index

Series-parallel graph

graph theory
series and parallel electric circuits
multigraph
David Eppstein
disjoint union of graphs
merging
K
digraphs
K
treewidth
branchwidth
biconnected component
maximal
2-trees
homeomorphic
ear decompositions
computational complexity theory
maximum matching
maximum independent set
minimum dominating set
Hamiltonian completion
NP-complete
algorithmic efficiency
outerplanar graphs
deletion
SPQR tree
2-vertex-connected graph
Threshold graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.