Knowledge

Shot noise

Source đź“ť

92:
processes that govern light emission are such that these photons are emitted from the laser at random times; but the many billions of photons needed to create a spot are so many that the brightness, the number of photons per unit of time, varies only infinitesimally with time. However, if the laser brightness is reduced until only a handful of photons hit the wall every second, the relative fluctuations in number of photons, i.e., brightness, will be significant, just as when tossing a coin a few times. These fluctuations are shot noise.
150: 20: 2308: 1058:
from point A to point B every nanosecond. During the first half of a nanosecond we would expect 50 electrons to arrive at point B on the average, but in a particular half nanosecond there might well be 60 electrons which arrive there. This will create a more negative electric charge at point B than average, and that extra charge will tend to
335:. However, shot noise is temperature and frequency independent, in contrast to Johnson–Nyquist noise, which is proportional to temperature, and flicker noise, with the spectral density decreasing with increasing frequency. Therefore, at high frequencies and low temperatures shot noise may become the dominant source of noise. 1643:, shot noise describes the fluctuations of the number of photons detected (or simply counted in the abstract) because they occur independently of each other. This is therefore another consequence of discretization, in this case of the energy in the electromagnetic field in terms of photons. In the case of photon 1062:
the further flow of electrons from leaving point A during the remaining half nanosecond. Thus the net current integrated over a nanosecond will tend more to stay near its average value of 100 electrons rather than exhibiting the expected fluctuations (10 electrons rms) we calculated. This is the case
1057:
While this is the result when the electrons contributing to the current occur completely randomly, unaffected by each other, there are important cases in which these natural fluctuations are largely suppressed due to a charge build up. Take the previous example in which an average of 100 electrons go
91:
Shot noise exists because phenomena such as light and electric current consist of the movement of discrete (also called "quantized") 'packets'. Consider light—a stream of discrete photons—coming out of a laser pointer and hitting a wall to create a visible spot. The fundamental physical
1655:
can the number of photons measured per unit time have fluctuations smaller than the square root of the expected number of photons counted in that period of time. Of course there are other mechanisms of noise in optical signals which often dwarf the contribution of shot noise. When these are absent,
83:
such as tossing a fair coin and counting the occurrences of heads and tails, the numbers of heads and tails after many throws will differ by only a tiny percentage, while after only a few throws outcomes with a significant excess of heads over tails or vice versa are common; if an experiment with a
137:
The term can also be used to describe any noise source, even if solely mathematical, of similar origin. For instance, particle simulations may produce a certain amount of "noise", where because of the small number of particles simulated, the simulation exhibits undue statistical fluctuations which
326:
electrons per second; even though this number will randomly vary by several billion in any given second, such a fluctuation is minuscule compared to the current itself. In addition, shot noise is often less significant as compared with two other noise sources in electronic circuits,
1789: 358:, so that one sixth of the time less than 90 electrons would pass a point and one sixth of the time more than 110 electrons would be counted in a nanosecond. Now with this small current viewed on this time scale, the shot noise amounts to 1/10 of the DC current itself. 138:
don't reflect the real-world system. The magnitude of shot noise increases according to the square root of the expected number of events, such as the electric current or intensity of light. But since the strength of the signal itself increases more rapidly, the
1907: 1086:
In other situations interactions can lead to an enhancement of shot noise, which is the result of a super-poissonian statistics. For example, in a resonant tunneling diode the interplay of electrostatic interaction and of the density of states in the
1587: 1675:, and is directly measurable when it dominates the noise of the subsequent electronic amplifier. Just as with other forms of shot noise, the fluctuations in a photo-current due to shot noise scale as the square-root of the average intensity: 1074:
However this reduction in shot noise does not apply when the current results from random events at a potential barrier which all the electrons must overcome due to a random excitation, such as by thermal activation. This is the situation in
1025:
is characterized by an ideal transmission in all open channels, therefore it does not produce any noise, and the Fano factor equals zero. The exception is the step between plateaus, when one of the channels is partially open and produces
876: 728: 244: 1806:
of the quantised electromagnetic field, or to the discrete nature of the photon absorption process. However, shot noise itself is not a distinctive feature of quantised field and can also be explained through
1418: 617: 1681: 2312: 1164: 1477: 1243: 1351: 1094:
Shot noise is distinct from voltage and current fluctuations expected in thermal equilibrium; this occurs without any applied DC voltage or current flowing. These fluctuations are known as
338:
With very small currents and considering shorter time scales (thus wider bandwidths) shot noise can be significant. For instance, a microwave circuit operates on time scales of less than a
1102:
temperature of any resistive component. However both are instances of white noise and thus cannot be distinguished simply by observing them even though their origins are quite dissimilar.
1293: 170:
about its mean, and the elementary events (photons, electrons, etc.) are no longer individually observed, typically making shot noise in actual observations indistinguishable from true
435: 88:, one can show that the relative fluctuations reduce as the reciprocal square root of the number of throws, a result valid for all statistical fluctuations, including shot noise. 1007:
At finite temperature, a closed expression for noise can be written as well. It interpolates between shot noise (zero temperature) and Nyquist-Johnson noise (high temperature).
1647:, the relevant process is the random conversion of photons into photo-electrons for instance, thus leading to a larger effective shot noise level when using a detector with a 1470: 283: 932: 261:
due to other sources are more likely to dominate over shot noise. However, when the other noise source is at a fixed level, such as thermal noise, or grows slower than
882: 314:). Because the electron has such a tiny charge, however, shot noise is of relative insignificance in many (but not all) cases of electrical conduction. For instance 1 1002: 969: 758: 516: 146:(considering only shot noise) increases anyway. Thus shot noise is most frequently observed with small currents or low light intensities that have been amplified. 1671:
used in the Geiger mode, where individual photon detections are observed. However the same noise source is present with higher light intensities measured by any
640: 536: 478: 458: 379: 361:
The result by Schottky, based on the assumption that the statistics of electrons passage is Poissonian, reads for the spectral noise density at the frequency
1091:
leads to a strong enhancement of shot noise when the device is biased in the negative differential resistance region of the current-voltage characteristics.
1067:, where shot noise is almost completely cancelled due to this anti-correlation between the motion of individual electrons, acting on each other through the 774: 890: 539: 1371: 886: 648: 2119: 2196:
Thermal and Shot Noise. Appendix C. Retrieved from class notes of Prof. Cristofolinini, University of Parma. Archived on Wayback Machine.
1019:
is characterized by low transmission in all transport channels, therefore the electron flow is Poissonian, and the Fano factor equals one.
192: 548: 2109:
Horowitz, Paul and Winfield Hill, The Art of Electronics, 2nd edition. Cambridge (UK): Cambridge University Press, 1989, pp. 431–2.
2838: 2487: 893:(multi-channel case). This noise is white and is always suppressed with respect to the Poisson value. The degree of suppression, 2654: 1784:{\displaystyle (\Delta I)^{2}\ {\stackrel {\mathrm {def} }{=}}\ \langle \left(I-\langle I\rangle \right)^{2}\rangle \propto I.} 2317: 542:). In the simplest case, these transmission eigenvalues can be taken to be energy independent and so the Landauer formula is 2991: 1794:
The shot noise of a coherent optical beam (having no other noise sources) is a fundamental physical phenomenon, reflecting
480:
is the average current of the electron stream. The noise spectral power is frequency independent, which means the noise is
2093: 1119: 1202: 2848: 2730: 2644: 2283: 1984: 1304: 3047: 2231:
Carmichael, H. J. (1987-10-01). "Spectrum of squeezing and photocurrent shot noise: a normally ordered treatment".
1445: 2985: 2833: 2684: 2362: 2323: 1254: 3037: 2045:
V.J. Goldman, B. Su (1995). "Resonant Tunneling in the Quantum Hall Regime: Measurement of Fractional Charge".
1037: 1029:
A metallic diffusive wire has a Fano factor of 1/3 regardless of the geometry and the details of the material.
3027: 2518: 1182: 768:. The correct result takes into account the quantum statistics of electrons and reads (at zero temperature) 387: 3032: 2894: 2801: 1582:{\displaystyle \mathrm {SNR} ={\frac {I\cdot QE\cdot t}{\sqrt {I\cdot QE\cdot t+N_{d}\cdot t+N_{r}^{2}}}},} 2206: 3052: 2649: 2371: 1656:
however, optical detection is said to be "photon noise limited" as only the shot noise (also known as "
765: 2996: 2944: 2574: 2467: 1828: 1095: 332: 68: 118:, which describes the occurrence of independent random events, are significant. It is important in 2123: 3042: 2858: 2447: 2144:
Iannaccone, Giuseppe (1998). "Enhanced Shot Noise in Resonant Tunneling: Theory and Experiment".
1812: 1652: 489: 264: 2781: 2716: 2679: 1298:
would be generated. Coupling this noise through a capacitor, one could supply a noise power of
896: 1196:
For a current of 100 mA, measuring the current noise over a bandwidth of 1 Hz, we obtain
2970: 2815: 2659: 1808: 1668: 1022: 974: 941: 183: 143: 2879: 2396: 2240: 2163: 2056: 2001: 1949: 1889: 736: 494: 154: 115: 85: 106:
Shot noise may be dominant when the finite number of particles that carry energy (such as
8: 2639: 2634: 2452: 2355: 2340: 1795: 1048:. The first direct measurement of their charge was through the shot noise in the current. 167: 26: 2244: 2167: 2060: 2005: 1953: 1893: 2695: 2585: 2179: 2153: 2080: 1965: 1939: 1880: 1854: 1844: 1803: 1799: 1648: 1083:
is thus commonly used as a noise source by passing a particular DC current through it.
1004:) channels produce no noise, since there are no irregularities in the electron stream. 625: 521: 463: 443: 364: 347: 175: 123: 80: 1961: 2909: 2904: 2700: 2524: 2421: 2406: 2386: 2289: 2279: 2256: 2072: 2047: 2027: 1992: 1969: 1816: 1174: 871:{\displaystyle S={\frac {2e^{3}}{\pi \hbar }}\vert V\vert \sum _{n}T_{n}(1-T_{n})\ .} 761: 56: 2183: 2084: 3002: 2975: 2949: 2529: 2462: 2426: 2327: 2248: 2171: 2064: 2017: 2009: 1957: 1897: 1110: 485: 355: 307: 153:
The number of photons that are collected by a given detector varies, and follows a
127: 2068: 84:
few throws is repeated over and over, the outcomes will fluctuate a lot. From the
2980: 2934: 2899: 2889: 2767: 2457: 2416: 2097: 1926: 1664: 1435: 1106: 1045: 1016: 96: 64: 60: 45: 2175: 2609: 2554: 2534: 2348: 2090: 1672: 1427: 1041: 938:. Noises produced by different transport channels are independent. Fully open ( 346:
that would amount to only 100 electrons passing every nanosecond. According to
303: 171: 3021: 2965: 2939: 2674: 2549: 2502: 2497: 2492: 2482: 2477: 2401: 2293: 2260: 2013: 1924:
Blanter, Ya. M.; BĂĽttiker, M. (2000). "Shot noise in mesoscopic conductors".
1901: 1815:
of shot noise. Shot noise also sets a lower bound on the noise introduced by
1657: 1068: 328: 114:
in an optical device) is sufficiently small so that uncertainties due to the
723:{\displaystyle S={\frac {2e^{3}}{\pi \hbar }}\vert V\vert \sum _{n}T_{n}\ ,} 2664: 2614: 2544: 2252: 2076: 2031: 1439: 1088: 1076: 764:
result in the sense that it does not take into account that electrons obey
289:(the DC current or light level, etc.) can lead to dominance of shot noise. 178:
of shot noise is equal to the square root of the average number of events
2690: 2669: 2604: 2596: 2539: 2472: 2411: 2333: 2158: 1944: 1849: 1839: 935: 481: 119: 100: 52: 1474:
The SNR for a CCD camera can be calculated from the following equation:
253:
is very large, the signal-to-noise ratio is very large as well, and any
2580: 2564: 2559: 2391: 1876:"Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern" 343: 339: 1802:, the shot noise in the photodetector can be attributed to either the 2884: 2022: 1834: 1044:
moving at the sample edge whose charge is a rational fraction of the
302:
Shot noise in electronic circuits consists of random fluctuations of
1908:
On spontaneous current fluctuations in various electrical conductors
1875: 239:{\displaystyle \mathrm {SNR} ={\frac {N}{\sqrt {N}}}={\sqrt {N}}.\,} 1935: 1365: 1248:
If this noise current is fed through a resistor a noise voltage of
1064: 311: 107: 1811:. What the semiclassical theory does not predict, however, is the 1413:{\displaystyle P={\frac {\Phi \,\Delta t}{\frac {hc}{\lambda }}}} 354:
number of electrons in any nanosecond would vary by 10 electrons
131: 2569: 1640: 1099: 612:{\displaystyle I={\frac {e^{2}}{\pi \hbar }}V\sum _{n}T_{n}\ ,} 315: 111: 23: 19: 149: 33:
increases from left to right and from upper row to bottom row.
2791: 2752: 2745: 2442: 1186: 1109:
due to the finite charge of an electron, one can compute the
1080: 30: 1985:"Suppression of shot noise in metallic diffusive conductors" 67:
in optical devices, where shot noise is associated with the
1033: 2370: 95:
The concept of shot noise was first introduced in 1918 by
733:
commonly referred to as the Poisson value of shot noise,
166:
For large numbers, the Poisson distribution approaches a
518:
of the contact through which the current is measured (
2278:. Wolf, Emil. Cambridge: Cambridge University Press. 1982: 1684: 1480: 1448: 1374: 1307: 1257: 1205: 1122: 977: 944: 899: 777: 739: 651: 628: 551: 524: 497: 466: 446: 390: 367: 267: 195: 2044: 1923: 1159:{\displaystyle \sigma _{i}={\sqrt {2qI\,\Delta f}}} 1098:or thermal noise and increase in proportion to the 1783: 1581: 1464: 1412: 1345: 1287: 1238:{\displaystyle \sigma _{i}=0.18\,\mathrm {nA} \;.} 1237: 1158: 996: 963: 926: 870: 752: 722: 634: 611: 530: 510: 472: 452: 429: 373: 277: 238: 3019: 1663:Shot noise is easily observable in the case of 1442:is calculated as the square root of the signal: 1819:which preserve the phase of an optical signal. 1368:is calculated as follows, in units of photons: 1660:" or "photon noise" in this context) remains. 1346:{\displaystyle P={\frac {1}{2}}qI\,\Delta fR.} 2356: 1113:current fluctuations as being of a magnitude 1063:in ordinary metallic wires and in metal film 889:(independently the single-channel case), and 488:, which relates the average current with the 157:, depicted here for averages of 1, 4, and 10. 44:is a type of noise which can be modeled by a 1769: 1755: 1749: 1734: 817: 811: 691: 685: 418: 412: 642:is the applied voltage. This provides for 142:proportion of shot noise decreases and the 2363: 2349: 2230: 2143: 2120:"Bryant, James, Analog Dialog, issue 24-3" 1919: 1917: 1915: 1288:{\displaystyle \sigma _{v}=\sigma _{i}\,R} 1231: 1052: 2157: 2021: 1943: 1387: 1330: 1281: 1222: 1147: 235: 2273: 1983:Beenakker, C.W.J.; BĂĽttiker, M. (1992). 1873: 1189:over which the noise is considered, and 148: 18: 2839:Signal-to-interference-plus-noise ratio 2091:Description on the researcher's website 1912: 430:{\displaystyle S(f)=2e\vert I\vert \ ,} 342:and if we were to have a current of 16 99:who studied fluctuations of current in 3020: 2655:Equivalent pulse code modulation noise 1364:The flux signal that is incident on a 2344: 1619:= dark current (electrons/pixel/sec), 1596:= photon flux (photons/pixel/second), 1438:. Following Poisson statistics, the 297: 2778:(energy per symbol to noise density) 2276:Optical coherence and quantum optics 310:being the flow of discrete charges ( 13: 2849:Signal-to-quantization-noise ratio 1723: 1720: 1717: 1688: 1488: 1485: 1482: 1388: 1384: 1331: 1227: 1224: 1148: 203: 200: 197: 161: 29:simulation. Number of photons per 14: 3064: 2763:(energy per bit to noise density) 2731:Carrier-to-receiver noise density 2645:Effective input noise temperature 1798:in the electromagnetic field. In 805: 679: 574: 2374:(physics and telecommunications) 2311: This article incorporates 2306: 1079:, for instance. A semiconductor 881:It was obtained in the 1990s by 484:. This can be combined with the 2986:Block-matching and 3D filtering 2834:Signal-to-noise ratio (imaging) 2685:Noise, vibration, and harshness 2324:General Services Administration 2267: 2224: 1651:below unity. Only in an exotic 1040:electric current is carried by 55:shot noise originates from the 2199: 2190: 2137: 2112: 2103: 2038: 1976: 1867: 1695: 1685: 1038:fractional quantum Hall effect 859: 840: 400: 394: 1: 2519:Additive white Gaussian noise 2069:10.1126/science.267.5200.1010 1962:10.1016/S0370-1573(99)00123-4 1860: 1608:= integration time (seconds), 1465:{\displaystyle S={\sqrt {P}}} 318:of current consists of about 292: 2895:Interference (communication) 2802:Signal-to-interference ratio 2792:Signal, noise and distortion 1359: 460:is the electron charge, and 110:in an electronic circuit or 63:. Shot noise also occurs in 7: 2650:Equivalent noise resistance 2176:10.1103/physrevlett.80.1054 1822: 1193:is the DC current flowing. 1010: 278:{\displaystyle {\sqrt {N}}} 10: 3069: 1800:optical homodyne detection 2958: 2945:Total variation denoising 2927: 2918: 2872: 2709: 2625: 2511: 2435: 2379: 2274:Leonard., Mandel (1995). 1634: 1630:= read noise (electrons). 927:{\displaystyle F=S/S_{P}} 74: 2014:10.1103/PhysRevB.46.1889 1906:English translation in: 1902:10.1002/andp.19183622304 490:transmission eigenvalues 16:Type of electronic noise 3048:Poisson point processes 2859:Contrast-to-noise ratio 2207:"Signal-to-Noise Ratio" 2146:Physical Review Letters 1804:zero point fluctuations 1653:squeezed coherent state 1053:Effects of interactions 997:{\displaystyle T_{n}=0} 964:{\displaystyle T_{n}=1} 2782:Modulation error ratio 2717:Carrier-to-noise ratio 2680:Noise spectral density 2319:Federal Standard 1037C 2313:public domain material 2253:10.1364/JOSAB.4.001588 1785: 1583: 1466: 1414: 1347: 1289: 1239: 1160: 1105:Since shot noise is a 998: 965: 928: 872: 766:Fermi–Dirac statistics 754: 724: 636: 613: 532: 512: 474: 454: 431: 375: 279: 240: 158: 81:statistical experiment 34: 3038:Electrical parameters 2997:Denoising autoencoder 2971:Anisotropic diffusion 2816:Signal-to-noise ratio 2660:Impulse noise (audio) 2575:Johnson–Nyquist noise 2463:Government regulation 2332: (in support of 2211:Teledyne Photometrics 1874:Schottky, W. (1918). 1829:Johnson–Nyquist noise 1786: 1669:avalanche photodiodes 1602:= quantum efficiency, 1584: 1467: 1415: 1348: 1290: 1240: 1161: 1096:Johnson–Nyquist noise 1023:Quantum point contact 999: 966: 929: 873: 755: 753:{\displaystyle S_{P}} 725: 637: 614: 533: 513: 511:{\displaystyle T_{n}} 475: 455: 432: 376: 333:Johnson–Nyquist noise 280: 241: 184:signal-to-noise ratio 152: 144:signal-to-noise ratio 22: 3028:Electronics concepts 2880:List of noise topics 1809:semiclassical theory 1796:quantum fluctuations 1682: 1478: 1446: 1372: 1305: 1255: 1203: 1181:is the single-sided 1120: 975: 971:) and fully closed ( 942: 897: 775: 737: 649: 626: 549: 522: 495: 464: 444: 388: 365: 265: 193: 155:Poisson distribution 116:Poisson distribution 86:law of large numbers 3033:Noise (electronics) 2640:Circuit noise level 2635:Channel noise level 2245:1987JOSAB...4.1588C 2168:1998PhRvL..80.1054I 2061:1995Sci...267.1010G 2055:(5200): 1010–1012. 2006:1992PhRvB..46.1889B 1954:2000PhR...336....1B 1894:1918AnP...362..541S 1572: 1356:to a matched load. 186:(SNR) is given by: 168:normal distribution 3053:Mesoscopic physics 2696:Pseudorandom noise 2586:Quantization error 2397:Noise cancellation 2096:2008-08-28 at the 1934:(1–2). Dordrecht: 1881:Annalen der Physik 1855:Quantum efficiency 1845:Contact resistance 1817:quantum amplifiers 1781: 1649:quantum efficiency 1579: 1558: 1462: 1410: 1343: 1285: 1235: 1177:of an electron, Δ 1156: 994: 961: 934:, is known as the 924: 868: 829: 750: 720: 703: 632: 609: 592: 540:transport channels 528: 508: 470: 450: 427: 371: 348:Poisson statistics 306:, which is due to 298:Electronic devices 275: 236: 176:standard deviation 159: 130:, and fundamental 124:telecommunications 35: 3015: 3014: 3011: 3010: 2950:Wavelet denoising 2910:Thermal radiation 2905:Spectrum analyzer 2701:Statistical noise 2525:Atmospheric noise 2422:Noise temperature 2407:Noise measurement 2387:Acoustic quieting 2239:(10): 1588–1603. 1993:Physical Review B 1733: 1728: 1706: 1574: 1573: 1460: 1408: 1407: 1322: 1175:elementary charge 1154: 864: 820: 809: 716: 694: 683: 635:{\displaystyle V} 605: 583: 578: 531:{\displaystyle n} 473:{\displaystyle I} 453:{\displaystyle e} 423: 374:{\displaystyle f} 273: 230: 220: 219: 128:optical detection 3060: 3003:Deep Image Prior 2992:Shrinkage Fields 2976:Bilateral filter 2925: 2924: 2530:Background noise 2427:Phase distortion 2365: 2358: 2351: 2342: 2341: 2337: 2331: 2326:. Archived from 2310: 2309: 2298: 2297: 2271: 2265: 2264: 2228: 2222: 2221: 2219: 2217: 2203: 2197: 2194: 2188: 2187: 2161: 2159:cond-mat/9709277 2152:(5): 1054–1057. 2141: 2135: 2134: 2132: 2131: 2122:. Archived from 2116: 2110: 2107: 2101: 2088: 2042: 2036: 2035: 2025: 2000:(3): 1889–1892. 1989: 1980: 1974: 1973: 1947: 1945:cond-mat/9910158 1921: 1910: 1905: 1871: 1831:or thermal noise 1790: 1788: 1787: 1782: 1768: 1767: 1762: 1758: 1731: 1730: 1729: 1727: 1726: 1714: 1709: 1704: 1703: 1702: 1665:photomultipliers 1588: 1586: 1585: 1580: 1575: 1571: 1566: 1548: 1547: 1517: 1516: 1496: 1491: 1471: 1469: 1468: 1463: 1461: 1456: 1419: 1417: 1416: 1411: 1409: 1403: 1395: 1394: 1382: 1352: 1350: 1349: 1344: 1323: 1315: 1294: 1292: 1291: 1286: 1280: 1279: 1267: 1266: 1244: 1242: 1241: 1236: 1230: 1215: 1214: 1165: 1163: 1162: 1157: 1155: 1137: 1132: 1131: 1111:root mean square 1003: 1001: 1000: 995: 987: 986: 970: 968: 967: 962: 954: 953: 933: 931: 930: 925: 923: 922: 913: 877: 875: 874: 869: 862: 858: 857: 839: 838: 828: 810: 808: 800: 799: 798: 785: 759: 757: 756: 751: 749: 748: 729: 727: 726: 721: 714: 713: 712: 702: 684: 682: 674: 673: 672: 659: 641: 639: 638: 633: 618: 616: 615: 610: 603: 602: 601: 591: 579: 577: 569: 568: 559: 537: 535: 534: 529: 517: 515: 514: 509: 507: 506: 486:Landauer formula 479: 477: 476: 471: 459: 457: 456: 451: 436: 434: 433: 428: 421: 380: 378: 377: 372: 325: 323: 308:electric current 284: 282: 281: 276: 274: 269: 257:fluctuations in 245: 243: 242: 237: 231: 226: 221: 215: 211: 206: 3068: 3067: 3063: 3062: 3061: 3059: 3058: 3057: 3018: 3017: 3016: 3007: 2981:Non-local means 2954: 2935:Low-pass filter 2920: 2914: 2900:Noise generator 2890:Colors of noise 2868: 2775: 2771: 2760: 2756: 2705: 2627: 2621: 2601:Coherent noise 2577:(thermal noise) 2507: 2431: 2417:Noise reduction 2375: 2369: 2316: 2307: 2305: 2302: 2301: 2286: 2272: 2268: 2229: 2225: 2215: 2213: 2205: 2204: 2200: 2195: 2191: 2142: 2138: 2129: 2127: 2118: 2117: 2113: 2108: 2104: 2098:Wayback Machine 2043: 2039: 1987: 1981: 1977: 1927:Physics Reports 1922: 1913: 1888:(23): 541–567. 1872: 1868: 1863: 1825: 1763: 1742: 1738: 1737: 1716: 1715: 1710: 1708: 1707: 1698: 1694: 1683: 1680: 1679: 1637: 1629: 1618: 1567: 1562: 1543: 1539: 1497: 1495: 1481: 1479: 1476: 1475: 1455: 1447: 1444: 1443: 1436:Planck constant 1396: 1383: 1381: 1373: 1370: 1369: 1362: 1314: 1306: 1303: 1302: 1275: 1271: 1262: 1258: 1256: 1253: 1252: 1223: 1210: 1206: 1204: 1201: 1200: 1136: 1127: 1123: 1121: 1118: 1117: 1107:Poisson process 1055: 1046:electron charge 1017:Tunnel junction 1013: 982: 978: 976: 973: 972: 949: 945: 943: 940: 939: 918: 914: 909: 898: 895: 894: 891:Markus BĂĽttiker 853: 849: 834: 830: 824: 801: 794: 790: 786: 784: 776: 773: 772: 744: 740: 738: 735: 734: 708: 704: 698: 675: 668: 664: 660: 658: 650: 647: 646: 627: 624: 623: 597: 593: 587: 570: 564: 560: 558: 550: 547: 546: 523: 520: 519: 502: 498: 496: 493: 492: 465: 462: 461: 445: 442: 441: 389: 386: 385: 366: 363: 362: 321: 319: 300: 295: 268: 266: 263: 262: 225: 210: 196: 194: 191: 190: 164: 162:Signal-to-Noise 97:Walter Schottky 77: 69:particle nature 65:photon counting 61:electric charge 57:discrete nature 46:Poisson process 17: 12: 11: 5: 3066: 3056: 3055: 3050: 3045: 3043:Quantum optics 3040: 3035: 3030: 3013: 3012: 3009: 3008: 3006: 3005: 3000: 2994: 2989: 2983: 2978: 2973: 2968: 2962: 2960: 2956: 2955: 2953: 2952: 2947: 2942: 2937: 2931: 2929: 2922: 2916: 2915: 2913: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2876: 2874: 2873:Related topics 2870: 2869: 2867: 2866: 2856: 2846: 2836: 2831: 2813: 2799: 2789: 2779: 2773: 2769: 2764: 2758: 2754: 2749: 2742: 2728: 2713: 2711: 2707: 2706: 2704: 2703: 2698: 2693: 2688: 2682: 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2631: 2629: 2623: 2622: 2620: 2619: 2618: 2617: 2612: 2610:Gradient noise 2607: 2599: 2594: 2589: 2583: 2578: 2572: 2567: 2562: 2557: 2555:Gaussian noise 2552: 2547: 2542: 2537: 2535:Brownian noise 2532: 2527: 2522: 2515: 2513: 2512:Class of noise 2509: 2508: 2506: 2505: 2500: 2498:Transportation 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2439: 2437: 2433: 2432: 2430: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2383: 2381: 2377: 2376: 2368: 2367: 2360: 2353: 2345: 2339: 2338: 2330:on 2022-01-22. 2300: 2299: 2284: 2266: 2223: 2198: 2189: 2136: 2111: 2102: 2037: 1975: 1911: 1865: 1864: 1862: 1859: 1858: 1857: 1852: 1847: 1842: 1837: 1832: 1824: 1821: 1792: 1791: 1780: 1777: 1774: 1771: 1766: 1761: 1757: 1754: 1751: 1748: 1745: 1741: 1736: 1725: 1722: 1719: 1713: 1701: 1697: 1693: 1690: 1687: 1673:photo detector 1636: 1633: 1632: 1631: 1625: 1620: 1614: 1609: 1603: 1597: 1578: 1570: 1565: 1561: 1557: 1554: 1551: 1546: 1542: 1538: 1535: 1532: 1529: 1526: 1523: 1520: 1515: 1512: 1509: 1506: 1503: 1500: 1494: 1490: 1487: 1484: 1459: 1454: 1451: 1428:speed of light 1406: 1402: 1399: 1393: 1390: 1386: 1380: 1377: 1361: 1358: 1354: 1353: 1342: 1339: 1336: 1333: 1329: 1326: 1321: 1318: 1313: 1310: 1296: 1295: 1284: 1278: 1274: 1270: 1265: 1261: 1246: 1245: 1234: 1229: 1226: 1221: 1218: 1213: 1209: 1167: 1166: 1153: 1150: 1146: 1143: 1140: 1135: 1130: 1126: 1054: 1051: 1050: 1049: 1042:quasiparticles 1030: 1027: 1020: 1012: 1009: 993: 990: 985: 981: 960: 957: 952: 948: 921: 917: 912: 908: 905: 902: 887:Gordey Lesovik 879: 878: 867: 861: 856: 852: 848: 845: 842: 837: 833: 827: 823: 819: 816: 813: 807: 804: 797: 793: 789: 783: 780: 747: 743: 731: 730: 719: 711: 707: 701: 697: 693: 690: 687: 681: 678: 671: 667: 663: 657: 654: 631: 620: 619: 608: 600: 596: 590: 586: 582: 576: 573: 567: 563: 557: 554: 527: 505: 501: 469: 449: 438: 437: 426: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 370: 299: 296: 294: 291: 272: 247: 246: 234: 229: 224: 218: 214: 209: 205: 202: 199: 172:Gaussian noise 163: 160: 76: 73: 15: 9: 6: 4: 3: 2: 3065: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3025: 3023: 3004: 3001: 2998: 2995: 2993: 2990: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2966:Gaussian blur 2964: 2963: 2961: 2957: 2951: 2948: 2946: 2943: 2941: 2940:Median filter 2938: 2936: 2933: 2932: 2930: 2926: 2923: 2917: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2877: 2875: 2871: 2864: 2860: 2857: 2854: 2850: 2847: 2844: 2840: 2837: 2835: 2832: 2829: 2825: 2821: 2817: 2814: 2811: 2807: 2803: 2800: 2797: 2793: 2790: 2787: 2783: 2780: 2777: 2776: 2765: 2762: 2761: 2750: 2748: 2747: 2743: 2740: 2736: 2732: 2729: 2726: 2722: 2718: 2715: 2714: 2712: 2708: 2702: 2699: 2697: 2694: 2692: 2689: 2686: 2683: 2681: 2678: 2676: 2675:Noise shaping 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2633: 2632: 2630: 2624: 2616: 2613: 2611: 2608: 2606: 2603: 2602: 2600: 2598: 2595: 2593: 2590: 2588:(or q. noise) 2587: 2584: 2582: 2579: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2550:Flicker noise 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2520: 2517: 2516: 2514: 2510: 2504: 2501: 2499: 2496: 2494: 2493:Sound masking 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2440: 2438: 2434: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2402:Noise control 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2384: 2382: 2378: 2373: 2366: 2361: 2359: 2354: 2352: 2347: 2346: 2343: 2335: 2329: 2325: 2321: 2320: 2314: 2304: 2303: 2295: 2291: 2287: 2285:9780521417112 2281: 2277: 2270: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2227: 2212: 2208: 2202: 2193: 2185: 2181: 2177: 2173: 2169: 2165: 2160: 2155: 2151: 2147: 2140: 2126:on 2016-09-29 2125: 2121: 2115: 2106: 2099: 2095: 2092: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2049: 2041: 2033: 2029: 2024: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1994: 1986: 1979: 1971: 1967: 1963: 1959: 1955: 1951: 1946: 1941: 1937: 1933: 1929: 1928: 1920: 1918: 1916: 1909: 1903: 1899: 1895: 1891: 1887: 1884:(in German). 1883: 1882: 1877: 1870: 1866: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1830: 1827: 1826: 1820: 1818: 1814: 1810: 1805: 1801: 1797: 1778: 1775: 1772: 1764: 1759: 1752: 1746: 1743: 1739: 1711: 1699: 1691: 1678: 1677: 1676: 1674: 1670: 1666: 1661: 1659: 1658:quantum noise 1654: 1650: 1646: 1642: 1628: 1624: 1621: 1617: 1613: 1610: 1607: 1604: 1601: 1598: 1595: 1592: 1591: 1590: 1576: 1568: 1563: 1559: 1555: 1552: 1549: 1544: 1540: 1536: 1533: 1530: 1527: 1524: 1521: 1518: 1513: 1510: 1507: 1504: 1501: 1498: 1492: 1472: 1457: 1452: 1449: 1441: 1437: 1433: 1429: 1425: 1420: 1404: 1400: 1397: 1391: 1378: 1375: 1367: 1357: 1340: 1337: 1334: 1327: 1324: 1319: 1316: 1311: 1308: 1301: 1300: 1299: 1282: 1276: 1272: 1268: 1263: 1259: 1251: 1250: 1249: 1232: 1219: 1216: 1211: 1207: 1199: 1198: 1197: 1194: 1192: 1188: 1184: 1180: 1176: 1172: 1151: 1144: 1141: 1138: 1133: 1128: 1124: 1116: 1115: 1114: 1112: 1108: 1103: 1101: 1097: 1092: 1090: 1084: 1082: 1078: 1077:p-n junctions 1072: 1070: 1069:coulomb force 1066: 1061: 1047: 1043: 1039: 1035: 1031: 1028: 1024: 1021: 1018: 1015: 1014: 1008: 1005: 991: 988: 983: 979: 958: 955: 950: 946: 937: 919: 915: 910: 906: 903: 900: 892: 888: 884: 865: 854: 850: 846: 843: 835: 831: 825: 821: 814: 802: 795: 791: 787: 781: 778: 771: 770: 769: 767: 763: 745: 741: 717: 709: 705: 699: 695: 688: 676: 669: 665: 661: 655: 652: 645: 644: 643: 629: 606: 598: 594: 588: 584: 580: 571: 565: 561: 555: 552: 545: 544: 543: 541: 525: 503: 499: 491: 487: 483: 467: 447: 424: 415: 409: 406: 403: 397: 391: 384: 383: 382: 368: 359: 357: 353: 349: 345: 341: 336: 334: 330: 329:flicker noise 317: 313: 309: 305: 290: 288: 285:, increasing 270: 260: 256: 252: 232: 227: 222: 216: 212: 207: 189: 188: 187: 185: 181: 177: 173: 169: 156: 151: 147: 145: 141: 135: 133: 129: 125: 121: 117: 113: 109: 104: 102: 98: 93: 89: 87: 82: 72: 70: 66: 62: 58: 54: 49: 47: 43: 42:Poisson noise 39: 32: 28: 25: 21: 2862: 2852: 2842: 2827: 2823: 2819: 2809: 2805: 2795: 2785: 2766: 2751: 2744: 2738: 2734: 2724: 2720: 2665:Noise figure 2626:Engineering 2615:Worley noise 2591: 2545:Cosmic noise 2468:Human health 2328:the original 2318: 2275: 2269: 2236: 2232: 2226: 2214:. Retrieved 2210: 2201: 2192: 2149: 2145: 2139: 2128:. Retrieved 2124:the original 2114: 2105: 2052: 2046: 2040: 1997: 1991: 1978: 1931: 1925: 1885: 1879: 1869: 1793: 1662: 1644: 1638: 1626: 1622: 1615: 1611: 1605: 1599: 1593: 1473: 1440:photon noise 1431: 1423: 1421: 1363: 1355: 1297: 1247: 1195: 1190: 1178: 1170: 1168: 1104: 1093: 1089:quantum well 1085: 1073: 1059: 1056: 1006: 883:Viktor Khlus 880: 760:. This is a 732: 621: 439: 360: 351: 337: 301: 286: 258: 254: 250: 248: 179: 174:. Since the 165: 139: 136: 105: 101:vacuum tubes 94: 90: 78: 50: 41: 37: 36: 2691:Phase noise 2670:Noise floor 2605:Value noise 2597:White noise 2540:Burst noise 2458:Environment 2453:Electronics 2436:Noise in... 2412:Noise power 2334:MIL-STD-188 1850:Image noise 1840:Burst noise 1036:exhibiting 936:Fano factor 344:nanoamperes 120:electronics 53:electronics 3022:Categories 2959:2D (Image) 2592:Shot noise 2581:Pink noise 2565:Infrasound 2560:Grey noise 2392:Distortion 2130:2008-07-24 1861:References 340:nanosecond 304:DC current 293:Properties 249:Thus when 71:of light. 38:Shot noise 2885:Acoustics 2448:Buildings 2294:855969014 2261:1520-8540 2089:See also 2023:1887/1116 1970:119432033 1938:: 1–166. 1835:1/f noise 1813:squeezing 1773:∝ 1770:⟩ 1756:⟩ 1750:⟨ 1747:− 1735:⟨ 1689:Δ 1645:detection 1550:⋅ 1531:⋅ 1522:⋅ 1511:⋅ 1502:⋅ 1405:λ 1389:Δ 1385:Φ 1360:Detectors 1332:Δ 1273:σ 1260:σ 1208:σ 1183:bandwidth 1149:Δ 1125:σ 1065:resistors 847:− 822:∑ 806:ℏ 803:π 762:classical 696:∑ 680:ℏ 677:π 585:∑ 575:ℏ 572:π 312:electrons 108:electrons 2919:Denoise 2184:52992294 2094:Archived 2085:45371551 2077:17811442 2032:10003850 1936:Elsevier 1823:See also 1366:detector 1011:Examples 255:relative 140:relative 2928:General 2921:methods 2826:,  2380:General 2241:Bibcode 2216:8 March 2164:Bibcode 2057:Bibcode 2048:Science 2002:Bibcode 1950:Bibcode 1890:Bibcode 1589:where: 1434:is the 1426:is the 1173:is the 538:labels 132:physics 112:photons 2988:(BM3D) 2710:Ratios 2570:Jitter 2521:(AWGN) 2473:Images 2292:  2282:  2259:  2233:JOSA B 2182:  2083:  2075:  2030:  1968:  1732:  1705:  1641:optics 1635:Optics 1430:, and 1422:where 1169:where 1100:Kelvin 1026:noise. 863:  715:  622:where 604:  440:where 422:  352:actual 316:ampere 182:, the 75:Origin 24:Photon 2999:(DAE) 2796:SINAD 2746:dBrnC 2687:(NVH) 2628:terms 2503:Video 2488:Ships 2483:Rooms 2478:Radio 2443:Audio 2372:Noise 2315:from 2180:S2CID 2154:arXiv 2081:S2CID 1988:(PDF) 1966:S2CID 1940:arXiv 1187:hertz 1081:diode 1060:repel 482:white 79:In a 31:pixel 27:noise 2853:SQNR 2843:SINR 2290:OCLC 2280:ISBN 2257:ISSN 2218:2022 2073:PMID 2028:PMID 1667:and 1220:0.18 1034:2DEG 350:the 331:and 320:6.24 2863:CNR 2828:SNR 2786:MER 2249:doi 2172:doi 2065:doi 2053:267 2018:hdl 2010:doi 1958:doi 1932:336 1898:doi 1886:362 1639:In 1185:in 1032:In 356:rms 59:of 51:In 48:. 40:or 3024:: 2772:/N 2757:/N 2739:kT 2336:). 2322:. 2288:. 2255:. 2247:. 2235:. 2209:. 2178:. 2170:. 2162:. 2150:80 2148:. 2079:. 2071:. 2063:. 2051:. 2026:. 2016:. 2008:. 1998:46 1996:. 1990:. 1964:. 1956:. 1948:. 1930:. 1914:^ 1896:. 1878:. 1600:QE 1071:. 885:, 381:, 324:10 134:. 126:, 122:, 103:. 2865:) 2861:( 2855:) 2851:( 2845:) 2841:( 2830:) 2824:N 2822:/ 2820:S 2818:( 2812:) 2810:I 2808:/ 2806:S 2804:( 2798:) 2794:( 2788:) 2784:( 2774:0 2770:s 2768:E 2759:0 2755:b 2753:E 2741:) 2737:/ 2735:C 2733:( 2727:) 2725:N 2723:/ 2721:C 2719:( 2364:e 2357:t 2350:v 2296:. 2263:. 2251:: 2243:: 2237:4 2220:. 2186:. 2174:: 2166:: 2156:: 2133:. 2100:. 2087:. 2067:: 2059:: 2034:. 2020:: 2012:: 2004:: 1972:. 1960:: 1952:: 1942:: 1904:. 1900:: 1892:: 1779:. 1776:I 1765:2 1760:) 1753:I 1744:I 1740:( 1724:f 1721:e 1718:d 1712:= 1700:2 1696:) 1692:I 1686:( 1627:r 1623:N 1616:d 1612:N 1606:t 1594:I 1577:, 1569:2 1564:r 1560:N 1556:+ 1553:t 1545:d 1541:N 1537:+ 1534:t 1528:E 1525:Q 1519:I 1514:t 1508:E 1505:Q 1499:I 1493:= 1489:R 1486:N 1483:S 1458:P 1453:= 1450:S 1432:h 1424:c 1401:c 1398:h 1392:t 1379:= 1376:P 1341:. 1338:R 1335:f 1328:I 1325:q 1320:2 1317:1 1312:= 1309:P 1283:R 1277:i 1269:= 1264:v 1233:. 1228:A 1225:n 1217:= 1212:i 1191:I 1179:f 1171:q 1152:f 1145:I 1142:q 1139:2 1134:= 1129:i 992:0 989:= 984:n 980:T 959:1 956:= 951:n 947:T 920:P 916:S 911:/ 907:S 904:= 901:F 866:. 860:) 855:n 851:T 844:1 841:( 836:n 832:T 826:n 818:| 815:V 812:| 796:3 792:e 788:2 782:= 779:S 746:P 742:S 718:, 710:n 706:T 700:n 692:| 689:V 686:| 670:3 666:e 662:2 656:= 653:S 630:V 607:, 599:n 595:T 589:n 581:V 566:2 562:e 556:= 553:I 526:n 504:n 500:T 468:I 448:e 425:, 419:| 416:I 413:| 410:e 407:2 404:= 401:) 398:f 395:( 392:S 369:f 322:Ă— 287:N 271:N 259:N 251:N 233:. 228:N 223:= 217:N 213:N 208:= 204:R 201:N 198:S 180:N

Index


Photon
noise
pixel
Poisson process
electronics
discrete nature
electric charge
photon counting
particle nature
statistical experiment
law of large numbers
Walter Schottky
vacuum tubes
electrons
photons
Poisson distribution
electronics
telecommunications
optical detection
physics
signal-to-noise ratio

Poisson distribution
normal distribution
Gaussian noise
standard deviation
signal-to-noise ratio
DC current
electric current

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑