Knowledge

Simple group

Source 📝

52: 1902:
giving a uniform construction of the classical groups and the groups of exceptional type in a 1955 paper. This omitted certain known groups (the projective unitary groups), which were obtained by "twisting" the Chevalley construction. The remaining groups of Lie type were produced by Steinberg, Tits,
1777:
There are two threads in the history of finite simple groups – the discovery and construction of specific simple groups and families, which took place from the work of Galois in the 1820s to the construction of the Monster in 1981; and proof that this list was complete, which began in the 19th
1932:
These groups (the groups of Lie type, together with the cyclic groups, alternating groups, and the five exceptional Mathieu groups) were believed to be a complete list, but after a lull of almost a century since the work of Mathieu, in 1964 the first
1949:". The Monster is the largest sporadic simple group having order of 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000. The Monster has a faithful 196,883-dimensional representation in the 196,884-dimensional 2477: 1120: 1778:
century, most significantly took place 1955 through 1983 (when victory was initially declared), but was only generally agreed to be finished in 2004. By 2018, its publication was envisioned as a series of 12
933: 2256:, MonografĂ­as de la Real Academia de Ciencias Exactas, FĂ­sicas, QuĂ­micas y Naturales de Zaragoza, vol. 26, Real Academia de Ciencias Exactas, FĂ­sicas, QuĂ­micas y Naturales de Zaragoza 1361: 1806:
on five or more points are simple (and hence not solvable), which he proved in 1831, was the reason that one could not solve the quintic in radicals. Galois also constructed the
1621: 1181: 1521:
There is as yet no known classification for general (infinite) simple groups, and no such classification is expected. One reason for this is the existence of continuum-many
2359: 497: 472: 435: 1288: 1403: 1684: 1449: 2327: 1654: 1315: 1249: 1218: 2246: 1290:, i.e. the group of even finitely supported permutations of the integers, is simple. This group can be written as the increasing union of the finite simple groups 2120: 1507: 1487: 1423: 1140: 1052: 1032: 1012: 992: 964: 2153: 1848:
in 1861 and 1873, were also simple. Since these five groups were constructed by methods which did not yield infinitely many possibilities, they were called "
2397: 2132: 832:
and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding
1968:
Soon after the construction of the Monster in 1981, a proof, totaling more than 10,000 pages, was supplied that group theorists had successfully
799: 1972:, with victory declared in 1983 by Daniel Gorenstein. This was premature – some gaps were later discovered, notably in the classification of 1976:, which were eventually replaced in 2004 by a 1,300 page classification of quasithin groups, which is now generally accepted as complete. 1525:
for every sufficiently-large prime characteristic, each simple and having only the cyclic group of that characteristic as its subgroups.
1057: 1692:, which unites this family with the next, and thus all families of non-abelian finite simple groups may be considered to be of Lie type. 870: 1186:
One may use the same kind of reasoning for any abelian group, to deduce that the only simple abelian groups are the cyclic groups of
1708:
is generally considered of this form, though strictly speaking it is not of Lie type, but rather index 2 in a group of Lie type.
1549:
are important because in a certain sense they are the "basic building blocks" of all finite groups, somewhat similar to the way
1577: 1540: 848: 357: 1142:
of congruence classes of 0, 4, and 8 modulo 12 is a subgroup of order 3, and it is a normal subgroup since any subgroup of an
2625: 2607: 2589: 2540: 2368: 1937:
was discovered, and the remaining 20 sporadic groups were discovered or conjectured in 1965–1975, culminating in 1981, when
307: 2056:-subgroup is unique, and therefore it is normal. Since it is a proper, non-identity subgroup, the group is not simple. 1190:
order. The classification of nonabelian simple groups is far less trivial. The smallest nonabelian simple group is the
792: 302: 2080: 1822:
not 2 or 3. This is contained in his last letter to Chevalier, and are the next example of finite simple groups.
1807: 2435: 718: 1320: 2680: 2520: 2062:: A non-Abelian finite simple group has order divisible by at least three distinct primes. This follows from 1942: 785: 17: 2416:) and simplicity discussed on p. 411; exceptional action on 5, 7, or 11 points discussed on pp. 411–412; GL( 1591:
Briefly, finite simple groups are classified as lying in one of 18 families, or being one of 26 exceptions:
2392: 2095: 1969: 1546: 1534: 1558: 841: 402: 216: 2570: 1864: 1845: 134: 1597: 1152: 1962: 1739: 2363:, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1985: 2332: 600: 334: 211: 99: 480: 455: 418: 1266: 1366: 1766: 1689: 750: 540: 2268: 2063: 2025: 1663: 1428: 624: 1953:, meaning that each element of the Monster can be expressed as a 196,883 by 196,883 matrix. 2642:
Silvestri, R. (September 1979), "Simple groups of finite order in the nineteenth century",
2512: 2449: 2378: 2305: 2287: 2197: 1926: 1632: 1522: 1293: 1227: 1196: 967: 564: 552: 170: 104: 2550: 2302:
The classification of the finite simple groups, Number 10. Part V. Chapters 9–17. Theorem
1859:
Later Jordan's results on classical groups were generalized to arbitrary finite fields by
1754:. Therefore, every finite simple group has even order unless it is cyclic of prime order. 8: 2075: 1758: 821: 139: 34: 2659: 2453: 2227: 1762: 1698: 1562: 1492: 1472: 1408: 1125: 1037: 1017: 997: 977: 949: 943: 124: 96: 1799: 2663: 2621: 2603: 2585: 2536: 2429: 2364: 2185: 2085: 1803: 1657: 1581: 1510: 1251:. The second smallest nonabelian simple group is the projective special linear group 1221: 1191: 529: 372: 266: 2231: 1725:
and are referred to as the "Happy Family", while the remaining 6 are referred to as
695: 2651: 2562: 2546: 2528: 2219: 2177: 2090: 1899: 1876: 1853: 1747: 1466:. Explicit examples, which turn out to be finitely presented, include the infinite 939: 936: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 2524: 2374: 2283: 2193: 1973: 1868: 1860: 1834: 1585: 1467: 1458:
infinite simple groups. The first existence result is non-explicit; it is due to
1183:
is not simple; the set of even integers is a non-trivial proper normal subgroup.
825: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 2472: 2033: 1950: 1849: 1826: 1751: 1714: 833: 771: 707: 397: 377: 314: 279: 200: 190: 175: 160: 114: 91: 2532: 2300:
Capdeboscq, Inna; Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald (2023),
2181: 1898:, p. 2). In the 1950s the work on groups of Lie type was continued, with 1840:
At about the same time, it was shown that a family of five groups, called the
2674: 2555: 2457: 2189: 2165: 1946: 1938: 1841: 1795: 1722: 1459: 1255:
of order 168, and every simple group of order 168 is isomorphic to PSL(2,7).
1143: 829: 690: 612: 446: 319: 185: 1830: 1726: 1624: 1550: 1463: 1187: 865: 837: 545: 244: 233: 180: 155: 109: 80: 43: 1965:
of 1962–63, largely lasting until 1983, but only being finished in 2004.
1934: 1743: 1718: 1573: 1569: 851:, completed in 2004, is a major milestone in the history of mathematics. 813: 1765:
of every finite simple group is solvable. This can be proved using the
1688:
The alternating groups may be considered as groups of Lie type over the
2655: 2223: 1705: 1584:, though some problems surfaced (specifically in the classification of 994:
which is 3. Since 3 is prime, its only divisors are 1 and 3, so either
712: 440: 27:
Group without normal subgroups other than the trivial group and itself
1779: 533: 2620:, Springer undergraduate mathematics series (2 ed.), Springer, 840:
one eventually arrives at uniquely determined simple groups, by the
2032:
is not a prime power, then every Sylow subgroup is proper, and, by
1961:
The full classification is generally accepted as starting with the
1363:. Another family of examples of infinite simple groups is given by 1252: 1115:{\displaystyle G=(\mathbb {Z} /12\mathbb {Z} ,+)=\mathbb {Z} _{12}} 70: 1829:
in 1870. Jordan had found 4 families of simple matrix groups over
2491: 1554: 1147: 971: 928:{\displaystyle G=(\mathbb {Z} /3\mathbb {Z} ,+)=\mathbb {Z} _{3}} 412: 326: 2299: 2269:"The classification of finite simple groups: a progress report" 51: 2210:
Burger, M.; Mozes, S. (2000). "Lattices in product of trees".
2247:"The Classification of the Finite Simple Groups: An Overview" 1566: 1513:
infinite simple groups were constructed by Burger and Mozes.
1565:
of a given group have the same length and the same factors,
2602:, Graduate texts in mathematics, vol. 148, Springer, 2168:(1951), "A finitely generated infinite simple group", 2478:
Traité des substitutions et des équations algébriques
2335: 2308: 1871:. Dickson also constructed exception groups of type G 1794:
Simple groups have been studied at least since early
1666: 1635: 1600: 1495: 1475: 1431: 1411: 1369: 1323: 1296: 1269: 1230: 1199: 1155: 1128: 1060: 1040: 1020: 1000: 980: 952: 873: 483: 458: 421: 2009:, then there does not exist a simple group of order 1733: 1772: 1220:of order 60, and every simple group of order 60 is 1054:is the trivial group. On the other hand, the group 2353: 2321: 1678: 1648: 1615: 1501: 1481: 1443: 1417: 1397: 1355: 1309: 1282: 1243: 1212: 1175: 1134: 1114: 1046: 1026: 1006: 986: 958: 927: 491: 466: 429: 2615: 1993:be a positive integer that is not prime, and let 1782:, the tenth of which was published in 2023. See ( 2672: 2384: 1146:is normal. Similarly, the additive group of the 2052:. Since 1 is the only such number, the Sylow 1786:) for 19th century history of simple groups. 793: 2398:Journal de MathĂ©matiques Pures et AppliquĂ©es 2276:Notices of the American Mathematical Society 2209: 1833:of prime order, which are now known as the 2170:Journal of the London Mathematical Society 1979: 800: 786: 2641: 2616:Smith, Geoff; Tabachnikova, Olga (2000), 2393:"Lettre de Galois Ă  M. Auguste Chevalier" 1818:, and remarked that they were simple for 1783: 1603: 1528: 1258: 1160: 1102: 1084: 1071: 915: 897: 884: 485: 460: 423: 2561: 2020:is a prime-power, then a group of order 1750:states that every group of odd order is 1462:and consists of simple quotients of the 1356:{\displaystyle A_{n}\rightarrow A_{n+1}} 836:. This process can be repeated, and for 2600:An introduction to the theory of groups 2266: 1454:It is much more difficult to construct 859: 14: 2673: 2597: 2523:251, vol. 251, Berlin, New York: 2511: 2471: 2448: 2390: 2164: 1895: 1810:of a plane over a prime finite field, 1578:classification of finite simple groups 1576:. In a huge collaborative effort, the 1541:Classification of finite simple groups 849:classification of finite simple groups 358:Classification of finite simple groups 2644:Archive for History of Exact Sciences 2579: 1580:was declared accomplished in 1983 by 1553:are the basic building blocks of the 2244: 1317:with respect to standard embeddings 2442: 2036:, we know that the number of Sylow 1956: 970:(the number of elements) must be a 24: 2028:and, therefore, is not simple. If 1941:announced that he had constructed 1863:, following the classification of 1275: 25: 2692: 2152:Smith & Tabachnikova (2000), 1734:Structure of finite simple groups 1516: 966:is a subgroup of this group, its 2567:Theory of groups of finite order 1802:realized that the fact that the 1773:History for finite simple groups 1616:{\displaystyle \mathbb {Z} _{p}} 1176:{\displaystyle (\mathbb {Z} ,+)} 50: 2484: 2465: 2081:Characteristically simple group 2040:-subgroups of a group of order 1970:listed all finite simple groups 1808:projective special linear group 1789: 1717:, of which 20 are subgroups or 1588:, which were plugged in 2004). 1263:The infinite alternating group 2293: 2260: 2238: 2203: 2158: 2146: 2137: 2125: 2113: 2005:that is congruent to 1 modulo 2001:. If 1 is the only divisor of 1925:)) and by Suzuki and Ree (the 1392: 1386: 1334: 1170: 1156: 1094: 1067: 907: 880: 719:Infinite dimensional Lie group 13: 1: 2521:Graduate Texts in Mathematics 2354:{\displaystyle C_{4}^{\ast }} 2101: 1825:The next discoveries were by 2504: 2096:List of finite simple groups 1535:list of finite simple groups 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 2069: 1882:as well, but not of types F 1865:complex simple Lie algebras 1557:. This is expressed by the 1283:{\displaystyle A_{\infty }} 854: 217:List of group theory topics 10: 2697: 2598:Rotman, Joseph J. (1995), 2580:Knapp, Anthony W. (2006), 2571:Cambridge University Press 2434:: CS1 maint: postscript ( 1761:asserts that the group of 1713:One of 26 exceptions, the 1561:which states that any two 1538: 1532: 1398:{\displaystyle PSL_{n}(F)} 2634: 2533:10.1007/978-1-84800-988-2 2454:"Chapter 1: Introduction" 2391:Galois, Évariste (1846), 1903:and Herzig (who produced 1425:is an infinite field and 2517:The finite simple groups 2459:The finite simple groups 2267:Solomon, Ronald (2018), 2252:, in Boya, L. J. (ed.), 2106: 335:Elementary abelian group 212:Glossary of group theory 2182:10.1112/jlms/s1-26.1.59 1980:Tests for nonsimplicity 1844:and first described by 1679:{\displaystyle n\geq 5} 1444:{\displaystyle n\geq 2} 1122:is not simple. The set 2618:Topics in group theory 2355: 2323: 1997:be a prime divisor of 1856:in his 1897 textbook. 1767:classification theorem 1697:One of 16 families of 1690:field with one element 1680: 1650: 1617: 1503: 1483: 1445: 1419: 1399: 1357: 1311: 1284: 1259:Infinite simple groups 1245: 1214: 1177: 1136: 1116: 1048: 1028: 1008: 988: 960: 929: 751:Linear algebraic group 493: 468: 431: 2424:) discussed on p. 410 2356: 2324: 2322:{\displaystyle C_{6}} 2254:Problemas del Milenio 2245:Otal, Javier (2004), 2143:Rotman (1995), p. 281 2044:is equal to 1 modulo 2034:Sylow's Third Theorem 1963:Feit–Thompson theorem 1846:Émile LĂ©onard Mathieu 1701:or their derivatives 1681: 1651: 1649:{\displaystyle A_{n}} 1618: 1559:Jordan–Hölder theorem 1539:Further information: 1523:Tarski monster groups 1509:. Finitely presented 1504: 1484: 1446: 1420: 1400: 1358: 1312: 1310:{\displaystyle A_{n}} 1285: 1246: 1244:{\displaystyle A_{5}} 1215: 1213:{\displaystyle A_{5}} 1178: 1137: 1117: 1049: 1029: 1009: 989: 961: 930: 842:Jordan–Hölder theorem 494: 469: 432: 2681:Properties of groups 2452:(October 31, 2006), 2333: 2306: 1664: 1633: 1598: 1547:finite simple groups 1529:Finite simple groups 1493: 1473: 1429: 1409: 1367: 1321: 1294: 1267: 1228: 1197: 1153: 1126: 1058: 1038: 1018: 998: 978: 950: 871: 860:Finite simple groups 481: 456: 419: 2350: 2076:Almost simple group 1763:outer automorphisms 1759:Schreier conjecture 125:Group homomorphisms 35:Algebraic structure 2656:10.1007/BF00327738 2351: 2336: 2319: 2224:10.1007/bf02698916 2064:Burnside's theorem 1804:alternating groups 1699:groups of Lie type 1676: 1646: 1613: 1563:composition series 1499: 1479: 1456:finitely generated 1441: 1415: 1395: 1353: 1307: 1280: 1241: 1210: 1173: 1132: 1112: 1044: 1024: 1004: 984: 956: 944:modular arithmetic 937:congruence classes 925: 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 2627:978-1-85233-235-8 2609:978-0-387-94285-8 2591:978-0-8176-3248-9 2563:Burnside, William 2542:978-1-84800-987-5 2513:Wilson, Robert A. 2490:See the proof in 2370:978-1-4704-7553-6 2172:, Second Series, 2086:Quasisimple group 2024:has a nontrivial 1927:Suzuki–Ree groups 1658:alternating group 1582:Daniel Gorenstein 1502:{\displaystyle V} 1482:{\displaystyle T} 1418:{\displaystyle F} 1192:alternating group 1135:{\displaystyle H} 1047:{\displaystyle H} 1027:{\displaystyle G} 1007:{\displaystyle H} 987:{\displaystyle G} 959:{\displaystyle H} 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 2688: 2666: 2650:(3–4): 313–356, 2630: 2612: 2594: 2573: 2553: 2498: 2488: 2482: 2481: 2469: 2463: 2462: 2446: 2440: 2439: 2433: 2425: 2411: 2410: 2388: 2382: 2381: 2360: 2358: 2357: 2352: 2349: 2344: 2328: 2326: 2325: 2320: 2318: 2317: 2297: 2291: 2290: 2273: 2264: 2258: 2257: 2251: 2242: 2236: 2235: 2212:Publ. Math. IHÉS 2207: 2201: 2200: 2162: 2156: 2150: 2144: 2141: 2135: 2129: 2123: 2117: 2091:Semisimple group 1974:quasithin groups 1900:Claude Chevalley 1854:William Burnside 1835:classical groups 1817: 1685: 1683: 1682: 1677: 1655: 1653: 1652: 1647: 1645: 1644: 1622: 1620: 1619: 1614: 1612: 1611: 1606: 1586:quasithin groups 1508: 1506: 1505: 1500: 1488: 1486: 1485: 1480: 1450: 1448: 1447: 1442: 1424: 1422: 1421: 1416: 1404: 1402: 1401: 1396: 1385: 1384: 1362: 1360: 1359: 1354: 1352: 1351: 1333: 1332: 1316: 1314: 1313: 1308: 1306: 1305: 1289: 1287: 1286: 1281: 1279: 1278: 1250: 1248: 1247: 1242: 1240: 1239: 1219: 1217: 1216: 1211: 1209: 1208: 1182: 1180: 1179: 1174: 1163: 1141: 1139: 1138: 1133: 1121: 1119: 1118: 1113: 1111: 1110: 1105: 1087: 1079: 1074: 1053: 1051: 1050: 1045: 1033: 1031: 1030: 1025: 1013: 1011: 1010: 1005: 993: 991: 990: 985: 974:of the order of 965: 963: 962: 957: 946:) is simple. If 934: 932: 931: 926: 924: 923: 918: 900: 892: 887: 826:normal subgroups 820:is a nontrivial 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 2696: 2695: 2691: 2690: 2689: 2687: 2686: 2685: 2671: 2670: 2669: 2637: 2628: 2610: 2592: 2576: 2543: 2525:Springer-Verlag 2507: 2502: 2501: 2497:, for instance. 2489: 2485: 2473:Jordan, Camille 2470: 2466: 2447: 2443: 2427: 2426: 2408: 2406: 2389: 2385: 2371: 2345: 2340: 2334: 2331: 2330: 2313: 2309: 2307: 2304: 2303: 2298: 2294: 2271: 2265: 2261: 2249: 2243: 2239: 2208: 2204: 2163: 2159: 2151: 2147: 2142: 2138: 2131:Rotman (1995), 2130: 2126: 2118: 2114: 2109: 2104: 2072: 1982: 1959: 1920: 1909: 1893: 1889: 1885: 1880: 1874: 1869:Wilhelm Killing 1861:Leonard Dickson 1811: 1800:Évariste Galois 1792: 1775: 1736: 1715:sporadic groups 1665: 1662: 1661: 1640: 1636: 1634: 1631: 1630: 1607: 1602: 1601: 1599: 1596: 1595: 1543: 1537: 1531: 1519: 1494: 1491: 1490: 1474: 1471: 1470: 1468:Thompson groups 1430: 1427: 1426: 1410: 1407: 1406: 1380: 1376: 1368: 1365: 1364: 1341: 1337: 1328: 1324: 1322: 1319: 1318: 1301: 1297: 1295: 1292: 1291: 1274: 1270: 1268: 1265: 1264: 1261: 1235: 1231: 1229: 1226: 1225: 1204: 1200: 1198: 1195: 1194: 1159: 1154: 1151: 1150: 1127: 1124: 1123: 1106: 1101: 1100: 1083: 1075: 1070: 1059: 1056: 1055: 1039: 1036: 1035: 1019: 1016: 1015: 999: 996: 995: 979: 976: 975: 951: 948: 947: 919: 914: 913: 896: 888: 883: 872: 869: 868: 862: 857: 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 2694: 2684: 2683: 2668: 2667: 2638: 2636: 2633: 2632: 2631: 2626: 2613: 2608: 2595: 2590: 2575: 2574: 2559: 2541: 2508: 2506: 2503: 2500: 2499: 2483: 2464: 2450:Wilson, Robert 2441: 2383: 2369: 2348: 2343: 2339: 2316: 2312: 2292: 2282:(6): 646–651, 2259: 2237: 2202: 2166:Higman, Graham 2157: 2145: 2136: 2124: 2119:Knapp (2006), 2111: 2110: 2108: 2105: 2103: 2100: 2099: 2098: 2093: 2088: 2083: 2078: 2071: 2068: 1981: 1978: 1958: 1957:Classification 1955: 1951:Griess algebra 1918: 1907: 1891: 1887: 1883: 1878: 1872: 1842:Mathieu groups 1827:Camille Jordan 1791: 1788: 1784:Silvestri 1979 1774: 1771: 1735: 1732: 1731: 1730: 1711: 1710: 1709: 1695: 1694: 1693: 1675: 1672: 1669: 1643: 1639: 1628: 1627:of prime order 1610: 1605: 1533:Main article: 1530: 1527: 1518: 1517:Classification 1515: 1498: 1478: 1440: 1437: 1434: 1414: 1394: 1391: 1388: 1383: 1379: 1375: 1372: 1350: 1347: 1344: 1340: 1336: 1331: 1327: 1304: 1300: 1277: 1273: 1260: 1257: 1238: 1234: 1207: 1203: 1172: 1169: 1166: 1162: 1158: 1131: 1109: 1104: 1099: 1096: 1093: 1090: 1086: 1082: 1078: 1073: 1069: 1066: 1063: 1043: 1023: 1003: 983: 955: 922: 917: 912: 909: 906: 903: 899: 895: 891: 886: 882: 879: 876: 861: 858: 856: 853: 834:quotient group 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 9: 6: 4: 3: 2: 2693: 2682: 2679: 2678: 2676: 2665: 2661: 2657: 2653: 2649: 2645: 2640: 2639: 2629: 2623: 2619: 2614: 2611: 2605: 2601: 2596: 2593: 2587: 2583: 2582:Basic algebra 2578: 2577: 2572: 2568: 2564: 2560: 2557: 2556:2007 preprint 2552: 2548: 2544: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2509: 2496: 2494: 2487: 2480: 2479: 2474: 2468: 2461: 2460: 2455: 2451: 2445: 2437: 2431: 2423: 2419: 2415: 2404: 2400: 2399: 2394: 2387: 2380: 2376: 2372: 2366: 2362: 2346: 2341: 2337: 2314: 2310: 2296: 2289: 2285: 2281: 2277: 2270: 2263: 2255: 2248: 2241: 2233: 2229: 2225: 2221: 2217: 2213: 2206: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2171: 2167: 2161: 2155: 2149: 2140: 2134: 2128: 2122: 2116: 2112: 2097: 2094: 2092: 2089: 2087: 2084: 2082: 2079: 2077: 2074: 2073: 2067: 2065: 2061: 2057: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2014: 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1987: 1977: 1975: 1971: 1966: 1964: 1954: 1952: 1948: 1947:Monster group 1944: 1943:Bernd Fischer 1940: 1939:Robert Griess 1936: 1930: 1928: 1924: 1917: 1913: 1906: 1901: 1897: 1881: 1870: 1866: 1862: 1857: 1855: 1851: 1847: 1843: 1838: 1836: 1832: 1831:finite fields 1828: 1823: 1821: 1815: 1809: 1805: 1801: 1797: 1796:Galois theory 1787: 1785: 1781: 1770: 1768: 1764: 1760: 1755: 1753: 1749: 1745: 1741: 1728: 1724: 1723:monster group 1720: 1716: 1712: 1707: 1703: 1702: 1700: 1696: 1691: 1687: 1686: 1673: 1670: 1667: 1659: 1641: 1637: 1629: 1626: 1608: 1594: 1593: 1592: 1589: 1587: 1583: 1579: 1575: 1571: 1568: 1564: 1560: 1556: 1552: 1551:prime numbers 1548: 1542: 1536: 1526: 1524: 1514: 1512: 1496: 1476: 1469: 1465: 1461: 1460:Graham Higman 1457: 1452: 1438: 1435: 1432: 1412: 1389: 1381: 1377: 1373: 1370: 1348: 1345: 1342: 1338: 1329: 1325: 1302: 1298: 1271: 1256: 1254: 1236: 1232: 1223: 1205: 1201: 1193: 1189: 1184: 1167: 1164: 1149: 1145: 1144:abelian group 1129: 1107: 1097: 1091: 1088: 1080: 1076: 1064: 1061: 1041: 1021: 1001: 981: 973: 969: 953: 945: 941: 938: 920: 910: 904: 901: 893: 889: 877: 874: 867: 852: 850: 847:The complete 845: 843: 839: 838:finite groups 835: 831: 830:trivial group 827: 823: 819: 815: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 18:Simple groups 2647: 2643: 2617: 2599: 2584:, Springer, 2581: 2566: 2516: 2492: 2486: 2476: 2467: 2458: 2444: 2421: 2417: 2413: 2407:, retrieved 2402: 2396: 2386: 2329:and Theorem 2301: 2295: 2279: 2275: 2262: 2253: 2240: 2215: 2211: 2205: 2176:(1): 61–64, 2173: 2169: 2160: 2148: 2139: 2127: 2115: 2059: 2058: 2053: 2049: 2048:and divides 2045: 2041: 2037: 2029: 2021: 2017: 2015: 2010: 2006: 2002: 1998: 1994: 1990: 1986:Sylow's test 1984: 1983: 1967: 1960: 1931: 1922: 1915: 1911: 1904: 1858: 1839: 1824: 1819: 1813: 1793: 1790:Construction 1776: 1756: 1737: 1719:subquotients 1625:cyclic group 1590: 1544: 1520: 1511:torsion-free 1464:Higman group 1455: 1453: 1262: 1185: 866:cyclic group 863: 846: 818:simple group 817: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 284: 271: 260: 249: 245:Cyclic group 150: 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 2218:: 151–194. 1935:Janko group 1896:Wilson 2009 1738:The famous 1574:isomorphism 1570:permutation 824:whose only 814:mathematics 530:Topological 369:alternating 2551:1203.20012 2409:2009-02-04 2102:References 2016:Proof: If 1780:monographs 1706:Tits group 1222:isomorphic 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 2664:120444304 2505:Textbooks 2405:: 408–415 2347:∗ 2190:0024-6107 1671:≥ 1436:≥ 1335:→ 1276:∞ 701:Conformal 589:Euclidean 196:nilpotent 2675:Category 2565:(1897), 2515:(2009), 2475:(1870), 2430:citation 2412:, PSL(2, 2361:, Case A 2232:55003601 2070:See also 2060:Burnside 1850:sporadic 1798:, where 1752:solvable 1748:Thompson 1555:integers 1405:, where 1253:PSL(2,7) 1148:integers 942:3 (see 855:Examples 828:are the 696:PoincarĂ© 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 2379:4656413 2288:3792856 2198:0038348 1740:theorem 1727:pariahs 1721:of the 972:divisor 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 2662:  2635:Papers 2624:  2606:  2588:  2549:  2539:  2495:-group 2377:  2367:  2286:  2230:  2196:  2188:  2154:p. 144 2133:p. 226 2121:p. 170 2026:center 1989:: Let 1914:) and 1890:, or E 1812:PSL(2, 940:modulo 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 2660:S2CID 2272:(PDF) 2250:(PDF) 2228:S2CID 2107:Notes 1852:" by 1567:up to 1188:prime 1034:, or 968:order 822:group 730:Sp(∞) 727:SU(∞) 140:image 2622:ISBN 2604:ISBN 2586:ISBN 2537:ISBN 2436:link 2365:ISBN 2186:ISSN 1945:'s " 1875:and 1757:The 1746:and 1744:Feit 1704:The 1660:for 1572:and 1545:The 1489:and 864:The 816:, a 724:O(∞) 713:Loop 532:and 2652:doi 2547:Zbl 2529:doi 2220:doi 2178:doi 1929:). 1886:, E 1867:by 1742:of 1224:to 1014:is 935:of 812:In 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 2677:: 2658:, 2648:20 2646:, 2569:, 2554:; 2545:, 2535:, 2527:, 2519:, 2456:, 2432:}} 2428:{{ 2403:XI 2401:, 2395:, 2375:MR 2373:, 2284:MR 2280:65 2278:, 2274:, 2226:. 2216:92 2214:. 2194:MR 2192:, 2184:, 2174:26 2066:. 2013:. 1837:. 1769:. 1656:– 1623:– 1451:. 1108:12 1081:12 844:. 615:U( 591:E( 579:O( 37:→ 2654:: 2558:. 2531:: 2493:p 2438:) 2422:p 2420:, 2418:Îœ 2414:p 2342:4 2338:C 2315:6 2311:C 2234:. 2222:: 2180:: 2054:p 2050:n 2046:p 2042:n 2038:p 2030:n 2022:n 2018:n 2011:n 2007:p 2003:n 1999:n 1995:p 1991:n 1923:q 1921:( 1919:6 1916:E 1912:q 1910:( 1908:4 1905:D 1894:( 1892:8 1888:7 1884:4 1879:6 1877:E 1873:2 1820:p 1816:) 1814:p 1729:. 1674:5 1668:n 1642:n 1638:A 1609:p 1604:Z 1497:V 1477:T 1439:2 1433:n 1413:F 1393:) 1390:F 1387:( 1382:n 1378:L 1374:S 1371:P 1349:1 1346:+ 1343:n 1339:A 1330:n 1326:A 1303:n 1299:A 1272:A 1237:5 1233:A 1206:5 1202:A 1171:) 1168:+ 1165:, 1161:Z 1157:( 1130:H 1103:Z 1098:= 1095:) 1092:+ 1089:, 1085:Z 1077:/ 1072:Z 1068:( 1065:= 1062:G 1042:H 1022:G 1002:H 982:G 954:H 921:3 916:Z 911:= 908:) 905:+ 902:, 898:Z 894:3 890:/ 885:Z 881:( 878:= 875:G 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Simple groups
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑