Knowledge

Skin effect

Source 📝

4116:) may be between 5 and 50 mm thick skin effect also occurs at sharp bends where the metal is compressed inside the bend and stretched outside the bend. The shorter path at the inner surface results in a lower resistance, which causes most of the current to be concentrated close to the inner bend surface. This causes an increase in temperature at that region compared with the straight (unbent) area of the same conductor. A similar skin effect occurs at the corners of rectangular conductors (viewed in cross-section), where the magnetic field is more concentrated at the corners than in the sides. This results in superior performance (i.e. higher current with lower temperature rise) from wide thin conductors (for example, 4139:
resistive losses affecting the accompanying eddy currents; skin effect confines such eddy currents to a very thin surface layer of the waveguide structure. Skin effect itself is not actually combatted in these cases, but the distribution of currents near the conductor's surface makes the use of precious metals (having a lower resistivity) practical. Although it has a lower conductivity than copper and silver, gold plating is also used, because unlike copper and silver, it does not corrode. A thin oxidized layer of copper or silver would have a low conductivity, and so would cause large power losses as the majority of the current would still flow through this layer.
1179: 2950:
self-inductance) regardless of the wire's length, so that the inductance decrease due to skin effect can still be important. For instance, in the case of a telephone twisted pair, below, the inductance of the conductors substantially decreases at higher frequencies where skin effect becomes important. On the other hand, when the external component of the inductance is magnified due to the geometry of a coil (due to the mutual inductance between the turns), the significance of the internal inductance component is even further dwarfed and is ignored.
4081:, braided wire) is used to mitigate skin effect for frequencies of a few kilohertz to about one megahertz. It consists of a number of insulated wire strands woven together in a carefully designed pattern, so that the overall magnetic field acts equally on all the wires and causes the total current to be distributed equally among them. With skin effect having little effect on each of the thin strands, the bundle does not suffer the same increase in AC resistance that a solid conductor of the same cross-sectional area would due to skin effect. 2918: 4156: 50: 2902: 2982: 170: 4398: 1163:= 3 km). However, as the frequency is increased well into the megahertz range, its skin depth never falls below the asymptotic value of 11 meters. The conclusion is that in poor solid conductors, such as undoped silicon, skin effect does not need to be taken into account in most practical situations: Any current is equally distributed throughout the material's cross-section, regardless of its frequency. 38: 213:, are driven by an electric field due to the source of electrical energy. A current in a conductor produces a magnetic field in and around the conductor. When the intensity of current in a conductor changes, the magnetic field also changes. The change in the magnetic field, in turn, creates an electric field that opposes the change in current intensity. This opposing electric field is called 1056:(dependent on the density of free electrons in the material) and the reciprocal of the mean time between collisions involving the conduction electrons. In good conductors such as metals all of those conditions are ensured at least up to microwave frequencies, justifying this formula's validity. For example, in the case of copper, this would be true for frequencies much below 4109:
strength but low weight of tubes substantially increases span capability. Tubular conductors are typical in electric power switchyards where the distance between supporting insulators may be several meters. Long spans generally exhibit physical sag but this does not affect electrical performance. To avoid losses, the conductivity of the tube material must be high.
4201: 2063: 3648:). Since there is essentially no current deeper in the inner conductor, there is no magnetic field beneath the surface of the inner conductor. Since the current in the inner conductor is balanced by the opposite current flowing on the inside of the outer conductor, there is no remaining magnetic field in the outer conductor itself where 2894:(50 nH/m for non-magnetic wire) at low frequencies, regardless of the wire's radius. Its reduction with increasing frequency, as the ratio of skin depth to the wire's radius falls below about 1, is plotted in the accompanying graph, and accounts for the reduction in the telephone cable inductance with increasing frequency in the 4143:
results in fields and/or currents that oppose those generated by relatively nonmagnetic materials, but more work is needed to verify the exact mechanisms. As experiments have shown, this has potential to greatly improve the efficiency of conductors operating in tens of GHz or higher. This has strong ramifications for
545: 2949:
For a single wire, this reduction becomes of diminishing significance as the wire becomes longer in comparison to its diameter, and is usually neglected. However, the presence of a second conductor in the case of a transmission line reduces the extent of the external magnetic field (and of the total
3116:, however, there is a reduced magnetic field in the deeper sections of the inner conductor and the outer sections of the shield (outer conductor). Thus there is less energy stored in the magnetic field given the same total current, corresponding to a reduced inductance. At an even higher frequency, 1182:
Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case. All curves are normalized so that the current density at the surface is the same. The horizontal
45:, current density decreases exponentially from the surface towards the inside. Skin depth, δ, is defined as the depth where the current density is just 1/e (about 37%) of the value at the surface; it depends on the frequency of the current and the electrical and magnetic properties of the conductor. 2945:
due to the portion of the magnetic field inside the wire itself, the green region in figure B. That small component of the inductance is reduced when the current is concentrated toward the skin of the conductor, that is, when skin depth is not much larger than the wire's radius, as will become the
2936:
The inductance considered in this context refers to a bare conductor, not the inductance of a coil used as a circuit element. The inductance of a coil is dominated by the mutual inductance between the turns of the coil which increases its inductance according to the square of the number of turns.
4142:
Recently, a method of layering non-magnetic and ferromagnetic materials with nanometer scale thicknesses has been shown to mitigate the increased resistance from skin effect for very high-frequency applications. A working theory is that the behavior of ferromagnetic materials in high frequencies
4138:
frequencies where the small skin depth requires only a very thin layer of silver, making the improvement in conductivity very cost effective. Silver plating is similarly used on the surface of waveguides used for transmission of microwaves. This reduces attenuation of the propagating wave due to
4088:
to increase their efficiency by mitigating both skin effect and proximity effect. Large power transformers are wound with stranded conductors of similar construction to litz wire, but employing a larger cross-section corresponding to the larger skin depth at mains frequencies. Conductive threads
4108:
In applications where high currents (up to thousands of amperes) flow, solid conductors are usually replaced by tubes, eliminating the inner portion of the conductor where little current flows. This hardly affects the AC resistance, but considerably reduces the weight of the conductor. The high
4021:
In a good conductor, skin depth is proportional to square root of the resistivity. This means that better conductors have a reduced skin depth. The overall resistance of the better conductor remains lower even with the reduced skin depth. However the better conductor will show a higher ratio
1158:
This departure from the usual formula only applies for materials of rather low conductivity and at frequencies where the vacuum wavelength is not much larger than the skin depth itself. For instance, bulk silicon (undoped) is a poor conductor and has a skin depth of about 40 meters at
1879: 1364: 5181:
Note that the above equation for the current density inside the conductor as a function of depth applies to cases where the usual approximation for skin depth holds. In the extreme cases where it doesn't, the exponential decrease with respect to skin depth still applies to the
4393:{\displaystyle {\begin{aligned}\delta &={\frac {1}{\alpha }}={\sqrt {{2\rho } \over {(2\pi f)(\mu _{0}\mu _{r})}}}\\&={\frac {1}{\sqrt {\pi f\mu \sigma }}}\approx 503\,{\sqrt {\frac {\rho }{\mu _{r}f}}}\approx 503\,{\frac {1}{\sqrt {\mu _{r}f\sigma }}},\end{aligned}}} 259:
is most often associated with applications involving transmission of electric currents, skin depth also describes the exponential decay of the electric and magnetic fields, as well as the density of induced currents, inside a bulk material when a plane wave impinges on it at
4012: 4057:
but it is difficult to use them at frequencies much higher than 60 Hz. At a few kilohertz, an iron welding rod would glow red hot as current flows through the greatly increased AC resistance resulting from skin effect, with relatively little power remaining for the
4093:
have been demonstrated as conductors for antennas from medium wave to microwave frequencies. Unlike standard antenna conductors, the nanotubes are much smaller than the skin depth, allowing full use of the thread's cross-section resulting in an extremely light antenna.
2921:
The ratio AC resistance to DC resistance of a round wire versus the ratio of the wire's radius to the skin depth. As skin depth becomes small relative to the radius, the ratio of AC to DC resistance approaches one half of the ratio of the radius to the skin
3132:
For a given current, the total energy stored in the magnetic fields must be the same as the calculated electrical energy attributed to that current flowing through the inductance of the coax; that energy is proportional to the cable's measured inductance.
2574: 441: 4994:
for alternating current at 60 Hz with a radius larger than one-third of an inch (8 mm) is a waste of copper, and in practice bus bars for heavy AC current are rarely more than half an inch (12 mm) thick except for mechanical reasons.
4890:
Thus at microwave frequencies, most of the current flows in an extremely thin region near the surface. Ohmic losses of waveguides at microwave frequencies are therefore only dependent on the surface coating of the material. A layer of silver
2927:
Refer to the diagram below showing the inner and outer conductors of a coaxial cable. Since skin effect causes a current at high frequencies to flow mainly at the surface of a conductor, it can be seen that this will reduce the magnetic field
2932:
the wire, that is, beneath the depth at which the bulk of the current flows. It can be shown that this will have a minor effect on the self-inductance of the wire itself; see Skilling or Hayt for a mathematical treatment of this phenomenon.
2817: 4743: 107:
of the alternating current; as frequency increases, current flow becomes more concentrated near the surface, resulting in less skin depth. Skin effect reduces the effective cross-section of the conductor and thus increases its effective
2690: 1154: 1189: 3396: 1670: 3511: 2422: 3580: 3883: 4041:
at 60 Hz. Iron wire is impractical for AC power lines (except to add mechanical strength by serving as a core to a non-ferromagnetic conductor like aluminum). Skin effect also reduces the effective thickness of
2861:
inductance, the internal inductance is reduced by skin effect, that is, at frequencies where skin depth is no longer large compared to the conductor's size. This small component of inductance approaches a value of
1028: 208:
Conductors, typically in the form of wires, may be used to transfer electrical energy or signals using an alternating current flowing through that conductor. The charge carriers constituting that current, usually
1721: 2058:{\displaystyle \nabla ^{2}\mathbf {J} (r)+k^{2}\mathbf {J} (r)={\frac {\partial ^{2}}{\partial r^{2}}}\mathbf {J} (r)+{\frac {1}{r}}{\frac {\partial }{\partial r}}\mathbf {J} (r)+k^{2}\mathbf {J} (r)=0.} 3711:
Although the geometry is different, a twisted pair used in telephone lines is similarly affected: at higher frequencies, the inductance decreases by more than 20% as can be seen in the following table.
363: 2495: 2127: 2849:; this accounts for the inductive reactance (imaginary part of the impedance) given by the above formula. In most cases this is a small portion of a wire's inductance which includes the effect of 2319: 5258:
These emf's are greater at the center than at the circumference, so the potential difference tends to establish currents that oppose the current at the center and assist it at the circumference.
4206: 4026:(1000 square millimeter) copper conductor has 23% more resistance than it does at DC. The same size conductor in aluminum has only 10% more resistance with 60 Hz AC than it does with DC. 859: 3877:
More extensive tables and tables for other gauges, temperatures and types are available in Reeve. Chen gives the same data in a parameterized form that he states is usable up to 50 MHz.
217:(back EMF). The back EMF is strongest / most concentrated at the center of the conductor, allowing current only near the outside skin of the conductor, as shown in the diagram on the right. 435:
and this very tiny phase velocity in a conductor, any wave entering a conductor, even at grazing incidence, refracts essentially in the direction perpendicular to the conductor's surface.
412:
skin depths, at which point the current density is attenuated to e (1.87×10, or −54.6 dB) of its surface value. The wavelength in the conductor is much shorter than the wavelength in
3624: 5097:, losses due to induced currents occur mostly within one skin depth of the surface. Thus, plating the surface of a waveguide with a material which has a low skin depth reduces losses. 4826:
At very high frequencies skin depth for good conductors becomes tiny. For instance, skin depths of some common metals at a frequency of 10 GHz (microwave region) are less than a
2712: 4668: 5091: 2892: 1834: 1098: 972: 60:) to reduce heating of the coil itself due to skin effect. The AC frequencies used in induction cookers are much higher than standard mains frequency ‒ typically around 25–50 kHz. 5186:
of the induced currents, however the imaginary part of the exponent in that equation, and thus the phase velocity inside the material, are altered with respect to that equation.
1506: 1460: 723: 926: 890: 3425: 3292: 3226: 3166: 2234: 4588: 4484: 5061: 5034: 3706: 3136:
The magnetic field inside a coaxial cable can be divided into three regions, each of which will therefore contribute to the electrical inductance seen by a length of cable.
2941:
involving magnetic fields outside the wire (due to the total current in the wire) as seen in the white region of the figure below, there is also a much smaller component of
4783: 3679: 3325: 3259: 1533: 818: 2625: 2602: 2255: 2200: 1103: 1050: 1785: 3052:). The width of the dashed black lines is intended to show relative strength of the magnetic field integrated over the circumference at that radius. The four stages are 4663: 4515: 3092:, current covers the conductors uniformly and there is a significant magnetic field in all three regions. As the frequency is increased and the skin effect takes hold ( 790: 754: 4813: 4565: 4452: 4427: 3193: 1748: 1601: 1567: 637: 602: 4123:
It follows that a transformer with a round core will be more efficient than an equivalent-rated transformer having a square or rectangular core of the same material.
383: 3334: 574: 236:
of its value near the surface. Over 98% of the current will flow within a layer 4 times the skin depth from the surface. This behavior is distinct from that of
4540: 3438: 2490: 2324: 2154: 682: 540:{\displaystyle \delta ={\sqrt {{\frac {\,2\rho \,}{\omega \mu }}\left({\sqrt {1+\left({\rho \omega \varepsilon }\right)^{2}\,}}+\rho \omega \varepsilon \right)\,}}} 1422: 1395: 431:
of about 300 m, whereas in copper, the wavelength is reduced to only about 0.5 mm with a phase velocity of only about 500 m/s. As a consequence of
4620: 3629:
Most discussions of coaxial transmission lines assume they will be used for radio frequencies, so equations are supplied corresponding only to the latter case.
2178: 1858: 657: 3124:, the skin depth is tiny: All current is confined to the surface of the conductors. The only magnetic field is in the regions between the conductors; only the 2970:
be the inner conductor radius, the shield (outer conductor) inside radius and the shield outer radius respectively, as seen in the crossection of figure 
255:
impinging on a conductor will therefore generally produce such a current; this explains the attenuation of electromagnetic waves in metals. Although the term
977: 3084:
high frequency. There are three regions that may contain induced magnetic fields: the center conductor, the dielectric and the outer conductor. In stage
5638:, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 215, No. 1123 (Dec. 22, 1952), pp. 481–497 (17 pages) 224:
is found to be greatest at the conductor's surface, with a reduced magnitude deeper in the conductor. That decline in current density is known as the
1608: 1183:
axis is the position within the wire with the left and right extremes being the surface of the wire. The vertical axis is relative current density.
4105:; the higher resistance of the steel core is of no consequence since it is located far below the skin depth where essentially no AC current flows. 3518: 2905:
The internal component of a round wire's inductance vs. the ratio of skin depth to radius. That component of the self inductance is reduced below
1063:
However, in very poor conductors, at sufficiently high frequencies, the factor under the large radical increases. At frequencies much higher than
294: 5109:
in 1940, who correctly suggested that it is due to the mean free path length of the electrons reaching the range of the classical skin depth.
2068: 1359:{\displaystyle \mathbf {J} (r)={\frac {k\mathbf {I} }{2\pi R}}{\frac {J_{0}(kr)}{J_{1}(kR)}}=\mathbf {J} (R){\frac {J_{0}(kr)}{J_{0}(kR)}}} 3108:) the magnetic field in the dielectric region is unchanged as it is proportional to the total current flowing in the center conductor. In 5036:. The intensity of the wave is proportional to the square of the amplitude, and thus the depth at which the intensity has diminished by 84:
is largest near the surface of the conductor and decreases exponentially with greater depths in the conductor. It is caused by opposing
2985:
Four stages of skin effect in a coax showing the effect on inductance. Diagrams show a cross-section of the coaxial cable. Color code:
1175:. The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: 4007:{\displaystyle L(f)={\frac {\ell _{0}+\ell _{\infty }\left({\frac {f}{f_{m}}}\right)^{b}}{1+\left({\frac {f}{f_{m}}}\right)^{b}}}\,} 2436:
The most important effect of skin effect on the impedance of a single wire is the increase of the wire's resistance, and consequent
1681: 123:. Because the interior of a large conductor carries little of the current, tubular conductors can be used to save weight and cost. 5009:
In electromagnetic waves, the skin depth is the depth at which the amplitude of the electric and magnetic fields have reduced by
4037:
its permeability is about 10,000 times greater. This reduces the skin depth for iron to about 1/38 that of copper, about 220
5837: 5811: 5772: 5739: 5703: 5660: 5440: 5279: 5251: 4815:
as was pointed out above for the case of iron, despite its poorer conductivity. A practical consequence is seen by users of
4102: 2260: 5105:
For high frequencies and low temperatures, the usual formulas for skin depth break down. This effect was first noticed by
5161: 5126: 2699: 826: 5721: 5360: 5309: 4022:
between its AC and DC resistance, when compared with a conductor of higher resistivity. For example, at 60 Hz, a
1860:
is complex, the Bessel functions are also complex. The amplitude and phase of the current density varies with depth.
5756: 5680: 2157: 3588: 2694:
This formula for the increase in AC resistance is accurate only for an isolated wire. For nearby wires, e.g. in a
1171:
When skin depth is not small with respect to the radius of the wire, current density may be described in terms of
4182: 4030: 2569:{\displaystyle R\approx {{\ell \rho } \over {\pi (D-\delta )\delta }}\approx {{\ell \rho } \over {\pi D\delta }}} 2202:
is a constant phasor. To satisfy the boundary condition for the current density at the surface of the conductor,
684: 4159:
Skin depth vs. frequency for some materials at room temperature, red vertical line denotes 50 Hz frequency:
5883: 2440:. The effective resistance due to a current confined near the surface of a large conductor (much thicker than 389:
which is defined as the depth below the surface of the conductor at which the current density has fallen to 1/
119:
Increased AC resistance caused by skin effect can be mitigated by using a specialized multistrand wire called
4755:, about 9 times that of gold. Its skin depth at 50 Hz is likewise found to be about 33 mm, or 1869: 5066: 2865: 2448:
based on the DC resistivity of that material. The effective cross-sectional area is approximately equal to
1796: 1066: 940: 2452:
times the conductor's circumference. Thus a long cylindrical conductor such as a wire, having a diameter
214: 147: 143: 1475: 1429: 1178: 690: 4069:
At 1 megahertz skin effect depth in wet soil is about 5.0 m; in seawater it is about 0.25 m.
929: 901: 865: 793: 17: 3402: 3269: 3203: 3143: 2205: 5878: 5110: 4570: 4457: 4033:
of the conductor. In the case of iron, its conductivity is about 1/7 that of copper. However being
2850: 1100:
it can be shown that skin depth, rather than continuing to decrease, approaches an asymptotic value:
390: 248: 233: 5039: 5012: 3684: 5820:
Xi Nan; Sullivan, C. R. (2005). "An equivalent complex permeability model for litz-wire windings".
5156: 5146: 4758: 3651: 3297: 3231: 1513: 800: 5822:
Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005
2581: 2238: 2183: 1035: 974:
the quantity inside the large radical is close to unity and the formula is more usually given as:
116:
in copper, skin depth is about 8.5 mm. At high frequencies, skin depth becomes much smaller.
5522: 2812:{\displaystyle \mathbf {Z} _{\text{int}}={\frac {k\rho }{2\pi R}}{\frac {J_{0}(kR)}{J_{1}(kR)}}.} 1758: 157:
in 1883 for the case of spherical conductors, and was generalized to conductors of any shape by
4738:{\displaystyle \delta =503\,{\sqrt {\frac {2.44\cdot 10^{-8}}{1\cdot 50}}}=11.1\,\mathrm {mm} } 4638: 4490: 765: 729: 4791: 4547: 4434: 4409: 3632:
As skin effect increases, the currents are concentrated near the outside the inner conductor (
3427:
is not changed by the skin effect and is given by the frequently cited formula for inductance
3171: 1728: 1574: 1540: 1052:
would have a large imaginary part) and at frequencies that are much below both the material's
610: 584: 1788: 757: 368: 109: 5235: 1032:
This formula is valid at frequencies away from strong atomic or molecular resonances (where
556: 4522: 3720:
Representative parameter data for 24 gauge PIC telephone cable at 21 °C (70 °F).
2826: 2706: 2475: 2132: 664: 252: 77: 4130:
to take advantage of silver's higher conductivity. This technique is particularly used at
1402: 1375: 8: 4895:
thick evaporated on a piece of glass is thus an excellent conductor at such frequencies.
4098: 126:
Skin effect has practical consequences in the analysis and design of radio-frequency and
73: 42: 4602: 400:. The imaginary part of the exponent indicates that the phase of the current density is 5851: 5692: 5575: 5286:
To understand skin effect, you must first understand how eddy currents operate ...
5224: 4747:
Lead, in contrast, is a relatively poor conductor (among metals) with a resistivity of
2618:
of a wire of circular cross-section whose resistance will increase by 10% at frequency
2163: 1843: 642: 92:
field resulting from the alternating current. The electric current flows mainly at the
5299: 4788:
Highly magnetic materials have a reduced skin depth owing to their large permeability
41:
Distribution of current flow in a cylindrical conductor, shown in cross section. For
5855: 5843: 5833: 5807: 5768: 5752: 5735: 5717: 5699: 5676: 5656: 5567: 5547: 5356: 5305: 5275: 5247: 5228: 5151: 5114: 5004: 4898:
In copper, skin depth can be seen to fall according to the square root of frequency:
2685:{\displaystyle D_{\mathrm {W} }={\frac {200~\mathrm {mm} }{\sqrt {f/\mathrm {Hz} }}}} 2065:
The solution to this equation is, for finite current in the center of the conductor,
1149:{\displaystyle \delta \approx {2\rho }{\sqrt {{\frac {\,\varepsilon \,}{\mu }}\,}}~.} 604: 277: 261: 204:
which partially cancel the current flow in the center and reinforce it near the skin.
139: 131: 5579: 438:
The general formula for skin depth when there is no dielectric or magnetic loss is:
30:"Skin depth" redirects here. For the depth (layers) of biological/organic skin, see 5825: 5790: 5559: 5216: 5207:
Lamb, Horace (1883-01-01). "XIII. On electrical motions in a spherical conductor".
4816: 4164: 2917: 2695: 2608: 1053: 158: 65: 53: 5670: 5334:
The formula as shown is algebraically equivalent to the formula found on page 130
2895: 4820: 4176: 4090: 1172: 221: 135: 81: 3261:, the region between the two conductors (containing a dielectric, possibly air). 2444:) can be solved as if the current flowed uniformly through a layer of thickness 4127: 4050: 3391:{\displaystyle L_{\text{total}}=L_{\text{cen}}+L_{\text{shd}}+L_{\text{ext}}\,} 2822: 1665:{\displaystyle k={\sqrt {\frac {-j\omega \mu }{\rho }}}={\frac {1-j}{\delta }}} 432: 421: 417: 237: 5563: 3506:{\displaystyle L/D={\frac {\mu _{0}}{2\pi }}\ln \left({\frac {b}{a}}\right)\,} 2417:{\displaystyle \mathbf {J} (r)=\mathbf {J} (R){\frac {J_{0}(kr)}{J_{0}(kR)}}.} 5872: 5847: 5829: 5571: 4034: 424:
in a vacuum. For example, a 1 MHz radio wave has a wavelength in vacuum
240:
which usually will be distributed evenly over the cross-section of the wire.
3585:
At high frequencies, only the dielectric region has magnetic flux, so that
3575:{\displaystyle L_{\text{DC}}=L_{\text{cen}}+L_{\text{shd}}+L_{\text{ext}}\,} 247:
in a conductor due to an alternating magnetic field according to the law of
5220: 5131: 5106: 4063: 4023: 2901: 1873: 893: 820: 85: 49: 4155: 4120:
conductors) in which the effects from corners are effectively eliminated.
5141: 4085: 4059: 2841:
A portion of a wire's inductance can be attributed to the magnetic field
2437: 1750: 1673: 576: 401: 185:. If the current increases, as in this figure, the resulting increase in 154: 5094: 4827: 4043: 4038: 2830: 1023:{\displaystyle \delta ={\sqrt {{\frac {\,2\rho \,}{\omega \mu }}\,}}~.} 405: 3708:
contributes to the electrical inductance at these higher frequencies.
2981: 2937:
However, when only a single wire is involved, then in addition to the
5639: 5136: 4188: 4135: 127: 120: 104: 57: 5506: 3515:
At low frequencies, all three inductances are fully present so that
169: 2702:, which can cause an additional increase in the AC resistance. The 210: 146:
and distribution systems. It is one of the reasons for preferring
96:
of the conductor, between the outer surface and a level called the
89: 5548:"Study on Cu/Ni nano superlattice conductors for reduced RF loss" 4054: 3331:
The net electrical inductance is due to all three contributions:
2825:
quantity corresponding to a resistance (real) in series with the
3880:
Chen gives an equation of this form for telephone twisted pair:
3168:
is associated with the magnetic field in the region with radius
232:
is a measure of the depth at which the current density falls to
5669:
Feynman, Richard P; Leighton, Robert B; Sands, Matthew (1964).
4991: 4113: 2468:
carrying direct current. The AC resistance of a wire of length
1463: 413: 4665:
1, so its skin depth at a frequency of 50 Hz is given by
4198:
We can derive a practical formula for skin depth as follows:
2857:
of the wire produced by the current in the wire. Unlike that
1716:{\displaystyle \delta ={\sqrt {\frac {2\rho }{\omega \mu }}}} 113: 37: 5523:"Spinning Carbon Nanotubes Spawns New Wireless Applications" 4892: 4847: 4112:
In high current situations where conductors (round or flat
404:
1 radian for each skin depth of penetration. One full
31: 4823:
cookware are unusable because they are not ferromagnetic.
4084:
Litz wire is often used in the windings of high-frequency
5802:
Vander Vorst, Andre; Rosen, Arye; Kotsuka, Youji (2006),
5765:
Chapter 20,The Skin Effect, Introductory Electromagnetics
5209:
Philosophical Transactions of the Royal Society of London
4131: 4029:
Skin depth also varies as the inverse square root of the
358:{\displaystyle J=J_{\mathrm {S} }\,e^{-{(1+j)d/\delta }}} 5801: 5323: 2709:
per unit length of a segment of round wire is given by:
27:
Tendency of AC current flow in a conductor's outer layer
4144: 2122:{\displaystyle \mathbf {J} (r)=\mathbf {C} J_{0}(kr),} 5069: 5042: 5015: 4794: 4761: 4671: 4641: 4605: 4573: 4550: 4525: 4493: 4460: 4437: 4412: 4204: 3886: 3687: 3654: 3591: 3521: 3441: 3405: 3337: 3300: 3272: 3234: 3206: 3174: 3146: 2913:
as skin depth becomes small (as frequency increases).
2868: 2715: 2628: 2584: 2498: 2478: 2327: 2314:{\displaystyle {\frac {\mathbf {J} (R)}{J_{0}(kR)}}.} 2263: 2241: 2208: 2186: 2166: 2135: 2071: 1882: 1846: 1799: 1761: 1731: 1684: 1611: 1577: 1543: 1516: 1478: 1432: 1405: 1378: 1192: 1106: 1069: 1038: 980: 943: 904: 868: 829: 803: 768: 732: 693: 667: 645: 613: 587: 559: 444: 371: 297: 179:
flowing through a conductor induces a magnetic field
5113:
was developed for this specific case for metals and
3294:
is associated with the magnetic field in the region
3228:
is associated with the magnetic field in the region
5541: 5539: 3042:coming out of the diagram, dashed black lines with 5691: 5353:Transmission and Distribution of Electrical Energy 5272:High-Speed Signal propagation Advanced Black Magic 5085: 5055: 5028: 4807: 4777: 4737: 4657: 4614: 4582: 4559: 4534: 4509: 4478: 4446: 4421: 4392: 4077:A type of cable called litz wire (from the German 4006: 3700: 3673: 3618: 3574: 3505: 3419: 3390: 3319: 3286: 3253: 3220: 3187: 3160: 2886: 2811: 2684: 2596: 2568: 2484: 2416: 2313: 2249: 2228: 2194: 2172: 2148: 2121: 2057: 1852: 1828: 1779: 1742: 1715: 1664: 1595: 1561: 1527: 1500: 1454: 1416: 1389: 1358: 1148: 1092: 1044: 1022: 966: 920: 884: 854:{\displaystyle \varepsilon _{r}\,\varepsilon _{0}} 853: 812: 784: 748: 717: 676: 651: 631: 596: 568: 539: 377: 357: 5473:(11th ed.), McGraw Hill, p. Table 18–21 2698:or a coil, the AC resistance is also affected by 1508:current density phasor at the surface of the wire 5870: 5804:RF/Microwave Interaction with Biological Tissues 5536: 5469:Fink, Donald G.; Beatty, H. Wayne, eds. (1978), 5164:, a method for estimating skin effect resistance 4046:in power transformers, increasing their losses. 4016: 5392: 5274:(3rd ed.). Prentice Hall. pp. 58–78. 4627:Gold is a good conductor with a resistivity of 5819: 5762: 5552:IEEE Microwave and Wireless Components Letters 5495: 5483: 5346: 5344: 5507:Central Electricity Generating Board (1982). 5269: 5246:(14th ed.). McGraw-Hill. pp. 2–50. 153:The effect was first described in a paper by 5439:harvtxt error: no target: CITEREFReeve1995 ( 5317: 4990:, Hayt points out that in a power station a 4567:the conductivity of the medium (for copper, 4103:aluminum cable with a steel reinforcing core 3619:{\displaystyle L_{\infty }=L_{\text{ext}}\,} 2829:(imaginary) due to the wire's internal self- 420:in a conductor is very much slower than the 191:induces separate, circulating eddy currents 5732:Electromagnetic Waves and Radiating Systems 5404: 5341: 5545: 5471:Standard Handbook for Electrical Engineers 5468: 5263: 5244:Standard Handbook for Electrical Engineers 4126:Solid or tubular conductors may be silver- 4066:rods are used for high-frequency welding. 2464:that of a hollow tube with wall thickness 1603:Bessel function of the first kind, order 1 1569:Bessel function of the first kind, order 0 5500: 5452: 5450: 5242:Fink, Donald G.; Beaty, H. Wayne (2000). 5241: 4726: 4681: 4357: 4326: 4003: 3670: 3615: 3571: 3502: 3416: 3387: 3327:, the region inside the shield conductor. 3316: 3283: 3250: 3217: 3195:, the region inside the center conductor. 3184: 3157: 1137: 1130: 1126: 1011: 999: 992: 840: 704: 534: 514: 463: 456: 316: 5780: 5672:The Feynman Lectures on Physics Volume 2 5428: 5398: 5324:Vander Vorst, Rosen & Kotsuka (2006) 5270:Johnson, Howard; Graham, Martin (2003). 5100: 4998: 4154: 2980: 2916: 2900: 1177: 168: 48: 36: 5763:Popovic, Zoya; Popovic, Branko (1999), 5711: 5668: 5622: 5610: 5416: 5380: 14: 5871: 5789: 5729: 5546:Rahimi, A.; Yoon, Y.-K. (2016-03-16). 5447: 5374: 5335: 2578:The final approximation above assumes 150:for long-distance power transmission. 5434: 5350: 5328: 5291: 5086:{\displaystyle {\frac {\delta }{2}}.} 4836:Skin depths at microwave frequencies 2887:{\displaystyle {\frac {\mu }{8\pi }}} 1829:{\displaystyle \mu =\mu _{r}\mu _{0}} 1093:{\displaystyle 1/(\rho \varepsilon )} 967:{\displaystyle 1/(\rho \varepsilon )} 220:Regardless of the driving force, the 173:Cause of skin effect. A main current 5689: 5650: 5598: 5456: 5422: 5410: 5386: 5297: 5206: 4930:8420       4922:9220       2845:the wire itself which is termed the 2607:A convenient formula (attributed to 76:(AC) to become distributed within a 5824:. Vol. 3. pp. 2229–2235. 5162:Wheeler incremental inductance rule 5127:Proximity effect (electromagnetism) 4946:206       4938:652       243:An alternating current may also be 24: 5749:Oliver Heaviside: Sage in Solitude 5640:https://www.jstor.org/stable/99095 4731: 4728: 4622:the frequency of the current in Hz 3923: 3715: 3597: 2675: 2672: 2657: 2654: 2635: 1999: 1995: 1950: 1940: 1884: 1501:{\displaystyle \mathbf {J} (R)={}} 1455:{\displaystyle \mathbf {J} (r)={}} 1397:distance from the axis of the wire 718:{\displaystyle \mu _{r}\,\mu _{0}} 310: 25: 5895: 5864: 2158:Bessel function of the first kind 921:{\displaystyle \varepsilon _{0}=} 885:{\displaystyle \varepsilon _{r}=} 4635:and is essentially nonmagnetic: 3640:) and the inside of the shield ( 3420:{\displaystyle L_{\text{ext}}\,} 3287:{\displaystyle L_{\text{shd}}\,} 3221:{\displaystyle L_{\text{ext}}\,} 3161:{\displaystyle L_{\text{cen}}\,} 2953: 2718: 2346: 2329: 2268: 2243: 2229:{\displaystyle \mathbf {J} (R),} 2210: 2188: 2090: 2073: 2036: 2009: 1967: 1921: 1894: 1518: 1480: 1434: 1291: 1217: 1194: 5628: 5616: 5604: 5592: 5515: 5489: 5477: 5462: 4583:{\displaystyle \sigma \approx } 4479:{\displaystyle {\frac {Np}{m}}} 4183:grain-oriented electrical steel 5751:. New York: IEEE Press, 1988. 5730:Jordan, Edward Conrad (1968), 5525:. Sciencedaily.com. 2009-03-09 5368: 5200: 5175: 5056:{\displaystyle {\frac {1}{e}}} 5029:{\displaystyle {\frac {1}{e}}} 4542:the permeability of the medium 4517:the permeability of free space 4282: 4259: 4256: 4244: 3896: 3890: 3701:{\displaystyle L_{\text{ext}}} 2800: 2791: 2776: 2767: 2531: 2519: 2405: 2396: 2381: 2372: 2356: 2350: 2339: 2333: 2302: 2293: 2278: 2272: 2220: 2214: 2113: 2104: 2083: 2077: 2046: 2040: 2019: 2013: 1977: 1971: 1931: 1925: 1904: 1898: 1490: 1484: 1444: 1438: 1350: 1341: 1326: 1317: 1301: 1295: 1281: 1272: 1257: 1248: 1204: 1198: 1087: 1078: 961: 952: 338: 326: 291:from the surface, as follows: 280:from its value at the surface 13: 1: 5806:, John Wiley and Sons, Inc., 5698:(4th ed.), McGraw-Hill, 5509:Modern Power Station Practice 5304:(5th ed.), McGraw-Hill, 5193: 4778:{\displaystyle {\sqrt {9}}=3} 4072: 4017:Material effect on skin depth 3674:{\displaystyle b<r<c\,} 3320:{\displaystyle b<r<c\,} 3254:{\displaystyle a<r<b\,} 2836: 2431: 1870:electromagnetic wave equation 1863: 1528:{\displaystyle \mathbf {I} =} 1166: 813:{\displaystyle \varepsilon =} 5712:Jackson, John David (1999), 5694:Engineering Electromagnetics 5301:Engineering Electromagnetics 4988:Engineering Electromagnetics 2946:case at higher frequencies. 2597:{\displaystyle D\gg \delta } 2426: 2250:{\displaystyle \mathbf {C} } 2195:{\displaystyle \mathbf {C} } 1045:{\displaystyle \varepsilon } 74:alternating electric current 7: 5783:Electric Transmission Lines 5120: 4150: 4097:High-voltage, high-current 1780:{\displaystyle \mu _{r}={}} 1470:, from the axis of the wire 408:in the conductor requires 2 215:counter-electromotive force 148:high-voltage direct current 144:electric power transmission 10: 5900: 5781:Skilling, Hugh H. (1951), 5496:Xi Nan & Sullivan 2005 5484:Popovic & Popovic 1999 5002: 4187:Fe-Ni – high-permeability 4163:Mn-Zn – magnetically soft 937:At frequencies much below 930:permittivity of free space 794:permeability of free space 267: 138:. It is also important at 103:Skin depth depends on the 29: 5795:Radio Engineers' Handbook 5714:Classical Electrodynamics 5636:The Anomalous Skin Effect 5588:– via ResearchGate. 5564:10.1109/LMWC.2016.2537780 5351:Weeks, Walter L. (1981), 5298:Hayt, William H. (1989), 4658:{\displaystyle \mu _{r}=} 4510:{\displaystyle \mu _{0}=} 785:{\displaystyle \mu _{0}=} 749:{\displaystyle \mu _{r}=} 5830:10.1109/IAS.2005.1518758 5651:Chen, Walter Y. (2004), 5168: 5157:Magnetic Reynolds number 4927:60  Hz   4919:50  Hz   4808:{\displaystyle \mu _{r}} 4560:{\displaystyle \sigma =} 4447:{\displaystyle \alpha =} 4429:the skin depth in meters 4422:{\displaystyle \delta =} 4049:Iron rods work well for 3188:{\displaystyle r<a\,} 1743:{\displaystyle \rho ={}} 1596:{\displaystyle J_{1}={}} 1562:{\displaystyle J_{0}={}} 632:{\displaystyle =2\pi f,} 597:{\displaystyle \omega =} 164: 88:induced by the changing 5797:, New York: McGraw-Hill 5716:(3rd ed.), Wiley, 3755:1  Hz   1723:also called skin depth. 416:, or equivalently, the 378:{\displaystyle \delta } 287:according to the depth 278:decreases exponentially 272:The AC current density 5690:Hayt, William (1981), 5653:Home Networking Basics 5221:10.1098/rstl.1883.0013 5087: 5057: 5030: 4819:, where some types of 4809: 4779: 4739: 4659: 4616: 4584: 4561: 4536: 4511: 4480: 4448: 4423: 4394: 4195: 4169:Al – metallic aluminum 4008: 3702: 3675: 3620: 3576: 3507: 3421: 3392: 3321: 3288: 3255: 3222: 3189: 3162: 3129: 3076:middle frequency, and 2923: 2914: 2888: 2813: 2686: 2598: 2570: 2486: 2418: 2315: 2251: 2230: 2196: 2174: 2150: 2123: 2059: 1854: 1830: 1781: 1744: 1717: 1666: 1597: 1563: 1529: 1502: 1456: 1418: 1391: 1360: 1184: 1150: 1094: 1046: 1024: 968: 922: 886: 855: 814: 786: 750: 719: 678: 653: 633: 598: 570: 569:{\displaystyle \rho =} 541: 379: 359: 205: 142:(50–60 Hz) in AC 72:is the tendency of an 61: 46: 5884:Electrical parameters 5111:Mattis–Bardeen theory 5101:Anomalous skin effect 5088: 5058: 5031: 4999:Electromagnetic waves 4904:Skin depth in copper 4810: 4780: 4740: 4660: 4617: 4585: 4562: 4537: 4535:{\displaystyle \mu =} 4512: 4481: 4449: 4424: 4395: 4175:steel 410 – magnetic 4158: 4009: 3703: 3676: 3621: 3577: 3508: 3422: 3393: 3322: 3289: 3256: 3223: 3190: 3163: 3044:arrowheads = magnetic 2984: 2920: 2904: 2889: 2853:from magnetic fields 2814: 2687: 2599: 2571: 2487: 2485:{\displaystyle \rho } 2419: 2316: 2252: 2231: 2197: 2175: 2151: 2149:{\displaystyle J_{0}} 2124: 2060: 1855: 1831: 1789:magnetic permeability 1782: 1745: 1718: 1667: 1598: 1564: 1530: 1503: 1457: 1419: 1392: 1361: 1181: 1151: 1095: 1047: 1025: 969: 923: 887: 856: 815: 787: 758:magnetic permeability 751: 720: 679: 677:{\displaystyle \mu =} 654: 634: 599: 571: 542: 380: 360: 172: 134:(or waveguides), and 52: 40: 5355:, Harper & Row, 5067: 5040: 5013: 4967:100 MHz   4943:100 kHz   4792: 4785:times that of gold. 4759: 4669: 4639: 4603: 4571: 4548: 4523: 4491: 4458: 4435: 4410: 4202: 4172:Cu – metallic copper 4099:overhead power lines 3884: 3806:100 kHz   3685: 3652: 3589: 3519: 3439: 3435:of a coaxial cable: 3403: 3335: 3298: 3270: 3232: 3204: 3172: 3144: 2866: 2821:This impedance is a 2713: 2626: 2582: 2496: 2476: 2325: 2261: 2239: 2206: 2184: 2164: 2133: 2069: 1880: 1844: 1797: 1759: 1729: 1682: 1609: 1575: 1541: 1535:total current phasor 1514: 1476: 1430: 1417:{\displaystyle R={}} 1403: 1390:{\displaystyle r={}} 1376: 1190: 1104: 1067: 1036: 978: 941: 902: 866: 827: 801: 766: 730: 691: 665: 643: 611: 585: 557: 442: 369: 295: 253:electromagnetic wave 56:use stranded coils ( 5413:, pp. 434–439) 5401:, pp. 157–159) 4959:10 MHz   4935:10 kHz   4905: 4837: 4454:the attenuation in 3789:10 kHz   3126:external inductance 2994:insulating sheath, 2958:Let the dimensions 2943:internal inductance 2939:external inductance 2847:internal inductance 2833:, per unit length. 2611:) for the diameter 2460:, has a resistance 43:alternating current 5675:. Addison-Wesley. 5083: 5053: 5026: 4975:1 GHz   4962:20.6    4954:65.2    4951:1 MHz   4903: 4835: 4805: 4775: 4735: 4655: 4615:{\displaystyle f=} 4612: 4580: 4557: 4532: 4507: 4476: 4444: 4419: 4390: 4388: 4196: 4004: 3857:5 MHz   3840:2 MHz   3823:1 MHz   3772:1 kHz   3698: 3671: 3616: 3572: 3503: 3417: 3388: 3317: 3284: 3251: 3218: 3185: 3158: 3130: 3031:into the diagram, 2924: 2915: 2884: 2809: 2682: 2594: 2566: 2482: 2456:large compared to 2414: 2311: 2247: 2226: 2192: 2170: 2146: 2119: 2055: 1850: 1826: 1777: 1740: 1713: 1662: 1593: 1559: 1525: 1498: 1452: 1424:radius of the wire 1414: 1387: 1356: 1185: 1146: 1090: 1042: 1020: 964: 918: 882: 851: 823:of the conductor, 810: 782: 746: 715: 687:of the conductor, 674: 649: 629: 594: 566: 537: 375: 355: 206: 132:transmission lines 62: 47: 5839:978-0-7803-9208-3 5813:978-0-471-73277-8 5774:978-0-201-32678-9 5767:, Prentice-Hall, 5741:978-0-13-249995-8 5734:, Prentice Hall, 5705:978-0-07-027395-5 5662:978-0-13-016511-4 5655:, Prentice Hall, 5511:. Pergamon Press. 5281:978-0-13-084408-8 5253:978-0-07-022005-8 5152:Induction heating 5147:Induction cooking 5078: 5051: 5024: 5005:Penetration depth 4982: 4981: 4886: 4885: 4817:induction cookers 4767: 4718: 4717: 4474: 4381: 4380: 4349: 4348: 4318: 4317: 4287: 4286: 4227: 4001: 3988: 3948: 3873: 3872: 3695: 3612: 3568: 3555: 3542: 3529: 3496: 3476: 3413: 3384: 3371: 3358: 3345: 3280: 3214: 3154: 2882: 2804: 2752: 2725: 2680: 2679: 2652: 2564: 2538: 2409: 2306: 2173:{\displaystyle 0} 2006: 1991: 1964: 1853:{\displaystyle k} 1711: 1710: 1660: 1639: 1638: 1354: 1285: 1233: 1142: 1138: 1135: 1016: 1012: 1009: 659:is the frequency. 652:{\displaystyle f} 605:angular frequency 535: 515: 473: 140:mains frequencies 54:Induction cookers 16:(Redirected from 5891: 5879:Electromagnetism 5859: 5816: 5798: 5786: 5777: 5744: 5726: 5708: 5697: 5686: 5665: 5642: 5634:R. G. Chambers, 5632: 5626: 5625:, p. 32-11) 5620: 5614: 5608: 5602: 5596: 5590: 5589: 5587: 5586: 5543: 5534: 5533: 5531: 5530: 5519: 5513: 5512: 5504: 5498: 5493: 5487: 5481: 5475: 5474: 5466: 5460: 5454: 5445: 5444: 5432: 5426: 5420: 5414: 5408: 5402: 5396: 5390: 5384: 5378: 5372: 5366: 5365: 5348: 5339: 5332: 5326: 5321: 5315: 5314: 5295: 5289: 5288: 5267: 5261: 5260: 5239: 5233: 5232: 5204: 5187: 5179: 5092: 5090: 5089: 5084: 5079: 5071: 5062: 5060: 5059: 5054: 5052: 5044: 5035: 5033: 5032: 5027: 5025: 5017: 4906: 4902: 4838: 4834: 4814: 4812: 4811: 4806: 4804: 4803: 4784: 4782: 4781: 4776: 4768: 4763: 4754: 4752: 4744: 4742: 4741: 4736: 4734: 4719: 4716: 4705: 4704: 4703: 4684: 4683: 4664: 4662: 4661: 4656: 4651: 4650: 4634: 4632: 4621: 4619: 4618: 4613: 4596: 4594: 4589: 4587: 4586: 4581: 4566: 4564: 4563: 4558: 4541: 4539: 4538: 4533: 4516: 4514: 4513: 4508: 4503: 4502: 4485: 4483: 4482: 4477: 4475: 4470: 4462: 4453: 4451: 4450: 4445: 4428: 4426: 4425: 4420: 4399: 4397: 4396: 4391: 4389: 4382: 4373: 4372: 4363: 4359: 4350: 4347: 4343: 4342: 4329: 4328: 4319: 4304: 4300: 4292: 4288: 4285: 4281: 4280: 4271: 4270: 4242: 4234: 4233: 4228: 4220: 4147:communications. 4091:carbon nanotubes 4013: 4011: 4010: 4005: 4002: 4000: 3999: 3998: 3993: 3989: 3987: 3986: 3974: 3960: 3959: 3958: 3953: 3949: 3947: 3946: 3934: 3927: 3926: 3914: 3913: 3903: 3725: 3724: 3707: 3705: 3704: 3699: 3697: 3696: 3693: 3680: 3678: 3677: 3672: 3625: 3623: 3622: 3617: 3614: 3613: 3610: 3601: 3600: 3581: 3579: 3578: 3573: 3570: 3569: 3566: 3557: 3556: 3553: 3544: 3543: 3540: 3531: 3530: 3527: 3512: 3510: 3509: 3504: 3501: 3497: 3489: 3477: 3475: 3467: 3466: 3457: 3449: 3426: 3424: 3423: 3418: 3415: 3414: 3411: 3397: 3395: 3394: 3389: 3386: 3385: 3382: 3373: 3372: 3369: 3360: 3359: 3356: 3347: 3346: 3343: 3326: 3324: 3323: 3318: 3293: 3291: 3290: 3285: 3282: 3281: 3278: 3266:The inductance 3260: 3258: 3257: 3252: 3227: 3225: 3224: 3219: 3216: 3215: 3212: 3200:The inductance 3194: 3192: 3191: 3186: 3167: 3165: 3164: 3159: 3156: 3155: 3152: 3140:The inductance 3122: 3121: 3114: 3113: 3106: 3105: 3098: 3097: 3090: 3089: 3082: 3081: 3074: 3073: 3066: 3065: 3058: 3057: 3050: 3045: 3041: 3039: 3038: 3030: 3028: 3027: 3019: 3017: 3015: 3014: 3004: 3002: 3001: 2993: 2991: 2976: 2975: 2969: 2965: 2961: 2912: 2893: 2891: 2890: 2885: 2883: 2881: 2870: 2818: 2816: 2815: 2810: 2805: 2803: 2790: 2789: 2779: 2766: 2765: 2755: 2753: 2751: 2740: 2732: 2727: 2726: 2723: 2721: 2700:proximity effect 2691: 2689: 2688: 2683: 2681: 2678: 2670: 2662: 2661: 2660: 2650: 2645: 2640: 2639: 2638: 2621: 2614: 2603: 2601: 2600: 2595: 2575: 2573: 2572: 2567: 2565: 2563: 2552: 2544: 2539: 2537: 2514: 2506: 2491: 2489: 2488: 2483: 2472:and resistivity 2471: 2467: 2459: 2455: 2451: 2447: 2443: 2423: 2421: 2420: 2415: 2410: 2408: 2395: 2394: 2384: 2371: 2370: 2360: 2349: 2332: 2320: 2318: 2317: 2312: 2307: 2305: 2292: 2291: 2281: 2271: 2265: 2256: 2254: 2253: 2248: 2246: 2235: 2233: 2232: 2227: 2213: 2201: 2199: 2198: 2193: 2191: 2179: 2177: 2176: 2171: 2155: 2153: 2152: 2147: 2145: 2144: 2128: 2126: 2125: 2120: 2103: 2102: 2093: 2076: 2064: 2062: 2061: 2056: 2039: 2034: 2033: 2012: 2007: 2005: 1994: 1992: 1984: 1970: 1965: 1963: 1962: 1961: 1948: 1947: 1938: 1924: 1919: 1918: 1897: 1892: 1891: 1859: 1857: 1856: 1851: 1835: 1833: 1832: 1827: 1825: 1824: 1815: 1814: 1791:of the conductor 1786: 1784: 1783: 1778: 1776: 1771: 1770: 1753:of the conductor 1749: 1747: 1746: 1741: 1739: 1722: 1720: 1719: 1714: 1712: 1709: 1701: 1693: 1692: 1676:in the conductor 1671: 1669: 1668: 1663: 1661: 1656: 1645: 1640: 1634: 1620: 1619: 1602: 1600: 1599: 1594: 1592: 1587: 1586: 1568: 1566: 1565: 1560: 1558: 1553: 1552: 1534: 1532: 1531: 1526: 1521: 1507: 1505: 1504: 1499: 1497: 1483: 1462:current density 1461: 1459: 1458: 1453: 1451: 1437: 1423: 1421: 1420: 1415: 1413: 1396: 1394: 1393: 1388: 1386: 1365: 1363: 1362: 1357: 1355: 1353: 1340: 1339: 1329: 1316: 1315: 1305: 1294: 1286: 1284: 1271: 1270: 1260: 1247: 1246: 1236: 1234: 1232: 1221: 1220: 1211: 1197: 1173:Bessel functions 1162: 1155: 1153: 1152: 1147: 1140: 1139: 1136: 1131: 1124: 1122: 1120: 1099: 1097: 1096: 1091: 1077: 1059: 1054:plasma frequency 1051: 1049: 1048: 1043: 1029: 1027: 1026: 1021: 1014: 1013: 1010: 1008: 1000: 990: 988: 973: 971: 970: 965: 951: 927: 925: 924: 919: 914: 913: 896:of the conductor 891: 889: 888: 883: 878: 877: 860: 858: 857: 852: 850: 849: 839: 838: 819: 817: 816: 811: 791: 789: 788: 783: 778: 777: 760:of the conductor 755: 753: 752: 747: 742: 741: 724: 722: 721: 716: 714: 713: 703: 702: 683: 681: 680: 675: 658: 656: 655: 650: 638: 636: 635: 630: 603: 601: 600: 595: 579:of the conductor 575: 573: 572: 567: 546: 544: 543: 538: 536: 533: 529: 516: 513: 512: 507: 503: 481: 474: 472: 464: 454: 452: 427: 411: 396: 393:(about 0.37) of 384: 382: 381: 376: 364: 362: 361: 356: 354: 353: 352: 348: 315: 314: 313: 290: 283: 275: 262:normal incidence 202: 201: 195: 189: 183: 177: 159:Oliver Heaviside 66:electromagnetism 21: 5899: 5898: 5894: 5893: 5892: 5890: 5889: 5888: 5869: 5868: 5867: 5862: 5840: 5814: 5775: 5747:Nahin, Paul J. 5742: 5724: 5706: 5683: 5663: 5646: 5645: 5633: 5629: 5621: 5617: 5609: 5605: 5601:, pp. 401) 5597: 5593: 5584: 5582: 5544: 5537: 5528: 5526: 5521: 5520: 5516: 5505: 5501: 5494: 5490: 5482: 5478: 5467: 5463: 5455: 5448: 5438: 5433: 5429: 5421: 5417: 5409: 5405: 5397: 5393: 5389:, pp. 303) 5385: 5381: 5373: 5369: 5363: 5349: 5342: 5333: 5329: 5322: 5318: 5312: 5296: 5292: 5282: 5268: 5264: 5254: 5240: 5236: 5205: 5201: 5196: 5191: 5190: 5180: 5176: 5171: 5123: 5115:superconductors 5103: 5070: 5068: 5065: 5064: 5043: 5041: 5038: 5037: 5016: 5014: 5011: 5010: 5007: 5001: 4913: 4845: 4821:stainless steel 4799: 4795: 4793: 4790: 4789: 4762: 4760: 4757: 4756: 4750: 4748: 4727: 4706: 4696: 4692: 4685: 4682: 4670: 4667: 4666: 4646: 4642: 4640: 4637: 4636: 4630: 4628: 4625: 4604: 4601: 4600: 4592: 4590: 4572: 4569: 4568: 4549: 4546: 4545: 4524: 4521: 4520: 4498: 4494: 4492: 4489: 4488: 4463: 4461: 4459: 4456: 4455: 4436: 4433: 4432: 4411: 4408: 4407: 4387: 4386: 4368: 4364: 4358: 4338: 4334: 4333: 4327: 4299: 4290: 4289: 4276: 4272: 4266: 4262: 4243: 4235: 4232: 4219: 4212: 4205: 4203: 4200: 4199: 4194: 4177:stainless steel 4153: 4075: 4019: 3994: 3982: 3978: 3973: 3969: 3968: 3961: 3954: 3942: 3938: 3933: 3929: 3928: 3922: 3918: 3909: 3905: 3904: 3902: 3885: 3882: 3881: 3749: 3744: 3739: 3734: 3729: 3718: 3716:Telephone cable 3692: 3688: 3686: 3683: 3682: 3653: 3650: 3649: 3609: 3605: 3596: 3592: 3590: 3587: 3586: 3565: 3561: 3552: 3548: 3539: 3535: 3526: 3522: 3520: 3517: 3516: 3488: 3484: 3468: 3462: 3458: 3456: 3445: 3440: 3437: 3436: 3410: 3406: 3404: 3401: 3400: 3381: 3377: 3368: 3364: 3355: 3351: 3342: 3338: 3336: 3333: 3332: 3299: 3296: 3295: 3277: 3273: 3271: 3268: 3267: 3233: 3230: 3229: 3211: 3207: 3205: 3202: 3201: 3173: 3170: 3169: 3151: 3147: 3145: 3142: 3141: 3119: 3118: 3111: 3110: 3103: 3102: 3095: 3094: 3087: 3086: 3079: 3078: 3071: 3070: 3068:low frequency, 3063: 3062: 3060:non-energized, 3055: 3054: 3048: 3043: 3034: 3033: 3032: 3023: 3022: 3021: 3010: 3009: 3007: 3006: 2997: 2996: 2995: 2987: 2986: 2973: 2972: 2967: 2963: 2959: 2956: 2926: 2910: 2874: 2869: 2867: 2864: 2863: 2839: 2785: 2781: 2780: 2761: 2757: 2756: 2754: 2741: 2733: 2731: 2722: 2717: 2716: 2714: 2711: 2710: 2671: 2666: 2653: 2646: 2644: 2634: 2633: 2629: 2627: 2624: 2623: 2619: 2617: 2612: 2583: 2580: 2579: 2553: 2545: 2543: 2515: 2507: 2505: 2497: 2494: 2493: 2477: 2474: 2473: 2469: 2465: 2457: 2453: 2449: 2445: 2441: 2434: 2429: 2390: 2386: 2385: 2366: 2362: 2361: 2359: 2345: 2328: 2326: 2323: 2322: 2287: 2283: 2282: 2267: 2266: 2264: 2262: 2259: 2258: 2242: 2240: 2237: 2236: 2209: 2207: 2204: 2203: 2187: 2185: 2182: 2181: 2165: 2162: 2161: 2140: 2136: 2134: 2131: 2130: 2098: 2094: 2089: 2072: 2070: 2067: 2066: 2035: 2029: 2025: 2008: 1998: 1993: 1983: 1966: 1957: 1953: 1949: 1943: 1939: 1937: 1920: 1914: 1910: 1893: 1887: 1883: 1881: 1878: 1877: 1866: 1845: 1842: 1841: 1838: 1820: 1816: 1810: 1806: 1798: 1795: 1794: 1775: 1766: 1762: 1760: 1757: 1756: 1738: 1730: 1727: 1726: 1702: 1694: 1691: 1683: 1680: 1679: 1646: 1644: 1621: 1618: 1610: 1607: 1606: 1591: 1582: 1578: 1576: 1573: 1572: 1557: 1548: 1544: 1542: 1539: 1538: 1517: 1515: 1512: 1511: 1496: 1479: 1477: 1474: 1473: 1450: 1433: 1431: 1428: 1427: 1412: 1404: 1401: 1400: 1385: 1377: 1374: 1373: 1335: 1331: 1330: 1311: 1307: 1306: 1304: 1290: 1266: 1262: 1261: 1242: 1238: 1237: 1235: 1222: 1216: 1212: 1210: 1193: 1191: 1188: 1187: 1169: 1160: 1125: 1123: 1121: 1113: 1105: 1102: 1101: 1073: 1068: 1065: 1064: 1057: 1037: 1034: 1033: 1001: 991: 989: 987: 979: 976: 975: 947: 942: 939: 938: 935: 909: 905: 903: 900: 899: 873: 869: 867: 864: 863: 845: 841: 834: 830: 828: 825: 824: 802: 799: 798: 773: 769: 767: 764: 763: 737: 733: 731: 728: 727: 709: 705: 698: 694: 692: 689: 688: 666: 663: 662: 644: 641: 640: 612: 609: 608: 586: 583: 582: 558: 555: 554: 508: 493: 489: 488: 480: 479: 475: 465: 455: 453: 451: 443: 440: 439: 430: 425: 409: 399: 394: 370: 367: 366: 344: 325: 321: 317: 309: 308: 304: 296: 293: 292: 288: 286: 281: 276:in a conductor 273: 270: 222:current density 203: 199: 198: 193: 187: 181: 175: 167: 82:current density 35: 28: 23: 22: 15: 12: 11: 5: 5897: 5887: 5886: 5881: 5866: 5865:External links 5863: 5861: 5860: 5838: 5817: 5812: 5799: 5787: 5778: 5773: 5760: 5745: 5740: 5727: 5723:978-0471309321 5722: 5709: 5704: 5687: 5681: 5666: 5661: 5647: 5644: 5643: 5627: 5615: 5613:, p. 353) 5603: 5591: 5558:(4): 258–260. 5535: 5514: 5499: 5488: 5476: 5461: 5446: 5437:, p. 558) 5427: 5425:, p. 434) 5415: 5403: 5399:Skilling (1951 5391: 5379: 5367: 5362:978-0060469825 5361: 5340: 5338:, p. 130) 5327: 5316: 5311:978-0070274068 5310: 5290: 5280: 5262: 5252: 5234: 5198: 5197: 5195: 5192: 5189: 5188: 5173: 5172: 5170: 5167: 5166: 5165: 5159: 5154: 5149: 5144: 5139: 5134: 5129: 5122: 5119: 5102: 5099: 5082: 5077: 5074: 5050: 5047: 5023: 5020: 5000: 4997: 4984: 4983: 4980: 4979: 4976: 4972: 4971: 4968: 4964: 4963: 4960: 4956: 4955: 4952: 4948: 4947: 4944: 4940: 4939: 4936: 4932: 4931: 4928: 4924: 4923: 4920: 4916: 4915: 4910: 4888: 4887: 4884: 4883: 4880: 4876: 4875: 4872: 4868: 4867: 4864: 4860: 4859: 4856: 4852: 4851: 4842: 4802: 4798: 4774: 4771: 4766: 4733: 4730: 4725: 4722: 4715: 4712: 4709: 4702: 4699: 4695: 4691: 4688: 4680: 4677: 4674: 4654: 4649: 4645: 4624: 4623: 4611: 4608: 4598: 4579: 4576: 4556: 4553: 4543: 4531: 4528: 4518: 4506: 4501: 4497: 4486: 4473: 4469: 4466: 4443: 4440: 4430: 4418: 4415: 4404: 4385: 4379: 4376: 4371: 4367: 4362: 4356: 4353: 4346: 4341: 4337: 4332: 4325: 4322: 4316: 4313: 4310: 4307: 4303: 4298: 4295: 4293: 4291: 4284: 4279: 4275: 4269: 4265: 4261: 4258: 4255: 4252: 4249: 4246: 4241: 4238: 4231: 4226: 4223: 4218: 4215: 4213: 4211: 4208: 4207: 4193: 4192: 4185: 4179: 4173: 4170: 4167: 4160: 4152: 4149: 4074: 4071: 4062:itself. Only 4051:direct-current 4018: 4015: 3997: 3992: 3985: 3981: 3977: 3972: 3967: 3964: 3957: 3952: 3945: 3941: 3937: 3932: 3925: 3921: 3917: 3912: 3908: 3901: 3898: 3895: 3892: 3889: 3875: 3874: 3871: 3870: 3867: 3864: 3861: 3858: 3854: 3853: 3850: 3847: 3844: 3841: 3837: 3836: 3833: 3830: 3827: 3824: 3820: 3819: 3816: 3813: 3810: 3807: 3803: 3802: 3799: 3796: 3793: 3790: 3786: 3785: 3782: 3779: 3776: 3773: 3769: 3768: 3765: 3762: 3759: 3756: 3752: 3751: 3746: 3741: 3736: 3731: 3717: 3714: 3691: 3669: 3666: 3663: 3660: 3657: 3608: 3604: 3599: 3595: 3564: 3560: 3551: 3547: 3538: 3534: 3525: 3500: 3495: 3492: 3487: 3483: 3480: 3474: 3471: 3465: 3461: 3455: 3452: 3448: 3444: 3409: 3380: 3376: 3367: 3363: 3354: 3350: 3341: 3329: 3328: 3315: 3312: 3309: 3306: 3303: 3276: 3263: 3262: 3249: 3246: 3243: 3240: 3237: 3210: 3197: 3196: 3183: 3180: 3177: 3150: 2955: 2952: 2880: 2877: 2873: 2838: 2835: 2808: 2802: 2799: 2796: 2793: 2788: 2784: 2778: 2775: 2772: 2769: 2764: 2760: 2750: 2747: 2744: 2739: 2736: 2730: 2720: 2677: 2674: 2669: 2665: 2659: 2656: 2649: 2643: 2637: 2632: 2615: 2593: 2590: 2587: 2562: 2559: 2556: 2551: 2548: 2542: 2536: 2533: 2530: 2527: 2524: 2521: 2518: 2513: 2510: 2504: 2501: 2481: 2433: 2430: 2428: 2425: 2413: 2407: 2404: 2401: 2398: 2393: 2389: 2383: 2380: 2377: 2374: 2369: 2365: 2358: 2355: 2352: 2348: 2344: 2341: 2338: 2335: 2331: 2310: 2304: 2301: 2298: 2295: 2290: 2286: 2280: 2277: 2274: 2270: 2245: 2225: 2222: 2219: 2216: 2212: 2190: 2169: 2143: 2139: 2118: 2115: 2112: 2109: 2106: 2101: 2097: 2092: 2088: 2085: 2082: 2079: 2075: 2054: 2051: 2048: 2045: 2042: 2038: 2032: 2028: 2024: 2021: 2018: 2015: 2011: 2004: 2001: 1997: 1990: 1987: 1982: 1979: 1976: 1973: 1969: 1960: 1956: 1952: 1946: 1942: 1936: 1933: 1930: 1927: 1923: 1917: 1913: 1909: 1906: 1903: 1900: 1896: 1890: 1886: 1868:Combining the 1865: 1862: 1849: 1837: 1836: 1823: 1819: 1813: 1809: 1805: 1802: 1792: 1774: 1769: 1765: 1754: 1737: 1734: 1724: 1708: 1705: 1700: 1697: 1690: 1687: 1677: 1659: 1655: 1652: 1649: 1643: 1637: 1633: 1630: 1627: 1624: 1617: 1614: 1604: 1590: 1585: 1581: 1570: 1556: 1551: 1547: 1536: 1524: 1520: 1509: 1495: 1492: 1489: 1486: 1482: 1471: 1449: 1446: 1443: 1440: 1436: 1425: 1411: 1408: 1398: 1384: 1381: 1370: 1352: 1349: 1346: 1343: 1338: 1334: 1328: 1325: 1322: 1319: 1314: 1310: 1303: 1300: 1297: 1293: 1289: 1283: 1280: 1277: 1274: 1269: 1265: 1259: 1256: 1253: 1250: 1245: 1241: 1231: 1228: 1225: 1219: 1215: 1209: 1206: 1203: 1200: 1196: 1168: 1165: 1159:100 kHz ( 1145: 1134: 1129: 1119: 1116: 1112: 1109: 1089: 1086: 1083: 1080: 1076: 1072: 1041: 1019: 1007: 1004: 998: 995: 986: 983: 963: 960: 957: 954: 950: 946: 934: 933: 917: 912: 908: 897: 881: 876: 872: 861: 848: 844: 837: 833: 809: 806: 796: 781: 776: 772: 761: 745: 740: 736: 725: 712: 708: 701: 697: 673: 670: 660: 648: 628: 625: 622: 619: 616: 593: 590: 580: 565: 562: 551: 532: 528: 525: 522: 519: 511: 506: 502: 499: 496: 492: 487: 484: 478: 471: 468: 462: 459: 450: 447: 428: 422:speed of light 418:phase velocity 397: 385:is called the 374: 351: 347: 343: 340: 337: 334: 331: 328: 324: 320: 312: 307: 303: 300: 284: 269: 266: 238:direct current 197: 166: 163: 80:such that the 26: 9: 6: 4: 3: 2: 5896: 5885: 5882: 5880: 5877: 5876: 5874: 5857: 5853: 5849: 5845: 5841: 5835: 5831: 5827: 5823: 5818: 5815: 5809: 5805: 5800: 5796: 5792: 5791:Terman, F. E. 5788: 5785:, McGraw-Hill 5784: 5779: 5776: 5770: 5766: 5761: 5758: 5757:0-87942-238-6 5754: 5750: 5746: 5743: 5737: 5733: 5728: 5725: 5719: 5715: 5710: 5707: 5701: 5696: 5695: 5688: 5684: 5682:0-201-02117-X 5678: 5674: 5673: 5667: 5664: 5658: 5654: 5649: 5648: 5641: 5637: 5631: 5624: 5623:Feynman (1964 5619: 5612: 5611:Jackson (1999 5607: 5600: 5595: 5581: 5577: 5573: 5569: 5565: 5561: 5557: 5553: 5549: 5542: 5540: 5524: 5518: 5510: 5503: 5497: 5492: 5486:, p. 385 5485: 5480: 5472: 5465: 5459:, p. 26) 5458: 5453: 5451: 5442: 5436: 5431: 5424: 5419: 5412: 5407: 5400: 5395: 5388: 5383: 5376: 5371: 5364: 5358: 5354: 5347: 5345: 5337: 5331: 5325: 5320: 5313: 5307: 5303: 5302: 5294: 5287: 5283: 5277: 5273: 5266: 5259: 5255: 5249: 5245: 5238: 5230: 5226: 5222: 5218: 5214: 5210: 5203: 5199: 5185: 5178: 5174: 5163: 5160: 5158: 5155: 5153: 5150: 5148: 5145: 5143: 5140: 5138: 5135: 5133: 5130: 5128: 5125: 5124: 5118: 5116: 5112: 5108: 5098: 5096: 5080: 5075: 5072: 5048: 5045: 5021: 5018: 5006: 4996: 4993: 4989: 4977: 4974: 4973: 4969: 4966: 4965: 4961: 4958: 4957: 4953: 4950: 4949: 4945: 4942: 4941: 4937: 4934: 4933: 4929: 4926: 4925: 4921: 4918: 4917: 4911: 4908: 4907: 4901: 4900: 4899: 4896: 4894: 4881: 4878: 4877: 4873: 4870: 4869: 4865: 4862: 4861: 4857: 4854: 4853: 4849: 4843: 4840: 4839: 4833: 4832: 4831: 4829: 4824: 4822: 4818: 4800: 4796: 4786: 4772: 4769: 4764: 4745: 4723: 4720: 4713: 4710: 4707: 4700: 4697: 4693: 4689: 4686: 4678: 4675: 4672: 4652: 4647: 4643: 4609: 4606: 4599: 4577: 4574: 4554: 4551: 4544: 4529: 4526: 4519: 4504: 4499: 4495: 4487: 4471: 4467: 4464: 4441: 4438: 4431: 4416: 4413: 4406: 4405: 4403: 4400: 4383: 4377: 4374: 4369: 4365: 4360: 4354: 4351: 4344: 4339: 4335: 4330: 4323: 4320: 4314: 4311: 4308: 4305: 4301: 4296: 4294: 4277: 4273: 4267: 4263: 4253: 4250: 4247: 4239: 4236: 4229: 4224: 4221: 4216: 4214: 4209: 4191:(80%Ni-20%Fe) 4190: 4186: 4184: 4180: 4178: 4174: 4171: 4168: 4166: 4162: 4161: 4157: 4148: 4146: 4140: 4137: 4133: 4129: 4124: 4121: 4119: 4115: 4110: 4106: 4104: 4100: 4095: 4092: 4087: 4082: 4080: 4070: 4067: 4065: 4061: 4056: 4052: 4047: 4045: 4040: 4036: 4035:ferromagnetic 4032: 4027: 4025: 4014: 3995: 3990: 3983: 3979: 3975: 3970: 3965: 3962: 3955: 3950: 3943: 3939: 3935: 3930: 3919: 3915: 3910: 3906: 3899: 3893: 3887: 3878: 3868: 3865: 3862: 3859: 3856: 3855: 3851: 3848: 3845: 3842: 3839: 3838: 3834: 3831: 3828: 3825: 3822: 3821: 3817: 3814: 3811: 3808: 3805: 3804: 3800: 3797: 3794: 3791: 3788: 3787: 3783: 3780: 3777: 3774: 3771: 3770: 3766: 3763: 3760: 3757: 3754: 3753: 3747: 3742: 3737: 3732: 3727: 3726: 3723: 3722: 3721: 3713: 3709: 3689: 3667: 3664: 3661: 3658: 3655: 3647: 3644: =  3643: 3639: 3636: =  3635: 3630: 3627: 3606: 3602: 3593: 3583: 3562: 3558: 3549: 3545: 3536: 3532: 3523: 3513: 3498: 3493: 3490: 3485: 3481: 3478: 3472: 3469: 3463: 3459: 3453: 3450: 3446: 3442: 3434: 3430: 3407: 3398: 3378: 3374: 3365: 3361: 3352: 3348: 3339: 3313: 3310: 3307: 3304: 3301: 3274: 3265: 3264: 3247: 3244: 3241: 3238: 3235: 3208: 3199: 3198: 3181: 3178: 3175: 3148: 3139: 3138: 3137: 3134: 3127: 3123: 3115: 3107: 3099: 3091: 3083: 3075: 3067: 3059: 3051: 3037: 3026: 3013: 3000: 2990: 2983: 2979: 2977: 2954:Coaxial cable 2951: 2947: 2944: 2940: 2934: 2931: 2919: 2908: 2903: 2899: 2897: 2878: 2875: 2871: 2860: 2856: 2852: 2848: 2844: 2834: 2832: 2828: 2824: 2819: 2806: 2797: 2794: 2786: 2782: 2773: 2770: 2762: 2758: 2748: 2745: 2742: 2737: 2734: 2728: 2708: 2705: 2701: 2697: 2692: 2667: 2663: 2647: 2641: 2630: 2610: 2605: 2591: 2588: 2585: 2576: 2560: 2557: 2554: 2549: 2546: 2540: 2534: 2528: 2525: 2522: 2516: 2511: 2508: 2502: 2499: 2479: 2463: 2462:approximately 2439: 2424: 2411: 2402: 2399: 2391: 2387: 2378: 2375: 2367: 2363: 2353: 2342: 2336: 2308: 2299: 2296: 2288: 2284: 2275: 2223: 2217: 2167: 2159: 2141: 2137: 2116: 2110: 2107: 2099: 2095: 2086: 2080: 2052: 2049: 2043: 2030: 2026: 2022: 2016: 2002: 1988: 1985: 1980: 1974: 1958: 1954: 1944: 1934: 1928: 1915: 1911: 1907: 1901: 1888: 1875: 1871: 1861: 1847: 1821: 1817: 1811: 1807: 1803: 1800: 1793: 1790: 1772: 1767: 1763: 1755: 1752: 1735: 1732: 1725: 1706: 1703: 1698: 1695: 1688: 1685: 1678: 1675: 1657: 1653: 1650: 1647: 1641: 1635: 1631: 1628: 1625: 1622: 1615: 1612: 1605: 1588: 1583: 1579: 1571: 1554: 1549: 1545: 1537: 1522: 1510: 1493: 1487: 1472: 1469: 1466:at distance, 1465: 1447: 1441: 1426: 1409: 1406: 1399: 1382: 1379: 1372: 1371: 1369: 1366: 1347: 1344: 1336: 1332: 1323: 1320: 1312: 1308: 1298: 1287: 1278: 1275: 1267: 1263: 1254: 1251: 1243: 1239: 1229: 1226: 1223: 1213: 1207: 1201: 1180: 1176: 1174: 1164: 1156: 1143: 1132: 1127: 1117: 1114: 1110: 1107: 1084: 1081: 1074: 1070: 1061: 1055: 1039: 1030: 1017: 1005: 1002: 996: 993: 984: 981: 958: 955: 948: 944: 931: 915: 910: 906: 898: 895: 879: 874: 870: 862: 846: 842: 835: 831: 822: 807: 804: 797: 795: 779: 774: 770: 762: 759: 743: 738: 734: 726: 710: 706: 699: 695: 686: 671: 668: 661: 646: 626: 623: 620: 617: 614: 606: 591: 588: 581: 578: 563: 560: 553: 552: 550: 547: 530: 526: 523: 520: 517: 509: 504: 500: 497: 494: 490: 485: 482: 476: 469: 466: 460: 457: 448: 445: 436: 434: 423: 419: 415: 407: 403: 392: 388: 372: 349: 345: 341: 335: 332: 329: 322: 318: 305: 301: 298: 279: 265: 263: 258: 254: 250: 246: 241: 239: 235: 231: 227: 223: 218: 216: 212: 196: 190: 184: 178: 171: 162: 160: 156: 151: 149: 145: 141: 137: 133: 129: 124: 122: 117: 115: 111: 106: 101: 99: 95: 91: 87: 86:eddy currents 83: 79: 75: 71: 67: 59: 55: 51: 44: 39: 33: 19: 5821: 5803: 5794: 5782: 5764: 5748: 5731: 5713: 5693: 5671: 5652: 5635: 5630: 5618: 5606: 5594: 5583:. Retrieved 5555: 5551: 5527:. Retrieved 5517: 5508: 5502: 5491: 5479: 5470: 5464: 5430: 5418: 5406: 5394: 5382: 5377:, p. ?? 5370: 5352: 5336:Jordan (1968 5330: 5319: 5300: 5293: 5285: 5271: 5265: 5257: 5243: 5237: 5212: 5208: 5202: 5183: 5177: 5132:Eddy current 5107:Heinz London 5104: 5008: 4987: 4985: 4978:2.06   4970:6.52   4897: 4889: 4825: 4787: 4746: 4626: 4401: 4197: 4141: 4125: 4122: 4117: 4111: 4107: 4096: 4089:composed of 4086:transformers 4083: 4078: 4076: 4068: 4064:non-magnetic 4048: 4031:permeability 4028: 4020: 3879: 3876: 3719: 3710: 3645: 3641: 3637: 3633: 3631: 3628: 3584: 3514: 3432: 3428: 3399: 3330: 3135: 3131: 3125: 3117: 3109: 3101: 3093: 3085: 3077: 3069: 3061: 3053: 3047: 3035: 3024: 3018:= dielectric 3011: 2998: 2988: 2971: 2957: 2948: 2942: 2938: 2935: 2929: 2925: 2906: 2858: 2854: 2846: 2842: 2840: 2820: 2703: 2693: 2606: 2577: 2461: 2435: 1867: 1839: 1467: 1367: 1186: 1170: 1157: 1062: 1031: 936: 894:permittivity 821:permittivity 685:permeability 548: 437: 386: 271: 256: 244: 242: 229: 225: 219: 207: 192: 186: 180: 174: 152: 125: 118: 102: 97: 93: 69: 63: 5435:Reeve (1995 5375:Terman 1943 5215:: 519–549. 5142:Transformer 4753:10 Ω·m 4633:10 Ω·m 4595:10 S/m 4079:Litzendraht 4044:laminations 4039:micrometers 3431:per length 3003:= conductor 2896:table below 2609:F.E. Terman 1751:resistivity 1674:wave number 607:of current 577:resistivity 433:Snell's law 257:skin effect 226:skin effect 155:Horace Lamb 70:skin effect 5873:Categories 5599:Hayt (1981 5585:2020-12-22 5529:2011-11-08 5457:Chen (2004 5423:Hayt (1981 5411:Hayt (1981 5387:Hayt (1981 5194:References 5095:waveguides 5003:See also: 4912:Skin depth 4844:Skin depth 4828:micrometer 4101:often use 4073:Mitigation 2837:Inductance 2831:inductance 2432:Resistance 1864:Derivation 1167:Round wire 1058:10 Hz 406:wavelength 387:skin depth 230:skin depth 130:circuits, 110:resistance 98:skin depth 18:Skin depth 5856:114947614 5848:0197-2618 5572:1531-1309 5229:111283238 5184:magnitude 5137:Litz wire 5073:δ 4909:Frequency 4841:Conductor 4797:μ 4711:⋅ 4698:− 4690:⋅ 4673:δ 4644:μ 4578:≈ 4575:σ 4552:σ 4527:μ 4496:μ 4439:α 4414:δ 4378:σ 4366:μ 4352:≈ 4336:μ 4331:ρ 4321:≈ 4315:σ 4312:μ 4306:π 4274:μ 4264:μ 4251:π 4240:ρ 4225:α 4210:δ 4189:permalloy 4136:microwave 3924:∞ 3920:ℓ 3907:ℓ 3728:Frequency 3598:∞ 3482:⁡ 3473:π 3460:μ 3040:= current 3029:= current 2992:= overall 2879:π 2872:μ 2851:induction 2827:reactance 2746:π 2738:ρ 2707:impedance 2592:δ 2589:≫ 2561:δ 2555:π 2550:ρ 2547:ℓ 2541:≈ 2535:δ 2529:δ 2526:− 2517:π 2512:ρ 2509:ℓ 2503:≈ 2480:ρ 2427:Impedance 2160:of order 2000:∂ 1996:∂ 1951:∂ 1941:∂ 1885:∇ 1876:produces 1874:Ohm's law 1818:μ 1808:μ 1801:μ 1787:relative 1764:μ 1733:ρ 1707:μ 1704:ω 1699:ρ 1686:δ 1658:δ 1651:− 1636:ρ 1632:μ 1629:ω 1623:− 1227:π 1133:μ 1128:ε 1118:ρ 1111:≈ 1108:δ 1085:ε 1082:ρ 1040:ε 1006:μ 1003:ω 997:ρ 982:δ 959:ε 956:ρ 907:ε 892:relative 871:ε 843:ε 832:ε 805:ε 771:μ 756:relative 735:μ 707:μ 696:μ 669:μ 621:π 589:ω 561:ρ 527:ε 524:ω 521:ρ 501:ε 498:ω 495:ρ 470:μ 467:ω 461:ρ 446:δ 373:δ 350:δ 323:− 249:induction 211:electrons 161:in 1885. 128:microwave 121:litz wire 105:frequency 78:conductor 58:Litz wire 5793:(1943), 5580:30187468 5121:See also 4855:Aluminum 4181:Fe-Si – 4151:Examples 4024:2000 MCM 3750:(nF/km) 3128:remains. 2859:external 2704:internal 2257:must be 228:and the 136:antennas 112:. At 60 90:magnetic 4891:3  4165:ferrite 4055:welding 3866:118.074 3745:(μS/km) 3740:(mH/km) 3681:. Only 3016:  3008:  2978:below. 2855:outside 2823:complex 402:delayed 268:Formula 245:induced 5854:  5846:  5836:  5810:  5771:  5755:  5738:  5720:  5702:  5679:  5659:  5578:  5570:  5359:  5308:  5278:  5250:  5227:  4992:busbar 4882:0.634 4879:Silver 4874:0.753 4866:0.652 4863:Copper 4858:0.820 4402:where 4128:plated 4118:ribbon 4114:busbar 3869:51.57 3863:0.4675 3860:999.41 3852:51.57 3849:53.205 3846:0.4862 3843:643.14 3835:51.57 3832:29.111 3829:0.5062 3826:463.59 3818:51.57 3812:0.5807 3809:191.63 3801:51.57 3795:0.6099 3792:172.70 3784:51.57 3778:0.6125 3775:172.28 3767:51.57 3761:0.6129 3758:172.24 3735:(Ω/km) 3046:flux ( 2966:, and 2930:inside 2922:depth. 2843:inside 2651:  2438:losses 2321:Thus, 2129:where 1840:Since 1464:phasor 1368:where 1141:  1015:  639:where 549:where 414:vacuum 365:where 5852:S2CID 5576:S2CID 5225:S2CID 5169:Notes 4914:(μm) 4053:(DC) 3815:3.327 3798:0.531 3781:0.072 3764:0.000 3344:total 3100:and 3025:green 3012:white 2989:black 2696:cable 2156:is a 251:. An 165:Cause 5844:ISSN 5834:ISBN 5808:ISBN 5769:ISBN 5753:ISBN 5736:ISBN 5718:ISBN 5700:ISBN 5677:ISBN 5657:ISBN 5568:ISSN 5441:help 5357:ISBN 5306:ISBN 5276:ISBN 5248:ISBN 4871:Gold 4724:11.1 4687:2.44 4629:2.44 4591:58.5 3730:(Hz) 3665:< 3659:< 3311:< 3305:< 3245:< 3239:< 3179:< 3036:blue 2622:is: 2492:is: 2180:and 1872:and 1672:the 928:the 792:the 94:skin 32:skin 5826:doi 5560:doi 5217:doi 5213:174 5093:In 5063:is 4986:In 4749:2.2 4679:503 4355:503 4324:503 4134:to 4132:VHF 4060:arc 3694:ext 3611:ext 3567:ext 3554:shd 3541:cen 3412:ext 3383:ext 3370:shd 3357:cen 3279:shd 3213:ext 3153:cen 2999:tan 2724:int 2648:200 234:1/e 64:In 5875:: 5850:. 5842:. 5832:. 5574:. 5566:. 5556:26 5554:. 5550:. 5538:^ 5449:^ 5343:^ 5284:. 5256:. 5223:. 5211:. 5117:. 4893:μm 4850:) 4848:μm 4830:: 4714:50 4694:10 4145:5G 3626:. 3582:. 3528:DC 3479:ln 3020:, 3005:, 2962:, 2909:/8 2898:. 2604:. 2053:0. 1060:. 264:. 114:Hz 100:. 68:, 5858:. 5828:: 5759:. 5685:. 5562:: 5532:. 5443:) 5231:. 5219:: 5081:. 5076:2 5049:e 5046:1 5022:e 5019:1 4846:( 4801:r 4773:3 4770:= 4765:9 4751:× 4732:m 4729:m 4721:= 4708:1 4701:8 4676:= 4653:= 4648:r 4631:× 4610:= 4607:f 4597:) 4593:× 4555:= 4530:= 4505:= 4500:0 4472:m 4468:p 4465:N 4442:= 4417:= 4384:, 4375:f 4370:r 4361:1 4345:f 4340:r 4309:f 4302:1 4297:= 4283:) 4278:r 4268:0 4260:( 4257:) 4254:f 4248:2 4245:( 4237:2 4230:= 4222:1 4217:= 3996:b 3991:) 3984:m 3980:f 3976:f 3971:( 3966:+ 3963:1 3956:b 3951:) 3944:m 3940:f 3936:f 3931:( 3916:+ 3911:0 3900:= 3897:) 3894:f 3891:( 3888:L 3748:C 3743:G 3738:L 3733:R 3690:L 3668:c 3662:r 3656:b 3646:b 3642:r 3638:a 3634:r 3607:L 3603:= 3594:L 3563:L 3559:+ 3550:L 3546:+ 3537:L 3533:= 3524:L 3499:) 3494:a 3491:b 3486:( 3470:2 3464:0 3454:= 3451:D 3447:/ 3443:L 3433:D 3429:L 3408:L 3379:L 3375:+ 3366:L 3362:+ 3353:L 3349:= 3340:L 3314:c 3308:r 3302:b 3275:L 3248:b 3242:r 3236:a 3209:L 3182:a 3176:r 3149:L 3120:D 3112:C 3104:D 3096:C 3088:B 3080:D 3072:C 3064:B 3056:A 3049:B 2974:A 2968:c 2964:b 2960:a 2911:π 2907:μ 2876:8 2807:. 2801:) 2798:R 2795:k 2792:( 2787:1 2783:J 2777:) 2774:R 2771:k 2768:( 2763:0 2759:J 2749:R 2743:2 2735:k 2729:= 2719:Z 2676:z 2673:H 2668:/ 2664:f 2658:m 2655:m 2642:= 2636:W 2631:D 2620:f 2616:W 2613:D 2586:D 2558:D 2532:) 2523:D 2520:( 2500:R 2470:ℓ 2466:δ 2458:δ 2454:D 2450:δ 2446:δ 2442:δ 2412:. 2406:) 2403:R 2400:k 2397:( 2392:0 2388:J 2382:) 2379:r 2376:k 2373:( 2368:0 2364:J 2357:) 2354:R 2351:( 2347:J 2343:= 2340:) 2337:r 2334:( 2330:J 2309:. 2303:) 2300:R 2297:k 2294:( 2289:0 2285:J 2279:) 2276:R 2273:( 2269:J 2244:C 2224:, 2221:) 2218:R 2215:( 2211:J 2189:C 2168:0 2142:0 2138:J 2117:, 2114:) 2111:r 2108:k 2105:( 2100:0 2096:J 2091:C 2087:= 2084:) 2081:r 2078:( 2074:J 2050:= 2047:) 2044:r 2041:( 2037:J 2031:2 2027:k 2023:+ 2020:) 2017:r 2014:( 2010:J 2003:r 1989:r 1986:1 1981:+ 1978:) 1975:r 1972:( 1968:J 1959:2 1955:r 1945:2 1935:= 1932:) 1929:r 1926:( 1922:J 1916:2 1912:k 1908:+ 1905:) 1902:r 1899:( 1895:J 1889:2 1848:k 1822:0 1812:r 1804:= 1773:= 1768:r 1736:= 1696:2 1689:= 1654:j 1648:1 1642:= 1626:j 1616:= 1613:k 1589:= 1584:1 1580:J 1555:= 1550:0 1546:J 1523:= 1519:I 1494:= 1491:) 1488:R 1485:( 1481:J 1468:r 1448:= 1445:) 1442:r 1439:( 1435:J 1410:= 1407:R 1383:= 1380:r 1351:) 1348:R 1345:k 1342:( 1337:0 1333:J 1327:) 1324:r 1321:k 1318:( 1313:0 1309:J 1302:) 1299:R 1296:( 1292:J 1288:= 1282:) 1279:R 1276:k 1273:( 1268:1 1264:J 1258:) 1255:r 1252:k 1249:( 1244:0 1240:J 1230:R 1224:2 1218:I 1214:k 1208:= 1205:) 1202:r 1199:( 1195:J 1161:λ 1144:. 1115:2 1088:) 1079:( 1075:/ 1071:1 1018:. 994:2 985:= 962:) 953:( 949:/ 945:1 932:. 916:= 911:0 880:= 875:r 847:0 836:r 808:= 780:= 775:0 744:= 739:r 711:0 700:r 672:= 647:f 627:, 624:f 618:2 615:= 592:= 564:= 531:) 518:+ 510:2 505:) 491:( 486:+ 483:1 477:( 458:2 449:= 429:o 426:λ 410:π 398:S 395:J 391:e 346:/ 342:d 339:) 336:j 333:+ 330:1 327:( 319:e 311:S 306:J 302:= 299:J 289:d 285:S 282:J 274:J 200:W 194:I 188:H 182:H 176:I 34:. 20:)

Index

Skin depth
skin

alternating current

Induction cookers
Litz wire
electromagnetism
alternating electric current
conductor
current density
eddy currents
magnetic
frequency
resistance
Hz
litz wire
microwave
transmission lines
antennas
mains frequencies
electric power transmission
high-voltage direct current
Horace Lamb
Oliver Heaviside

electrons
counter-electromotive force
current density
1/e

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.