Knowledge

Space mapping

Source đź“ť

311:. Developments include implicit space mapping, in which we allow preassigned parameters not used in the optimization process to change in the coarse model, and output space mapping, where a transformation is applied to the response of the model. A 2004 paper reviews the state of the art after the first ten years of development and implementation. Tuning space mapping utilizes a so-called tuning model—constructed invasively from the fine model—as well as a calibration process that translates the adjustment of the optimized tuning model parameters into relevant updates of the design variables. The space mapping concept has been extended to neural-based space mapping for 295:"), where the mapping-augmented coarse model or surrogate is updated (enhanced, realigned with the fine model) through an iterative optimization process termed "parameter extraction". The mapping formulation itself incorporates "intuition", part of the engineer's so-called "feel" for a problem. In particular, the Aggressive Space Mapping (ASM) process displays key characteristics of cognition (an expert's approach to a problem), and is often illustrated in simple cognitive terms. 180: 66: 25: 291:), for example, the low-fidelity physics or "knowledge" model. In a space-mapping design optimization phase, there is a prediction or "execution" step, where the results of an optimized "mapped coarse model" (updated surrogate) are assigned to the fine model for validation. After the validation process, if the design specifications are not satisfied, relevant data is transferred to the optimization space (" 565:
model, computational model, tuning model, calibration model, surrogate model, surrogate update, mapped coarse model, surrogate optimization, parameter extraction, target response, optimization space, validation space, neuro-space mapping, implicit space mapping, output space mapping, port tuning,
273:
The space mapping methodology employs a "quasi-global" formulation that intelligently links companion "coarse" (ideal or low-fidelity) and "fine" (practical or high-fidelity) models of different complexities. In engineering design, space mapping aligns a very fast coarse model with the
282:
At the core of the process is a pair of models: one very accurate but too expensive to use directly with a conventional optimization routine, and one significantly less expensive and, accordingly, less accurate. The latter (fast model) is usually referred to as the "coarse" model
287:). The former (slow model) is usually referred to as the "fine" model. A validation space ("reality") represents the fine model, for example, a high-fidelity physics model. The optimization space, where conventional optimization is carried out, incorporates the coarse model (or 872: 561:, low fidelity (resolution) model, high fidelity (resolution) model, empirical model, simplified physics model, physics-based model, quasi-global model, physically expressive model, device under test, electromagnetics-based model, 274:
expensive-to-compute fine model so as to avoid direct expensive optimization of the fine model. The alignment can be done either off-line (model enhancement) or on-the-fly with surrogate updates (e.g., aggressive space mapping).
328:
A 2016 state-of-the-art review is devoted to aggressive space mapping. It spans two decades of development and engineering applications. A comprehensive 2021 review paper discusses space mapping in the context of
707: 557:
There is a wide spectrum of terminology associated with space mapping: ideal model, coarse model, coarse space, fine model, companion model, cheap model, expensive model,
1074: 704: 566:
predistortion (of design specifications), manifold mapping, defect correction, model management, multi-fidelity models, variable fidelity/variable complexity,
1185: 504: 356:. Proven techniques include the Linear Inverse Space Mapping (LISM) algorithm, as well as the Space Mapping with Inverse Difference (SM-ID) method. 1329:
Proceedings of the 7th Symposium on Building Physics in the Nordic Countries, vol. 1, pp. 896-903. The Icelandic Building Research Institute, 2005.
1307:"Machine learning techniques and space mapping approaches to enhance signal and power integrity in high-speed links and power delivery networks," 1104: 489: 1021: 855: 1205: 921: 90:
of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be
999:"Using surrogate models and response surfaces in structural optimization—with application to crashworthiness design and sheet metal forming," 364:
Space mapping optimization belongs to the class of surrogate-based optimization methods, that is to say, optimization methods that rely on a
1350: 981: 873:"Power in simplicity with ASM: tracing the aggressive space mapping algorithm over two decades of development and engineering applications" 1041: 1001: 1117: 941: 548:
Third International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Reykjavik, Iceland, Aug. 2012)
545:
Second International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2006)
542:
First International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization (Lyngby, Denmark, Nov. 2000)
1326: 1090:
Juan C. Cervantes-González, J. E. Rayas-Sánchez, C. A. López, J. R. Camacho-Pérez, Z. Brito-Brito, and J. L. Chavez-Hurtado,
142: 827:"Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," 1309: 1289: 1269: 1249: 1225: 961: 905: 888: 718: 114: 1105:"The Ellipsoidal Technique for Design Centering of Microwave Circuits Exploiting Space-Mapping Interpolating Surrogates," 1071: 1345: 1267:"Space mapping for codesigned magnetics: optimization techniques for high-fidelity multidomain design specifications," 1165: 1133: 538:
Three international workshops have focused significantly on the art, the science and the technology of space mapping.
1223:"On the alignment of low-fidelity and high-fidelity simulation spaces for the design of microwave waveguide filters," 1163:"Reconstruction of local magnetic properties of steel sheets by needle probe methods using space mapping techniques," 959:"Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping," 284: 236: 218: 161: 121: 52: 1247:"Design of dispersive delay structures (DDSs) formed by coupled C-sections using predistortion with space mapping," 1092:"Space mapping optimization of handset antennas considering EM effects of mobile phone components and human body," 325:
devices. Space mapping is supported by sound convergence theory and is related to the defect-correction approach.
196: 1360: 1182: 590: 189: 128: 38: 1355: 660: 421: 87: 307:'s concept in 1993, algorithms have utilized Broyden updates (aggressive space mapping), trust regions, and 655: 906:"A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits" 110: 748: 497: 1149: 83: 265:
of a system. The knowledge is updated with new validation information from the system when available.
1018: 774: 761: 735: 570:, coarse grid, fine grid, surrogate-driven, simulation-driven, model-driven, feature-based modeling. 308: 262: 99: 1305:
J.E. Rayas-Sánchez, F.E. Rangel-Patiño, B. Mercado-Casillas, F. Leal-Romo, and J.L. Chávez-Hurtado,
1296:
IEEE J. Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 5097-5112, Aug. 2021.
1202: 1183:"Space mapping techniques for a structural optimization problem governed by the p-Laplace equation" 918: 600: 1091: 640: 439: 376:
The space mapping technique has been applied in a variety of disciplines including microwave and
1203:"EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," 1118:"Application of Output Space Mapping method for Fast Optimization using Multi-physical Modeling" 1058: 998: 978: 839: 826: 813: 800: 787: 1048:
Medical & Biological Engineering & Computing, vol. 46, no. 8, pp. 767-777, August 2008.
675: 486: 1038: 799:
J.W. Bandler, Q. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard,
605: 595: 408: 381: 840:"Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices," 615: 468:
Various simulators can be involved in a space mapping optimization and modeling processes.
135: 76: 1103:
Hany L. Abdel-Malek, Abdel-karim S.O. Hassan, Ezzeldin A. Soliman, and Sameh A. Dakroury,
979:"Optimization of the new Saab 9-3 exposed to impact load using a space mapping technique," 8: 1028:
Journal of Computational and Applied Mathematics, vol. 215, no. 2, pp. 339-347, May 2008.
938: 886:“Advanced RF and microwave design optimization: a journey and a vision of future trends,” 254: 509: 1039:"A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data," 937:
A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset,
650: 433: 312: 200: 95: 44: 1316:
2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), Feb. 2020.
988:
Structural and Multidisciplinary Optimization, vol. 27, no. 5, pp. 411-420, July 2004.
665: 457: 447: 315: 261:
in 1993. It uses relevant existing knowledge to speed up model generation and design
91: 1008:
Structural and Multidisciplinary Optimization, vol. 25, no.2, pp 129-140, July 2003.
862:
Computational Methods in Applied Mathematics, vol. 5, no, 2, pp. 107-136, Jan. 2005.
1242: 1037:
G. Crevecoeur, H. Hallez, P. Van Hese, Y. D'Asseler, L. Dupré, and R. Van de Walle,
1017:
G. Crevecoeur, H. Hallez, P. Van Hese, Y. D'Asseler, L. Dupré, and R. Van de Walle,
620: 580: 567: 452: 414: 377: 353: 342: 319: 1313: 1293: 1273: 1253: 1229: 1209: 1189: 1169: 1137: 1078: 1045: 1025: 1005: 985: 965: 945: 925: 892: 859: 722: 711: 630: 585: 558: 477: 392: 365: 338: 330: 288: 195:
It may require cleanup to comply with Knowledge's content policies, particularly
1306: 1287:"Parallel frameworks for robust optimization of medium frequency transformers," 1286: 1266: 1246: 1222: 885: 715: 680: 670: 1256:
IEEE Trans. Microwave Theory Tech., vol. 61, no. 12, pp. 4040-4051, Dec. 2013.
1232:
IEEE Trans. Microwave Theory Tech., vol. 66, no. 12, pp. 5183-5196, Dec. 2018.
958: 842:
IEEE Trans. Microwave Theory Tech., vol. 56, no. 11, pp. 2453-2467, Nov. 2008.
764:
IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2412-2425, Dec. 1998.
751:
IEEE Trans. Microwave Theory Tech., vol. 43, no. 12, pp. 2874-2882, Dec. 1995.
738:
IEEE Trans. Microwave Theory Tech., vol. 42, no. 12, pp. 2536-2544, Dec. 1994.
705:"Have you ever wondered about the engineer's mysterious 'feel' for a problem?" 1339: 1059:"Space mapping optimization of handset antennas exploiting thin-wire models," 939:"A rigorous framework for optimization of expensive functions by surrogates," 829:
IEEE Trans. Microwave Theory Tech., vol. 53, no. 9, pp. 2752-2767, Sep. 2005.
635: 1212:
IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 386-392, Jan. 2004.
1162: 1130: 919:"Solving Inverse Problems by Space Mapping with Inverse Difference Method," 816:
IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 383-394, Feb. 2009.
803:
IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, Jan. 2004.
790:
IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 378-385, Jan. 2004.
645: 625: 304: 258: 908:, IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 960-968 2005. 734:
J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers,
852: 773:
M.H. Bakr, J.W. Bandler, M.A. Ismail, J.E. Rayas-Sánchez and Q.J. Zhang,
1221:
J. Ossorio, J.C. Melgarejo, V.E. Boria, M. Guglielmi, and J.W. Bandler,
1061:
IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3797-3807, July 2013.]
788:"Implicit space mapping optimization exploiting preassigned parameters," 762:"A trust region aggressive space mapping algorithm for EM optimization," 777:
IEEE MTT-S Int. Microwave Symp. Digest (Boston, MA, 2000), pp. 879-882.
562: 501: 1131:"Space Mapping for Optimal Control of Partial Differential Equations". 814:"Accelerated microwave design optimization with tuning space mapping," 1276:
IEEE Power Electronics Magazine, vol. 7, no. 2, pp. 47-52, Jun. 2020.
1094:
Int. J. RF and Microwave CAE, vol. 26, no. 2, pp. 121-128, Feb. 2016.
895:(invited), IEEE J. Microwaves, vol. 1, no. 1, pp. 481-493, Jan. 2021. 747:
J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen,
473: 346: 334: 322: 1327:"Modeling thermally active building components using space mapping," 1072:"Space mapping outpaces EM optimization in handset-antenna design," 749:"Electromagnetic optimization exploiting aggressive space mapping," 494: 483: 341:, feature-based and cognition-driven design; and in the context of 292: 1107:
IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, October 2006.
760:
M.H. Bakr, J.W. Bandler, R.M. Biernacki, S.H. Chen and K. Madsen,
1150:"Space mapping optimization of a cylindrical voice coil actuator" 875:, IEEE Microwave Magazine, vol. 17, no. 4, pp. 64-76, April 2016. 610: 526: 82:
Please help to demonstrate the notability of the topic by citing
1161:
G. Crevecoeur, L. Dupre, L. Vandenbossche, and R. Van de Walle,
1152:, IEEE Trans. Ind. Appl., vol. 42, no. 6, pp.1437-1444, 2006. 1192:, Optimization Methods and Software, 26:4-5, pp. 617-642, 2011. 775:"Neural space mapping EM optimization of microwave structures," 1148:
L. Encica, J. Makarovic, E.A. Lomonova, and A.J.A. Vandenput,
1057:
S. Tu, Q.S. Cheng, Y. Zhang, J.W. Bandler, and N.K. Nikolova,
1116:
R. Khlissa, S. Vivier, L.A. Ospina Vargas, and G. Friedrich,
948:
Structural Optimization, vol. 17, no. 1, pp. 1-13, Feb. 1999.
812:
S. Koziel, J. Meng, J.W. Bandler, M.H. Bakr, and Q.S. Cheng,
736:"Space mapping technique for electromagnetic optimization," 513: 1201:
M.A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu,
904:
J.E. Rayas-Sanchez, F. Lara-Rojo and E. Martanez-Guerrero,
957:
T.D. Robinson, M.S. Eldred, K.E. Willcox, and R. Haimes,
825:
L. Zhang, J. Xu, M.C.E. Yagoub, R. Ding, and Q.J. Zhang,
786:
J.W. Bandler, Q.S. Cheng, N.K. Nikolova and M.A. Ismail,
398: 516: 352:
The space mapping methodology can also be used to solve
1172:
Journal of Applied Physics, vol. 99, no. 08H905, 2006.
714:
IEEE Canadian Review, no. 70, pp. 50-60, Summer 2013.
188:
A major contributor to this article appears to have a
1019:"EEG source analysis using space mapping techniques," 253:
methodology for modeling and design optimization of
928:
Mathematics in Industry, vol. 14, 2010, pp 453-460.
337:design optimization; in the context of engineering 1285:K. Booth, H. Subramanyan, J. Liu, and S.M. Lukic, 884:J.E. Rayas-Sánchez, S. Koziel, and J.W. Bandler, 1337: 1181:O. Lass, C. Posch, G. Scharrer and S. Volkwein, 968:AIAA Journal, vol. 46, no. 11, November 2008. 725:, vol. 19, no. 2, pp.112-122, Mar./Apr. 2018. 1325:F. Pedersen, P. Weitzmann, and S. Svendsen, 430:Reconstruction of local magnetic properties 380:design, civil and mechanical applications, 53:Learn how and when to remove these messages 384:, and biomedical research. Some examples: 237:Learn how and when to remove this message 219:Learn how and when to remove this message 162:Learn how and when to remove this message 1338: 997:T. Jansson, L. Nilsson, and M. Redhe, 801:"Space mapping: the state of the art," 699: 697: 853:"Space mapping and defect correction" 716:Reprinted in IEEE Microwave Magazine 173: 59: 18: 1351:Optimization algorithms and methods 838:L. Zhang, Q.J. Zhang, and J. Wood, 694: 13: 1129:M. HintermĂĽller and L.N. Vicente, 440:microwave filters and multiplexers 388:Optimizing aircraft wing curvature 14: 1372: 1081:microwaves&rf, Aug. 30, 2013. 34:This article has multiple issues. 444:Optimization of delay structures 199:. Please discuss further on the 178: 64: 23: 1319: 1299: 1279: 1259: 1235: 1215: 1195: 1175: 1155: 1142: 1123: 1110: 1097: 1084: 1064: 1051: 1031: 1011: 991: 971: 951: 931: 911: 898: 878: 865: 851:D. Echeverria and P.W. Hemker, 845: 832: 371: 42:or discuss these issues on the 16:Design optimization methodology 917:M. Ĺžimsek and N. Serap Ĺžengör 819: 806: 793: 780: 767: 754: 741: 728: 591:Computational electromagnetics 552: 533: 422:partial differential equations 298: 277: 1: 687: 661:Semiconductor device modeling 463: 417:using multi-physical modeling 1241:Q. Zhang, J.W. Bandler, and 656:Response surface methodology 404:Handset antenna optimization 77:general notability guideline 7: 573: 359: 10: 1377: 427:Voice coil actuator design 349:, and human intelligence. 309:artificial neural networks 268: 84:reliable secondary sources 73:The topic of this article 1346:Electromagnetic radiation 1265:K. Booth and J. Bandler, 977:M. Redhe and L. Nilsson, 75:may not meet Knowledge's 601:Engineering optimization 257:was first discovered by 641:Model-dependent realism 434:Structural optimization 676:Support vector machine 1361:Mathematical modeling 606:Finite element method 596:Computer-aided design 508:CST Microwave Studio 382:aerospace engineering 197:neutral point of view 1356:Microwave technology 616:Linear approximation 407:Design centering of 316:statistical modeling 871:J.E. Rayas-Sanchez, 255:engineering systems 1312:2021-09-14 at the 1292:2021-09-13 at the 1272:2021-09-13 at the 1252:2019-09-21 at the 1228:2019-09-21 at the 1208:2007-08-24 at the 1188:2022-01-30 at the 1168:2017-08-08 at the 1136:2016-07-16 at the 1077:2013-09-27 at the 1044:2017-02-11 at the 1024:2015-09-24 at the 1004:2017-01-13 at the 984:2018-06-15 at the 964:2022-03-31 at the 944:2018-01-10 at the 924:2018-06-18 at the 891:2021-08-02 at the 858:2022-03-31 at the 721:2019-09-21 at the 710:2016-09-20 at the 651:Performance tuning 409:microwave circuits 79: 666:Spatial cognition 458:Civil engineering 448:Power electronics 415:electric machines 247: 246: 239: 229: 228: 221: 192:with its subject. 172: 171: 164: 146: 74: 57: 1368: 1330: 1323: 1317: 1303: 1297: 1283: 1277: 1263: 1257: 1239: 1233: 1219: 1213: 1199: 1193: 1179: 1173: 1159: 1153: 1146: 1140: 1127: 1121: 1114: 1108: 1101: 1095: 1088: 1082: 1068: 1062: 1055: 1049: 1035: 1029: 1015: 1009: 995: 989: 975: 969: 955: 949: 935: 929: 915: 909: 902: 896: 882: 876: 869: 863: 849: 843: 836: 830: 823: 817: 810: 804: 797: 791: 784: 778: 771: 765: 758: 752: 745: 739: 732: 726: 701: 621:Machine learning 581:Adaptive control 568:multigrid method 453:Signal integrity 354:inverse problems 343:machine learning 242: 235: 224: 217: 213: 210: 204: 190:close connection 182: 181: 174: 167: 160: 156: 153: 147: 145: 104: 68: 67: 60: 49: 27: 26: 19: 1376: 1375: 1371: 1370: 1369: 1367: 1366: 1365: 1336: 1335: 1334: 1333: 1324: 1320: 1314:Wayback Machine 1304: 1300: 1294:Wayback Machine 1284: 1280: 1274:Wayback Machine 1264: 1260: 1254:Wayback Machine 1240: 1236: 1230:Wayback Machine 1220: 1216: 1210:Wayback Machine 1200: 1196: 1190:Wayback Machine 1180: 1176: 1170:Wayback Machine 1160: 1156: 1147: 1143: 1138:Wayback Machine 1128: 1124: 1115: 1111: 1102: 1098: 1089: 1085: 1079:Wayback Machine 1069: 1065: 1056: 1052: 1046:Wayback Machine 1036: 1032: 1026:Wayback Machine 1016: 1012: 1006:Wayback Machine 996: 992: 986:Wayback Machine 976: 972: 966:Wayback Machine 956: 952: 946:Wayback Machine 936: 932: 926:Wayback Machine 916: 912: 903: 899: 893:Wayback Machine 883: 879: 870: 866: 860:Wayback Machine 850: 846: 837: 833: 824: 820: 811: 807: 798: 794: 785: 781: 772: 768: 759: 755: 746: 742: 733: 729: 723:Wayback Machine 712:Wayback Machine 702: 695: 690: 685: 631:Mental rotation 586:Cognitive model 576: 559:surrogate model 555: 536: 478:radio frequency 466: 401:source analysis 393:crashworthiness 378:electromagnetic 374: 366:surrogate model 362: 339:surrogate model 331:radio frequency 301: 289:surrogate model 280: 271: 243: 232: 231: 230: 225: 214: 208: 205: 194: 183: 179: 168: 157: 151: 148: 111:"Space mapping" 105: 103: 81: 69: 65: 28: 24: 17: 12: 11: 5: 1374: 1364: 1363: 1358: 1353: 1348: 1332: 1331: 1318: 1298: 1278: 1258: 1234: 1214: 1194: 1174: 1154: 1141: 1122: 1109: 1096: 1083: 1070:N. Friedrich, 1063: 1050: 1030: 1010: 990: 970: 950: 930: 910: 897: 877: 864: 844: 831: 818: 805: 792: 779: 766: 753: 740: 727: 703:J.W. Bandler, 692: 691: 689: 686: 684: 683: 681:Theory of mind 678: 673: 671:Spatial memory 668: 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 577: 575: 572: 554: 551: 550: 549: 546: 543: 535: 532: 531: 530: 529: 528: 518: 511: 506: 499: 491: 465: 462: 461: 460: 455: 450: 445: 442: 436: 431: 428: 425: 418: 411: 405: 402: 396: 389: 373: 370: 361: 358: 300: 297: 279: 276: 270: 267: 245: 244: 227: 226: 186: 184: 177: 170: 169: 72: 70: 63: 58: 32: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1373: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1343: 1341: 1328: 1322: 1315: 1311: 1308: 1302: 1295: 1291: 1288: 1282: 1275: 1271: 1268: 1262: 1255: 1251: 1248: 1244: 1238: 1231: 1227: 1224: 1218: 1211: 1207: 1204: 1198: 1191: 1187: 1184: 1178: 1171: 1167: 1164: 1158: 1151: 1145: 1139: 1135: 1132: 1126: 1119: 1113: 1106: 1100: 1093: 1087: 1080: 1076: 1073: 1067: 1060: 1054: 1047: 1043: 1040: 1034: 1027: 1023: 1020: 1014: 1007: 1003: 1000: 994: 987: 983: 980: 974: 967: 963: 960: 954: 947: 943: 940: 934: 927: 923: 920: 914: 907: 901: 894: 890: 887: 881: 874: 868: 861: 857: 854: 848: 841: 835: 828: 822: 815: 809: 802: 796: 789: 783: 776: 770: 763: 757: 750: 744: 737: 731: 724: 720: 717: 713: 709: 706: 700: 698: 693: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 636:Mirror neuron 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 578: 571: 569: 564: 560: 547: 544: 541: 540: 539: 527: 525: 524: 519: 517: 515: 512: 510: 507: 505: 503: 500: 498: 496: 492: 490: 488: 485: 482: 481: 479: 475: 471: 470: 469: 459: 456: 454: 451: 449: 446: 443: 441: 437: 435: 432: 429: 426: 423: 419: 416: 412: 410: 406: 403: 400: 397: 394: 390: 387: 386: 385: 383: 379: 369: 367: 357: 355: 350: 348: 344: 340: 336: 332: 326: 324: 321: 317: 314: 310: 306: 296: 294: 290: 286: 275: 266: 264: 260: 256: 252: 251:space mapping 241: 238: 223: 220: 212: 202: 198: 193: 191: 185: 176: 175: 166: 163: 155: 144: 141: 137: 134: 130: 127: 123: 120: 116: 113: â€“  112: 108: 107:Find sources: 101: 97: 93: 89: 85: 78: 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 1321: 1301: 1281: 1261: 1237: 1217: 1197: 1177: 1157: 1144: 1125: 1112: 1099: 1086: 1066: 1053: 1033: 1013: 993: 973: 953: 933: 913: 900: 880: 867: 847: 834: 821: 808: 795: 782: 769: 756: 743: 730: 646:Multiphysics 626:Mental model 556: 537: 522: 521: 467: 375: 372:Applications 363: 351: 327: 313:large-signal 305:John Bandler 302: 285:coarse space 281: 272: 263:optimization 259:John Bandler 250: 248: 233: 215: 209:October 2022 206: 187: 158: 152:October 2022 149: 139: 132: 125: 118: 106: 50: 43: 37: 36:Please help 33: 553:Terminology 534:Conferences 420:Control of 391:Automotive 299:Development 278:Methodology 88:independent 1340:Categories 688:References 563:simulation 502:Ansys HFSS 480:(RF) area 464:Simulators 438:Design of 413:Design of 303:Following 122:newspapers 96:redirected 39:improve it 493:Keysight 474:microwave 347:intuition 335:microwave 323:microwave 320:nonlinear 201:talk page 86:that are 45:talk page 1310:Archived 1290:Archived 1270:Archived 1250:Archived 1243:C. Caloz 1226:Archived 1206:Archived 1186:Archived 1166:Archived 1134:Archived 1075:Archived 1042:Archived 1022:Archived 1002:Archived 982:Archived 962:Archived 942:Archived 922:Archived 889:Archived 856:Archived 719:Archived 708:Archived 574:See also 495:Momentum 484:Keysight 360:Category 293:feedback 611:Kriging 520:Sonnet 472:In the 269:Concept 136:scholar 100:deleted 395:design 138:  131:  124:  117:  109:  92:merged 143:JSTOR 129:books 98:, or 514:FEKO 476:and 333:and 249:The 115:news 487:ADS 399:EEG 318:of 1342:: 1245:, 696:^ 523:em 368:. 345:, 94:, 48:. 1120:. 424:. 283:( 240:) 234:( 222:) 216:( 211:) 207:( 203:. 165:) 159:( 154:) 150:( 140:· 133:· 126:· 119:· 102:. 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
general notability guideline
reliable secondary sources
independent
merged
redirected
deleted
"Space mapping"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
close connection
neutral point of view
talk page
Learn how and when to remove this message
Learn how and when to remove this message
engineering systems
John Bandler
optimization
coarse space
surrogate model
feedback
John Bandler
artificial neural networks
large-signal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑