Knowledge

Spliceosome

Source đź“ť

338:
how U4 is displaced from U6 snRNA, although RNA has been implicated in spliceosome assembly, and may function to unwind U4/U6 and promote the formation of a U2/U6 snRNA interaction. The interactions of U4/U6 stem loops I and II dissociate and the freed stem loop II region of U6 folds on itself to form an intramolecular stem loop and U4 is no longer required in further spliceosome assembly. The freed stem loop I region of U6 base pairs with U2 snRNA forming the U2/U6 helix I. However, the helix I structure is mutually exclusive with the 3' half of an internal 5' stem loop region of U2 snRNA.
70: 221: 197:(also known as heterogeneous nuclear RNA, hn-RNA) at each exon:intron junction. The pre-mRNA introns contains specific sequence elements that are recognized and utilized during spliceosome assembly. These include the 5' end splice site, the branch point sequence, the polypyrimidine tract, and the 3' end splice site. The spliceosome catalyzes the removal of introns, and the ligation of the flanking exons. 322:
step of splicing. The U4/U5/U6 tri-snRNP (see Figure 1) is recruited to the assembling spliceosome to form complex B, and following several rearrangements, complex C is activated for catalysis. It is unclear how the tri-snRNP is recruited to complex A, but this process may be mediated through protein-protein interactions and/or base pairing interactions between U2 snRNA and U6 snRNA.
314:(U2 snRNP auxiliary factor) and possibly U1 snRNP. In an ATP-dependent reaction, U2 snRNP becomes tightly associated with the branch point sequence (BPS) to form complex A. A duplex formed between U2 snRNP and the pre-mRNA branch region bulges out the branch adenosine specifying it as the nucleophile for the first transesterification. 334:
5' splice site. Binding of U2 snRNP to the branch point sequence (BPS) is one example of an RNA-RNA interaction displacing a protein-RNA interaction. Upon recruitment of U2 snRNP, the branch binding protein SF1 in the commitment complex is displaced since the binding site of U2 snRNA and SF1 are mutually exclusive events.
376:, together with U5, are subunits of the minor spliceosome that splices a rare class of pre-mRNA introns, denoted U12-type. The minor spliceosome is located in the nucleus like its major counterpart, though there are exceptions in some specialised cells including anucleate platelets and the dendroplasm ( 328:
Upon recruitment of the tri-snRNP, several RNA-RNA rearrangements precede the first catalytic step and further rearrangements occur in the catalytically active spliceosome. Several of the RNA-RNA interactions are mutually exclusive; however, it is not known what triggers these interactions, nor the
300:
is a biochemical reaction, and like all biochemical reactions, its rate depends on the concentration of enzymes and substrates. In this case, the enzymes are the spliceosomes, and the substrates are the pre-mRNAs. By varying the concentration of spliceosomes and pre-mRNAs based on their proximity to
337:
Within the U2 snRNA, there are other mutually exclusive rearrangements that occur between competing conformations. For example, in the active form, stem loop IIa is favored; in the inactive form a mutually exclusive interaction between the loop and a downstream sequence predominates. It is unclear
333:
from the 5' splice site and formation of a U6 snRNA interaction. It is known that U1 snRNP is only weakly associated with fully formed spliceosomes, and U1 snRNP is inhibitory to the formation of a U6-5' splice site interaction on a model of substrate oligonucleotide containing a short 5' exon and
321:
residue in U2 snRNA, nearly opposite of the branch site, results in an altered conformation of the RNA-RNA duplex upon the U2 snRNP binding. Specifically, the altered structure of the duplex induced by the pseudouridine places the 2' OH of the bulged adenosine in a favorable position for the first
309:
The model for formation of the spliceosome active site involves an ordered, stepwise assembly of discrete snRNP particles on the pre-mRNA substrate. The first recognition of pre-mRNAs involves U1 snRNP binding to the 5' end splice site of the pre-mRNA and other non-snRNP associated factors to form
295:
known as nuclear speckles. It was originally postulated that nuclear speckles are either sites of mRNA splicing or storage sites of mRNA splicing factors. It is now understood that nuclear speckles help concentrate splicing factors near genes that are physically located close to them. Genes located
236:
Cryo-EM has been applied extensively by Shi et al. to elucidate the near-/atomic structure of spliceosome in both yeast and humans. The molecular framework of spliceosome at near-atomic-resolution demonstrates Spp42 component of U5 snRNP forms a central scaffold and anchors the catalytic center in
43:) and numerous proteins. Small nuclear RNA (snRNA) molecules bind to specific proteins to form a small nuclear ribonucleoprotein complex (snRNP, pronounced "snurps"), which in turn combines with other snRNPs to form a large ribonucleoprotein complex called a spliceosome. The spliceosome removes 232:) tri-snRNPs. Below left is a schematic illustration of the interaction of tri-snRNP proteins with the U4/U6 snRNA duplex. Below right is a cartoon model of the yeast tri-snRNP with shaded areas corresponding to U5 (gray), U4/U6 (orange) and the linker region (yellow). 237:
yeast. The atomic structure of the human spliceosome illustrates the step II component Slu7 adopts an extended structure, poised for selection of the 3'-splice site. All five metals (assigned as Mg2+) in the yeast complex are preserved in the human complex.
310:
the commitment complex, or early (E) complex in mammals. The commitment complex is an ATP-independent complex that commits the pre-mRNA to the splicing pathway. U2 snRNP is recruited to the branch region through interactions with the E complex component
216:
Many proteins exhibit a zinc-binding motif, which underscores the importance of zinc in the splicing mechanism. The first molecular-resolution reconstruction of U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) complex was reported in 2016.
100:
that is not involved in protein expression. The split gene structure was found when adenoviral mRNAs were hybridized to endonuclease cleavage fragments of single stranded viral DNA. It was observed that the mRNAs of the mRNA-DNA hybrids contained
109:
tails of non-hydrogen bonded regions. When larger fragments of viral DNAs were used, forked structures of looped out DNA were observed when hybridized to the viral mRNAs. It was realised that the looped out regions, the
200:
Introns typically have a GU nucleotide sequence at the 5' end splice site, and an AG at the 3' end splice site. The 3' splice site can be further defined by a variable length of polypyrimidines, called the
743:
Häcker I, Sander B, Golas MM, Wolf E, Karagöz E, Kastner B, et al. (November 2008). "Localization of Prp8, Brr2, Snu114 and U4/U6 proteins in the yeast tri-snRNP by electron microscopy".
1466:
Konforti BB, Koziolkiewicz MJ, Konarska MM (December 1993). "Disruption of base pairing between the 5' splice site and the 5' end of U1 snRNA is required for spliceosome assembly".
510:
Chow LT, Roberts JM, Lewis JB, Broker TR (August 1977). "A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids".
325:
The U5 snRNP interacts with sequences at the 5' and 3' splice sites via the invariant loop of U5 snRNA and U5 protein components interact with the 3' splice site region.
96:
labs revealed that genes of higher organisms are "split" or present in several distinct segments along the DNA molecule. The coding regions of the gene are separated by
1819: 206: 142:(snRNA) and a range of associated protein factors. When these small RNAs are combined with the protein factors, they make RNA-protein complexes called 114:, are excised from the precursor mRNAs in a process Sharp named "splicing". The split gene structure was subsequently found to be common to most 1863: 1812: 1069:
Seraphin B, Rosbash M (October 1989). "Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing".
1415:
Moore MJ, Sharp PA (September 1993). "Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing".
1805: 330: 296:
farther from speckles can still be transcribed and spliced, but their splicing is less efficient compared to those closer to speckles.
66:
However, sometimes the RNA within the intron acts as a ribozyme, splicing itself without the use of a spliceosome or protein enzymes.
2026: 2021: 1245:
Burge CB, Tuschl T, Sharp PA (1999). "Splicing precursors to mRNAs by the spliceosomes". In Gesteland RF, Cech TR, Atkins JF (eds.).
1202:
Newby MI, Greenbaum NL (December 2002). "Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine".
2031: 2006: 2104: 786:
Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y (September 2015). "Structure of a yeast spliceosome at 3.6-angstrom resolution".
1728: 1254: 127: 1345: 604:"Stalling of spliceosome assembly at distinct stages by small-molecule inhibitors of protein acetylation and deacetylation" 205:(PPT), which serves the dual function of recruiting factors to the 3' splice site and possibly recruiting factors to the 1873: 1828: 555:"Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method" 653:"Molecular architecture of zinc chelating small molecules that inhibit spliceosome assembly at an early stage" 1316:"snRNA interactions at 5' and 3' splice sites monitored by photoactivated crosslinking in yeast spliceosomes" 373: 369: 59:. An analogy is a film editor, who selectively cuts out irrelevant or incorrect material (equivalent to the 1711:
Butcher SE (2011). "Chapter 8. The Spliceosome and Its Metal Ions". In Sigel A, Sigel H, Sigel RK (eds.).
1868: 2142: 1746:
Nilsen TW (December 2003). "The spliceosome: the most complex macromolecular machine in the cell?".
2137: 1791: 48: 2074: 1895: 2147: 1599:
Denis MM, Tolley ND, Bunting M, Schwertz H, Jiang H, Lindemann S, et al. (August 2005).
880:"Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity" 553:
Agafonov DE, Deckert J, Wolf E, Odenwälder P, Bessonov S, Will CL, et al. (July 2011).
63:) from the initial film and sends the cleaned-up version to the director for the final cut. 2127: 1958: 1661: 1648:
Glanzer J, Miyashiro KY, Sul JY, Barrett L, Belt B, Haydon P, et al. (November 2005).
1424: 795: 464: 246: 202: 1601:"Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets" 8: 2132: 1951: 1163:"Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model" 225: 119: 89: 83: 1787: 1665: 1428: 997: 972: 799: 468: 329:
order of these rearrangements. The first rearrangement is probably the displacement of
1684: 1649: 1625: 1600: 1576: 1549: 1548:
Pessa HK, Will CL, Meng X, Schneider C, Watkins NJ, Perälä N, et al. (June 2008).
1530: 1448: 1392: 1368:"Evidence that U5 snRNP recognizes the 3' splice site for catalytic step II in mammals" 1367: 1332: 1227: 1094: 945: 920: 819: 768: 725: 677: 652: 628: 603: 579: 554: 535: 425: 400: 194: 166:
roteins, pronounced "snurps"). The snRNAs that make up the major spliceosome are named
123: 93: 52: 1291: 1274: 1138: 1113: 1046: 1021: 896: 879: 487: 452: 1946: 1763: 1734: 1724: 1689: 1630: 1581: 1522: 1483: 1479: 1440: 1397: 1337: 1296: 1250: 1219: 1184: 1143: 1086: 1082: 1051: 1002: 950: 901: 860: 811: 760: 729: 717: 682: 633: 584: 527: 523: 492: 430: 357: 347: 256: 139: 24: 1797: 1534: 1231: 1098: 823: 772: 539: 1755: 1716: 1679: 1669: 1620: 1612: 1571: 1561: 1514: 1475: 1452: 1432: 1387: 1379: 1327: 1286: 1211: 1174: 1133: 1125: 1078: 1041: 1033: 992: 984: 940: 932: 891: 878:
Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, et al. (June 2000).
850: 803: 752: 709: 672: 664: 623: 615: 574: 566: 519: 482: 472: 420: 412: 32: 1905: 1888: 1883: 1858: 700:
Cate JH (March 2016). "STRUCTURE. A Big Bang in spliceosome structural biology".
1720: 1315: 936: 416: 2069: 1968: 1853: 1848: 1654:
Proceedings of the National Academy of Sciences of the United States of America
1616: 1554:
Proceedings of the National Academy of Sciences of the United States of America
1502: 1383: 988: 855: 838: 457:
Proceedings of the National Academy of Sciences of the United States of America
301:
nuclear speckles, cells could potentially regulate the efficiency of splicing.
292: 260: 97: 69: 2121: 1715:. Metal Ions in Life Sciences. Vol. 9. RSC Publishing. pp. 235–51. 973:"Genome organization around nuclear speckles drives mRNA splicing efficiency" 602:
Kuhn AN, van Santen MA, Schwienhorst A, Urlaub H, LĂĽhrmann R (January 2009).
318: 1674: 1566: 1275:"Mechanical devices of the spliceosome: motors, clocks, springs, and things" 807: 713: 651:
Patil V, Canzoneri JC, Samatov TR, LĂĽhrmann R, Oyelere AK (September 2012).
263:
have been used to account for the relatively small number of protein coding
1915: 1836: 1782: 1767: 1738: 1693: 1634: 1585: 1526: 1223: 1037: 1006: 954: 905: 864: 815: 764: 721: 686: 668: 637: 588: 477: 434: 297: 268: 56: 28: 1505:(December 2003). "Splicing double: insights from the second spliceosome". 1487: 1444: 1401: 1341: 1300: 1188: 1147: 1090: 1055: 2094: 1900: 1550:"Minor spliceosome components are predominantly localized in the nucleus" 1129: 570: 531: 496: 1783:
3D macromolecular structures of Spliceosomes from the EM Data Bank(EMDB)
1179: 1162: 619: 279:, has been speculated to be alternatively spliced into 38,000 different 1759: 272: 756: 291:
Pre-mRNA splicing factors were originally found to be concentrated in
1436: 365: 361: 353: 210: 115: 16:
Molecular machine that removes intron RNA from the primary transcript
1518: 283:, assuming all of its exons can splice independently of each other. 1215: 377: 190:, and participate in several RNA-RNA and RNA-protein interactions. 183: 179: 175: 171: 167: 220: 2061: 2041: 2036: 187: 60: 601: 2016: 2011: 1991: 1927: 1878: 1365: 1114:"Early commitment of yeast pre-mRNA to the spliceosome pathway" 453:"Spliced segments at the 5' terminus of adenovirus 2 late mRNA" 111: 44: 1366:
Chiara MD, Palandjian L, Feld Kramer R, Reed R (August 1997).
2084: 2079: 2001: 1996: 1986: 1981: 1976: 1936: 1494: 1465: 650: 552: 311: 276: 143: 106: 102: 40: 36: 2099: 2089: 1931: 837:
Zhang X, Yan C, Hang J, Finci LI, Lei J, Shi Y (May 2017).
280: 264: 252: 1647: 1598: 394: 392: 1022:"The spliceosome assembly pathway in mammalian extracts" 1019: 877: 271:, currently estimated at around 20,000. One particular 130:
for the discovery of introns and the splicing process.
1547: 1111: 509: 389: 251:
Alternative splicing (the re-combination of different
1827: 1313: 1020:
Jamison SF, Crow A, Garcia-Blanco MA (October 1992).
742: 1650:"RNA splicing capability of live neuronal dendrites" 1713:
Structural and catalytic roles of metal ions in RNA
1314:Newman AJ, Teigelkamp S, Beggs JD (November 1995). 1112:Legrain P, Seraphin B, Rosbash M (September 1988). 1249:. Cold Spring Harbor Lab. Press. pp. 525–60. 971:Bhat P, Chow A, Emert B, et al. (May 2024). 836: 2119: 1244: 450: 1160: 1068: 785: 193:The assembly of the spliceosome occurs on each 1268: 1266: 1201: 839:"An Atomic Structure of the Human Spliceosome" 1813: 1272: 970: 918: 871: 1592: 966: 964: 451:Berget SM, Moore C, Sharp PA (August 1977). 398: 55:. This process is generally referred to as 1500: 1459: 1359: 1263: 1161:Query CC, Moore MJ, Sharp PA (March 1994). 1105: 736: 1820: 1806: 1414: 925:Cold Spring Harbor Perspectives in Biology 405:Cold Spring Harbor Perspectives in Biology 1790:at the U.S. National Library of Medicine 1683: 1673: 1624: 1575: 1565: 1391: 1331: 1290: 1178: 1137: 1045: 996: 961: 944: 895: 854: 745:Nature Structural & Molecular Biology 676: 627: 578: 486: 476: 424: 356:have a second spliceosome, the so-called 213:required for the first step of splicing. 27:(RNP) complex found primarily within the 1307: 446: 444: 219: 68: 1710: 286: 240: 209:(BPS). The BPS contains the conserved 2120: 1745: 1507:Nature Reviews. Molecular Cell Biology 1273:Staley JP, Guthrie C (February 1998). 1801: 441: 186:, so-called because they are rich in 138:Each spliceosome is composed of five 128:Nobel Prize in Physiology or Medicine 699: 401:"Spliceosome structure and function" 341: 228:fields of negatively stained yeast ( 35:. The spliceosome is assembled from 503: 360:. A group of less abundant snRNAs, 13: 1703: 919:Spector DL, Lamond AI (Feb 2011). 14: 2159: 1829:Post-transcriptional modification 1776: 399:Will CL, LĂĽhrmann R (July 2011). 1641: 1541: 1408: 1348:from the original on 2005-02-23 1238: 1195: 1154: 1062: 1013: 912: 830: 1118:Molecular and Cellular Biology 1026:Molecular and Cellular Biology 779: 693: 644: 595: 559:Molecular and Cellular Biology 546: 380:cytoplasm) of neuronal cells. 133: 1: 1292:10.1016/S0092-8674(00)80925-3 897:10.1016/S0092-8674(00)80878-8 383: 1480:10.1016/0092-8674(93)90531-T 1083:10.1016/0092-8674(89)90296-1 524:10.1016/0092-8674(77)90294-X 7: 1721:10.1039/9781849732512-00235 937:10.1101/cshperspect.a000646 417:10.1101/cshperspect.a003707 304: 73:Spliceosomal splicing cycle 10: 2164: 1617:10.1016/j.cell.2005.06.015 989:10.1038/s41586-024-07429-6 856:10.1016/j.cell.2017.04.033 345: 244: 81: 77: 2060: 1967: 1923: 1914: 1844: 1835: 1204:Nature Structural Biology 1792:Medical Subject Headings 1384:10.1093/emboj/16.15.4746 230:Saccharomyces cerevisiae 1896:Poly(A)-binding protein 1675:10.1073/pnas.0503783102 1567:10.1073/pnas.0803646105 1167:Genes & Development 808:10.1126/science.aac7629 714:10.1126/science.aaf4465 255:) is a major source of 1038:10.1128/MCB.12.10.4279 669:10.1261/rna.034819.112 478:10.1073/pnas.74.8.3171 233: 126:were awarded the 1993 74: 223: 207:branch point sequence 88:In 1977, work by the 72: 1959:Alternative splicing 1130:10.1128/MCB.8.9.3755 571:10.1128/mcb.05266-11 287:Location of splicing 247:Alternative splicing 241:Alternative splicing 224:Figure 1. Above are 203:polypyrimidine tract 51:pre-mRNA, a type of 1666:2005PNAS..10216859G 1429:1993Natur.365..364M 1180:10.1101/gad.8.5.587 800:2015Sci...349.1182Y 620:10.1261/rna.1332609 469:1977PNAS...74.3171B 226:electron microscopy 84:Splicing (genetics) 2070:5′ cap methylation 1760:10.1002/bies.10394 921:"Nuclear speckles" 849:(5): 918–929.e14. 317:The presence of a 234: 140:small nuclear RNAs 124:Richard J. Roberts 75: 53:primary transcript 37:small nuclear RNAs 2143:Protein complexes 2115: 2114: 2056: 2055: 2052: 2051: 1969:pre-mRNA factors 1730:978-1-84973-094-5 1256:978-0-87969-380-0 794:(6253): 1182–91. 757:10.1038/nsmb.1506 358:minor spliceosome 348:Minor spliceosome 342:Minor spliceosome 257:genetic diversity 25:ribonucleoprotein 2155: 1921: 1920: 1854:5′ cap formation 1842: 1841: 1822: 1815: 1808: 1799: 1798: 1771: 1742: 1698: 1697: 1687: 1677: 1660:(46): 16859–64. 1645: 1639: 1638: 1628: 1596: 1590: 1589: 1579: 1569: 1545: 1539: 1538: 1498: 1492: 1491: 1463: 1457: 1456: 1437:10.1038/365364a0 1412: 1406: 1405: 1395: 1372:The EMBO Journal 1363: 1357: 1356: 1354: 1353: 1335: 1311: 1305: 1304: 1294: 1270: 1261: 1260: 1242: 1236: 1235: 1199: 1193: 1192: 1182: 1158: 1152: 1151: 1141: 1109: 1103: 1102: 1066: 1060: 1059: 1049: 1017: 1011: 1010: 1000: 983:(5): 1165–1173. 968: 959: 958: 948: 916: 910: 909: 899: 875: 869: 868: 858: 834: 828: 827: 783: 777: 776: 740: 734: 733: 708:(6280): 1390–2. 697: 691: 690: 680: 648: 642: 641: 631: 599: 593: 592: 582: 550: 544: 543: 507: 501: 500: 490: 480: 448: 439: 438: 428: 396: 33:eukaryotic cells 2163: 2162: 2158: 2157: 2156: 2154: 2153: 2152: 2138:Gene expression 2118: 2117: 2116: 2111: 2048: 1963: 1910: 1906:Polyuridylation 1859:Polyadenylation 1831: 1826: 1779: 1774: 1731: 1706: 1704:Further reading 1701: 1646: 1642: 1597: 1593: 1560:(25): 8655–60. 1546: 1542: 1519:10.1038/nrm1259 1499: 1495: 1464: 1460: 1423:(6444): 364–8. 1413: 1409: 1378:(15): 4746–59. 1364: 1360: 1351: 1349: 1312: 1308: 1271: 1264: 1257: 1243: 1239: 1200: 1196: 1159: 1155: 1110: 1106: 1067: 1063: 1032:(10): 4279–87. 1018: 1014: 969: 962: 917: 913: 876: 872: 835: 831: 784: 780: 751:(11): 1206–12. 741: 737: 698: 694: 649: 645: 600: 596: 565:(13): 2667–82. 551: 547: 508: 504: 449: 442: 397: 390: 386: 350: 344: 307: 289: 261:Splice variants 259:in eukaryotes. 249: 243: 136: 86: 80: 17: 12: 11: 5: 2161: 2151: 2150: 2145: 2140: 2135: 2130: 2113: 2112: 2110: 2109: 2108: 2107: 2102: 2097: 2092: 2087: 2082: 2075:mRNA decapping 2072: 2066: 2064: 2058: 2057: 2054: 2053: 2050: 2049: 2047: 2046: 2045: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1973: 1971: 1965: 1964: 1962: 1961: 1956: 1955: 1954: 1949: 1939: 1934: 1924: 1918: 1912: 1911: 1909: 1908: 1903: 1898: 1893: 1892: 1891: 1886: 1881: 1876: 1871: 1866: 1856: 1851: 1849:Precursor mRNA 1845: 1839: 1833: 1832: 1825: 1824: 1817: 1810: 1802: 1796: 1795: 1785: 1778: 1777:External links 1775: 1773: 1772: 1754:(12): 1147–9. 1743: 1729: 1707: 1705: 1702: 1700: 1699: 1640: 1591: 1540: 1513:(12): 960–70. 1493: 1458: 1407: 1358: 1306: 1262: 1255: 1237: 1216:10.1038/nsb873 1210:(12): 958–65. 1194: 1153: 1124:(9): 3755–60. 1104: 1061: 1012: 960: 931:(2): a000646. 911: 870: 829: 778: 735: 692: 663:(9): 1605–11. 643: 594: 545: 502: 440: 411:(7): a003707. 387: 385: 382: 343: 340: 306: 303: 293:nuclear bodies 288: 285: 245:Main article: 242: 239: 135: 132: 98:non-coding DNA 79: 76: 15: 9: 6: 4: 3: 2: 2160: 2149: 2146: 2144: 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2125: 2123: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2077: 2076: 2073: 2071: 2068: 2067: 2065: 2063: 2059: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1979: 1978: 1975: 1974: 1972: 1970: 1966: 1960: 1957: 1953: 1950: 1948: 1945: 1944: 1943: 1940: 1938: 1935: 1933: 1929: 1926: 1925: 1922: 1919: 1917: 1913: 1907: 1904: 1902: 1899: 1897: 1894: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1861: 1860: 1857: 1855: 1852: 1850: 1847: 1846: 1843: 1840: 1838: 1834: 1830: 1823: 1818: 1816: 1811: 1809: 1804: 1803: 1800: 1793: 1789: 1786: 1784: 1781: 1780: 1769: 1765: 1761: 1757: 1753: 1749: 1744: 1740: 1736: 1732: 1726: 1722: 1718: 1714: 1709: 1708: 1695: 1691: 1686: 1681: 1676: 1671: 1667: 1663: 1659: 1655: 1651: 1644: 1636: 1632: 1627: 1622: 1618: 1614: 1611:(3): 379–91. 1610: 1606: 1602: 1595: 1587: 1583: 1578: 1573: 1568: 1563: 1559: 1555: 1551: 1544: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1497: 1489: 1485: 1481: 1477: 1474:(5): 863–73. 1473: 1469: 1462: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1347: 1343: 1339: 1334: 1329: 1326:(9): 968–80. 1325: 1321: 1317: 1310: 1302: 1298: 1293: 1288: 1285:(3): 315–26. 1284: 1280: 1276: 1269: 1267: 1258: 1252: 1248: 1247:The RNA World 1241: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1190: 1186: 1181: 1176: 1173:(5): 587–97. 1172: 1168: 1164: 1157: 1149: 1145: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1100: 1096: 1092: 1088: 1084: 1080: 1077:(2): 349–58. 1076: 1072: 1065: 1057: 1053: 1048: 1043: 1039: 1035: 1031: 1027: 1023: 1016: 1008: 1004: 999: 994: 990: 986: 982: 978: 974: 967: 965: 956: 952: 947: 942: 938: 934: 930: 926: 922: 915: 907: 903: 898: 893: 890:(6): 671–84. 889: 885: 881: 874: 866: 862: 857: 852: 848: 844: 840: 833: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 782: 774: 770: 766: 762: 758: 754: 750: 746: 739: 731: 727: 723: 719: 715: 711: 707: 703: 696: 688: 684: 679: 674: 670: 666: 662: 658: 654: 647: 639: 635: 630: 625: 621: 617: 614:(1): 153–75. 613: 609: 605: 598: 590: 586: 581: 576: 572: 568: 564: 560: 556: 549: 541: 537: 533: 529: 525: 521: 518:(4): 819–36. 517: 513: 506: 498: 494: 489: 484: 479: 474: 470: 466: 463:(8): 3171–5. 462: 458: 454: 447: 445: 436: 432: 427: 422: 418: 414: 410: 406: 402: 395: 393: 388: 381: 379: 375: 371: 367: 363: 359: 355: 349: 339: 335: 332: 326: 323: 320: 319:pseudouridine 315: 313: 302: 299: 294: 284: 282: 278: 274: 270: 266: 262: 258: 254: 248: 238: 231: 227: 222: 218: 214: 212: 208: 204: 198: 196: 191: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 149: 145: 141: 131: 129: 125: 121: 120:Phillip Sharp 117: 113: 108: 104: 99: 95: 91: 85: 71: 67: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 2148:RNA splicing 1941: 1930: / 1916:RNA splicing 1788:Spliceosomes 1751: 1747: 1712: 1657: 1653: 1643: 1608: 1604: 1594: 1557: 1553: 1543: 1510: 1506: 1496: 1471: 1467: 1461: 1420: 1416: 1410: 1375: 1371: 1361: 1350:. Retrieved 1323: 1319: 1309: 1282: 1278: 1246: 1240: 1207: 1203: 1197: 1170: 1166: 1156: 1121: 1117: 1107: 1074: 1070: 1064: 1029: 1025: 1015: 980: 976: 928: 924: 914: 887: 883: 873: 846: 842: 832: 791: 787: 781: 748: 744: 738: 705: 701: 695: 660: 656: 646: 611: 607: 597: 562: 558: 548: 515: 511: 505: 460: 456: 408: 404: 351: 336: 327: 324: 316: 308: 298:RNA splicing 290: 269:human genome 250: 235: 229: 215: 199: 192: 163: 159: 155: 151: 147: 137: 87: 65: 20: 18: 2128:Spliceosome 1942:Spliceosome 1901:RNA editing 134:Composition 49:transcribed 23:is a large 21:spliceosome 2133:Organelles 2122:Categories 1501:Patel AA, 1352:2008-03-07 923:. Review. 384:References 354:eukaryotes 346:See also: 273:Drosophila 116:eukaryotic 82:See also: 2062:Cytosolic 1748:BioEssays 1503:Steitz JA 730:206648185 211:adenosine 1768:14635248 1739:22010274 1694:16275927 1635:16096058 1586:18559850 1535:21816910 1527:14685174 1346:Archived 1232:39628664 1224:12426583 1099:18553973 1007:38720076 998:11164319 955:20926517 906:10892653 865:28502770 824:22194712 816:26292707 773:22982227 765:18953335 722:27013712 687:22832025 638:19029308 589:21536652 540:37967144 435:21441581 378:dendrite 331:U1 snRNP 305:Assembly 195:pre-mRNA 118:genes. 57:splicing 2042:PRPF40B 2037:PRPF40A 2027:PRPF38B 2022:PRPF38A 1837:Nuclear 1685:1277967 1662:Bibcode 1626:4401993 1577:2438382 1488:8252623 1453:4361512 1445:8397340 1425:Bibcode 1402:9303319 1393:1170101 1342:8548661 1333:1369345 1301:9476892 1189:7926752 1148:3065622 1091:2529976 1056:1383687 946:3039535 796:Bibcode 788:Science 702:Science 678:3425776 629:2612777 580:3133382 465:Bibcode 426:3119917 267:in the 188:uridine 154:uclear 112:introns 94:Roberts 78:History 61:introns 47:from a 45:introns 29:nucleus 2032:PRPF39 2017:PRPF31 2012:PRPF19 2007:PRPF18 1992:PRPF4B 1928:Intron 1794:(MeSH) 1766:  1737:  1727:  1692:  1682:  1633:  1623:  1584:  1574:  1533:  1525:  1486:  1451:  1443:  1417:Nature 1400:  1390:  1340:  1330:  1299:  1253:  1230:  1222:  1187:  1146:  1139:365433 1136:  1097:  1089:  1054:  1047:360351 1044:  1005:  995:  977:Nature 953:  943:  904:  863:  822:  814:  771:  763:  728:  720:  685:  675:  636:  626:  587:  577:  538:  532:890740 530:  497:269380 495:  488:431482 485:  433:  423:  374:U6atac 372:, and 370:U4atac 275:gene, 182:, and 144:snRNPs 2085:DCP1B 2080:DCP1A 2002:PRPF8 1997:PRPF6 1987:PRPF4 1982:PRPF3 1977:PLRG1 1947:minor 1937:snRNP 1531:S2CID 1449:S2CID 1228:S2CID 1095:S2CID 820:S2CID 769:S2CID 726:S2CID 536:S2CID 352:Some 281:mRNAs 277:Dscam 265:genes 253:exons 162:ucleo 150:mall 90:Sharp 41:snRNA 2105:EDC4 2100:EDC3 2095:DCPS 2090:DCP2 1932:Exon 1889:CFII 1879:PAB2 1869:CstF 1864:CPSF 1764:PMID 1735:PMID 1725:ISBN 1690:PMID 1631:PMID 1605:Cell 1582:PMID 1523:PMID 1484:PMID 1468:Cell 1441:PMID 1398:PMID 1338:PMID 1297:PMID 1279:Cell 1251:ISBN 1220:PMID 1185:PMID 1144:PMID 1087:PMID 1071:Cell 1052:PMID 1003:PMID 951:PMID 902:PMID 884:Cell 861:PMID 843:Cell 812:PMID 761:PMID 718:PMID 683:PMID 634:PMID 585:PMID 528:PMID 512:Cell 493:PMID 431:PMID 312:U2AF 122:and 105:and 92:and 1884:CFI 1874:PAP 1756:doi 1717:doi 1680:PMC 1670:doi 1658:102 1621:PMC 1613:doi 1609:122 1572:PMC 1562:doi 1558:105 1515:doi 1476:doi 1433:doi 1421:365 1388:PMC 1380:doi 1328:PMC 1320:RNA 1287:doi 1212:doi 1175:doi 1134:PMC 1126:doi 1079:doi 1042:PMC 1034:doi 993:PMC 985:doi 981:629 941:PMC 933:doi 892:doi 888:101 851:doi 847:169 804:doi 792:349 753:doi 710:doi 706:351 673:PMC 665:doi 657:RNA 624:PMC 616:doi 608:RNA 575:PMC 567:doi 520:doi 483:PMC 473:doi 421:PMC 413:doi 366:U12 362:U11 158:ibo 31:of 2124:: 1952:U1 1762:. 1752:25 1750:. 1733:. 1723:. 1688:. 1678:. 1668:. 1656:. 1652:. 1629:. 1619:. 1607:. 1603:. 1580:. 1570:. 1556:. 1552:. 1529:. 1521:. 1509:. 1482:. 1472:75 1470:. 1447:. 1439:. 1431:. 1419:. 1396:. 1386:. 1376:16 1374:. 1370:. 1344:. 1336:. 1322:. 1318:. 1295:. 1283:92 1281:. 1277:. 1265:^ 1226:. 1218:. 1206:. 1183:. 1169:. 1165:. 1142:. 1132:. 1120:. 1116:. 1093:. 1085:. 1075:59 1073:. 1050:. 1040:. 1030:12 1028:. 1024:. 1001:. 991:. 979:. 975:. 963:^ 949:. 939:. 927:. 900:. 886:. 882:. 859:. 845:. 841:. 818:. 810:. 802:. 790:. 767:. 759:. 749:15 747:. 724:. 716:. 704:. 681:. 671:. 661:18 659:. 655:. 632:. 622:. 612:15 610:. 606:. 583:. 573:. 563:31 561:. 557:. 534:. 526:. 516:11 514:. 491:. 481:. 471:. 461:74 459:. 455:. 443:^ 429:. 419:. 407:. 403:. 391:^ 368:, 364:, 184:U6 180:U5 178:, 176:U4 174:, 172:U2 170:, 168:U1 107:3' 103:5' 19:A 1821:e 1814:t 1807:v 1770:. 1758:: 1741:. 1719:: 1696:. 1672:: 1664:: 1637:. 1615:: 1588:. 1564:: 1537:. 1517:: 1511:4 1490:. 1478:: 1455:. 1435:: 1427:: 1404:. 1382:: 1355:. 1324:1 1303:. 1289:: 1259:. 1234:. 1214:: 1208:9 1191:. 1177:: 1171:8 1150:. 1128:: 1122:8 1101:. 1081:: 1058:. 1036:: 1009:. 987:: 957:. 935:: 929:3 908:. 894:: 867:. 853:: 826:. 806:: 798:: 775:. 755:: 732:. 712:: 689:. 667:: 640:. 618:: 591:. 569:: 542:. 522:: 499:. 475:: 467:: 437:. 415:: 409:3 164:p 160:n 156:r 152:n 148:s 146:( 39:(

Index

ribonucleoprotein
nucleus
eukaryotic cells
small nuclear RNAs
snRNA
introns
transcribed
primary transcript
splicing
introns

Splicing (genetics)
Sharp
Roberts
non-coding DNA
5'
3'
introns
eukaryotic
Phillip Sharp
Richard J. Roberts
Nobel Prize in Physiology or Medicine
small nuclear RNAs
snRNPs
U1
U2
U4
U5
U6
uridine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑