Knowledge

Splitting of prime ideals in Galois extensions

Source 📝

230: 2315:
the two primes (2 + 3i) and (2 − 3i), so it cannot be in the decomposition group of either prime. The inertia group, being a subgroup of the decomposition group, is also the trivial group. There are two residue fields, one for each prime,
4367: 4232: 2197: 153: 3989: 3855: 3116: 1004: 1651: 1308: 3226: 2465: 3498: 349: 3355: 2797: 4096: 3736: 1355: 2042: 850: 670: 2383: 2620: 2696: 1964: 2306: 1897: 1558: 1058: 2649: 2719: 3633: 3609: 3573: 2548: 2520: 580: 4243: 4111: 2721:, which is certainly not divisible by 7. Therefore, the inertia group is the trivial group {1}. The Galois group of this residue field over the subfield 2058: 225:{\displaystyle {\begin{array}{ccc}O_{K}&\hookrightarrow &O_{L}\\\downarrow &&\downarrow \\K&\hookrightarrow &L\end{array}}} 3886: 3747: 3880:+ 1 is irreducible modulo 7. Therefore, there is only one prime factor, with inertia degree 2 and ramification index 1, and it is given by 3543:
available θ that satisfies the above hypotheses (see for example ). Therefore, the algorithm given above cannot be used to factor such
2243: 2211: 3017: 2388:
which are both isomorphic to the finite field with 13 elements. The Frobenius element is the trivial automorphism; this means that
928: 2729:
has order 2, and is generated by the image of the Frobenius element. The Frobenius element is none other than σ; this means that
1246: 3148: 2917:. The following procedure (Neukirch, p. 47) solves this problem in many cases. The strategy is to select an integer θ in 4496: 2394: 1581: 3423: 278: 3404:
The exceptional primes, for which the above result does not necessarily hold, are the ones not relatively prime to the
3282: 2735: 4016: 2939: 889: 4531: 4488: 4450: 3664: 1313: 1987: 922:; something that certainly need not be the case for extensions that are not Galois. The basic relations then read 4378: 809: 596: 3138:
is not one of finitely many exceptional primes (the precise condition is described below), the factorisation of
3636: 3741:
Therefore, there is only one prime factor, with inertia degree 1 and ramification index 2, and it is given by
1674:
to its Frobenius and extending multiplicatively defines a homomorphism from the group of unramified ideals of
2322: 2568: 1706: 2654: 1912: 2935: 2252: 1717:
coincide. There, given a Galois ramified cover, all but finitely many points have the same number of
545: 4434: 4411: 1851: 1083: 1442:
which corresponds to the Frobenius automorphism in the Galois group of the finite field extension
3405: 852: 70: 2311:
The decomposition groups in this case are both the trivial group {1}; indeed the automorphism σ
4536: 1969:
which is the finite field with two elements. The decomposition group must be equal to all of
1543: 800: 4506: 1799: 1016: 873: 4514: 8: 4415: 3504: 2628: 2554:, again because there is only one prime factor. However, this situation differs from the 262: 158: 2701: 3618: 3594: 3558: 2533: 2505: 1702: 1687: 1160:
are equal by basic Galois theory, it follows that the order of the decomposition group
4474: 4492: 3555:
Consider again the case of the Gaussian integers. We take θ to be the imaginary unit
1791: 1407: 86: 4362:{\displaystyle Q_{2}=(13)\mathbf {Z} +(i-5)\mathbf {Z} =\cdots =(2-3i)\mathbf {Z} .} 4105:
prime factors, both with inertia degree and ramification index 1. They are given by
3385:
In the Galois case, the inertia degrees are all equal, and the ramification indices
2625:
which is the finite field with 7 = 49 elements. For example, the difference between
1724:
The splitting of primes in extensions that are not Galois may be studied by using a
4510: 4227:{\displaystyle Q_{1}=(13)\mathbf {Z} +(i+5)\mathbf {Z} =\cdots =(2+3i)\mathbf {Z} } 1698: 796: 140: 128: 49: 28: 4398: 4502: 1725: 269: 97:
need be considered, rather than two. This was certainly familiar before Hilbert.
90: 1803: 1670:
we take. Furthermore, in the abelian case, associating an unramified prime of
4525: 3547:, and more sophisticated approaches must be used, such as that described in. 2192:{\displaystyle a+bi=2bi+a-bi=(1+i)\cdot (1-i)bi+a-bi\equiv a-bi{\bmod {1}}+i} 247: 78: 1740:
This section describes the splitting of prime ideals in the field extension
877: 804: 583:, hence the extension is unramified in all but finitely many prime ideals. 35: 21: 4465: 1729: 1728:
initially, i.e. a Galois extension that is somewhat larger. For example,
42: 17: 4455: 587: 3984:{\displaystyle Q=(7)\mathbf {Z} +(i^{2}+1)\mathbf {Z} =7\mathbf {Z} .} 3850:{\displaystyle Q=(2)\mathbf {Z} +(i+1)\mathbf {Z} =(1+i)\mathbf {Z} .} 1690:, which studies the finite abelian extensions of a given number field 2895:
Suppose that we wish to determine the factorisation of a prime ideal
4467:
A brief introduction to classical and adelic algebraic number theory
4451:"Splitting and ramification in number fields and Galois extensions" 1718: 1487:
is trivial, so the Frobenius element is in this case an element of
1310:. It can be shown that this map is surjective, and it follows that 1657:
is an abelian group, the Frobenius element of an unramified prime
3111:{\displaystyle h(X)=h_{1}(X)^{e_{1}}\cdots h_{n}(X)^{e_{n}},} 2780: 2439: 2174: 2019: 1794:. Although this case is far from representative — after all, 1732:
usually are 'regulated' by a degree 6 field containing them.
999:{\displaystyle pO_{L}=\left(\prod _{j=1}^{g}P_{j}\right)^{e}} 1804:
there aren't many quadratic fields with unique factorization
1303:{\displaystyle D_{P_{j}}\to \operatorname {Gal} (F_{j}/F)} 3515:
is from being the whole ring of integers (maximal order)
3221:{\displaystyle PO_{L}=Q_{1}^{e_{1}}\cdots Q_{n}^{e_{n}},} 2550:]. In this situation, the decomposition group is all of 93:, which is simpler in that only one kind of subgroup of 3639:
is the unit ideal, so there are no exceptional primes.
3258:
is equal to the degree of the corresponding polynomial
2460:{\displaystyle (a+bi)^{13}\equiv a+bi{\bmod {2}}\pm 3i} 1646:{\displaystyle \sigma D_{P_{j}}\sigma ^{-1}=D_{P_{j'}}} 272:
rings follows the existence of a unique decomposition
4246: 4114: 4019: 3889: 3750: 3667: 3621: 3597: 3561: 3527:
A significant caveat is that there exist examples of
3493:{\displaystyle \{y\in O_{L}:yO_{L}\subseteq O_{K}\};} 3426: 3285: 3151: 3020: 2738: 2704: 2657: 2631: 2571: 2536: 2508: 2397: 2325: 2255: 2061: 1990: 1915: 1854: 1584: 1546: 1316: 1249: 1019: 931: 812: 599: 281: 156: 1821:, and σ for the complex conjugation automorphism in 579:
is ramified in exactly those primes that divide the
344:{\displaystyle pO_{L}=\prod _{j=1}^{g}P_{j}^{e_{j}}} 4361: 4226: 4090: 3983: 3849: 3730: 3627: 3603: 3567: 3492: 3349: 3220: 3110: 2791: 2713: 2690: 2643: 2614: 2542: 2514: 2459: 2377: 2300: 2210:, since every prime that ramifies must divide the 2191: 2036: 1958: 1891: 1806:— it exhibits many of the features of the theory. 1735: 1645: 1552: 1349: 1302: 1052: 998: 844: 664: 343: 224: 3350:{\displaystyle Q_{j}=PO_{L}+h_{j}(\theta )O_{L},} 4523: 2953:; it is a monic polynomial with coefficients in 2792:{\displaystyle (a+bi)^{7}\equiv a-bi{\bmod {7}}} 113:be a finite extension of number fields, and let 4091:{\displaystyle X^{2}+1=(X+5)(X-5){\pmod {13}}.} 3654:, which amounts to factorising the polynomial 3130:are distinct monic irreducible polynomials in 2890: 75:splitting of prime ideals in Galois extensions 4484:Grundlehren der mathematischen Wissenschaften 3731:{\displaystyle X^{2}+1=(X+1)^{2}{\pmod {2}}.} 2934:by θ (such a θ is guaranteed to exist by the 1350:{\displaystyle \operatorname {Gal} (F_{j}/F)} 1185:This decomposition group contains a subgroup 4482: 4010:= (13). This time we have the factorisation 3484: 3427: 2037:{\displaystyle a+bi\equiv a-bi{\bmod {1}}+i} 139:, respectively, which are defined to be the 3417:. The conductor is defined to be the ideal 3267:, and there is an explicit formula for the 845:{\displaystyle G=\operatorname {Gal} (L/K)} 665:{\displaystyle =\sum _{j=1}^{g}e_{j}f_{j}.} 3249:. Furthermore, the inertia degree of each 1977:above 2. The inertia group is also all of 372:into a product of distinct maximal ideals 3872:≡ 3 mod 4. For concreteness we will take 3369:denotes here a lifting of the polynomial 2526:split. For example, (7) remains prime in 1902:The ramification index here is therefore 1220:that induce the identity automorphism on 60:factorise as products of prime ideals of 4473: 1410:goes further, to identify an element of 2378:{\displaystyle O_{L}/(2\pm 3i)O_{L}\ ,} 2244:Fermat's theorem on sums of two squares 782: 69:, provides one of the richest parts of 4524: 1455:. In the unramified case the order of 864:. That is, the prime ideal factors of 4463: 4430: 4417:Factoring Primes in Rings of Integers 4409: 2481: 2221: 1825:, there are three cases to consider. 85:. There is a geometric analogue, for 3646:= (2), we need to work in the field 3007:) factorises in the polynomial ring 4077: 3717: 3611:] is the whole ring of integers of 2562:act trivially on the residue field 1973:, since there is only one prime of 1385:and the order of the inertia group 544:. If this is the case then by the 13: 2238:into two distinct prime ideals in 1828: 496:. If it is bigger than 1 for some 14: 4548: 4443: 4412:"Essential Discriminant Divisors" 2862:Splits into two distinct factors 2615:{\displaystyle O_{L}/(7)O_{L}\ ,} 1212:, consisting of automorphisms of 1135:, is the subgroup of elements of 4343: 4302: 4270: 4211: 4170: 4138: 3965: 3945: 3906: 3831: 3799: 3767: 2691:{\displaystyle \sigma (1+i)=1-i} 1959:{\displaystyle O_{L}/(1+i)O_{L}} 787:In the following, the extension 4070: 3710: 2974:, we obtain a monic polynomial 2962:. Reducing the coefficients of 2301:{\displaystyle 13=(2+3i)(2-3i)} 1736:Example — the Gaussian integers 1697:In the geometric analogue, for 1523:are conjugate subgroups inside 1243:is the kernel of reduction map 1148:to itself. Since the degree of 1063:The relation above shows that / 4424: 4403: 4391: 4353: 4347: 4339: 4324: 4312: 4306: 4298: 4286: 4280: 4274: 4266: 4260: 4221: 4215: 4207: 4192: 4180: 4174: 4166: 4154: 4148: 4142: 4134: 4128: 4081: 4071: 4066: 4054: 4051: 4039: 4006:≡ 1 mod 4; we will again take 3975: 3969: 3955: 3949: 3941: 3922: 3916: 3910: 3902: 3896: 3841: 3835: 3827: 3815: 3809: 3803: 3795: 3783: 3777: 3771: 3763: 3757: 3721: 3711: 3700: 3687: 3481: 3475: 3331: 3325: 3089: 3082: 3053: 3046: 3030: 3024: 2755: 2739: 2673: 2661: 2593: 2587: 2414: 2398: 2356: 2341: 2295: 2280: 2277: 2262: 2134: 2122: 2116: 2104: 1943: 1931: 1880: 1867: 1861: 1855: 1501:, and thus also an element of 1344: 1323: 1297: 1276: 1267: 1086:this number is also equal to | 1032: 1020: 839: 825: 612: 600: 210: 198: 192: 173: 100: 1: 4384: 3550: 3240:are distinct prime ideals of 2986:, the (finite) residue field 2558:= 2 case, because now σ does 2242:; this is a manifestation of 1892:{\displaystyle (2)=(1+i)^{2}} 1686:, is a crucial ingredient of 268:From the basic theory of one- 239:be a non-zero prime ideal in 4379:Chebotarev's density theorem 890:unique factorisation theorem 524:, or that it is ramified in 20:, the interplay between the 7: 4372: 2938:), and then to examine the 2891:Computing the factorisation 77:is sometimes attributed to 10: 4553: 4479:Algebraische Zahlentheorie 4410:Stein, William A. (2002). 3575:, with minimal polynomial 2813: 1906:= 2. The residue field is 1707:algebraically closed field 147:in the field in question. 4487:. Vol. 322. Berlin: 2936:primitive element theorem 1682:. This map, known as the 1661:does not depend on which 1531:acts transitively on the 546:Chinese remainder theorem 4435:Method that Always Works 3503:it measures how far the 3142:has the following form: 1813:for the Galois group of 1084:orbit-stabilizer formula 803:can be used to show the 4532:Algebraic number theory 4464:Stein, William (2004), 2982:) with coefficients in 2206:prime that ramifies in 1553:{\displaystyle \sigma } 562:is a product of fields 448:residue field extension 71:algebraic number theory 4483: 4363: 4228: 4092: 3985: 3876:= (7). The polynomial 3851: 3732: 3629: 3605: 3569: 3494: 3351: 3222: 3112: 2844:Ramifies with index 2 2793: 2715: 2692: 2645: 2616: 2544: 2516: 2461: 2379: 2302: 2193: 2038: 1960: 1893: 1647: 1554: 1351: 1304: 1054: 1000: 974: 846: 666: 638: 500:, the field extension 408:naturally embeds into 381:, with multiplicities 345: 318: 250:, so that the residue 226: 4364: 4229: 4101:Therefore, there are 4093: 3986: 3860:The next case is for 3852: 3733: 3630: 3606: 3570: 3495: 3352: 3223: 3113: 2794: 2716: 2693: 2646: 2617: 2545: 2517: 2462: 2380: 2303: 2218:, which is −4. 2194: 2039: 1961: 1894: 1648: 1555: 1540:, one checks that if 1352: 1305: 1055: 1053:{\displaystyle =efg.} 1001: 954: 847: 801:prime avoidance lemma 667: 618: 581:relative discriminant 346: 298: 246:, or equivalently, a 227: 127:be the corresponding 4397:Milne, J.S. (2020). 4244: 4112: 4017: 3887: 3748: 3665: 3619: 3595: 3559: 3424: 3283: 3149: 3018: 2836:Decomposition group 2736: 2702: 2655: 2629: 2569: 2534: 2522:]; that is, it does 2506: 2395: 2323: 2253: 2059: 1988: 1913: 1852: 1800:unique factorisation 1582: 1544: 1314: 1247: 1071:of prime factors of 1017: 929: 888:. From this and the 810: 783:The Galois situation 597: 586:Multiplicativity of 279: 154: 4399:Class Field Theory. 3539:such that there is 3214: 3189: 3134:. Then, as long as 2644:{\displaystyle 1+i} 1748:. That is, we take 1711:decomposition group 1124:decomposition group 918:are independent of 795:is assumed to be a 739:ramifies completely 340: 4359: 4224: 4088: 3981: 3847: 3728: 3625: 3601: 3565: 3490: 3347: 3218: 3193: 3168: 3108: 2940:minimal polynomial 2930:is generated over 2789: 2714:{\displaystyle 2i} 2711: 2688: 2641: 2612: 2540: 2512: 2494:≡ 3 mod 4 remains 2457: 2375: 2298: 2202:In fact, 2 is the 2189: 2034: 1956: 1889: 1709:, the concepts of 1703:algebraic geometry 1688:class field theory 1643: 1550: 1406:The theory of the 1347: 1300: 1229:. In other words, 1067:equals the number 1050: 996: 892:, it follows that 842: 662: 481:ramification index 341: 319: 222: 220: 87:ramified coverings 41:, and the way the 4498:978-3-540-65399-8 3994:The last case is 3628:{\displaystyle i} 3604:{\displaystyle i} 3568:{\displaystyle i} 2888: 2887: 2827:How it splits in 2802:for any integers 2608: 2543:{\displaystyle i} 2515:{\displaystyle i} 2470:for any integers 2371: 2047:for any integers 1792:Gaussian integers 1699:complex manifolds 1527:: Recalling that 1408:Frobenius element 1357:is isomorphic to 1156:and the order of 853:acts transitively 767:= ), we say that 734:= ), we say that 706:splits completely 701:= ), we say that 470:The multiplicity 4544: 4518: 4486: 4475:Neukirch, Jürgen 4470: 4460: 4437: 4428: 4422: 4421: 4407: 4401: 4395: 4368: 4366: 4365: 4360: 4346: 4305: 4273: 4256: 4255: 4233: 4231: 4230: 4225: 4214: 4173: 4141: 4124: 4123: 4097: 4095: 4094: 4089: 4084: 4029: 4028: 3990: 3988: 3987: 3982: 3968: 3948: 3934: 3933: 3909: 3856: 3854: 3853: 3848: 3834: 3802: 3770: 3737: 3735: 3734: 3729: 3724: 3708: 3707: 3677: 3676: 3634: 3632: 3631: 3626: 3610: 3608: 3607: 3602: 3574: 3572: 3571: 3566: 3499: 3497: 3496: 3491: 3474: 3473: 3461: 3460: 3445: 3444: 3356: 3354: 3353: 3348: 3343: 3342: 3324: 3323: 3311: 3310: 3295: 3294: 3227: 3225: 3224: 3219: 3213: 3212: 3211: 3201: 3188: 3187: 3186: 3176: 3164: 3163: 3117: 3115: 3114: 3109: 3104: 3103: 3102: 3101: 3081: 3080: 3068: 3067: 3066: 3065: 3045: 3044: 2818: 2817: 2798: 2796: 2795: 2790: 2788: 2787: 2763: 2762: 2720: 2718: 2717: 2712: 2697: 2695: 2694: 2689: 2650: 2648: 2647: 2642: 2621: 2619: 2618: 2613: 2606: 2605: 2604: 2586: 2581: 2580: 2549: 2547: 2546: 2541: 2521: 2519: 2518: 2513: 2466: 2464: 2463: 2458: 2447: 2446: 2422: 2421: 2384: 2382: 2381: 2376: 2369: 2368: 2367: 2340: 2335: 2334: 2307: 2305: 2304: 2299: 2198: 2196: 2195: 2190: 2182: 2181: 2043: 2041: 2040: 2035: 2027: 2026: 1965: 1963: 1962: 1957: 1955: 1954: 1930: 1925: 1924: 1898: 1896: 1895: 1890: 1888: 1887: 1653:. Therefore, if 1652: 1650: 1649: 1644: 1642: 1641: 1640: 1639: 1638: 1617: 1616: 1604: 1603: 1602: 1601: 1559: 1557: 1556: 1551: 1356: 1354: 1353: 1348: 1340: 1335: 1334: 1309: 1307: 1306: 1301: 1293: 1288: 1287: 1266: 1265: 1264: 1263: 1139:sending a given 1059: 1057: 1056: 1051: 1005: 1003: 1002: 997: 995: 994: 989: 985: 984: 983: 973: 968: 944: 943: 851: 849: 848: 843: 835: 797:Galois extension 671: 669: 668: 663: 658: 657: 648: 647: 637: 632: 571:. The extension 516:(or we say that 350: 348: 347: 342: 339: 338: 337: 327: 317: 312: 294: 293: 231: 229: 228: 223: 221: 196: 187: 186: 170: 169: 143:of the integers 141:integral closure 129:ring of integers 91:Riemann surfaces 50:ring of integers 29:Galois extension 4552: 4551: 4547: 4546: 4545: 4543: 4542: 4541: 4522: 4521: 4499: 4489:Springer-Verlag 4449: 4446: 4441: 4440: 4429: 4425: 4408: 4404: 4396: 4392: 4387: 4375: 4342: 4301: 4269: 4251: 4247: 4245: 4242: 4241: 4210: 4169: 4137: 4119: 4115: 4113: 4110: 4109: 4069: 4024: 4020: 4018: 4015: 4014: 3964: 3944: 3929: 3925: 3905: 3888: 3885: 3884: 3830: 3798: 3766: 3749: 3746: 3745: 3709: 3703: 3699: 3672: 3668: 3666: 3663: 3662: 3620: 3617: 3616: 3596: 3593: 3592: 3560: 3557: 3556: 3553: 3523: 3514: 3469: 3465: 3456: 3452: 3440: 3436: 3425: 3422: 3421: 3416: 3401:are all equal. 3400: 3391: 3377: 3368: 3338: 3334: 3319: 3315: 3306: 3302: 3290: 3286: 3284: 3281: 3280: 3275: 3266: 3257: 3248: 3239: 3207: 3203: 3202: 3197: 3182: 3178: 3177: 3172: 3159: 3155: 3150: 3147: 3146: 3129: 3097: 3093: 3092: 3088: 3076: 3072: 3061: 3057: 3056: 3052: 3040: 3036: 3019: 3016: 3015: 2999:. Suppose that 2994: 2961: 2925: 2916: 2908:into primes of 2907: 2893: 2816: 2783: 2779: 2758: 2754: 2737: 2734: 2733: 2703: 2700: 2699: 2656: 2653: 2652: 2630: 2627: 2626: 2600: 2596: 2582: 2576: 2572: 2570: 2567: 2566: 2535: 2532: 2531: 2507: 2504: 2503: 2488: 2486:≡ 3 mod 4 2442: 2438: 2417: 2413: 2396: 2393: 2392: 2363: 2359: 2336: 2330: 2326: 2324: 2321: 2320: 2254: 2251: 2250: 2246:. For example: 2228: 2226:≡ 1 mod 4 2177: 2173: 2060: 2057: 2056: 2022: 2018: 1989: 1986: 1985: 1950: 1946: 1926: 1920: 1916: 1914: 1911: 1910: 1883: 1879: 1853: 1850: 1849: 1837:The prime 2 of 1835: 1790:is the ring of 1785: 1772: 1738: 1726:splitting field 1669: 1631: 1630: 1626: 1625: 1621: 1609: 1605: 1597: 1593: 1592: 1588: 1583: 1580: 1579: 1577: 1568: 1545: 1542: 1541: 1539: 1522: 1521: 1500: 1499: 1486: 1485: 1468: 1467: 1450: 1437: 1436: 1423: 1422: 1398: 1397: 1384: 1383: 1370: 1369: 1336: 1330: 1326: 1315: 1312: 1311: 1289: 1283: 1279: 1259: 1255: 1254: 1250: 1248: 1245: 1244: 1242: 1241: 1228: 1211: 1198: 1197: 1173: 1172: 1147: 1134: 1121: 1120: 1103: 1102: 1080: 1018: 1015: 1014: 990: 979: 975: 969: 958: 953: 949: 948: 939: 935: 930: 927: 926: 917: 904: 863: 831: 811: 808: 807: 785: 766: 757: 733: 724: 692: 683: 653: 649: 643: 639: 633: 622: 598: 595: 594: 570: 560: 553: 491: 478: 462: 445: 432: 422: 416: 402: 389: 380: 366: 359: 333: 329: 328: 323: 313: 302: 289: 285: 280: 277: 276: 255: 244: 219: 218: 213: 208: 202: 201: 195: 189: 188: 182: 178: 176: 171: 165: 161: 157: 155: 152: 151: 125: 118: 103: 68: 59: 12: 11: 5: 4550: 4540: 4539: 4534: 4520: 4519: 4497: 4471: 4461: 4445: 4444:External links 4442: 4439: 4438: 4423: 4402: 4389: 4388: 4386: 4383: 4382: 4381: 4374: 4371: 4370: 4369: 4358: 4355: 4352: 4349: 4345: 4341: 4338: 4335: 4332: 4329: 4326: 4323: 4320: 4317: 4314: 4311: 4308: 4304: 4300: 4297: 4294: 4291: 4288: 4285: 4282: 4279: 4276: 4272: 4268: 4265: 4262: 4259: 4254: 4250: 4235: 4234: 4223: 4220: 4217: 4213: 4209: 4206: 4203: 4200: 4197: 4194: 4191: 4188: 4185: 4182: 4179: 4176: 4172: 4168: 4165: 4162: 4159: 4156: 4153: 4150: 4147: 4144: 4140: 4136: 4133: 4130: 4127: 4122: 4118: 4099: 4098: 4087: 4083: 4080: 4076: 4073: 4068: 4065: 4062: 4059: 4056: 4053: 4050: 4047: 4044: 4041: 4038: 4035: 4032: 4027: 4023: 4002:) for a prime 3992: 3991: 3980: 3977: 3974: 3971: 3967: 3963: 3960: 3957: 3954: 3951: 3947: 3943: 3940: 3937: 3932: 3928: 3924: 3921: 3918: 3915: 3912: 3908: 3904: 3901: 3898: 3895: 3892: 3868:) for a prime 3858: 3857: 3846: 3843: 3840: 3837: 3833: 3829: 3826: 3823: 3820: 3817: 3814: 3811: 3808: 3805: 3801: 3797: 3794: 3791: 3788: 3785: 3782: 3779: 3776: 3773: 3769: 3765: 3762: 3759: 3756: 3753: 3739: 3738: 3727: 3723: 3720: 3716: 3713: 3706: 3702: 3698: 3695: 3692: 3689: 3686: 3683: 3680: 3675: 3671: 3658:+ 1 modulo 2: 3624: 3600: 3564: 3552: 3549: 3519: 3510: 3501: 3500: 3489: 3486: 3483: 3480: 3477: 3472: 3468: 3464: 3459: 3455: 3451: 3448: 3443: 3439: 3435: 3432: 3429: 3412: 3396: 3389: 3373: 3364: 3358: 3357: 3346: 3341: 3337: 3333: 3330: 3327: 3322: 3318: 3314: 3309: 3305: 3301: 3298: 3293: 3289: 3271: 3262: 3253: 3244: 3235: 3229: 3228: 3217: 3210: 3206: 3200: 3196: 3192: 3185: 3181: 3175: 3171: 3167: 3162: 3158: 3154: 3125: 3119: 3118: 3107: 3100: 3096: 3091: 3087: 3084: 3079: 3075: 3071: 3064: 3060: 3055: 3051: 3048: 3043: 3039: 3035: 3032: 3029: 3026: 3023: 2990: 2957: 2921: 2912: 2903: 2892: 2889: 2886: 2885: 2880: 2877: 2876:Remains inert 2874: 2870: 2869: 2866: 2863: 2860: 2856: 2855: 2850: 2845: 2842: 2838: 2837: 2834: 2833:Inertia group 2831: 2825: 2815: 2812: 2800: 2799: 2786: 2782: 2778: 2775: 2772: 2769: 2766: 2761: 2757: 2753: 2750: 2747: 2744: 2741: 2710: 2707: 2687: 2684: 2681: 2678: 2675: 2672: 2669: 2666: 2663: 2660: 2640: 2637: 2634: 2623: 2622: 2611: 2603: 2599: 2595: 2592: 2589: 2585: 2579: 2575: 2539: 2511: 2487: 2480: 2468: 2467: 2456: 2453: 2450: 2445: 2441: 2437: 2434: 2431: 2428: 2425: 2420: 2416: 2412: 2409: 2406: 2403: 2400: 2386: 2385: 2374: 2366: 2362: 2358: 2355: 2352: 2349: 2346: 2343: 2339: 2333: 2329: 2309: 2308: 2297: 2294: 2291: 2288: 2285: 2282: 2279: 2276: 2273: 2270: 2267: 2264: 2261: 2258: 2227: 2220: 2188: 2185: 2180: 2176: 2172: 2169: 2166: 2163: 2160: 2157: 2154: 2151: 2148: 2145: 2142: 2139: 2136: 2133: 2130: 2127: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2091: 2088: 2085: 2082: 2079: 2076: 2073: 2070: 2067: 2064: 2045: 2044: 2033: 2030: 2025: 2021: 2017: 2014: 2011: 2008: 2005: 2002: 1999: 1996: 1993: 1967: 1966: 1953: 1949: 1945: 1942: 1939: 1936: 1933: 1929: 1923: 1919: 1900: 1899: 1886: 1882: 1878: 1875: 1872: 1869: 1866: 1863: 1860: 1857: 1834: 1827: 1781: 1768: 1737: 1734: 1665: 1637: 1634: 1629: 1624: 1620: 1615: 1612: 1608: 1600: 1596: 1591: 1587: 1573: 1564: 1549: 1535: 1517: 1513: 1505:. For varying 1495: 1491: 1481: 1477: 1463: 1459: 1446: 1432: 1428: 1418: 1414: 1393: 1389: 1379: 1375: 1365: 1361: 1346: 1343: 1339: 1333: 1329: 1325: 1322: 1319: 1299: 1296: 1292: 1286: 1282: 1278: 1275: 1272: 1269: 1262: 1258: 1253: 1237: 1233: 1224: 1207: 1193: 1189: 1168: 1164: 1143: 1130: 1116: 1112: 1098: 1094: 1078: 1061: 1060: 1049: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1008: 1007: 993: 988: 982: 978: 972: 967: 964: 961: 957: 952: 947: 942: 938: 934: 913: 900: 872:form a single 859: 841: 838: 834: 830: 827: 824: 821: 818: 815: 784: 781: 762: 753: 745:. Finally, if 729: 720: 693:= 1 for every 688: 679: 673: 672: 661: 656: 652: 646: 642: 636: 631: 628: 625: 621: 617: 614: 611: 608: 605: 602: 566: 558: 551: 528:). Otherwise, 487: 474: 458: 452:inertia degree 441: 428: 420: 412: 400: 385: 376: 364: 357: 352: 351: 336: 332: 326: 322: 316: 311: 308: 305: 301: 297: 292: 288: 284: 253: 242: 233: 232: 217: 214: 212: 209: 207: 204: 203: 200: 197: 194: 191: 190: 185: 181: 177: 175: 172: 168: 164: 160: 159: 123: 116: 102: 99: 83:Hilbert theory 81:by calling it 64: 55: 9: 6: 4: 3: 2: 4549: 4538: 4537:Galois theory 4535: 4533: 4530: 4529: 4527: 4516: 4512: 4508: 4504: 4500: 4494: 4490: 4485: 4480: 4476: 4472: 4469: 4468: 4462: 4458: 4457: 4452: 4448: 4447: 4436: 4432: 4427: 4419: 4418: 4413: 4406: 4400: 4394: 4390: 4380: 4377: 4376: 4356: 4350: 4336: 4333: 4330: 4327: 4321: 4318: 4315: 4309: 4295: 4292: 4289: 4283: 4277: 4263: 4257: 4252: 4248: 4240: 4239: 4238: 4218: 4204: 4201: 4198: 4195: 4189: 4186: 4183: 4177: 4163: 4160: 4157: 4151: 4145: 4131: 4125: 4120: 4116: 4108: 4107: 4106: 4104: 4085: 4078: 4074: 4063: 4060: 4057: 4048: 4045: 4042: 4036: 4033: 4030: 4025: 4021: 4013: 4012: 4011: 4009: 4005: 4001: 3997: 3978: 3972: 3961: 3958: 3952: 3938: 3935: 3930: 3926: 3919: 3913: 3899: 3893: 3890: 3883: 3882: 3881: 3879: 3875: 3871: 3867: 3863: 3844: 3838: 3824: 3821: 3818: 3812: 3806: 3792: 3789: 3786: 3780: 3774: 3760: 3754: 3751: 3744: 3743: 3742: 3725: 3718: 3714: 3704: 3696: 3693: 3690: 3684: 3681: 3678: 3673: 3669: 3661: 3660: 3659: 3657: 3653: 3649: 3645: 3640: 3638: 3622: 3614: 3598: 3590: 3586: 3582: 3578: 3562: 3548: 3546: 3542: 3538: 3534: 3530: 3525: 3522: 3518: 3513: 3509: 3506: 3487: 3478: 3470: 3466: 3462: 3457: 3453: 3449: 3446: 3441: 3437: 3433: 3430: 3420: 3419: 3418: 3415: 3411: 3407: 3402: 3399: 3395: 3388: 3383: 3381: 3376: 3372: 3367: 3363: 3344: 3339: 3335: 3328: 3320: 3316: 3312: 3307: 3303: 3299: 3296: 3291: 3287: 3279: 3278: 3277: 3274: 3270: 3265: 3261: 3256: 3252: 3247: 3243: 3238: 3234: 3215: 3208: 3204: 3198: 3194: 3190: 3183: 3179: 3173: 3169: 3165: 3160: 3156: 3152: 3145: 3144: 3143: 3141: 3137: 3133: 3128: 3124: 3105: 3098: 3094: 3085: 3077: 3073: 3069: 3062: 3058: 3049: 3041: 3037: 3033: 3027: 3021: 3014: 3013: 3012: 3010: 3006: 3002: 2998: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2960: 2956: 2952: 2948: 2944: 2941: 2937: 2933: 2929: 2924: 2920: 2915: 2911: 2906: 2902: 2898: 2884: 2881: 2878: 2875: 2872: 2871: 2867: 2864: 2861: 2858: 2857: 2854: 2851: 2849: 2846: 2843: 2840: 2839: 2835: 2832: 2830: 2826: 2824: 2820: 2819: 2811: 2809: 2805: 2784: 2776: 2773: 2770: 2767: 2764: 2759: 2751: 2748: 2745: 2742: 2732: 2731: 2730: 2728: 2724: 2708: 2705: 2685: 2682: 2679: 2676: 2670: 2667: 2664: 2658: 2638: 2635: 2632: 2609: 2601: 2597: 2590: 2583: 2577: 2573: 2565: 2564: 2563: 2561: 2557: 2553: 2537: 2529: 2525: 2509: 2501: 2497: 2493: 2485: 2479: 2477: 2473: 2454: 2451: 2448: 2443: 2435: 2432: 2429: 2426: 2423: 2418: 2410: 2407: 2404: 2401: 2391: 2390: 2389: 2372: 2364: 2360: 2353: 2350: 2347: 2344: 2337: 2331: 2327: 2319: 2318: 2317: 2314: 2292: 2289: 2286: 2283: 2274: 2271: 2268: 2265: 2259: 2256: 2249: 2248: 2247: 2245: 2241: 2237: 2233: 2225: 2219: 2217: 2213: 2209: 2205: 2200: 2186: 2183: 2178: 2170: 2167: 2164: 2161: 2158: 2155: 2152: 2149: 2146: 2143: 2140: 2137: 2131: 2128: 2125: 2119: 2113: 2110: 2107: 2101: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2077: 2074: 2071: 2068: 2065: 2062: 2054: 2050: 2031: 2028: 2023: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1984: 1983: 1982: 1980: 1976: 1972: 1951: 1947: 1940: 1937: 1934: 1927: 1921: 1917: 1909: 1908: 1907: 1905: 1884: 1876: 1873: 1870: 1864: 1858: 1848: 1847: 1846: 1844: 1840: 1832: 1826: 1824: 1820: 1816: 1812: 1807: 1805: 1801: 1797: 1793: 1789: 1784: 1780: 1776: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1743: 1733: 1731: 1727: 1722: 1720: 1716: 1715:inertia group 1712: 1708: 1704: 1700: 1695: 1693: 1689: 1685: 1681: 1677: 1673: 1668: 1664: 1660: 1656: 1635: 1632: 1627: 1622: 1618: 1613: 1610: 1606: 1598: 1594: 1589: 1585: 1576: 1572: 1567: 1563: 1547: 1538: 1534: 1530: 1526: 1520: 1516: 1512: 1509:, the groups 1508: 1504: 1498: 1494: 1490: 1484: 1480: 1476: 1472: 1466: 1462: 1458: 1454: 1449: 1445: 1441: 1435: 1431: 1427: 1421: 1417: 1413: 1409: 1404: 1402: 1396: 1392: 1388: 1382: 1378: 1374: 1368: 1364: 1360: 1341: 1337: 1331: 1327: 1320: 1317: 1294: 1290: 1284: 1280: 1273: 1270: 1260: 1256: 1251: 1240: 1236: 1232: 1227: 1223: 1219: 1215: 1210: 1206: 1202: 1201:inertia group 1196: 1192: 1188: 1183: 1181: 1177: 1171: 1167: 1163: 1159: 1155: 1151: 1146: 1142: 1138: 1133: 1129: 1125: 1119: 1115: 1111: 1107: 1101: 1097: 1093: 1089: 1085: 1081: 1074: 1070: 1066: 1047: 1044: 1041: 1038: 1035: 1029: 1026: 1023: 1013: 1012: 1011: 991: 986: 980: 976: 970: 965: 962: 959: 955: 950: 945: 940: 936: 932: 925: 924: 923: 921: 916: 912: 908: 903: 899: 895: 891: 887: 883: 879: 878:automorphisms 875: 871: 867: 862: 858: 854: 836: 832: 828: 822: 819: 816: 813: 806: 802: 798: 794: 790: 780: 778: 774: 770: 765: 761: 756: 752: 748: 744: 740: 737: 732: 728: 723: 719: 715: 711: 707: 704: 700: 696: 691: 687: 682: 678: 659: 654: 650: 644: 640: 634: 629: 626: 623: 619: 615: 609: 606: 603: 593: 592: 591: 589: 584: 582: 578: 574: 569: 565: 561: 554: 548:the quotient 547: 543: 539: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 495: 490: 486: 482: 477: 473: 468: 466: 461: 457: 453: 449: 444: 440: 437:, the degree 436: 431: 427: 423: 415: 411: 407: 403: 396: 391: 388: 384: 379: 375: 371: 367: 361:generated in 360: 354:of the ideal 334: 330: 324: 320: 314: 309: 306: 303: 299: 295: 290: 286: 282: 275: 274: 273: 271: 266: 264: 260: 256: 249: 248:maximal ideal 245: 238: 235:Finally, let 215: 205: 183: 179: 166: 162: 150: 149: 148: 146: 142: 138: 134: 130: 126: 119: 112: 108: 98: 96: 92: 88: 84: 80: 79:David Hilbert 76: 72: 67: 63: 58: 54: 51: 47: 44: 40: 37: 33: 30: 26: 23: 19: 4478: 4466: 4454: 4426: 4416: 4405: 4393: 4236: 4102: 4100: 4007: 4003: 3999: 3995: 3993: 3877: 3873: 3869: 3865: 3861: 3859: 3740: 3655: 3651: 3647: 3643: 3641: 3612: 3588: 3584: 3580: 3576: 3554: 3544: 3540: 3536: 3532: 3528: 3526: 3520: 3516: 3511: 3507: 3502: 3413: 3409: 3408:of the ring 3403: 3397: 3393: 3386: 3384: 3379: 3374: 3370: 3365: 3361: 3359: 3272: 3268: 3263: 3259: 3254: 3250: 3245: 3241: 3236: 3232: 3230: 3139: 3135: 3131: 3126: 3122: 3120: 3008: 3004: 3000: 2996: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2958: 2954: 2950: 2949:) of θ over 2946: 2942: 2931: 2927: 2922: 2918: 2913: 2909: 2904: 2900: 2896: 2894: 2882: 2873:p ≡ 3 mod 4 2859:p ≡ 1 mod 4 2852: 2847: 2828: 2822: 2807: 2803: 2801: 2726: 2722: 2624: 2559: 2555: 2551: 2527: 2523: 2499: 2495: 2491: 2489: 2483: 2475: 2471: 2469: 2387: 2312: 2310: 2239: 2235: 2231: 2229: 2223: 2215: 2212:discriminant 2207: 2203: 2201: 2052: 2048: 2046: 1978: 1974: 1970: 1968: 1903: 1901: 1842: 1841:ramifies in 1838: 1836: 1830: 1822: 1818: 1814: 1810: 1808: 1795: 1787: 1782: 1778: 1774: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1739: 1730:cubic fields 1723: 1714: 1710: 1696: 1691: 1683: 1679: 1675: 1671: 1666: 1662: 1658: 1654: 1574: 1570: 1565: 1561: 1536: 1532: 1528: 1524: 1518: 1514: 1510: 1506: 1502: 1496: 1492: 1488: 1482: 1478: 1474: 1470: 1464: 1460: 1456: 1452: 1447: 1443: 1439: 1433: 1429: 1425: 1419: 1415: 1411: 1405: 1400: 1394: 1390: 1386: 1380: 1376: 1372: 1366: 1362: 1358: 1238: 1234: 1230: 1225: 1221: 1217: 1213: 1208: 1204: 1200: 1194: 1190: 1186: 1184: 1179: 1175: 1169: 1165: 1161: 1157: 1153: 1149: 1144: 1140: 1136: 1131: 1127: 1123: 1117: 1113: 1109: 1105: 1104:| for every 1099: 1095: 1091: 1087: 1076: 1072: 1068: 1064: 1062: 1009: 919: 914: 910: 906: 901: 897: 893: 885: 881: 869: 865: 860: 856: 805:Galois group 792: 788: 786: 776: 772: 768: 763: 759: 758:= 1 (and so 754: 750: 746: 742: 738: 735: 730: 726: 725:= 1 (and so 721: 717: 713: 709: 705: 702: 698: 694: 689: 685: 680: 676: 674: 585: 576: 572: 567: 563: 556: 549: 541: 537: 533: 529: 525: 521: 520:ramifies in 517: 513: 509: 505: 501: 497: 493: 488: 484: 480: 475: 471: 469: 464: 459: 455: 451: 447: 442: 438: 434: 429: 425: 418: 413: 409: 405: 398: 394: 392: 386: 382: 377: 373: 369: 362: 355: 353: 267: 258: 251: 240: 236: 234: 144: 136: 132: 121: 114: 110: 106: 104: 94: 82: 74: 65: 61: 56: 52: 45: 43:prime ideals 38: 36:number field 31: 24: 22:Galois group 15: 3587:+ 1. Since 799:. Then the 446:= of this 270:dimensional 101:Definitions 18:mathematics 4526:Categories 4515:0956.11021 4456:PlanetMath 4431:Stein 2002 4385:References 3551:An example 3231:where the 3121:where the 2490:Any prime 2234:≡ 1 mod 4 2230:Any prime 1829:The prime 1773:is simply 1438:for given 1178:for every 876:under the 697:(and thus 588:ideal norm 538:unramified 536:is called 508:is called 479:is called 450:is called 433:for every 393:The field 4331:− 4319:⋯ 4293:− 4187:⋯ 4061:− 3637:conductor 3479:θ 3463:⊆ 3434:∈ 3406:conductor 3329:θ 3191:⋯ 3070:⋯ 2970:) modulo 2821:Prime in 2771:− 2765:≡ 2683:− 2659:σ 2449:± 2424:≡ 2348:± 2287:− 2165:− 2159:≡ 2150:− 2129:− 2120:⋅ 2093:− 2010:− 2004:≡ 1719:preimages 1684:Artin map 1611:− 1607:σ 1586:σ 1548:σ 1321:⁡ 1274:⁡ 1268:→ 1199:, called 1082:. By the 956:∏ 823:⁡ 620:∑ 300:∏ 211:↪ 199:↓ 193:↓ 174:↪ 4477:(1999). 4373:See also 3392:= ... = 2926:so that 2313:switches 1981:, since 1809:Writing 1764:(i), so 1705:over an 1636:′ 1108:, where 749:= 1 and 716:= 1 and 590:implies 510:ramified 4507:1697859 3635:), the 2814:Summary 2482:Primes 2222:Primes 855:on the 48:of the 4513:  4505:  4495:  3360:where 2607:  2370:  2236:splits 1802:, and 1777:, and 1122:, the 73:. The 3505:order 2496:inert 2055:, as 1678:into 1560:maps 884:over 874:orbit 773:inert 712:. If 492:over 463:over 263:field 261:is a 34:of a 27:of a 4493:ISBN 4237:and 3650:/(2) 3642:For 3583:) = 3535:and 2806:and 2651:and 2474:and 2204:only 2051:and 1817:(i)/ 1798:has 1756:and 1744:(i)/ 1713:and 1473:and 1174:is 1010:and 905:and 135:and 120:and 105:Let 4511:Zbl 4103:two 4075:mod 3998:= ( 3864:= ( 3715:mod 3378:to 3011:as 2899:of 2781:mod 2698:is 2560:not 2524:not 2498:in 2440:mod 2214:of 2175:mod 2020:mod 1833:= 2 1701:or 1569:to 1469:is 1399:is 1318:Gal 1271:Gal 1203:of 1126:of 1090:|/| 1075:in 880:of 868:in 820:Gal 775:in 771:is 741:in 708:in 675:If 540:at 512:at 483:of 454:of 368:by 131:of 89:of 16:In 4528:: 4509:. 4503:MR 4501:. 4491:. 4481:. 4453:. 4433:, 4414:. 4264:13 4132:13 4079:13 3541:no 3524:. 3382:. 3276:: 2879:1 2868:1 2865:1 2841:2 2810:. 2725:/7 2478:. 2419:13 2257:13 2199:. 1845:: 1786:= 1760:= 1752:= 1721:. 1694:. 1578:, 1575:j' 1403:. 1182:. 1176:ef 1065:ef 909:= 896:= 779:. 684:= 557:pO 467:. 417:= 397:= 390:. 356:pO 265:. 4517:. 4459:. 4420:. 4357:. 4354:] 4351:i 4348:[ 4344:Z 4340:) 4337:i 4334:3 4328:2 4325:( 4322:= 4316:= 4313:] 4310:i 4307:[ 4303:Z 4299:) 4296:5 4290:i 4287:( 4284:+ 4281:] 4278:i 4275:[ 4271:Z 4267:) 4261:( 4258:= 4253:2 4249:Q 4222:] 4219:i 4216:[ 4212:Z 4208:) 4205:i 4202:3 4199:+ 4196:2 4193:( 4190:= 4184:= 4181:] 4178:i 4175:[ 4171:Z 4167:) 4164:5 4161:+ 4158:i 4155:( 4152:+ 4149:] 4146:i 4143:[ 4139:Z 4135:) 4129:( 4126:= 4121:1 4117:Q 4086:. 4082:) 4072:( 4067:) 4064:5 4058:X 4055:( 4052:) 4049:5 4046:+ 4043:X 4040:( 4037:= 4034:1 4031:+ 4026:2 4022:X 4008:P 4004:p 4000:p 3996:P 3979:. 3976:] 3973:i 3970:[ 3966:Z 3962:7 3959:= 3956:] 3953:i 3950:[ 3946:Z 3942:) 3939:1 3936:+ 3931:2 3927:i 3923:( 3920:+ 3917:] 3914:i 3911:[ 3907:Z 3903:) 3900:7 3897:( 3894:= 3891:Q 3878:X 3874:P 3870:p 3866:p 3862:P 3845:. 3842:] 3839:i 3836:[ 3832:Z 3828:) 3825:i 3822:+ 3819:1 3816:( 3813:= 3810:] 3807:i 3804:[ 3800:Z 3796:) 3793:1 3790:+ 3787:i 3784:( 3781:+ 3778:] 3775:i 3772:[ 3768:Z 3764:) 3761:2 3758:( 3755:= 3752:Q 3726:. 3722:) 3719:2 3712:( 3705:2 3701:) 3697:1 3694:+ 3691:X 3688:( 3685:= 3682:1 3679:+ 3674:2 3670:X 3656:X 3652:Z 3648:Z 3644:P 3623:i 3615:( 3613:Q 3599:i 3591:[ 3589:Z 3585:X 3581:X 3579:( 3577:H 3563:i 3545:P 3537:P 3533:K 3531:/ 3529:L 3521:L 3517:O 3512:K 3508:O 3488:; 3485:} 3482:] 3476:[ 3471:K 3467:O 3458:L 3454:O 3450:y 3447:: 3442:L 3438:O 3431:y 3428:{ 3414:K 3410:O 3398:n 3394:e 3390:1 3387:e 3380:K 3375:j 3371:h 3366:j 3362:h 3345:, 3340:L 3336:O 3332:) 3326:( 3321:j 3317:h 3313:+ 3308:L 3304:O 3300:P 3297:= 3292:j 3288:Q 3273:j 3269:Q 3264:j 3260:h 3255:j 3251:Q 3246:L 3242:O 3237:j 3233:Q 3216:, 3209:n 3205:e 3199:n 3195:Q 3184:1 3180:e 3174:1 3170:Q 3166:= 3161:L 3157:O 3153:P 3140:P 3136:P 3132:F 3127:j 3123:h 3106:, 3099:n 3095:e 3090:) 3086:X 3083:( 3078:n 3074:h 3063:1 3059:e 3054:) 3050:X 3047:( 3042:1 3038:h 3034:= 3031:) 3028:X 3025:( 3022:h 3009:F 3005:X 3003:( 3001:h 2997:P 2995:/ 2992:K 2988:O 2984:F 2980:X 2978:( 2976:h 2972:P 2968:X 2966:( 2964:H 2959:K 2955:O 2951:K 2947:X 2945:( 2943:H 2932:K 2928:L 2923:L 2919:O 2914:L 2910:O 2905:K 2901:O 2897:P 2883:G 2853:G 2848:G 2829:Z 2823:Z 2808:b 2804:a 2785:7 2777:i 2774:b 2768:a 2760:7 2756:) 2752:i 2749:b 2746:+ 2743:a 2740:( 2727:Z 2723:Z 2709:i 2706:2 2686:i 2680:1 2677:= 2674:) 2671:i 2668:+ 2665:1 2662:( 2639:i 2636:+ 2633:1 2610:, 2602:L 2598:O 2594:) 2591:7 2588:( 2584:/ 2578:L 2574:O 2556:p 2552:G 2538:i 2530:[ 2528:Z 2510:i 2502:[ 2500:Z 2492:p 2484:p 2476:b 2472:a 2455:i 2452:3 2444:2 2436:i 2433:b 2430:+ 2427:a 2415:) 2411:i 2408:b 2405:+ 2402:a 2399:( 2373:, 2365:L 2361:O 2357:) 2354:i 2351:3 2345:2 2342:( 2338:/ 2332:L 2328:O 2296:) 2293:i 2290:3 2284:2 2281:( 2278:) 2275:i 2272:3 2269:+ 2266:2 2263:( 2260:= 2240:Z 2232:p 2224:p 2216:Z 2208:Z 2187:i 2184:+ 2179:1 2171:i 2168:b 2162:a 2156:i 2153:b 2147:a 2144:+ 2141:i 2138:b 2135:) 2132:i 2126:1 2123:( 2117:) 2114:i 2111:+ 2108:1 2105:( 2102:= 2099:i 2096:b 2090:a 2087:+ 2084:i 2081:b 2078:2 2075:= 2072:i 2069:b 2066:+ 2063:a 2053:b 2049:a 2032:i 2029:+ 2024:1 2016:i 2013:b 2007:a 2001:i 1998:b 1995:+ 1992:a 1979:G 1975:Z 1971:G 1952:L 1948:O 1944:) 1941:i 1938:+ 1935:1 1932:( 1928:/ 1922:L 1918:O 1904:e 1885:2 1881:) 1877:i 1874:+ 1871:1 1868:( 1865:= 1862:) 1859:2 1856:( 1843:Z 1839:Z 1831:p 1823:G 1819:Q 1815:Q 1811:G 1796:Z 1788:Z 1783:L 1779:O 1775:Z 1770:K 1766:O 1762:Q 1758:L 1754:Q 1750:K 1746:Q 1742:Q 1692:K 1680:G 1676:K 1672:K 1667:j 1663:P 1659:P 1655:G 1633:j 1628:P 1623:D 1619:= 1614:1 1599:j 1595:P 1590:D 1571:P 1566:j 1562:P 1537:j 1533:P 1529:G 1525:G 1519:j 1515:P 1511:D 1507:j 1503:G 1497:j 1493:P 1489:D 1483:j 1479:P 1475:I 1471:f 1465:j 1461:P 1457:D 1453:F 1451:/ 1448:j 1444:F 1440:j 1434:j 1430:P 1426:I 1424:/ 1420:j 1416:P 1412:D 1401:e 1395:j 1391:P 1387:I 1381:j 1377:P 1373:I 1371:/ 1367:j 1363:P 1359:D 1345:) 1342:F 1338:/ 1332:j 1328:F 1324:( 1298:) 1295:F 1291:/ 1285:j 1281:F 1277:( 1261:j 1257:P 1252:D 1239:j 1235:P 1231:I 1226:j 1222:F 1218:K 1216:/ 1214:L 1209:j 1205:P 1195:j 1191:P 1187:I 1180:j 1170:j 1166:P 1162:D 1158:G 1154:K 1152:/ 1150:L 1145:j 1141:P 1137:G 1132:j 1128:P 1118:j 1114:P 1110:D 1106:j 1100:j 1096:P 1092:D 1088:G 1079:L 1077:O 1073:p 1069:g 1048:. 1045:g 1042:f 1039:e 1036:= 1033:] 1030:K 1027:: 1024:L 1021:[ 1006:. 992:e 987:) 981:j 977:P 971:g 966:1 963:= 960:j 951:( 946:= 941:L 937:O 933:p 920:j 915:j 911:e 907:e 902:j 898:f 894:f 886:K 882:L 870:L 866:p 861:j 857:P 840:) 837:K 833:/ 829:L 826:( 817:= 814:G 793:K 791:/ 789:L 777:L 769:p 764:1 760:f 755:1 751:e 747:g 743:L 736:p 731:1 727:e 722:1 718:f 714:g 710:L 703:p 699:g 695:j 690:j 686:e 681:j 677:f 660:. 655:j 651:f 645:j 641:e 635:g 630:1 627:= 624:j 616:= 613:] 610:K 607:: 604:L 601:[ 577:K 575:/ 573:L 568:j 564:F 559:L 555:/ 552:L 550:O 542:p 534:K 532:/ 530:L 526:L 522:L 518:p 514:p 506:K 504:/ 502:L 498:j 494:p 489:j 485:P 476:j 472:e 465:p 460:j 456:P 443:j 439:f 435:j 430:j 426:P 424:/ 421:L 419:O 414:j 410:F 406:p 404:/ 401:K 399:O 395:F 387:j 383:e 378:j 374:P 370:p 365:L 363:O 358:L 335:j 331:e 325:j 321:P 315:g 310:1 307:= 304:j 296:= 291:L 287:O 283:p 259:p 257:/ 254:K 252:O 243:K 241:O 237:p 216:L 206:K 184:L 180:O 167:K 163:O 145:Z 137:L 133:K 124:L 122:O 117:K 115:O 111:K 109:/ 107:L 95:G 66:L 62:O 57:K 53:O 46:P 39:K 32:L 25:G

Index

mathematics
Galois group
Galois extension
number field
prime ideals
ring of integers
algebraic number theory
David Hilbert
ramified coverings
Riemann surfaces
ring of integers
integral closure
maximal ideal
field
dimensional
Chinese remainder theorem
relative discriminant
ideal norm
Galois extension
prime avoidance lemma
Galois group
acts transitively
orbit
automorphisms
unique factorisation theorem
orbit-stabilizer formula
Frobenius element
class field theory
complex manifolds
algebraic geometry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.