Knowledge

Squeeze mapping

Source 📝

2258: 366: 768: 2722: 1806: 20: 2253:{\displaystyle {\begin{matrix}-c^{2}t^{2}+x^{2}=-c^{2}t^{\prime 2}+x^{\prime 2}\\\hline {\begin{aligned}ct'&=ct\gamma -x\beta \gamma &&=ct\cosh \eta -x\sinh \eta \\x'&=-ct\beta \gamma +x\gamma &&=-ct\sinh \eta +x\cosh \eta \end{aligned}}\\\hline u=ct+x,\ v=ct-x,\ k={\sqrt {\tfrac {1+\beta }{1-\beta }}}=e^{\eta }\\u'={\frac {u}{k}},\ v'=kv\\\hline u'v'=uv\end{matrix}}} 783:
Spacetime geometry is conventionally developed as follows: Select (0,0) for a "here and now" in a spacetime. Light radiant left and right through this central event tracks two lines in the spacetime, lines that can be used to give coordinates to events away from (0,0). Trajectories of lesser velocity
1107:
we suggest an alternative formulation to account for the corner-like geometry, based on the use of hyperbolic coordinates, which allows substantial analytical progress towards determination of the flow in a Plateau border and attached liquid threads. We consider a region of flow forming an angle of
391:
in the terms of the day: "From a Square and an infinite company of Oblongs on a Superficies, each Equal to that square, how a curve is begotten which shall have the same properties or affections of any Hyperbola inscribed within a Right Angled Cone."
1793: 1521: 1681: 1079: 345:, but shares a property of invariance with it: whereas circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping. Both circular and hyperbolic angle generate 231: 1900: 1116:
Stocker and Hosoi then recall Moffatt's consideration of "flow in a corner between rigid boundaries, induced by an arbitrary disturbance at a large distance." According to Stocker and Hosoi,
991: 600: 2426: 137: 1617: 520: 1726:
Sophus Lie observed that the SGE is invariant under Lorentz transformations. In asymptotic coordinates, which correspond to light cone coordinates, a Lorentz transformation is
1556: 1316:
1649) As area measured against the asymptote increases in arithmetic progression, the projections upon the asymptote increase in geometric sequence. Thus the areas form
525:
and corresponds geometrically to preserving hyperbolae. The perspective of the group of squeeze mappings as hyperbolic rotation is analogous to interpreting the group
1576: 1120:
For a free fluid in a square corner, Moffatt's (antisymmetric) stream function ... that hyperbolic coordinates are indeed the natural choice to describe these flows.
1428: 1306:, one triangle being {(0,0), (0,1), (1,1)}, shows the hyperbolic sector area is equal to the area along the asymptote. The theorem then follows from the lemma. 1619:
is a solution to the Sine-Gordon equation, then the following squeeze mapping (now known as Lie transform) indicates other solutions of that equation:
2567: 1729: 2469:, equation 29.5 on page 45 of the 1969 edition, or equation 2.17 on page 37 of the 1977 edition, or equation 2.16 on page 52 of the 2001 edition 2343: 2320: 2408: 1455: 1625: 2479: 2340: 2378:(1912) "The space-time manifold of relativity. The non-Euclidean geometry of mechanics and electromagnetics", Proceedings of the 907: 658:" in the hyperbolic case (as compared with the circular case) is necessary to specify the identity component because the group 1002: 337:
that are permuted by squeeze mappings while preserving their area. The area of a hyperbolic sector is taken as a measure of a
2379: 158: 2478:
Daesoo Han, Young Suh Kim & Marilyn E. Noz (1997) "Jones-matrix formalism as a representation of the Lorentz group",
689:
only has 1. The fact that the squeeze transforms preserve area and orientation corresponds to the inclusion of subgroups
411:
of their squeeze mappings is the squeeze mapping of their product. Therefore, the collection of squeeze mappings forms a
800:
which corresponds to the pair of light lines. Formally, a squeeze preserves the hyperbolic metric expressed in the form
923: 560: 666: 797: 423:. An additive view of this group arises from consideration of hyperbolic sectors and their hyperbolic angles. 306:
The squeeze mapping sets the stage for development of the concept of logarithms. The problem of finding the
2757: 81: 2581:
Lie, S. (1881) . "Selbstanzeige: Über Flächen, deren Krümmungsradien durch eine Relation verknüpft sind".
1581: 470: 322: 2747: 2356: 2292: 439: 2525: 2496: 1698:
in 1879.) Such transformations of pseudospherical surfaces were discussed in detail in the lectures on
1313: 326: 2726: 1336: 1262: 911: 1691: 1129:
The area-preserving property of squeeze mapping has an application in setting the foundation of the
2742: 2674: 1717:
It is known that the Lie transforms (or squeeze mappings) correspond to Lorentz boosts in terms of
1711: 1694:
in 1883) can be seen as the combination of a Lie transform with a Bianchi transform (introduced by
776: 724: 318: 2653: 824:
in his textbook on relativity, who used it in his demonstration of their characteristic property.
709: 2752: 1529: 1442: 1130: 900: 1718: 1401: 59: 2632: 2427:
On bodies that are to be designated as "rigid" from the standpoint of the relativity principle
1686:
Lie (1883) noticed its relation to two other transformations of pseudospherical surfaces: The
879:
applied to an initial fluid state produces a flow with bifurcation left and right of the axis
2561: 1699: 1561: 1363: 1332: 420: 2542: 1687: 2705: 2438: 2371: 1446: 1434: 1137: 805: 793: 701: 416: 408: 717: 8: 2668: 852: 412: 350: 2647: 2442: 2423:"Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" 1811: 2324: 884: 856: 788:). Any such velocity can be viewed as a zero velocity under a squeeze mapping called a 435: 354: 2626: 2336: 2297: 1429:
History of Lorentz transformations § Lorentz transformation via squeeze mappings
1151: 1133: 896: 744: 370: 346: 341:
associated with the sector. The hyperbolic angle concept is quite independent of the
334: 330: 2612: 2592: 365: 2462: 2446: 2375: 2268: 821: 732: 713: 530: 338: 1096:
to a hyperbola, with the rectangular case of the squeeze mapping corresponding to
859:
of a flow running up against an immovable wall. Representing the wall by the axis
779:
with respect to hyperbola (B) is preserved by squeeze mapping in the right diagram
813: 462: 427: 388: 51: 274:
and the points of the image of the squeeze mapping are on the same hyperbola as
2404: 1703: 848: 836: 812:. Furthermore, the squeeze mapping form of Lorentz transformations was used by 809: 443: 31: 2316: 1331:), one may ask "When is the hyperbolic angle equal to one?" The answer is the 291: 2736: 2450: 1707: 1695: 832: 817: 789: 772: 767: 63: 1323:
For instance, for a standard position angle which runs from (1, 1) to (
2508: 2360: 1788:{\displaystyle (x,t)\mapsto \left({\tfrac {1}{\lambda }}x,\lambda t\right)} 384: 2686: 705: 2721: 2524:
H.K. Moffatt (1964) "Viscous and resistive eddies near a sharp corner",
917:
In 1989 Ottino described the "linear isochoric two-dimensional flow" as
747:, the angle measure of sectors is preserved. Thus squeeze mappings are 1438: 743:. Since squeeze mappings preserve areas of transformed regions such as 286:
is. For this reason it is natural to think of the squeeze mapping as a
43: 1103:
Stocker and Hosoi described their approach to corner flow as follows:
376: 237: 2422: 1388:
corresponds to the asymptotic index achieved with each sum of areas
333:
function, a new concept. Some insight into logarithms comes through
2605:
Lie, S. (1884) . "Untersuchungen über Differentialgleichungen IV".
2280: 1516:{\displaystyle {\frac {d^{2}\Theta }{ds\ d\sigma }}=K\sin \Theta ,} 19: 2540: 1089: 996:
where K lies in the interval . The streamlines follow the curves
353:, which take hyperbolic angle as argument, perform the role that 1676:{\displaystyle \Theta =f\left(ms,\ {\frac {\sigma }{m}}\right).} 759:
Here some applications are summarized with historic references.
1558:
are asymptotic coordinates of two principal tangent curves and
808:
was noted in 1912 by Wilson and Lewis, by Werner Greub, and by
696: 2670:
A treatise on the differential geometry of curves and surfaces
2628:
Leçons sur la théorie générale des surfaces. Troisième partie
1437:'s (1867) investigations on surfaces of constant curvatures, 342: 1296:
Proof: An argument adding and subtracting triangles of area
804:; in a different coordinate system. This application in the 605:
are not allowed, though they preserve the form (in terms of
2693:, Chapter 4 Transformations, A genealogy of transformation. 1112:/2 and delimited on the left and bottom by symmetry planes. 892: 307: 47: 2357:
Logarithmotechnia: the making of numbers called logarithms
2341:
On the introduction of the notion of hyperbolic functions
349:
but with respect to different transformation groups. The
1184:, then there is a squeeze mapping that moves the sector( 1074:{\displaystyle x_{2}^{2}-Kx_{1}^{2}=\mathrm {constant} } 554:" notation corresponds to the fact that the reflections 2493:
The Kinematics of Mixing: stretching, chaos, transport
2321:
Introduction Geometrique à quelques Théories Physiques
2128: 1757: 831:
was used in this context in an article connecting the
1809: 1732: 1628: 1584: 1564: 1532: 1458: 1005: 926: 563: 473: 161: 84: 226:{\displaystyle \{(u,v)\,:\,uv=\mathrm {constant} \}} 16:
Linear mapping permuting rectangles of the same area
2706:"The non-Euclidean style of Minkowskian relativity" 2252: 1787: 1675: 1611: 1570: 1550: 1515: 1277:= 1 against the asymptote has equal areas between 1073: 985: 594: 514: 225: 131: 875:is time, then the squeeze mapping with parameter 704:of transforms preserving area and orientation (a 700:– of the subgroup of hyperbolic rotations in the 301: 2734: 2666: 2420: 2407:(1985) "Transformations in Special Relativity", 1721:, as pointed out by Terng and Uhlenbeck (2000): 1362:) which subtends a sector also of area one. The 986:{\displaystyle v_{1}=Gx_{2}\quad v_{2}=KGx_{1}} 906:For another approach to a flow with hyperbolic 775:is preserved by rotation in the left diagram; 2703: 2346:1(6):155–9,particularly equation 12, page 159 2344:Bulletin of the American Mathematical Society 751:in the sense of preserving hyperbolic angle. 595:{\displaystyle u\mapsto -u,\quad v\mapsto -v} 2566:: CS1 maint: multiple names: authors list ( 2409:International Journal of Theoretical Physics 1445:from a known one. Such surfaces satisfy the 1124: 455:. This is equivalent to preserving the form 220: 162: 2715:. Oxford University Press. pp. 91–127. 2713:The Symbolic Universe: Geometry and Physics 2696:P. S. Modenov and A. S. Parkhomenko (1965) 2645: 2624: 2613:Lie's collected papers, Vol. 3, pp. 556–560 2593:Lie's collected papers, Vol. 3, pp. 392–393 2511:(2004) "Corner flow in free liquid films", 1578:their respective angle. Lie showed that if 912:Potential flow § Power laws with n = 2 2541:Terng, C. L., & Uhlenbeck, K. (2000). 2480:Journal of the Optical Society of America 1346:= e moves the unit angle to one between ( 784:track closer to the original timeline (0, 762: 529:(the connected component of the definite 508: 184: 180: 2536: 2534: 766: 364: 18: 2604: 2580: 2395:, Springer-Verlag. See pages 272 to 274 2323:, page 29, Gauthier-Villars, link from 1273:, then the quadrature of the hyperbola 891:when time is run backward. Indeed, the 792:. This insight follows from a study of 387:, the squeeze mapping was described by 357:play with the circular angle argument. 2735: 2382:48:387–507, footnote p. 401 712:, the squeeze transformations are the 2673:. Boston: Ginn and Company. pp.  2531: 2380:American Academy of Arts and Sciences 2267:corresponds to the Doppler factor in 851:one of the fundamental motions of an 132:{\displaystyle (x,y)\mapsto (ax,y/a)} 2631:. Paris: Gauthier-Villars. pp.  1800:This can be represented as follows: 1612:{\displaystyle \Theta =f(s,\sigma )} 515:{\displaystyle x=u+v,\quad y=u-v\,,} 442:of 2×2 real matrices preserving the 2700:, volume one. See pages 104 to 106. 430:, the group of squeeze mappings is 369:A squeeze mapping moves one purple 13: 2649:Lezioni di geometria differenziale 2513:Journal of Engineering Mathematics 1887: 1871: 1629: 1585: 1565: 1507: 1472: 1067: 1064: 1061: 1058: 1055: 1052: 1049: 1046: 216: 213: 210: 207: 204: 201: 198: 195: 14: 2769: 2652:. Pisa: Enrico Spoerri. pp.  1441:(1879) found a way to derive new 69:For a fixed positive real number 2720: 1422: 375:It also squeezes blue and green 310:bounded by a hyperbola (such as 2660: 2639: 2618: 2598: 2574: 2518: 2501: 2485: 1154:obtained with central rays to ( 953: 754: 579: 492: 407:are positive real numbers, the 373:to another with the same area. 360: 2725:Learning materials related to 2472: 2456: 2414: 2398: 2385: 2365: 2349: 2330: 2310: 1748: 1745: 1733: 1606: 1594: 1545: 1533: 842: 583: 567: 426:From the point of view of the 383:In 1688, long before abstract 302:Logarithm and hyperbolic angle 177: 165: 126: 103: 100: 97: 85: 1: 2425:[Wikisource translation: 2303: 863:= 0 and taking the parameter 735:is defined using area under 533:) preserving quadratic form 7: 2583:Fortschritte der Mathematik 2293:Indefinite orthogonal group 2286: 1551:{\displaystyle (s,\sigma )} 816:(1909/10) while discussing 731:when it preserves angles. 440:indefinite orthogonal group 10: 2774: 2526:Journal of Fluid Mechanics 2497:Cambridge University Press 2421:Herglotz, Gustav (1910) , 2327:Historical Math Monographs 1426: 1314:Alphonse Antonio de Sarasa 718:classification of elements 327:Alphonse Antonio de Sarasa 298:, which preserve circles. 2698:Geometric Transformations 2689:& SL Greitzer (1967) 2667:Eisenhart, L. P. (1909). 1400:which is a proto-typical 1263:Gregoire de Saint-Vincent 1125:Bridge to transcendentals 820:, and was popularized by 323:Grégoire de Saint-Vincent 321:. The solution, found by 294:in 1914, by analogy with 46:that preserves Euclidean 2451:10.1002/andp.19103360208 1712:Luther Pfahler Eisenhart 1443:pseudospherical surfaces 1320:of the asymptote index. 1131:transcendental functions 796:multiplications and the 777:hyperbolic orthogonality 725:geometric transformation 2355:Euclid Speidell (1688) 1571:{\displaystyle \Theta } 343:ordinary circular angle 2727:Reciprocal Eigenvalues 2717:(see page 9 of e-link) 2704:Walter, Scott (1999). 2543:"Geometry of solitons" 2254: 1789: 1719:light-cone coordinates 1692:Albert Victor Bäcklund 1677: 1613: 1572: 1552: 1517: 1402:arithmetic progression 1195:Proof: Take parameter 1075: 987: 829:squeeze transformation 780: 763:Relativistic spacetime 710:Möbius transformations 708:). In the language of 596: 516: 380: 329:in 1647, required the 227: 133: 40:squeeze transformation 27: 2255: 1790: 1700:differential geometry 1678: 1614: 1573: 1553: 1518: 1427:Further information: 1364:geometric progression 1333:transcendental number 1076: 988: 770: 693:– in this case 597: 517: 421:positive real numbers 368: 228: 134: 26:= 3/2 squeeze mapping 22: 2711:. In J. Gray (ed.). 2646:Bianchi, L. (1894). 2625:Darboux, G. (1894). 2507:Roman Stocker & 2491:J. M. Ottino (1989) 2467:Essential Relativity 2372:Edwin Bidwell Wilson 1807: 1730: 1626: 1582: 1562: 1530: 1456: 1447:Sine-Gordon equation 1435:Pierre Ossian Bonnet 1285:compared to between 1138:exponential function 1136:and its inverse the 1003: 924: 806:theory of relativity 794:split-complex number 702:special linear group 695:SO(1,1) ⊂  667:connected components 561: 471: 417:multiplicative group 351:hyperbolic functions 159: 82: 2758:Minkowski spacetime 2443:1910AnP...336..393H 2391:W. H. Greub (1967) 1041: 1020: 853:incompressible flow 714:hyperbolic elements 413:one-parameter group 288:hyperbolic rotation 2748:Conformal mappings 2691:Geometry Revisited 2550:Notices of the AMS 2431:Annalen der Physik 2325:Cornell University 2250: 2248: 2153: 2066: 1785: 1766: 1688:Bäcklund transform 1673: 1609: 1568: 1548: 1513: 1088:corresponds to an 1071: 1027: 1006: 983: 781: 745:hyperbolic sectors 685:components, while 669:, while the group 654:; the additional " 592: 545:circular rotations 512: 436:identity component 415:isomorphic to the 381: 355:circular functions 347:invariant measures 335:hyperbolic sectors 296:circular rotations 223: 129: 50:of regions in the 28: 2337:Mellen W. Haskell 2298:Isochoric process 2199: 2192: 2154: 2152: 2119: 2095: 1765: 1663: 1654: 1493: 1485: 1152:hyperbolic sector 1134:natural logarithm 903:under squeezing. 897:hyperbolic sector 889:fluid convergence 371:hyperbolic sector 331:natural logarithm 2765: 2724: 2716: 2710: 2679: 2678: 2664: 2658: 2657: 2643: 2637: 2636: 2622: 2616: 2610: 2602: 2596: 2590: 2578: 2572: 2571: 2565: 2557: 2547: 2538: 2529: 2522: 2516: 2505: 2499: 2489: 2483: 2476: 2470: 2463:Wolfgang Rindler 2460: 2454: 2453: 2418: 2412: 2402: 2396: 2389: 2383: 2376:Gilbert N. Lewis 2369: 2363: 2353: 2347: 2334: 2328: 2314: 2259: 2257: 2256: 2251: 2249: 2236: 2228: 2207: 2197: 2193: 2185: 2180: 2168: 2167: 2155: 2151: 2140: 2129: 2127: 2117: 2093: 2067: 2024: 1991: 1943: 1913: 1894: 1893: 1878: 1877: 1865: 1864: 1849: 1848: 1836: 1835: 1826: 1825: 1794: 1792: 1791: 1786: 1784: 1780: 1767: 1758: 1682: 1680: 1679: 1674: 1669: 1665: 1664: 1656: 1652: 1618: 1616: 1615: 1610: 1577: 1575: 1574: 1569: 1557: 1555: 1554: 1549: 1522: 1520: 1519: 1514: 1494: 1492: 1483: 1475: 1471: 1470: 1460: 1305: 1304: 1300: 1080: 1078: 1077: 1072: 1070: 1040: 1035: 1019: 1014: 992: 990: 989: 984: 982: 981: 963: 962: 952: 951: 936: 935: 822:Wolfgang Rindler 733:Hyperbolic angle 699: 692: 688: 684: 680: 676: 672: 665: 661: 657: 653: 634: 616: 610: 601: 599: 598: 593: 553: 542: 531:orthogonal group 528: 521: 519: 518: 513: 460: 454: 433: 428:classical groups 406: 400: 339:hyperbolic angle 316: 285: 273: 263: 249: 232: 230: 229: 224: 219: 151: 138: 136: 135: 130: 122: 74: 38:, also called a 2773: 2772: 2768: 2767: 2766: 2764: 2763: 2762: 2743:Affine geometry 2733: 2732: 2708: 2683: 2682: 2665: 2661: 2644: 2640: 2623: 2619: 2611:. Reprinted in 2603: 2599: 2579: 2575: 2559: 2558: 2545: 2539: 2532: 2523: 2519: 2515:50:267–88 2506: 2502: 2490: 2486: 2477: 2473: 2461: 2457: 2419: 2415: 2411:24:223–36 2403: 2399: 2390: 2386: 2370: 2366: 2354: 2350: 2335: 2331: 2315: 2311: 2306: 2289: 2247: 2246: 2229: 2221: 2218: 2217: 2200: 2184: 2173: 2170: 2169: 2163: 2159: 2141: 2130: 2126: 2069: 2068: 2065: 2064: 2023: 1992: 1984: 1981: 1980: 1942: 1914: 1906: 1899: 1896: 1895: 1886: 1882: 1870: 1866: 1860: 1856: 1844: 1840: 1831: 1827: 1821: 1817: 1810: 1808: 1805: 1804: 1756: 1755: 1751: 1731: 1728: 1727: 1690:(introduced by 1655: 1642: 1638: 1627: 1624: 1623: 1583: 1580: 1579: 1563: 1560: 1559: 1531: 1528: 1527: 1476: 1466: 1462: 1461: 1459: 1457: 1454: 1453: 1431: 1425: 1342:A squeeze with 1302: 1298: 1297: 1127: 1045: 1036: 1031: 1015: 1010: 1004: 1001: 1000: 977: 973: 958: 954: 947: 943: 931: 927: 925: 922: 921: 845: 814:Gustav Herglotz 765: 757: 694: 690: 686: 682: 678: 674: 670: 663: 659: 655: 636: 618: 612: 606: 562: 559: 558: 551: 550:Note that the " 534: 526: 472: 469: 468: 463:change of basis 456: 446: 431: 402: 396: 389:Euclid Speidell 374: 363: 311: 304: 275: 265: 251: 241: 194: 160: 157: 156: 147: 146:with parameter 144:squeeze mapping 118: 83: 80: 79: 70: 52:Cartesian plane 42:, is a type of 36:squeeze mapping 17: 12: 11: 5: 2771: 2761: 2760: 2755: 2753:Linear algebra 2750: 2745: 2731: 2730: 2729:at Wikiversity 2718: 2701: 2694: 2681: 2680: 2659: 2638: 2617: 2597: 2573: 2530: 2517: 2500: 2484: 2471: 2455: 2413: 2405:Louis Kauffman 2397: 2393:Linear Algebra 2384: 2364: 2348: 2329: 2308: 2307: 2305: 2302: 2301: 2300: 2295: 2288: 2285: 2261: 2260: 2245: 2242: 2239: 2235: 2232: 2227: 2224: 2220: 2219: 2216: 2213: 2210: 2206: 2203: 2196: 2191: 2188: 2183: 2179: 2176: 2172: 2171: 2166: 2162: 2158: 2150: 2147: 2144: 2139: 2136: 2133: 2125: 2122: 2116: 2113: 2110: 2107: 2104: 2101: 2098: 2092: 2089: 2086: 2083: 2080: 2077: 2074: 2071: 2070: 2063: 2060: 2057: 2054: 2051: 2048: 2045: 2042: 2039: 2036: 2033: 2030: 2027: 2025: 2022: 2019: 2016: 2013: 2010: 2007: 2004: 2001: 1998: 1995: 1993: 1990: 1987: 1983: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1961: 1958: 1955: 1952: 1949: 1946: 1944: 1941: 1938: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1915: 1912: 1909: 1905: 1902: 1901: 1898: 1897: 1892: 1889: 1885: 1881: 1876: 1873: 1869: 1863: 1859: 1855: 1852: 1847: 1843: 1839: 1834: 1830: 1824: 1820: 1816: 1813: 1812: 1798: 1797: 1783: 1779: 1776: 1773: 1770: 1764: 1761: 1754: 1750: 1747: 1744: 1741: 1738: 1735: 1704:Gaston Darboux 1684: 1683: 1672: 1668: 1662: 1659: 1651: 1648: 1645: 1641: 1637: 1634: 1631: 1608: 1605: 1602: 1599: 1596: 1593: 1590: 1587: 1567: 1547: 1544: 1541: 1538: 1535: 1524: 1523: 1512: 1509: 1506: 1503: 1500: 1497: 1491: 1488: 1482: 1479: 1474: 1469: 1465: 1424: 1421: 1398: 1397: 1386: 1385: 1126: 1123: 1122: 1121: 1114: 1113: 1082: 1081: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1044: 1039: 1034: 1030: 1026: 1023: 1018: 1013: 1009: 994: 993: 980: 976: 972: 969: 966: 961: 957: 950: 946: 942: 939: 934: 930: 883:= 0. The same 849:fluid dynamics 844: 841: 837:Jones calculus 810:Louis Kauffman 798:diagonal basis 764: 761: 756: 753: 603: 602: 591: 588: 585: 582: 578: 575: 572: 569: 566: 523: 522: 511: 507: 504: 501: 498: 495: 491: 488: 485: 482: 479: 476: 444:quadratic form 362: 359: 303: 300: 234: 233: 222: 218: 215: 212: 209: 206: 203: 200: 197: 193: 190: 187: 183: 179: 176: 173: 170: 167: 164: 140: 139: 128: 125: 121: 117: 114: 111: 108: 105: 102: 99: 96: 93: 90: 87: 75:, the mapping 32:linear algebra 15: 9: 6: 4: 3: 2: 2770: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2740: 2738: 2728: 2723: 2719: 2714: 2707: 2702: 2699: 2695: 2692: 2688: 2685: 2684: 2676: 2672: 2671: 2663: 2655: 2651: 2650: 2642: 2634: 2630: 2629: 2621: 2614: 2608: 2601: 2594: 2591:Reprinted in 2588: 2584: 2577: 2569: 2563: 2555: 2551: 2544: 2537: 2535: 2528:18:1–18 2527: 2521: 2514: 2510: 2504: 2498: 2494: 2488: 2482:A14(9):2290–8 2481: 2475: 2468: 2464: 2459: 2452: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2417: 2410: 2406: 2401: 2394: 2388: 2381: 2377: 2373: 2368: 2362: 2358: 2352: 2345: 2342: 2338: 2333: 2326: 2322: 2318: 2313: 2309: 2299: 2296: 2294: 2291: 2290: 2284: 2282: 2278: 2274: 2272: 2266: 2243: 2240: 2237: 2233: 2230: 2225: 2222: 2214: 2211: 2208: 2204: 2201: 2194: 2189: 2186: 2181: 2177: 2174: 2164: 2160: 2156: 2148: 2145: 2142: 2137: 2134: 2131: 2123: 2120: 2114: 2111: 2108: 2105: 2102: 2099: 2096: 2090: 2087: 2084: 2081: 2078: 2075: 2072: 2061: 2058: 2055: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2026: 2020: 2017: 2014: 2011: 2008: 2005: 2002: 1999: 1996: 1994: 1988: 1985: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1945: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1916: 1910: 1907: 1903: 1890: 1883: 1879: 1874: 1867: 1861: 1857: 1853: 1850: 1845: 1841: 1837: 1832: 1828: 1822: 1818: 1814: 1803: 1802: 1801: 1796: 1781: 1777: 1774: 1771: 1768: 1762: 1759: 1752: 1742: 1739: 1736: 1724: 1723: 1722: 1720: 1715: 1713: 1709: 1708:Luigi Bianchi 1705: 1701: 1697: 1696:Luigi Bianchi 1693: 1689: 1670: 1666: 1660: 1657: 1649: 1646: 1643: 1639: 1635: 1632: 1622: 1621: 1620: 1603: 1600: 1597: 1591: 1588: 1542: 1539: 1536: 1510: 1504: 1501: 1498: 1495: 1489: 1486: 1480: 1477: 1467: 1463: 1452: 1451: 1450: 1448: 1444: 1440: 1436: 1430: 1423:Lie transform 1420: 1418: 1414: 1410: 1406: 1403: 1395: 1391: 1390: 1389: 1383: 1379: 1375: 1371: 1368: 1367: 1366: 1365: 1361: 1357: 1353: 1349: 1345: 1340: 1338: 1334: 1330: 1326: 1321: 1319: 1315: 1311: 1307: 1294: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1193: 1191: 1187: 1183: 1179: 1175: 1171: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1139: 1135: 1132: 1119: 1118: 1117: 1111: 1106: 1105: 1104: 1101: 1099: 1095: 1092:and positive 1091: 1087: 1042: 1037: 1032: 1028: 1024: 1021: 1016: 1011: 1007: 999: 998: 997: 978: 974: 970: 967: 964: 959: 955: 948: 944: 940: 937: 932: 928: 920: 919: 918: 915: 913: 909: 904: 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 862: 858: 854: 850: 840: 838: 834: 833:Lorentz group 830: 825: 823: 819: 818:Born rigidity 815: 811: 807: 803: 799: 795: 791: 790:Lorentz boost 787: 778: 774: 773:orthogonality 769: 760: 752: 750: 746: 742: 738: 734: 730: 726: 721: 719: 715: 711: 707: 703: 698: 668: 651: 647: 643: 639: 633: 629: 625: 621: 615: 609: 589: 586: 580: 576: 573: 570: 564: 557: 556: 555: 548: 546: 541: 537: 532: 509: 505: 502: 499: 496: 493: 489: 486: 483: 480: 477: 474: 467: 466: 465: 464: 459: 453: 449: 445: 441: 437: 429: 424: 422: 418: 414: 410: 405: 399: 393: 390: 386: 378: 372: 367: 358: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 314: 309: 299: 297: 293: 289: 283: 279: 272: 268: 262: 258: 254: 248: 244: 239: 191: 188: 185: 181: 174: 171: 168: 155: 154: 153: 150: 145: 123: 119: 115: 112: 109: 106: 94: 91: 88: 78: 77: 76: 73: 67: 65: 64:shear mapping 61: 57: 53: 49: 45: 41: 37: 33: 25: 21: 2712: 2697: 2690: 2669: 2662: 2648: 2641: 2627: 2620: 2607:Christ. Forh 2606: 2600: 2586: 2582: 2576: 2562:cite journal 2553: 2549: 2520: 2512: 2503: 2492: 2487: 2474: 2466: 2458: 2434: 2430: 2416: 2400: 2392: 2387: 2367: 2361:Google Books 2351: 2332: 2312: 2276: 2270: 2264: 2262: 1799: 1725: 1716: 1685: 1525: 1432: 1416: 1412: 1408: 1404: 1399: 1393: 1392:1,2,3, ..., 1387: 1381: 1377: 1373: 1369: 1359: 1355: 1351: 1347: 1343: 1341: 1328: 1324: 1322: 1317: 1309: 1308: 1295: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1258: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1194: 1189: 1188:) to sector( 1185: 1181: 1177: 1173: 1172: 1167: 1163: 1159: 1155: 1147: 1143: 1142: 1128: 1115: 1109: 1102: 1097: 1093: 1085: 1084:so negative 1083: 995: 916: 905: 888: 880: 876: 872: 868: 864: 860: 846: 828: 826: 801: 785: 782: 758: 755:Applications 748: 740: 736: 728: 722: 677:components: 649: 645: 641: 637: 631: 627: 623: 619: 613: 607: 604: 549: 544: 539: 535: 524: 457: 451: 447: 425: 403: 397: 394: 385:group theory 382: 361:Group theory 312: 305: 295: 287: 281: 277: 270: 266: 260: 256: 252: 246: 242: 235: 148: 143: 141: 71: 68: 55: 39: 35: 29: 23: 2687:HSM Coxeter 2556:(1): 17–25. 2495:, page 29, 2317:Émile Borel 1710:(1894), or 1144:Definition: 908:streamlines 857:bifurcation 843:Corner flow 839:in optics. 706:volume form 409:composition 292:Émile Borel 2737:Categories 2589:: 529–531. 2509:A.E. Hosoi 2437:(2): 408, 2304:References 1439:Sophus Lie 1433:Following 1318:logarithms 771:Euclidean 727:is called 617:these are 377:rectangles 319:quadrature 317:is one of 44:linear map 2273:-calculus 2165:η 2149:β 2146:− 2138:β 2109:− 2062:η 2059:⁡ 2047:η 2044:⁡ 2032:− 2021:γ 2012:γ 2009:β 2000:− 1978:η 1975:⁡ 1966:− 1963:η 1960:⁡ 1940:γ 1937:β 1931:− 1928:γ 1888:′ 1872:′ 1854:− 1815:− 1775:λ 1763:λ 1749:↦ 1658:σ 1630:Θ 1604:σ 1586:Θ 1566:Θ 1543:σ 1508:Θ 1505:⁡ 1490:σ 1473:Θ 1358:, 1/ 1350:, 1/ 1327:, 1/ 1265:1647) If 1223:) takes ( 1207:so that ( 1150:) is the 1022:− 901:invariant 855:involves 827:The term 749:conformal 729:conformal 587:− 584:↦ 571:− 568:↦ 543:as being 503:− 290:, as did 238:hyperbola 101:↦ 54:, but is 2287:See also 2281:rapidity 2234:′ 2226:′ 2205:′ 2178:′ 1989:′ 1911:′ 1714:(1909). 1706:(1894), 1415:= 0 and 871:) where 461:via the 152:. Since 60:rotation 2439:Bibcode 2429:], 2339:(1895) 2319:(1914) 2279:is the 1380:, ..., 1354:) and ( 1310:Theorem 1301:⁄ 1259:Theorem 1239:) and ( 1162:) and ( 1146:Sector( 1090:ellipse 895:of any 716:in the 691:SO ⊂ SL 679:SO(1,1) 438:of the 432:SO(1,1) 264:, then 142:is the 2374:& 2269:Bondi 2263:where 2198:  2118:  2094:  1653:  1526:where 1484:  1419:= 1 . 1411:where 1247:) to ( 1231:) to ( 1174:Lemma: 910:, see 887:gives 867:= exp( 660:O(1,1) 434:, the 2709:(PDF) 2677:–290. 2656:–434. 2635:–382. 2546:(PDF) 2359:from 1384:, ... 1211:) = ( 1100:= 1. 885:model 835:with 697:SL(2) 687:SO(2) 527:SO(2) 240:, if 236:is a 2568:link 2056:cosh 2041:sinh 1972:sinh 1957:cosh 1396:,... 1335:x = 1289:and 1281:and 1251:, 1/ 1243:, 1/ 1235:, 1/ 1227:, 1/ 1166:, 1/ 1158:, 1/ 893:area 739:= 1/ 681:has 673:has 671:O(2) 662:has 635:and 611:and 401:and 325:and 315:= 1) 308:area 250:and 48:area 34:, a 2675:289 2654:433 2633:381 2447:doi 2435:336 1702:by 1502:sin 1255:). 1209:u,v 1192:). 1190:c,d 1186:a,b 1176:If 1170:). 1148:a,b 899:is 847:In 648:↦ − 640:↦ − 419:of 395:If 62:or 56:not 30:In 2739:: 2587:11 2585:. 2564:}} 2560:{{ 2554:47 2552:. 2548:. 2533:^ 2465:, 2445:, 2433:, 2283:. 2275:, 1449:: 1409:nd 1407:+ 1376:, 1372:, 1360:ee 1356:ee 1339:. 1293:. 1275:xy 1271:ad 1269:= 1267:bc 1215:, 1213:rx 1199:= 1182:ad 1180:= 1178:bc 1140:: 914:. 802:xy 723:A 720:. 644:, 630:↦ 626:, 622:↦ 552:SO 547:. 538:+ 458:xy 450:− 313:xy 271:xy 269:= 267:uv 255:= 247:ax 245:= 66:. 58:a 2615:. 2609:. 2595:. 2570:) 2449:: 2441:: 2277:η 2271:k 2265:k 2244:v 2241:u 2238:= 2231:v 2223:u 2215:v 2212:k 2209:= 2202:v 2195:, 2190:k 2187:u 2182:= 2175:u 2161:e 2157:= 2143:1 2135:+ 2132:1 2124:= 2121:k 2115:, 2112:x 2106:t 2103:c 2100:= 2097:v 2091:, 2088:x 2085:+ 2082:t 2079:c 2076:= 2073:u 2053:x 2050:+ 2038:t 2035:c 2029:= 2018:x 2015:+ 2006:t 2003:c 1997:= 1986:x 1969:x 1954:t 1951:c 1948:= 1934:x 1925:t 1922:c 1919:= 1908:t 1904:c 1891:2 1884:x 1880:+ 1875:2 1868:t 1862:2 1858:c 1851:= 1846:2 1842:x 1838:+ 1833:2 1829:t 1823:2 1819:c 1795:. 1782:) 1778:t 1772:, 1769:x 1760:1 1753:( 1746:) 1743:t 1740:, 1737:x 1734:( 1671:. 1667:) 1661:m 1650:, 1647:s 1644:m 1640:( 1636:f 1633:= 1607:) 1601:, 1598:s 1595:( 1592:f 1589:= 1546:) 1540:, 1537:s 1534:( 1511:, 1499:K 1496:= 1487:d 1481:s 1478:d 1468:2 1464:d 1417:d 1413:A 1405:A 1394:n 1382:e 1378:e 1374:e 1370:e 1352:e 1348:e 1344:r 1337:e 1329:x 1325:x 1312:( 1303:2 1299:1 1291:d 1287:c 1283:b 1279:a 1261:( 1253:d 1249:d 1245:b 1241:b 1237:c 1233:c 1229:a 1225:a 1221:r 1219:/ 1217:y 1205:a 1203:/ 1201:c 1197:r 1168:b 1164:b 1160:a 1156:a 1110:π 1098:K 1094:K 1086:K 1068:t 1065:n 1062:a 1059:t 1056:s 1053:n 1050:o 1047:c 1043:= 1038:2 1033:1 1029:x 1025:K 1017:2 1012:2 1008:x 979:1 975:x 971:G 968:K 965:= 960:2 956:v 949:2 945:x 941:G 938:= 933:1 929:v 881:x 877:r 873:t 869:t 865:r 861:y 786:t 741:x 737:y 683:2 675:2 664:4 656:+ 652:) 650:y 646:y 642:x 638:x 632:x 628:y 624:y 620:x 614:y 608:x 590:v 581:v 577:, 574:u 565:u 540:y 536:x 510:, 506:v 500:u 497:= 494:y 490:, 487:v 484:+ 481:u 478:= 475:x 452:v 448:u 404:s 398:r 379:. 284:) 282:y 280:, 278:x 276:( 261:a 259:/ 257:y 253:v 243:u 221:} 217:t 214:n 211:a 208:t 205:s 202:n 199:o 196:c 192:= 189:v 186:u 182:: 178:) 175:v 172:, 169:u 166:( 163:{ 149:a 127:) 124:a 120:/ 116:y 113:, 110:x 107:a 104:( 98:) 95:y 92:, 89:x 86:( 72:a 24:a

Index


linear algebra
linear map
area
Cartesian plane
rotation
shear mapping
hyperbola
Émile Borel
area
quadrature
Grégoire de Saint-Vincent
Alphonse Antonio de Sarasa
natural logarithm
hyperbolic sectors
hyperbolic angle
ordinary circular angle
invariant measures
hyperbolic functions
circular functions

hyperbolic sector
rectangles
group theory
Euclid Speidell
composition
one-parameter group
multiplicative group
positive real numbers
classical groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.