Knowledge

Stable marriage problem

Source đź“ť

280: 140:
servers around the world that offer that service. A user prefers servers that are proximal enough to provide a faster response time for the requested service, resulting in a (partial) preferential ordering of the servers for each user. Each server prefers to serve users that it can with a lower cost, resulting in a (partial) preferential ordering of users for each server.
333:) each woman replies "maybe" if she is currently not engaged or if she prefers this man over her current provisional partner (in this case, she rejects her current provisional partner who becomes unengaged). The provisional nature of engagements preserves the right of an already-engaged woman to "trade up" (and, in the process, to "jilt" her until-then partner). 144:
that distribute much of the world's content and services solve this large and complex stable marriage problem between users and servers every tens of seconds to enable billions of users to be matched up with their respective servers that can provide the requested web pages, videos, or other services.
527:
allows the set of residents to include couples who must be assigned together, either to the same hospital or to a specific pair of hospitals chosen by the couple (e.g., a married couple want to ensure that they will stay together and not be stuck in programs that are far away from each other). The
195:
All three are stable, because instability requires both of the participants to be happier with an alternative match. Giving one group their first choices ensures that the matches are stable because they would be unhappy with any other proposed match. Giving everyone their second choice ensures that
139:
An important and large-scale application of stable marriage is in assigning users to servers in a large distributed Internet service. Billions of users access web pages, videos, and other services on the Internet, requiring each user to be matched to one of (potentially) hundreds of thousands of
413:
for men, i.e., no coalition of men can coordinate a misrepresentation of their preferences such that all men in the coalition are strictly better-off. However, it is possible for some coalition to misrepresent their preferences such that some men are better-off and the other men retain the same
454:
In this case, the condition of stability is that no unmatched pair prefer each other to their situation in the matching (whether that situation is another partner or being unmatched). With this condition, a stable matching will still exist, and can still be found by the Gale–Shapley algorithm.
106:
women, where each person has ranked all members of the opposite sex in order of preference, marry the men and women together such that there are no two people of opposite sex who would both rather have each other than their current partners. When there are no such pairs of people, the set of
123:
Algorithms for finding solutions to the stable marriage problem have applications in a variety of real-world situations, perhaps the best known of these being in the assignment of graduating medical students to their first hospital appointments. In 2012, the
322:) each woman replies "maybe" to her suitor she most prefers and "no" to all other suitors. She is then provisionally "engaged" to the suitor she most prefers so far, and that suitor is likewise provisionally engaged to her. 428:
The rural hospitals theorem concerns a more general variant of the stable matching problem, like that applying in the problem of matching doctors to positions at hospitals, differing in the following ways from the basic
506:– differs from the stable marriage problem in that a hospital can take multiple residents, or a college can take an incoming class of more than one student. Algorithms to solve the hospitals/residents problem can be 552:
problem is a generalization of matching problem, in which participants can be matched with different terms of contracts. An important special case of contracts is matching with flexible wages.
196:
any other match would be disliked by one of the parties. In general, the family of solutions to any instance of the stable marriage problem can be given the structure of a finite
409:
from the point of view of men (the proposing side), i.e., no man can get a better matching for himself by misrepresenting his preferences. Moreover, the GS algorithm is even
493:
is similar to the stable marriage problem, but differs in that all participants belong to a single pool (instead of being divided into equal numbers of "men" and "women").
251: 377: 797:; Gharan, Shayan Oveis; Weber, Robbie (2018). "A simply exponential upper bound on the maximum number of stable matchings". In Diakonikolas, Ilias; Kempe, David; 153: 545:
that has maximum weight. Maximum weighted matchings do not have to be stable, but in some applications a maximum weighted matching is better than a stable one.
397: 295:
proved that, for any equal number of men and women, it is always possible to solve the stable marriage problem and make all marriages stable. They presented an
170:
In general, there may be many different stable matchings. For example, suppose there are three men (A,B,C) and three women (X,Y,Z) which have preferences of:
414:
partner. The GS algorithm is non-truthful for the women (the reviewing side): each woman may be able to misrepresent her preferences and get a better match.
39:) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a 329:) each unengaged man proposes to the most-preferred woman to whom he has not yet proposed (regardless of whether the woman is already engaged), and then 444:
The participants on one side of the matching (the hospitals) may have a numerical capacity, specifying the number of doctors they are willing to hire.
402:
Among all possible different stable matchings, it always yields the one that is best for all men among all stable matchings, and worst for all women.
111:
The existence of two classes that need to be paired with each other (heterosexual men and women in this example) distinguishes this problem from the
518:. This problem was solved, with an algorithm, in the same original paper by Gale and Shapley, in which the stable marriage problem was solved. 1074:
Huang, Chien-Chung (2006). "Cheating by men in the Gale-Shapley stable matching algorithm". In Azar, Yossi; Erlebach, Thomas (eds.).
125: 1448: 447:
The total number of participants on one side might not equal the total capacity to which they are to be matched on the other side.
1485: 1371: 977: 883: 680:"High Tech for a Higher Authority: The Placement of Graduating Rabbis from Hebrew Union College—Jewish Institute of Religion" 1259:
Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms
2389: 759: 2206: 1736: 1534: 1402: 511: 462:
The set of assigned doctors, and the number of filled positions in each hospital, are the same in all stable matchings.
653: 2557: 2025: 1844: 1427: 1272: 1144: 480: 441:
Each participant may only be willing to be matched to a subset of the participants on the other side of the matching.
1641: 947: 1243: 2115: 465:
Any hospital that has some empty positions in some stable matching, receives exactly the same set of doctors in
2567: 1985: 1651: 253:. In a stable marriage instance chosen to maximize the number of different stable matchings, this number is an 1824: 1076:
Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings
2166: 1579: 1554: 1031: 888: 1458: 1387: 952:
International Conference on Informatics Education and Research for Knowledge-Circulating Society (ICKS 2008)
2516: 1942: 1691: 1681: 1616: 1312: 1731: 1711: 1453: 584: 165: 2562: 2450: 2201: 2171: 1829: 1666: 1661: 1363: 1348: 994: 303: 274: 2486: 2409: 2145: 1696: 1621: 1478: 844: 722: 624: 2572: 2501: 2234: 2120: 1917: 1706: 1524: 1197:
Crawford, Vincent; Knoer, Elsie Marie (1981). "Job Matching with Heterogeneous Firms and Workers".
1162: 579: 489: 141: 112: 2304: 1305:"The evolution of the labor market for medical interns and residents: A case study in game theory" 214: 2506: 2105: 2075: 1726: 1514: 1449:
https://web.archive.org/web/20080512150525/http://kuznets.fas.harvard.edu/~aroth/alroth.html#NRMP
1304: 561: 423: 1413: 2577: 2552: 2531: 2511: 2491: 2440: 2110: 2015: 1874: 1819: 1746: 1716: 1636: 1564: 679: 149: 346: 1990: 1975: 1544: 934: 564:– matching between different vertices of the graph; usually unrelated to preference-ordering. 200:, and this structure leads to efficient algorithms for several problems on stable marriages. 2324: 2309: 2196: 2191: 2095: 2080: 2045: 2010: 1604: 1549: 1471: 1091: 1060: 865: 828: 780: 743: 254: 197: 8: 2481: 2100: 2050: 1887: 1814: 1789: 1646: 1529: 2140: 1261:. CRM Proceedings and Lecture Notes. English translation. American Mathematical Society. 950:; Miyazaki, Shuichi (2008). "A Survey of the Stable Marriage Problem and Its Variants". 842:
Irving, Robert W.; Leather, Paul (1986). "The complexity of counting stable marriages".
2460: 2319: 2150: 2130: 1980: 1859: 1759: 1686: 1631: 1342: 1329: 1291: 1216: 1179: 1048: 905: 806: 612: 567: 537: 406: 382: 2445: 2414: 2369: 2264: 2135: 2090: 2065: 1995: 1869: 1794: 1784: 1676: 1626: 1574: 1423: 1398: 1367: 1140: 1026: 973: 699: 589: 523: 498: 306:(also known as the deferred acceptance algorithm) involves a number of "rounds" (or " 2526: 2521: 2455: 2419: 2399: 2359: 2329: 2284: 2239: 2224: 2181: 2035: 1809: 1671: 1608: 1594: 1559: 1333: 1321: 1281: 1208: 1171: 1079: 1040: 963: 955: 897: 853: 816: 798: 768: 731: 691: 649: 573: 458:
For this kind of stable matching problem, the rural hospitals theorem states that:
129: 28: 913: 340:
This algorithm is guaranteed to produce a stable marriage for all participants in
2424: 2384: 2339: 2254: 2249: 1970: 1922: 1804: 1569: 1539: 1509: 1443: 1247: 1087: 1078:. Lecture Notes in Computer Science. Vol. 4168. Springer. pp. 418–431. 1056: 861: 824: 776: 739: 542: 262: 2289: 2364: 2354: 2344: 2279: 2269: 2259: 2244: 2040: 2020: 2005: 2000: 1960: 1927: 1912: 1907: 1897: 1701: 341: 1379: 1286: 1267: 695: 43:
from the elements of one set to the elements of the other set. A matching is
2546: 2404: 2394: 2349: 2334: 2314: 2085: 2060: 1932: 1902: 1892: 1879: 1779: 1721: 1656: 1589: 1175: 1022: 926: 703: 292: 133: 820: 596:) – deciding when to stop to obtain the best reward in a sequence of options 91:) which both prefer each other to their current partner under the matching. 2379: 2374: 2229: 1799: 1254: 1199: 717: 528:
addition of couples to the hospitals/residents problem renders the problem
484:, some men might be indifferent between two or more women and vice versa. 136:"for the theory of stable allocations and the practice of market design." 2496: 2299: 2294: 2274: 2070: 2055: 1864: 1834: 1764: 1754: 1584: 1519: 1495: 1393:. In Nisan, Noam; Roughgarden, Tim; Tardos, Eva; Vazirani, Vijay (eds.). 1160:
Hatfield, John William; Milgrom, Paul (2005). "Matching with Contracts".
794: 529: 83:
In other words, a matching is stable when there does not exist any pair (
20: 1463: 1359:
Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations
1083: 959: 2125: 1774: 1295: 1241: 1220: 1183: 1106: 1052: 968: 909: 288: 1454:
http://www.dcs.gla.ac.uk/research/algorithms/stable/EGSapplet/EGS.html
720:(1987). "Three fast algorithms for four problems in stable marriage". 2030: 1950: 1769: 1419: 318:) each unengaged man proposes to the woman he prefers most, and then 307: 296: 40: 24: 1212: 1044: 901: 857: 803:
Proceedings of the 50th Symposium on Theory of Computing (STOC 2018)
772: 735: 2465: 1965: 1344:
Two-sided matching: A study in game-theoretic modeling and analysis
1325: 811: 570:– a relaxation of stable matching for many-to-one matching problems 203:
In a uniformly-random instance of the stable marriage problem with
16:
Pairing where no unchosen pair prefers each other over their choice
2186: 2176: 1854: 261:. Counting the number of stable matchings in a given instance is 185:
men get their first choice and women their third - (AY, BZ, CX);
1357: 757:
Pittel, Boris (1989). "The average number of stable matchings".
647: 211:
women, the average number of stable matchings is asymptotically
191:
women get their first choice and men their third - (AZ, BX, CY).
450:
The resulting matching might not match all of the participants.
279: 181:
There are three stable solutions to this matching arrangement:
152:
for stable matching is used to assign rabbis who graduate from
1444:
Interactive flash demonstration of the stable marriage problem
1955: 1107:"Are Medical Students Meeting Their (Best Possible) Match?" 283:
Animation showing an example of the Gale–Shapley algorithm
56:
of the first matched set which prefers some given element
1240:, Chapter 1, pp 1–12. See companion website for the Text 805:. Association for Computing Machinery. pp. 920–925. 1385: 188:
all participants get their second choice - (AX, BY, CZ);
94:
The stable marriage problem has been stated as follows:
1029:(1981). "Machiavelli and the Gale–Shapley algorithm". 1415:
The Stable Marriage Problem: Structure and Algorithms
1137:
The Stable Marriage Problem: Structure and Algorithms
385: 349: 217: 60:
of the second matched set over the element to which
336:
This process is repeated until everyone is engaged.
1355: 1268:"On likely solutions of a stable marriage problem" 884:"College Admissions and the Stability of Marriage" 391: 371: 245: 940: 793: 2544: 1159: 1411: 1134: 1021: 1479: 1340: 1196: 946: 841: 159: 678:Bodin, Lawrence; Panken, Aaron (June 2003). 881: 677: 1486: 1472: 1356:Shoham, Yoav; Leyton-Brown, Kevin (2009). 1004:. University of Illinois. pp. 170–176 417: 1493: 1341:Roth, A. E.; Sotomayor, M. A. O. (1990). 1285: 967: 810: 661:ACM SIGCOMM Computer Communication Review 654:"Algorithmic nuggets in content delivery" 643: 641: 174:A: YXZ   B: ZYX   C: XZY   126:Nobel Memorial Prize in Economic Sciences 1104: 1098: 992: 716: 524:hospitals/residents problem with couples 278: 541:seeks to find a matching in a weighted 268: 2545: 1265: 877: 875: 756: 638: 1467: 1459:Stable marriage problem lecture notes 1253: 1236:Kleinberg, J., and Tardos, E. (2005) 1073: 625:"The Prize in Economic Sciences 2012" 437:form of the stable marriage problem: 1302: 1135:Gusfield, D.; Irving, R. W. (1989). 760:SIAM Journal on Discrete Mathematics 1412:Gusfield, D.; Irving, R.W. (1989). 1386:Schummer, J.; Vohra, R. V. (2007). 872: 473: 13: 1535:First-player and second-player win 1230: 177:X: BAC   Y: CBA   Z: ACB 14: 2589: 1437: 1273:The Annals of Applied Probability 929:: "The Stable Marriage Problem", 882:Gale, D.; Shapley, L. S. (1962). 481:stable matching with indifference 1642:Coalition-proof Nash equilibrium 1388:"Mechanism design without money" 325:In each subsequent round, first 1190: 1153: 1128: 1067: 1015: 986: 920: 399:is the number of men or women. 118: 1652:Evolutionarily stable strategy 835: 787: 750: 710: 671: 617: 606: 366: 353: 1: 1580:Simultaneous action selection 1105:Robinson, Sara (April 2003). 1032:American Mathematical Monthly 889:American Mathematical Monthly 600: 2517:List of games in game theory 1692:Quantal response equilibrium 1682:Perfect Bayesian equilibrium 1617:Bayes correlated equilibrium 1313:Journal of Political Economy 993:Erickson, Jeff (June 2019). 246:{\displaystyle e^{-1}n\ln n} 7: 1986:Optional prisoner's dilemma 1712:Self-confirming equilibrium 585:Lattice of stable matchings 555: 499:hospitals/residents problem 166:Lattice of stable matchings 107:marriages is deemed stable. 10: 2594: 2451:Principal variation search 2167:Aumann's agreement theorem 1830:Strategy-stealing argument 1737:Trembling hand equilibrium 1667:Markov perfect equilibrium 1662:Mertens-stable equilibrium 1364:Cambridge University Press 1349:Cambridge University Press 954:. IEEE. pp. 131–136. 613:Stable Matching Algorithms 504:college admissions problem 421: 314:In the first round, first 272: 163: 160:Different stable matchings 74:over the element to which 2487:Combinatorial game theory 2474: 2433: 2215: 2159: 2146:Princess and monster game 1941: 1843: 1745: 1697:Quasi-perfect equilibrium 1622:Bayesian Nash equilibrium 1603: 1502: 1139:. MIT Press. p. 54. 845:SIAM Journal on Computing 723:SIAM Journal on Computing 696:10.1287/inte.33.3.1.16013 156:to Jewish congregations. 142:Content delivery networks 2558:Game theory game classes 2502:Evolutionary game theory 2235:Antoine Augustin Cournot 2121:Guess 2/3 of the average 1918:Strictly determined game 1707:Satisfaction equilibrium 1525:Escalation of commitment 1380:downloadable free online 1176:10.1257/0002828054825466 1163:American Economic Review 580:Stable matching polytope 490:stable roommates problem 372:{\displaystyle O(n^{2})} 113:stable roommates problem 2507:Glossary of game theory 2106:Stackelberg competition 1727:Strong Nash equilibrium 1395:Algorithmic Game Theory 1287:10.1214/aoap/1177005708 821:10.1145/3188745.3188848 576:for edge colored graphs 562:Matching (graph theory) 550:matching with contracts 424:Rural hospitals theorem 418:Rural hospitals theorem 64:is already matched, and 37:stable matching problem 33:stable marriage problem 2532:Tragedy of the commons 2512:List of game theorists 2492:Confrontation analysis 2202:Sprague–Grundy theorem 1717:Sequential equilibrium 1637:Correlated equilibrium 916:on September 25, 2017. 393: 373: 304:Gale–Shapley algorithm 284: 275:Gale–Shapley algorithm 247: 150:Gale-Shapley algorithm 109: 2568:Mathematical problems 2305:Jean-François Mertens 995:"4.5 Stable matching" 394: 374: 282: 248: 96: 2434:Search optimizations 2310:Jennifer Tour Chayes 2197:Revelation principle 2192:Purification theorem 2131:Nash bargaining game 2096:Bertrand competition 2081:El Farol Bar problem 2046:Electronic mail game 2011:Lewis signaling game 1550:Hierarchy of beliefs 1397:. pp. 255–262. 1378:See Section 10.6.4; 1303:Roth, A. E. (1984). 514:was before 1995) or 502:– also known as the 411:group-strategy proof 383: 347: 269:Algorithmic solution 255:exponential function 215: 198:distributive lattice 154:Hebrew Union College 52:There is an element 2482:Bounded rationality 2101:Cournot competition 2051:Rock paper scissors 2026:Battle of the sexes 2016:Volunteer's dilemma 1888:Perfect information 1815:Dominant strategies 1647:Epsilon-equilibrium 1530:Extensive-form game 1266:Pittel, B. (1992). 1084:10.1007/11841036_39 960:10.1109/ICKS.2008.7 931:The Brandeis Review 78:is already matched. 2461:Paranoid algorithm 2441:Alpha–beta pruning 2320:John Maynard Smith 2151:Rendezvous problem 1991:Traveler's dilemma 1981:Gift-exchange game 1976:Prisoner's dilemma 1893:Large Poisson game 1860:Bargaining problem 1760:Backward induction 1732:Subgame perfection 1687:Proper equilibrium 1246:2011-05-14 at the 568:Envy-free matching 538:assignment problem 407:truthful mechanism 389: 369: 285: 243: 2563:Cooperative games 2540: 2539: 2446:Aspiration window 2415:Suzanne Scotchmer 2370:Oskar Morgenstern 2265:Donald B. Gillies 2207:Zermelo's theorem 2136:Induction puzzles 2091:Fair cake-cutting 2066:Public goods game 1996:Coordination game 1870:Intransitive game 1795:Forward induction 1677:Pareto efficiency 1657:Gibbs equilibrium 1627:Berge equilibrium 1575:Simultaneous game 1373:978-0-521-89943-7 979:978-0-7695-3128-1 799:Henzinger, Monika 590:Secretary problem 516:resident-oriented 508:hospital-oriented 469:stable matchings. 392:{\displaystyle n} 2585: 2527:Topological game 2522:No-win situation 2420:Thomas Schelling 2400:Robert B. Wilson 2360:Merrill M. Flood 2330:John von Neumann 2240:Ariel Rubinstein 2225:Albert W. Tucker 2076:War of attrition 2036:Matching pennies 1810:Pairing strategy 1672:Nash equilibrium 1595:Mechanism design 1560:Normal-form game 1515:Cooperative game 1488: 1481: 1474: 1465: 1464: 1433: 1408: 1392: 1377: 1352: 1337: 1309: 1299: 1289: 1262: 1238:Algorithm Design 1225: 1224: 1194: 1188: 1187: 1157: 1151: 1150: 1132: 1126: 1125: 1123: 1121: 1111: 1102: 1096: 1095: 1071: 1065: 1064: 1019: 1013: 1012: 1010: 1009: 999: 990: 984: 983: 971: 944: 938: 924: 918: 917: 912:. Archived from 879: 870: 869: 839: 833: 832: 814: 791: 785: 784: 754: 748: 747: 714: 708: 707: 675: 669: 668: 658: 650:Ramesh Sitaraman 648:Bruce Maggs and 645: 636: 635: 633: 632: 627:. Nobelprize.org 621: 615: 610: 594:marriage problem 574:Rainbow matching 474:Related problems 436: 432: 398: 396: 395: 390: 378: 376: 375: 370: 365: 364: 260: 252: 250: 249: 244: 230: 229: 210: 206: 130:Lloyd S. Shapley 29:computer science 2593: 2592: 2588: 2587: 2586: 2584: 2583: 2582: 2573:Stable matching 2543: 2542: 2541: 2536: 2470: 2456:max^n algorithm 2429: 2425:William Vickrey 2385:Reinhard Selten 2340:Kenneth Binmore 2255:David K. Levine 2250:Daniel Kahneman 2217: 2211: 2187:Negamax theorem 2177:Minimax theorem 2155: 2116:Diner's dilemma 1971:All-pay auction 1937: 1923:Stochastic game 1875:Mean-field game 1846: 1839: 1805:Markov strategy 1741: 1607: 1599: 1570:Sequential game 1555:Information set 1540:Game complexity 1510:Congestion game 1498: 1492: 1440: 1430: 1405: 1390: 1374: 1320:(6): 991–1016. 1307: 1248:Wayback Machine 1233: 1231:Further reading 1228: 1213:10.2307/1913320 1195: 1191: 1158: 1154: 1147: 1133: 1129: 1119: 1117: 1109: 1103: 1099: 1072: 1068: 1045:10.2307/2321753 1027:Freedman, D. A. 1020: 1016: 1007: 1005: 997: 991: 987: 980: 945: 941: 925: 921: 902:10.2307/2312726 880: 873: 858:10.1137/0215048 840: 836: 795:Karlin, Anna R. 792: 788: 773:10.1137/0402048 755: 751: 736:10.1137/0216010 715: 711: 676: 672: 656: 646: 639: 630: 628: 623: 622: 618: 611: 607: 603: 558: 543:bipartite graph 476: 434: 430: 426: 420: 384: 381: 380: 360: 356: 348: 345: 344: 277: 271: 258: 222: 218: 216: 213: 212: 208: 204: 168: 162: 128:was awarded to 121: 81: 17: 12: 11: 5: 2591: 2581: 2580: 2575: 2570: 2565: 2560: 2555: 2538: 2537: 2535: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2478: 2476: 2472: 2471: 2469: 2468: 2463: 2458: 2453: 2448: 2443: 2437: 2435: 2431: 2430: 2428: 2427: 2422: 2417: 2412: 2407: 2402: 2397: 2392: 2390:Robert Axelrod 2387: 2382: 2377: 2372: 2367: 2365:Olga Bondareva 2362: 2357: 2355:Melvin Dresher 2352: 2347: 2345:Leonid Hurwicz 2342: 2337: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2280:Harold W. Kuhn 2277: 2272: 2270:Drew Fudenberg 2267: 2262: 2260:David M. Kreps 2257: 2252: 2247: 2245:Claude Shannon 2242: 2237: 2232: 2227: 2221: 2219: 2213: 2212: 2210: 2209: 2204: 2199: 2194: 2189: 2184: 2182:Nash's theorem 2179: 2174: 2169: 2163: 2161: 2157: 2156: 2154: 2153: 2148: 2143: 2138: 2133: 2128: 2123: 2118: 2113: 2108: 2103: 2098: 2093: 2088: 2083: 2078: 2073: 2068: 2063: 2058: 2053: 2048: 2043: 2041:Ultimatum game 2038: 2033: 2028: 2023: 2021:Dollar auction 2018: 2013: 2008: 2006:Centipede game 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1961:Infinite chess 1958: 1953: 1947: 1945: 1939: 1938: 1936: 1935: 1930: 1928:Symmetric game 1925: 1920: 1915: 1913:Signaling game 1910: 1908:Screening game 1905: 1900: 1898:Potential game 1895: 1890: 1885: 1877: 1872: 1867: 1862: 1857: 1851: 1849: 1841: 1840: 1838: 1837: 1832: 1827: 1825:Mixed strategy 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1751: 1749: 1743: 1742: 1740: 1739: 1734: 1729: 1724: 1719: 1714: 1709: 1704: 1702:Risk dominance 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1613: 1611: 1601: 1600: 1598: 1597: 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1545:Graphical game 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1506: 1504: 1500: 1499: 1491: 1490: 1483: 1476: 1468: 1462: 1461: 1456: 1451: 1446: 1439: 1438:External links 1436: 1435: 1434: 1428: 1409: 1404:978-0521872829 1403: 1383: 1372: 1353: 1338: 1326:10.1086/261272 1300: 1280:(2): 358–401. 1263: 1251: 1232: 1229: 1227: 1226: 1207:(2): 437–450. 1189: 1170:(4): 913–935. 1152: 1145: 1127: 1097: 1066: 1039:(7): 485–494. 1014: 985: 978: 939: 919: 871: 852:(3): 655–667. 834: 786: 767:(4): 530–549. 749: 730:(1): 111–128. 709: 670: 637: 616: 604: 602: 599: 598: 597: 587: 582: 577: 571: 565: 557: 554: 475: 472: 471: 470: 463: 452: 451: 448: 445: 442: 422:Main article: 419: 416: 388: 368: 363: 359: 355: 352: 338: 337: 334: 323: 273:Main article: 270: 267: 242: 239: 236: 233: 228: 225: 221: 193: 192: 189: 186: 179: 178: 175: 164:Main article: 161: 158: 120: 117: 80: 79: 65: 49: 15: 9: 6: 4: 3: 2: 2590: 2579: 2578:Lloyd Shapley 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2553:Combinatorics 2551: 2550: 2548: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2479: 2477: 2475:Miscellaneous 2473: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2438: 2436: 2432: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2410:Samuel Bowles 2408: 2406: 2405:Roger Myerson 2403: 2401: 2398: 2396: 2395:Robert Aumann 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2350:Lloyd Shapley 2348: 2346: 2343: 2341: 2338: 2336: 2335:Kenneth Arrow 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2315:John Harsanyi 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2296: 2293: 2291: 2288: 2286: 2285:Herbert Simon 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2222: 2220: 2214: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2164: 2162: 2158: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2132: 2129: 2127: 2124: 2122: 2119: 2117: 2114: 2112: 2109: 2107: 2104: 2102: 2099: 2097: 2094: 2092: 2089: 2087: 2086:Fair division 2084: 2082: 2079: 2077: 2074: 2072: 2069: 2067: 2064: 2062: 2061:Dictator game 2059: 2057: 2054: 2052: 2049: 2047: 2044: 2042: 2039: 2037: 2034: 2032: 2029: 2027: 2024: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1948: 1946: 1944: 1940: 1934: 1933:Zero-sum game 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1903:Repeated game 1901: 1899: 1896: 1894: 1891: 1889: 1886: 1884: 1882: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1852: 1850: 1848: 1842: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1820:Pure strategy 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1780:De-escalation 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1752: 1750: 1748: 1744: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1722:Shapley value 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1614: 1612: 1610: 1606: 1602: 1596: 1593: 1591: 1590:Succinct game 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1507: 1505: 1501: 1497: 1489: 1484: 1482: 1477: 1475: 1470: 1469: 1466: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1441: 1431: 1429:0-262-07118-5 1425: 1421: 1417: 1416: 1410: 1406: 1400: 1396: 1389: 1384: 1381: 1375: 1369: 1365: 1361: 1360: 1354: 1350: 1346: 1345: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1314: 1306: 1301: 1297: 1293: 1288: 1283: 1279: 1275: 1274: 1269: 1264: 1260: 1256: 1252: 1249: 1245: 1242: 1239: 1235: 1234: 1222: 1218: 1214: 1210: 1206: 1202: 1201: 1193: 1185: 1181: 1177: 1173: 1169: 1165: 1164: 1156: 1148: 1146:0-262-07118-5 1142: 1138: 1131: 1115: 1108: 1101: 1093: 1089: 1085: 1081: 1077: 1070: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1033: 1028: 1024: 1023:Dubins, L. E. 1018: 1003: 996: 989: 981: 975: 970: 965: 961: 957: 953: 949: 943: 936: 932: 928: 927:Harry Mairson 923: 915: 911: 907: 903: 899: 895: 891: 890: 885: 878: 876: 867: 863: 859: 855: 851: 847: 846: 838: 830: 826: 822: 818: 813: 808: 804: 800: 796: 790: 782: 778: 774: 770: 766: 762: 761: 753: 745: 741: 737: 733: 729: 725: 724: 719: 718:Gusfield, Dan 713: 705: 701: 697: 693: 689: 685: 681: 674: 666: 662: 655: 651: 644: 642: 626: 620: 614: 609: 605: 595: 592:(also called 591: 588: 586: 583: 581: 578: 575: 572: 569: 566: 563: 560: 559: 553: 551: 546: 544: 540: 539: 533: 531: 526: 525: 519: 517: 513: 509: 505: 501: 500: 494: 492: 491: 485: 483: 482: 468: 464: 461: 460: 459: 456: 449: 446: 443: 440: 439: 438: 425: 415: 412: 408: 403: 400: 386: 361: 357: 350: 343: 335: 332: 328: 324: 321: 317: 313: 312: 311: 309: 305: 300: 298: 294: 293:Lloyd Shapley 290: 281: 276: 266: 264: 256: 240: 237: 234: 231: 226: 223: 219: 201: 199: 190: 187: 184: 183: 182: 176: 173: 172: 171: 167: 157: 155: 151: 146: 143: 137: 135: 134:Alvin E. Roth 131: 127: 116: 114: 108: 105: 101: 95: 92: 90: 86: 77: 73: 70:also prefers 69: 66: 63: 59: 55: 51: 50: 48: 46: 42: 38: 34: 30: 26: 22: 2380:Peyton Young 2375:Paul Milgrom 2290:HervĂ© Moulin 2230:Amos Tversky 2172:Folk theorem 1883:-player game 1880: 1800:Grim trigger 1414: 1394: 1362:. New York: 1358: 1343: 1317: 1311: 1277: 1271: 1258: 1255:Knuth, D. E. 1237: 1204: 1200:Econometrica 1198: 1192: 1167: 1161: 1155: 1136: 1130: 1118:. Retrieved 1113: 1100: 1075: 1069: 1036: 1030: 1017: 1006:. Retrieved 1001: 988: 951: 948:Iwama, Kazuo 942: 930: 922: 914:the original 893: 887: 849: 843: 837: 802: 789: 764: 758: 752: 727: 721: 712: 687: 683: 673: 664: 660: 629:. Retrieved 619: 608: 593: 549: 547: 536: 534: 522: 520: 515: 507: 503: 497: 495: 488: 486: 479: 477: 466: 457: 453: 427: 410: 404: 401: 339: 330: 326: 319: 315: 301: 286: 202: 194: 180: 169: 147: 138: 122: 119:Applications 110: 103: 99: 97: 93: 88: 84: 82: 75: 71: 67: 61: 57: 53: 44: 36: 32: 18: 2497:Coopetition 2300:Jean Tirole 2295:John Conway 2275:Eric Maskin 2071:Blotto game 2056:Pirate game 1865:Global game 1835:Tit for tat 1765:Bid shading 1755:Appeasement 1605:Equilibrium 1585:Solved game 1520:Determinacy 1503:Definitions 1496:game theory 969:2433/226940 896:(1): 9–14. 690:(3): 1–11. 530:NP-complete 263:#P-complete 47:stable if: 21:mathematics 2547:Categories 2141:Trust game 2126:Kuhn poker 1790:Escalation 1785:Deterrence 1775:Cheap talk 1747:Strategies 1565:Preference 1494:Topics of 1008:2023-12-19 1002:Algorithms 933:12, 1992 ( 812:1711.01032 684:Interfaces 631:2013-09-09 601:References 308:iterations 299:to do so. 289:David Gale 2325:John Nash 2031:Stag hunt 1770:Collusion 1420:MIT Press 1120:2 January 1114:SIAM News 704:0092-2102 297:algorithm 287:In 1962, 238:⁡ 224:− 41:bijection 25:economics 2466:Lazy SMP 2160:Theorems 2111:Deadlock 1966:Checkers 1847:of games 1609:concepts 1257:(1996). 1244:Archived 801:(eds.). 652:(2015). 556:See also 510:(as the 405:It is a 207:men and 102:men and 2218:figures 2001:Chicken 1855:Auction 1845:Classes 1334:1360205 1296:2959755 1221:1913320 1184:4132699 1116:(3): 36 1092:2347162 1061:0628016 1053:2321753 910:2312726 866:0850415 829:3826305 781:1018538 744:0873255 1426:  1401:  1370:  1332:  1294:  1219:  1182:  1143:  1090:  1059:  1051:  976:  935:online 908:  864:  827:  779:  742:  702:  379:where 98:Given 35:(also 31:, the 27:, and 1956:Chess 1943:Games 1391:(PDF) 1330:S2CID 1308:(PDF) 1292:JSTOR 1217:JSTOR 1180:JSTOR 1110:(PDF) 1049:JSTOR 998:(PDF) 906:JSTOR 807:arXiv 657:(PDF) 1632:Core 1424:ISBN 1399:ISBN 1368:ISBN 1141:ISBN 1122:2018 974:ISBN 700:ISSN 667:(3). 548:The 535:The 521:The 512:NRMP 496:The 487:The 433:-to- 342:time 310:"): 302:The 291:and 148:The 132:and 2216:Key 1322:doi 1282:doi 1209:doi 1172:doi 1080:doi 1041:doi 964:hdl 956:doi 898:doi 854:doi 817:doi 769:doi 732:doi 692:doi 478:In 467:all 257:of 45:not 19:In 2549:: 1951:Go 1422:. 1418:. 1366:. 1347:. 1328:. 1318:92 1316:. 1310:. 1290:. 1276:. 1270:. 1215:. 1205:49 1203:. 1178:. 1168:95 1166:. 1112:. 1088:MR 1086:. 1057:MR 1055:. 1047:. 1037:88 1035:. 1025:; 1000:. 972:. 962:. 937:). 904:. 894:69 892:. 886:. 874:^ 862:MR 860:. 850:15 848:. 825:MR 823:. 815:. 777:MR 775:. 763:. 740:MR 738:. 728:16 726:. 698:. 688:33 686:. 682:. 665:45 663:. 659:. 640:^ 532:. 265:. 235:ln 115:. 87:, 23:, 1881:n 1487:e 1480:t 1473:v 1432:. 1407:. 1382:. 1376:. 1351:. 1336:. 1324:: 1298:. 1284:: 1278:2 1250:. 1223:. 1211:: 1186:. 1174:: 1149:. 1124:. 1094:. 1082:: 1063:. 1043:: 1011:. 982:. 966:: 958:: 900:: 868:. 856:: 831:. 819:: 809:: 783:. 771:: 765:2 746:. 734:: 706:. 694:: 634:. 435:n 431:n 387:n 367:) 362:2 358:n 354:( 351:O 331:b 327:a 320:b 316:a 259:n 241:n 232:n 227:1 220:e 209:n 205:n 104:n 100:n 89:B 85:A 76:B 72:A 68:B 62:A 58:B 54:A

Index

mathematics
economics
computer science
bijection
stable roommates problem
Nobel Memorial Prize in Economic Sciences
Lloyd S. Shapley
Alvin E. Roth
Content delivery networks
Gale-Shapley algorithm
Hebrew Union College
Lattice of stable matchings
distributive lattice
exponential function
#P-complete
Gale–Shapley algorithm

David Gale
Lloyd Shapley
algorithm
Gale–Shapley algorithm
iterations
time
truthful mechanism
Rural hospitals theorem
stable matching with indifference
stable roommates problem
hospitals/residents problem
NRMP
hospitals/residents problem with couples

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑