Knowledge

Static light scattering

Source 📝

1740:
being detected. Accurate interpretation becomes exceedingly difficult for systems with non-negligible contributions from multiple scattering. In many commercial instruments where analysis of the scattering signal is automatically performed, the error may never be noticed by the user. Particularly for larger particles and those with high refractive index contrast, this limits the application of standard static light scattering to very low particle concentrations. On the other hand, for soluble macromolecules that exhibit a relatively low refractive index contrast versus the solvent, including most polymers and biomolecules in their respective solvents, multiple scattering is rarely a limiting factor even at concentrations that approach the limits of solubility.
1761:, colligative properties, and other macromolecular interactions as it yields, in addition to size and molecular weight, information on the affinity and stoichiometry of molecular complexes formed by one or more associating macromolecular/biomolecular species. In particular, static light scattering from a dilution series may be analyzed to quantify self-association, reversible oligomerization, and non-specific attraction or repulsion, while static light scattering from mixtures of species may be analyzed to quantify hetero-association. 1235: 86:, different gains, and are looking at different geometrical scattering volumes. In this case, a normalization of the detectors is absolutely needed. To normalize the detectors, a measurement of a pure solvent is made first. Then an isotropic scatterer is added to the solvent. Since isotropic scatterers scatter the same intensity at any angle, the detector efficiency and gain can be normalized with this procedure. It is convenient to normalize all the detectors to the 90° angle detector. 62:
measurements of both molar mass and size for all macromolecules of radius above 1–2% of the incident wavelength. Hence simultaneous measurements at several angles relative to the direction of the incident light, known as multi-angle light scattering (MALS) or multi-angle laser light scattering (MALLS), are generally regarded as the standard implementation of static light scattering. Additional details on the history and theory of MALS may be found in
1609: 1731:
the Debye plot is the possibility to determine the second virial coefficient. This parameter describes the interaction between particles and the solvent. In macromolecule solutions, for instance, it can assume negative (particle-particle interactions are favored), zero, or positive values (particle-solvent interactions are favored).
69:
To measure the average molecular weight directly without calibration from the light scattering intensity, the laser intensity, the quantum efficiency of the detector, and the full scattering volume and solid angle of the detector need to be known. Since this is impractical, all commercial instruments
1769:
One of the main applications of static light scattering for molecular mass determination is in the field of macromolecules, such as proteins and polymers, as it is possible to measure the molecular mass of proteins without any assumption about their shape. Static light scattering is usually combined
1739:
Static light scattering assumes that each detected photon has only been scattered exactly once. Therefore, analysis according to the calculations stated above will only be correct if the sample has been diluted sufficiently to ensure that photons are not scattered multiple times by the sample before
1730:
As the Debye plot is a simplification of the Zimm equation, the same limitations of the latter apply, i.e., samples should present a monodisperse nature. For polydisperse samples, the resulting molecular mass from a static light-scattering measurement will represent an average value. An advantage of
61:
For static light scattering experiments, a high-intensity monochromatic light, usually a laser, is launched into a solution containing the macromolecules. One or many detectors are used to measure the scattering intensity at one or many angles. The angular dependence is required to obtain accurate
1743:
However, as shown by Schaetzel, it is possible to suppress multiple scattering in static light scattering experiments via a cross-correlation approach. The general idea is to isolate singly scattered light and suppress undesired contributions from multiple scattering in a static light scattering
1756:
Samples that change their properties after dilution may not be analyzed via static light scattering in terms of the simple model presented here as the Zimm equation. A more sophisticated analysis known as 'composition-gradient static (or multi-angle) light scattering' (CG-SLS or CG-MALS) is an
1022:
There are typically several analyses developed to analyze the scattering of particles in solution to derive the above-named physical characteristics of particles. A simple static light scattering experiment entails the average intensity of the sample that is corrected for the scattering of the
1536: 418: 1540:
The analysis performed with the Zimm plot uses a double-extrapolation to zero concentration and zero scattering angle resulting in a characteristic rhomboid plot. As the angular information is available, it is also possible to obtain the radius of gyration
763: 1744:
experiment. Different implementations of cross-correlation light scattering have been developed and applied. Currently, the most widely used scheme is the so-called 3D-dynamic light scattering method,. The same method can also be used to correct
1600:, due to the absence of the variable concentration of the sample. More specifically, the value of the second virial coefficient is either assumed to equal zero or is inputted as a known value in order to perform the partial Zimm analysis. 211: 2406: 1715: 1011: 531: 620: 1304: 1356: 238: 1151: 840: 926:
A Zimm plot is built from a double extrapolation to zero angle and zero concentration from many angles and many concentration measurements. In its simplest form, the Zimm equation is reduced to:
629: 1719:
Note that this is also the result of an extrapolation to zero scattering angle. By acquiring data on concentration and scattering intensity, the Debye plot is constructed by plotting
82:
For a light scattering instrument composed of many detectors placed at various angles, all the detectors need to respond the same way. Usually, detectors will have slightly different
30:
of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the
2454: 1582: 2128:
Urban, C.; Schurtenberger, P. (1998). "Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods".
1758: 91: 50:
Static light scattering is also commonly utilized to determine the size of particle suspensions in the sub-Îźm and supra-Îźm ranges, via the Lorenz-Mie (see
1589: 1168: 1024: 1629: 931: 427: 1593: 1585: 2314:"Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization" 1727:
vs. concentration. The intercept of the fitted line gives the molecular mass, while the slope corresponds to the 2nd virial coefficient.
540: 1531:{\displaystyle {\frac {Kc}{\Delta R(\theta ,c)}}={\frac {1}{M_{w}}}\left(1+{\frac {q^{2}R_{g}^{2}}{3}}+O(q^{4})\right)+2A_{2}c+O(c^{2})} 413:{\displaystyle {\frac {Kc}{\Delta R(\theta ,c)}}={\frac {1}{M_{w}}}\left(1+{\frac {q^{2}R_{g}^{2}}{3}}+O(q^{4})\right)+2A_{2}c+O(c^{2})} 233:, is the Zimm equation (the right-hand side of the Zimm equation is provided incorrectly in some texts, as noted by Hiemenz and Lodge): 1250: 878:
the change in the refractive index of the solution with change in concentration. The intensity of the analyte measured at an angle is
1064: 886:. In these equations, the subscript A is for analyte (the solution) and T is for the toluene with the Rayleigh ratio of toluene, 2063: 2001: 772: 2017: 2407:"Dimerization of Bovine Serum Albumin As Evidenced By Particle Size and Molecular Mass Measurement :: Anton-Paar.com" 74:
since the Rayleigh ratio of toluene and a few other solvents were measured using an absolute light scattering instrument.
1791: 1828:"Theorie der Opaleszenz von homogenen Flßssigkeiten und Flßssigkeitsgemischen in der Nähe des kritischen Zustandes" 1806: 1779: 1306:) as determined by static light scattering, a Zimm plot is a conventional means of deriving the parameters such as 40:. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, 758:{\displaystyle \ R(\theta )={\frac {I_{A}(\theta )n_{0}^{2}}{I_{T}(\theta )n_{T}^{2}}}{\frac {R_{T}}{N(\theta )}}} 1771: 1957:
B.H. Zimm (1948). "The Scattering of Light and the Radial Distribution Function of High Polymer Solutions".
2439: 63: 2474: 2464: 2434: 2175:(2010). "Modulated 3D cross-correlation light scattering: Improving turbid sample characterization". 2043: 2469: 2085:
Schaetzel, K. (1991). "Suppression of multiple-scattering by photon cross-correlation techniques".
1796: 1775: 1745: 1584:
and at least 4 concentrations. Performing a Zimm analysis on a single concentration is known as a
2236:
Pusey, P.N. (1999). "Suppression of multiple scattering by photon cross-correlation techniques".
1551: 55: 1048:
The scattered intensity can be plotted as a function of the angle to give information on the
2361:"Glycerol polymerization degree effect on the emulsifying properties of polyglycerol esters" 1865:
C.V. Raman (1927). "Relation of Tyndall effect to osmotic pressure in colloidal solutions".
2194: 2137: 2094: 1966: 1928: 1893: 1839: 223:
is the scattering intensity measured for the Rayleigh scatterer by the 90° angle detector.
2359:
Díaz‐Lasprilla, Ana M.; Mercado, Ronald A.; Ramírez‐Caballero, Gustavo E. (20 June 2021).
23:
that measures the intensity of the scattered light to obtain the average molecular weight
8: 2459: 206:{\displaystyle \ N(\theta )={\frac {I_{R}(\theta )-I_{S}(\theta )}{I_{R}(90)-I_{S}(90)}}} 2360: 2198: 2141: 2098: 1970: 1932: 1897: 1843: 2388: 2289: 2264: 2218: 2184: 2110: 2055: 1597: 1324: 83: 31: 20: 2249: 2392: 2380: 2341: 2333: 2294: 2210: 2153: 2114: 2059: 1997: 1612:
Calculation of molecular mass by static light scattering measurement using Debye plot
863: 2106: 2372: 2325: 2284: 2276: 2245: 2222: 2202: 2145: 2102: 2051: 1974: 1936: 1901: 1847: 1801: 1624:→1). Therefore, the Zimm equation is simplified to the Debye equation, as follows: 2018:"Molecular mass measurement using static light scattering :: Anton Paar Wiki" 1056: 2172: 1314: 51: 2280: 2448: 2384: 2337: 2313: 1851: 1710:{\displaystyle {\frac {Kc}{\Delta R(\theta ,c)}}={\frac {1}{M_{w}}}+2A_{2}c} 1548:). Experiments are performed at several angles, which satisfy the condition 2345: 2298: 2214: 2149: 1919:
B.H. Zimm (1945). "Molecular Theory of the Scattering of Light in Fluids".
2157: 1006:{\displaystyle \ Kc/\Delta R(\theta \rightarrow 0,c\rightarrow 0)=1/M_{w}} 526:{\displaystyle \ K=4\pi ^{2}n_{0}^{2}(dn/dc)^{2}/N_{\text{A}}\lambda ^{4}} 1238:
Evaluation of the static light-scattering measurement using the Zimm plot
1216: 911:, are also calculated from this equation. The refractive index increment 226:
The most common equation to measure the weight-average molecular weight,
894: 2376: 2358: 2329: 2206: 1978: 1940: 1905: 1827: 1212: 615:{\displaystyle \ \Delta R(\theta ,c)=R_{A}(\theta )-R_{0}(\theta )} 2189: 1616:
If the measured particles are smaller than Îť/20, the form factor
1299:{\displaystyle \scriptstyle \mu _{2}/{\bar {\Gamma }}^{2}<0.3} 1220: 71: 1996:(2nd ed.). Boca Raton, Fla. : CRC Press. pp. 307–308. 1751: 1208: 1015:
for measurements made at low angle and infinite dilution since
2265:"Light Scattering Based Analysis of Biomolecular Interactions" 1608: 1234: 767:
and the scattering vector for vertically polarized light is
2127: 1146:{\displaystyle \ln(\Delta R(\theta ))=1-(R_{g}^{2}/3)q^{2}} 1588:
analysis and is only valid for dilute solutions of strong
1247:
For polymers and polymer complexes that are monodisperse (
2048:
Colloid and Interface Chemistry for Water Quality Control
1770:
with other particle characterization techniques, such as
923:
and can be measured with a differential refractometer.
2455:
Scattering, absorption and radiative transfer (optics)
2170: 1254: 1211:
plot is typically used to analyze the conformation of
835:{\displaystyle \ q=4\pi n_{0}\sin(\theta /2)/\lambda } 1632: 1554: 1359: 1253: 1067: 934: 775: 632: 543: 430: 241: 94: 70:
are calibrated using a strong, known scatterer like
1759:
methods to investigate protein–protein interactions
2238:Current Opinion in Colloid & Interface Science 1709: 1576: 1530: 1298: 1145: 1005: 834: 757: 614: 525: 412: 205: 1884:P.Debye (1944). "Light Scattering in Solutions". 915:characterizes the change of the refractive index 2446: 1340:is not implemented, a Zimm plot will only yield 1187:. However, this approximation is only true for 1031:as a function of the angle or the wave vector 897:. As described above, the radius of gyration, 1195:. Note that for a Guinier plot, the value of 1992:Hiemenz, Paul C.; Lodge, Timothy P. (2007). 1991: 1752:Composition-gradient static light scattering 1748:data for multiple scattering contributions. 1336:One must note that if the material constant 2235: 1825: 1952: 1950: 1864: 2288: 2188: 2084: 1956: 1918: 1055:which can simply be calculated using the 2262: 1792:Differential static light scatter (DSLS) 1607: 1233: 1223:. A Kratky plot can be made by plotting 1947: 1883: 2447: 2435:Application of static light scattering 2311: 1734: 2041: 1199:and the concentration is not needed. 904:, and the second virial coefficient, 851:the refractive index of the solvent, 855:the wavelength of the light source, 2318:The Journal of Physical Chemistry B 1596:however, does not yield the second 1351:will yield the following equation: 1159:also known as the form factor with 13: 2365:Journal of Applied Polymer Science 2056:10.1016/b978-0-12-809315-3.00004-9 1644: 1371: 1274: 1077: 949: 547: 253: 14: 2486: 2428: 870:the solution concentration, and d 2177:Review of Scientific Instruments 1780:electrophoretic light scattering 1167:. Hence a plot of the corrected 1038: 2399: 2352: 2312:SedlĂĄk, MariĂĄn (1 March 2006). 2305: 2256: 2229: 2164: 2121: 1764: 1215:but can be used to analyze the 1043: 2078: 2035: 2010: 1985: 1912: 1877: 1858: 1819: 1662: 1650: 1525: 1512: 1479: 1466: 1389: 1377: 1277: 1202: 1130: 1104: 1092: 1089: 1083: 1074: 979: 973: 961: 955: 821: 807: 749: 743: 706: 700: 670: 664: 645: 639: 609: 603: 587: 581: 565: 553: 489: 468: 407: 394: 361: 348: 271: 259: 197: 191: 175: 169: 154: 148: 132: 126: 107: 101: 1: 2250:10.1016/S1359-0294(99)00036-9 1812: 1772:size-exclusion chromatography 1603: 2050:, Elsevier, pp. 37–47, 1807:Protein–protein interactions 1242: 893:being 1.35×10 cm for a 64:multi-angle light scattering 7: 1785: 1577:{\displaystyle qR_{g}<1} 10: 2491: 1059:approximation as follows: 58:formalisms, respectively. 2281:10.1007/s12551-013-0107-1 2107:10.1088/0953-8984/2/S/062 1225:sin(θ/2)ΔR(θ) vs sin(θ/2) 77: 2130:J. Colloid Interface Sci 1852:10.1002/andp.19103381612 1797:Dynamic light scattering 1776:dynamic light scattering 1746:dynamic light scattering 2183:(12): 123107–123107–7. 1023:solvent will yield the 919:with the concentration 17:Static light scattering 2150:10.1006/jcis.1998.5769 1711: 1613: 1578: 1532: 1300: 1239: 1147: 1007: 836: 759: 616: 527: 414: 207: 56:Fraunhofer diffraction 1712: 1611: 1579: 1533: 1347:. Hence implementing 1301: 1237: 1148: 1008: 837: 760: 617: 528: 415: 208: 47:, can be calculated. 2042:Chang, Qing (2016), 1826:A. Einstein (1910). 1630: 1552: 1357: 1251: 1065: 932: 773: 630: 541: 428: 239: 92: 2199:2010RScI...81l3107B 2142:1998JCIS..207..150U 2099:1990JPCM....2..393S 1971:1948JChPh..16.1093Z 1933:1945JChPh..13..141Z 1898:1944JAP....15..338D 1844:1910AnP...338.1275E 1757:important class of 1735:Multiple scattering 1453: 1179:will yield a slope 1121: 723: 687: 467: 335: 2475:Physical chemistry 2044:"Osmotic Pressure" 1707: 1620:can be neglected ( 1614: 1598:virial coefficient 1574: 1528: 1439: 1325:virial coefficient 1296: 1295: 1240: 1157:ln(ΔR(θ)) = lnP(θ) 1143: 1107: 1003: 832: 755: 709: 673: 612: 523: 453: 410: 321: 203: 84:quantum efficiency 32:radius of gyration 21:physical chemistry 19:is a technique in 2465:Polymer chemistry 2377:10.1002/app.50566 2330:10.1021/jp0569335 2263:Some, D. (2013). 2207:10.1063/1.3518961 2065:978-0-12-809315-3 2003:978-1-57444-779-8 1994:Polymer chemistry 1979:10.1063/1.1746738 1941:10.1063/1.1724013 1906:10.1063/1.1707436 1832:Annals of Physics 1686: 1666: 1458: 1413: 1393: 1280: 1173:ΔR(θ) vs sin(θ/2) 937: 864:Avogadro constant 778: 753: 725: 635: 546: 510: 433: 340: 295: 275: 201: 97: 2482: 2422: 2421: 2419: 2417: 2403: 2397: 2396: 2356: 2350: 2349: 2324:(9): 4329–4338. 2309: 2303: 2302: 2292: 2260: 2254: 2253: 2233: 2227: 2226: 2192: 2168: 2162: 2161: 2125: 2119: 2118: 2082: 2076: 2075: 2074: 2072: 2039: 2033: 2032: 2030: 2028: 2014: 2008: 2007: 1989: 1983: 1982: 1954: 1945: 1944: 1916: 1910: 1909: 1881: 1875: 1874: 1862: 1856: 1855: 1823: 1802:Light scattering 1716: 1714: 1713: 1708: 1703: 1702: 1687: 1685: 1684: 1672: 1667: 1665: 1642: 1634: 1590:point scatterers 1583: 1581: 1580: 1575: 1567: 1566: 1537: 1535: 1534: 1529: 1524: 1523: 1502: 1501: 1486: 1482: 1478: 1477: 1459: 1454: 1452: 1447: 1438: 1437: 1427: 1414: 1412: 1411: 1399: 1394: 1392: 1369: 1361: 1305: 1303: 1302: 1297: 1288: 1287: 1282: 1281: 1273: 1269: 1264: 1263: 1152: 1150: 1149: 1144: 1142: 1141: 1126: 1120: 1115: 1012: 1010: 1009: 1004: 1002: 1001: 992: 948: 935: 841: 839: 838: 833: 828: 817: 800: 799: 776: 764: 762: 761: 756: 754: 752: 738: 737: 728: 726: 724: 722: 717: 699: 698: 688: 686: 681: 663: 662: 652: 633: 621: 619: 618: 613: 602: 601: 580: 579: 544: 532: 530: 529: 524: 522: 521: 512: 511: 508: 502: 497: 496: 481: 466: 461: 452: 451: 431: 419: 417: 416: 411: 406: 405: 384: 383: 368: 364: 360: 359: 341: 336: 334: 329: 320: 319: 309: 296: 294: 293: 281: 276: 274: 251: 243: 212: 210: 209: 204: 202: 200: 190: 189: 168: 167: 157: 147: 146: 125: 124: 114: 95: 2490: 2489: 2485: 2484: 2483: 2481: 2480: 2479: 2470:Polymer physics 2445: 2444: 2431: 2426: 2425: 2415: 2413: 2405: 2404: 2400: 2357: 2353: 2310: 2306: 2261: 2257: 2234: 2230: 2169: 2165: 2126: 2122: 2093:: SA393–SA398. 2083: 2079: 2070: 2068: 2066: 2040: 2036: 2026: 2024: 2016: 2015: 2011: 2004: 1990: 1986: 1955: 1948: 1917: 1913: 1882: 1878: 1863: 1859: 1824: 1820: 1815: 1788: 1767: 1754: 1737: 1698: 1694: 1680: 1676: 1671: 1643: 1635: 1633: 1631: 1628: 1627: 1606: 1562: 1558: 1553: 1550: 1549: 1546: 1519: 1515: 1497: 1493: 1473: 1469: 1448: 1443: 1433: 1429: 1428: 1426: 1419: 1415: 1407: 1403: 1398: 1370: 1362: 1360: 1358: 1355: 1354: 1345: 1331: 1323:and the second 1321: 1311: 1283: 1272: 1271: 1270: 1265: 1259: 1255: 1252: 1249: 1248: 1245: 1205: 1192: 1184: 1164: 1137: 1133: 1122: 1116: 1111: 1066: 1063: 1062: 1053: 1046: 1041: 997: 993: 988: 944: 933: 930: 929: 909: 902: 891: 883: 861: 850: 824: 813: 795: 791: 774: 771: 770: 739: 733: 729: 727: 718: 713: 694: 690: 689: 682: 677: 658: 654: 653: 651: 631: 628: 627: 597: 593: 575: 571: 542: 539: 538: 517: 513: 507: 503: 498: 492: 488: 477: 462: 457: 447: 443: 429: 426: 425: 401: 397: 379: 375: 355: 351: 330: 325: 315: 311: 310: 308: 301: 297: 289: 285: 280: 252: 244: 242: 240: 237: 236: 231: 220: 185: 181: 163: 159: 158: 142: 138: 120: 116: 115: 113: 93: 90: 89: 80: 45: 38: 28: 12: 11: 5: 2488: 2478: 2477: 2472: 2467: 2462: 2457: 2443: 2442: 2437: 2430: 2429:External links 2427: 2424: 2423: 2398: 2351: 2304: 2275:(2): 147–158. 2255: 2244:(3): 177–185. 2228: 2163: 2136:(1): 150–158. 2120: 2077: 2064: 2034: 2009: 2002: 1984: 1946: 1911: 1876: 1867:Indian J. Phys 1857: 1817: 1816: 1814: 1811: 1810: 1809: 1804: 1799: 1794: 1787: 1784: 1766: 1763: 1753: 1750: 1736: 1733: 1706: 1701: 1697: 1693: 1690: 1683: 1679: 1675: 1670: 1664: 1661: 1658: 1655: 1652: 1649: 1646: 1641: 1638: 1605: 1602: 1573: 1570: 1565: 1561: 1557: 1544: 1527: 1522: 1518: 1514: 1511: 1508: 1505: 1500: 1496: 1492: 1489: 1485: 1481: 1476: 1472: 1468: 1465: 1462: 1457: 1451: 1446: 1442: 1436: 1432: 1425: 1422: 1418: 1410: 1406: 1402: 1397: 1391: 1388: 1385: 1382: 1379: 1376: 1373: 1368: 1365: 1343: 1329: 1319: 1315:molecular mass 1309: 1294: 1291: 1286: 1279: 1276: 1268: 1262: 1258: 1244: 1241: 1204: 1201: 1190: 1182: 1169:Rayleigh ratio 1162: 1140: 1136: 1132: 1129: 1125: 1119: 1114: 1110: 1106: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1051: 1045: 1042: 1040: 1037: 1025:Rayleigh ratio 1000: 996: 991: 987: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 951: 947: 943: 940: 907: 900: 889: 881: 859: 848: 831: 827: 823: 820: 816: 812: 809: 806: 803: 798: 794: 790: 787: 784: 781: 751: 748: 745: 742: 736: 732: 721: 716: 712: 708: 705: 702: 697: 693: 685: 680: 676: 672: 669: 666: 661: 657: 650: 647: 644: 641: 638: 611: 608: 605: 600: 596: 592: 589: 586: 583: 578: 574: 570: 567: 564: 561: 558: 555: 552: 549: 520: 516: 506: 501: 495: 491: 487: 484: 480: 476: 473: 470: 465: 460: 456: 450: 446: 442: 439: 436: 409: 404: 400: 396: 393: 390: 387: 382: 378: 374: 371: 367: 363: 358: 354: 350: 347: 344: 339: 333: 328: 324: 318: 314: 307: 304: 300: 292: 288: 284: 279: 273: 270: 267: 264: 261: 258: 255: 250: 247: 229: 218: 199: 196: 193: 188: 184: 180: 177: 174: 171: 166: 162: 156: 153: 150: 145: 141: 137: 134: 131: 128: 123: 119: 112: 109: 106: 103: 100: 79: 76: 52:Mie scattering 43: 36: 26: 9: 6: 4: 3: 2: 2487: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2452: 2450: 2441: 2438: 2436: 2433: 2432: 2412: 2408: 2402: 2394: 2390: 2386: 2382: 2378: 2374: 2371:(24): 50566. 2370: 2366: 2362: 2355: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2319: 2315: 2308: 2300: 2296: 2291: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2251: 2247: 2243: 2239: 2232: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2191: 2186: 2182: 2178: 2174: 2173:Scheffold, F. 2167: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2124: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2081: 2067: 2061: 2057: 2053: 2049: 2045: 2038: 2023: 2019: 2013: 2005: 1999: 1995: 1988: 1980: 1976: 1972: 1968: 1964: 1960: 1959:J. Chem. Phys 1953: 1951: 1942: 1938: 1934: 1930: 1926: 1922: 1921:J. Chem. Phys 1915: 1907: 1903: 1899: 1895: 1891: 1887: 1886:J. Appl. Phys 1880: 1872: 1868: 1861: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1822: 1818: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1789: 1783: 1781: 1777: 1773: 1762: 1760: 1749: 1747: 1741: 1732: 1728: 1726: 1722: 1717: 1704: 1699: 1695: 1691: 1688: 1681: 1677: 1673: 1668: 1659: 1656: 1653: 1647: 1639: 1636: 1625: 1623: 1619: 1610: 1601: 1599: 1595: 1591: 1587: 1571: 1568: 1563: 1559: 1555: 1547: 1538: 1520: 1516: 1509: 1506: 1503: 1498: 1494: 1490: 1487: 1483: 1474: 1470: 1463: 1460: 1455: 1449: 1444: 1440: 1434: 1430: 1423: 1420: 1416: 1408: 1404: 1400: 1395: 1386: 1383: 1380: 1374: 1366: 1363: 1352: 1350: 1346: 1339: 1334: 1332: 1326: 1322: 1316: 1312: 1292: 1289: 1284: 1266: 1260: 1256: 1236: 1232: 1230: 1226: 1222: 1218: 1214: 1210: 1200: 1198: 1194: 1186: 1178: 1174: 1170: 1166: 1158: 1153: 1138: 1134: 1127: 1123: 1117: 1112: 1108: 1101: 1098: 1095: 1086: 1080: 1071: 1068: 1060: 1058: 1054: 1039:Data analyses 1036: 1034: 1030: 1026: 1020: 1018: 1013: 998: 994: 989: 985: 982: 976: 970: 967: 964: 958: 952: 945: 941: 938: 927: 924: 922: 918: 914: 910: 903: 896: 892: 885: 877: 873: 869: 865: 858: 854: 847: 842: 829: 825: 818: 814: 810: 804: 801: 796: 792: 788: 785: 782: 779: 768: 765: 746: 740: 734: 730: 719: 714: 710: 703: 695: 691: 683: 678: 674: 667: 659: 655: 648: 642: 636: 625: 622: 606: 598: 594: 590: 584: 576: 572: 568: 562: 559: 556: 550: 536: 533: 518: 514: 504: 499: 493: 485: 482: 478: 474: 471: 463: 458: 454: 448: 444: 440: 437: 434: 423: 420: 402: 398: 391: 388: 385: 380: 376: 372: 369: 365: 356: 352: 345: 342: 337: 331: 326: 322: 316: 312: 305: 302: 298: 290: 286: 282: 277: 268: 265: 262: 256: 248: 245: 234: 232: 224: 222: 213: 194: 186: 182: 178: 172: 164: 160: 151: 143: 139: 135: 129: 121: 117: 110: 104: 98: 87: 85: 75: 73: 67: 65: 59: 57: 53: 48: 46: 39: 33: 29: 22: 18: 2414:. Retrieved 2410: 2401: 2368: 2364: 2354: 2321: 2317: 2307: 2272: 2269:Biophys. Rev 2268: 2258: 2241: 2237: 2231: 2180: 2176: 2166: 2133: 2129: 2123: 2090: 2086: 2080: 2069:, retrieved 2047: 2037: 2027:23 September 2025:. Retrieved 2021: 2012: 1993: 1987: 1965:(12): 1093. 1962: 1958: 1924: 1920: 1914: 1889: 1885: 1879: 1870: 1866: 1860: 1838:(16): 1275. 1835: 1831: 1821: 1768: 1765:Applications 1755: 1742: 1738: 1729: 1724: 1720: 1718: 1626: 1621: 1617: 1615: 1594:partial Zimm 1586:partial Zimm 1542: 1539: 1353: 1348: 1341: 1337: 1335: 1327: 1317: 1307: 1246: 1228: 1224: 1206: 1196: 1188: 1180: 1176: 1172: 1160: 1156: 1154: 1061: 1049: 1047: 1044:Guinier plot 1035:as follows: 1032: 1028: 1021: 1016: 1014: 928: 925: 920: 916: 912: 905: 898: 887: 879: 875: 871: 867: 856: 852: 845: 843: 769: 766: 626: 623: 537: 534: 424: 421: 235: 227: 225: 216: 214: 88: 81: 68: 60: 49: 41: 34: 24: 16: 15: 2171:Block, I.; 2087:J. Mod. Opt 1778:(DLS), and 1229:qΔR(θ) vs q 1217:random walk 1203:Kratky plot 2460:Scattering 2449:Categories 2411:Anton Paar 2022:Anton Paar 1927:(4): 141. 1892:(4): 338. 1813:References 1604:Debye plot 1165:sin(θ/2)/Îť 895:HeNe laser 2440:Litesizer 2393:233888953 2385:0021-8995 2338:1520-6106 2190:1008.0615 2115:250745836 1654:θ 1645:Δ 1381:θ 1372:Δ 1278:¯ 1275:Γ 1257:μ 1243:Zimm plot 1219:model of 1102:− 1087:θ 1078:Δ 1072:⁡ 1019:(0) = 1. 974:→ 962:→ 959:θ 950:Δ 830:λ 811:θ 805:⁡ 789:π 747:θ 704:θ 668:θ 643:θ 607:θ 591:− 585:θ 557:θ 548:Δ 515:λ 445:π 263:θ 254:Δ 179:− 152:θ 136:− 130:θ 105:θ 2346:16509731 2299:23646069 2215:21198014 1786:See also 1221:polymers 1213:proteins 2416:14 June 2290:3641300 2223:9240166 2195:Bibcode 2158:9778402 2138:Bibcode 2095:Bibcode 2071:14 June 1967:Bibcode 1929:Bibcode 1894:Bibcode 1840:Bibcode 1782:(ELS). 1774:(SEC), 1161:q = 4πn 1057:Guinier 72:toluene 2391:  2383:  2344:  2336:  2297:  2287:  2221:  2213:  2156:  2113:  2062:  2000:  1592:. The 1209:Kratky 1193:< 1 1155:where 936:  777:  634:  545:  432:  422:where 215:where 96:  78:Theory 54:) and 2389:S2CID 2219:S2CID 2185:arXiv 2111:S2CID 1725:ΔR(θ) 1197:dn/dc 913:dn/dc 844:with 624:with 2418:2022 2381:ISSN 2342:PMID 2334:ISSN 2295:PMID 2211:PMID 2154:PMID 2073:2022 2060:ISBN 2029:2022 1998:ISBN 1873:: 1. 1622:P(θ) 1618:P(θ) 1569:< 1290:< 1207:The 862:the 535:and 221:(90) 2373:doi 2369:138 2326:doi 2322:110 2285:PMC 2277:doi 2246:doi 2203:doi 2146:doi 2134:207 2103:doi 2052:doi 1975:doi 1937:doi 1902:doi 1848:doi 1293:0.3 1227:or 1175:or 884:(θ) 802:sin 2451:: 2409:. 2387:. 2379:. 2367:. 2363:. 2340:. 2332:. 2320:. 2316:. 2293:. 2283:. 2271:. 2267:. 2240:. 2217:. 2209:. 2201:. 2193:. 2181:81 2179:. 2152:. 2144:. 2132:. 2109:. 2101:. 2091:38 2089:. 2058:, 2046:, 2020:. 1973:. 1963:16 1961:. 1949:^ 1935:. 1925:13 1923:. 1900:. 1890:15 1888:. 1869:. 1846:. 1836:33 1834:. 1830:. 1721:Kc 1333:. 1313:, 1189:qR 1185:/3 1171:, 1069:ln 1027:, 874:/d 866:, 195:90 173:90 66:. 2420:. 2395:. 2375:: 2348:. 2328:: 2301:. 2279:: 2273:5 2252:. 2248:: 2242:4 2225:. 2205:: 2197:: 2187:: 2160:. 2148:: 2140:: 2117:. 2105:: 2097:: 2054:: 2031:. 2006:. 1981:. 1977:: 1969:: 1943:. 1939:: 1931:: 1908:. 1904:: 1896:: 1871:2 1854:. 1850:: 1842:: 1723:/ 1705:c 1700:2 1696:A 1692:2 1689:+ 1682:w 1678:M 1674:1 1669:= 1663:) 1660:c 1657:, 1651:( 1648:R 1640:c 1637:K 1572:1 1564:g 1560:R 1556:q 1545:g 1543:R 1541:( 1526:) 1521:2 1517:c 1513:( 1510:O 1507:+ 1504:c 1499:2 1495:A 1491:2 1488:+ 1484:) 1480:) 1475:4 1471:q 1467:( 1464:O 1461:+ 1456:3 1450:2 1445:g 1441:R 1435:2 1431:q 1424:+ 1421:1 1417:( 1409:w 1405:M 1401:1 1396:= 1390:) 1387:c 1384:, 1378:( 1375:R 1367:c 1364:K 1349:K 1344:g 1342:R 1338:K 1330:2 1328:A 1320:w 1318:M 1310:g 1308:R 1285:2 1267:/ 1261:2 1231:. 1191:g 1183:g 1181:R 1177:q 1163:0 1139:2 1135:q 1131:) 1128:3 1124:/ 1118:2 1113:g 1109:R 1105:( 1099:1 1096:= 1093:) 1090:) 1084:( 1081:R 1075:( 1052:g 1050:R 1033:q 1029:R 1017:P 999:w 995:M 990:/ 986:1 983:= 980:) 977:0 971:c 968:, 965:0 956:( 953:R 946:/ 942:c 939:K 921:c 917:n 908:2 906:A 901:g 899:R 890:T 888:R 882:A 880:I 876:c 872:n 868:c 860:A 857:N 853:Îť 849:0 846:n 826:/ 822:) 819:2 815:/ 808:( 797:0 793:n 786:4 783:= 780:q 750:) 744:( 741:N 735:T 731:R 720:2 715:T 711:n 707:) 701:( 696:T 692:I 684:2 679:0 675:n 671:) 665:( 660:A 656:I 649:= 646:) 640:( 637:R 610:) 604:( 599:0 595:R 588:) 582:( 577:A 573:R 569:= 566:) 563:c 560:, 554:( 551:R 519:4 509:A 505:N 500:/ 494:2 490:) 486:c 483:d 479:/ 475:n 472:d 469:( 464:2 459:0 455:n 449:2 441:4 438:= 435:K 408:) 403:2 399:c 395:( 392:O 389:+ 386:c 381:2 377:A 373:2 370:+ 366:) 362:) 357:4 353:q 349:( 346:O 343:+ 338:3 332:2 327:g 323:R 317:2 313:q 306:+ 303:1 299:( 291:w 287:M 283:1 278:= 272:) 269:c 266:, 260:( 257:R 249:c 246:K 230:w 228:M 219:R 217:I 198:) 192:( 187:S 183:I 176:) 170:( 165:R 161:I 155:) 149:( 144:S 140:I 133:) 127:( 122:R 118:I 111:= 108:) 102:( 99:N 44:2 42:A 37:g 35:R 27:w 25:M

Index

physical chemistry
radius of gyration
Mie scattering
Fraunhofer diffraction
multi-angle light scattering
toluene
quantum efficiency
Avogadro constant
HeNe laser
Rayleigh ratio
Guinier
Rayleigh ratio
Kratky
proteins
random walk
polymers
Double-extrapolation to zero concentration and zero scattering angle used in Zimm plot
molecular mass
virial coefficient
partial Zimm
point scatterers
partial Zimm
virial coefficient

dynamic light scattering
methods to investigate protein–protein interactions
size-exclusion chromatography
dynamic light scattering
electrophoretic light scattering
Differential static light scatter (DSLS)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑