Knowledge

Statistical mechanics

Source đź“ť

543: 3757: 44: 760:(but not necessary) condition for statistical equilibrium with an isolated system is that the probability distribution is a function only of conserved properties (total energy, total particle numbers, etc.). There are many different equilibrium ensembles that can be considered, and only some of them correspond to thermodynamics. Additional postulates are necessary to motivate why the ensemble for a given system should have one form or another. 1718:. These equations are the result of applying the mechanical equations of motion independently to each state in the ensemble. These ensemble evolution equations inherit much of the complexity of the underlying mechanical motion, and so exact solutions are very difficult to obtain. Moreover, the ensemble evolution equations are fully reversible and do not destroy information (the ensemble's 640:
simultaneous positions and velocities of each molecule while carrying out processes at the human scale (for example, when performing a chemical reaction). Statistical mechanics fills this disconnection between the laws of mechanics and the practical experience of incomplete knowledge, by adding some uncertainty about which state the system is in.
1492:
simple task, however, since it involves considering every possible state of the system. While some hypothetical systems have been exactly solved, the most general (and realistic) case is too complex for an exact solution. Various approaches exist to approximate the true ensemble and allow calculation of average quantities.
796:: An ergodic system is one that evolves over time to explore "all accessible" states: all those with the same energy and composition. In an ergodic system, the microcanonical ensemble is the only possible equilibrium ensemble with fixed energy. This approach has limited applicability, since most systems are not ergodic. 1867:
by extracting results from equilibrium statistical mechanics. Since equilibrium statistical mechanics is mathematically well defined and (in some cases) more amenable for calculations, the fluctuation–dissipation connection can be a convenient shortcut for calculations in near-equilibrium statistical
971:
In these cases the correct thermodynamic ensemble must be chosen as there are observable differences between these ensembles not just in the size of fluctuations, but also in average quantities such as the distribution of particles. The correct ensemble is that which corresponds to the way the system
1706:
All of these processes occur over time with characteristic rates. These rates are important in engineering. The field of non-equilibrium statistical mechanics is concerned with understanding these non-equilibrium processes at the microscopic level. (Statistical thermodynamics can only be used to
1491:
Once the characteristic state function for an ensemble has been calculated for a given system, that system is 'solved' (macroscopic observables can be extracted from the characteristic state function). Calculating the characteristic state function of a thermodynamic ensemble is not necessarily a
503:
of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range. This was the first-ever statistical law in physics. Maxwell also gave the first mechanical argument that molecular collisions entail an equalization of temperatures and hence a tendency
1855:
that occur when the system is in total equilibrium. Essentially, a system that is slightly away from equilibrium—whether put there by external forces or by fluctuations—relaxes towards equilibrium in the same way, since the system cannot tell the difference or "know" how it came to be away from
1586:
examines just a few of the possible states of the system, with the states chosen randomly (with a fair weight). As long as these states form a representative sample of the whole set of states of the system, the approximate characteristic function is obtained. As more and more random samples are
1786:
The Boltzmann transport equation and related approaches are important tools in non-equilibrium statistical mechanics due to their extreme simplicity. These approximations work well in systems where the "interesting" information is immediately (after just one collision) scrambled up into subtle
693:
However the probability is interpreted, each state in the ensemble evolves over time according to the equation of motion. Thus, the ensemble itself (the probability distribution over states) also evolves, as the virtual systems in the ensemble continually leave one state and enter another. The
639:
Using these two concepts, the state at any other time, past or future, can in principle be calculated. There is however a disconnect between these laws and everyday life experiences, as we do not find it necessary (nor even theoretically possible) to know exactly at a microscopic level the
719:
is a state with a balance of forces that has ceased to evolve.) The study of equilibrium ensembles of isolated systems is the focus of statistical thermodynamics. Non-equilibrium statistical mechanics addresses the more general case of ensembles that change over time, and/or ensembles of
1558:
Although some problems in statistical physics can be solved analytically using approximations and expansions, most current research utilizes the large processing power of modern computers to simulate or approximate solutions. A common approach to statistical problems is to use a
531:
of gases, and similar subjects, occupy about 2,000 pages in the proceedings of the Vienna Academy and other societies. Boltzmann introduced the concept of an equilibrium statistical ensemble and also investigated for the first time non-equilibrium statistical mechanics, with his
702:(quantum mechanics). These equations are simply derived by the application of the mechanical equation of motion separately to each virtual system contained in the ensemble, with the probability of the virtual system being conserved over time as it evolves from state to state. 1742:, a system cannot in itself cause loss of information), the randomness is added to reflect that information of interest becomes converted over time into subtle correlations within the system, or to correlations between the system and environment. These correlations appear as 562:"In dealing with masses of matter, while we do not perceive the individual molecules, we are compelled to adopt what I have described as the statistical method of calculation, and to abandon the strict dynamical method, in which we follow every motion by the calculus." 929:
for various types of particle. The grand canonical ensemble contains states of varying energy and varying numbers of particles; the different states in the ensemble are accorded different probabilities depending on their total energy and total particle
820:
Other fundamental postulates for statistical mechanics have also been proposed. For example, recent studies shows that the theory of statistical mechanics can be built without the equal a priori probability postulate. One such formalism is based on the
457:. In this work, Bernoulli posited the argument, still used to this day, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the gas pressure that we feel, and that what we experience as 651:
over all possible states of the system. In classical statistical mechanics, the ensemble is a probability distribution over phase points (as opposed to a single phase point in ordinary mechanics), usually represented as a distribution in a
938:), all three of the ensembles listed above tend to give identical behaviour. It is then simply a matter of mathematical convenience which ensemble is used. The Gibbs theorem about equivalence of ensembles was developed into the theory of 1504:
For very small microscopic systems, the ensembles can be directly computed by simply enumerating over all possible states of the system (using exact diagonalization in quantum mechanics, or integral over all phase space in classical
1725:
Non-equilibrium mechanics is therefore an active area of theoretical research as the range of validity of these additional assumptions continues to be explored. A few approaches are described in the following subsections.
895:
describes a system with a precisely given energy and fixed composition (precise number of particles). The microcanonical ensemble contains with equal probability each possible state that is consistent with that energy and
732:
of materials in terms of the properties of their constituent particles and the interactions between them. In other words, statistical thermodynamics provides a connection between the macroscopic properties of materials in
578:, a book which formalized statistical mechanics as a fully general approach to address all mechanical systems—macroscopic or microscopic, gaseous or non-gaseous. Gibbs' methods were initially derived in the framework 1312: 713:. Statistical equilibrium occurs if, for each state in the ensemble, the ensemble also contains all of its future and past states with probabilities equal to the probability of being in that state. (By contrast, 1842:
Another important class of non-equilibrium statistical mechanical models deals with systems that are only very slightly perturbed from equilibrium. With very small perturbations, the response can be analysed in
2035:
Analytical and computational techniques derived from statistical physics of disordered systems, can be extended to large-scale problems, including machine learning, e.g., to analyze the weight space of deep
2811:
Gao, Xiang; Gallicchio, Emilio; Roitberg, Adrian E. (July 21, 2019). "The generalized Boltzmann distribution is the only distribution in which the Gibbs-Shannon entropy equals the thermodynamic entropy".
924:
describes a system with non-fixed composition (uncertain particle numbers) that is in thermal and chemical equilibrium with a thermodynamic reservoir. The reservoir has a precise temperature, and precise
1813:(Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) gives a method for deriving Boltzmann-type equations but also extending them beyond the dilute gas case, to include correlations after a few collisions. 886:
bounded inside a finite volume. These are the most often discussed ensembles in statistical thermodynamics. In the macroscopic limit (defined below) they all correspond to classical thermodynamics.
682:
the members of the ensemble can be understood as the states of the systems in experiments repeated on independent systems which have been prepared in a similar but imperfectly controlled manner (
437:
is the basic knowledge obtained from applying non-equilibrium statistical mechanics to study the simplest non-equilibrium situation of a steady state current flow in a system of many particles.
1479: 916:. The canonical ensemble contains states of varying energy but identical composition; the different states in the ensemble are accorded different probabilities depending on their total energy. 1214: 2032:, and more. Statistical physics also plays a role in materials science, nuclear physics, astrophysics, chemistry, biology and medicine (e.g. study of the spread of infectious diseases). 1787:
correlations, which essentially restricts them to rarefied gases. The Boltzmann transport equation has been found to be very useful in simulations of electron transport in lightly doped
808:: A more elaborate version of the principle of indifference states that the correct ensemble is the ensemble that is compatible with the known information and that has the largest 1710:
In principle, non-equilibrium statistical mechanics could be mathematically exact: ensembles for an isolated system evolve over time according to deterministic equations such as
1821:(a.k.a. NEGF—non-equilibrium Green functions): A quantum approach to including stochastic dynamics is found in the Keldysh formalism. This approach is often used in electronic 1426: 2116: 3690: 1377: 1722:
is preserved). In order to make headway in modelling irreversible processes, it is necessary to consider additional factors besides probability and reversible mechanics.
572:"Probabilistic mechanics" might today seem a more appropriate term, but "statistical mechanics" is firmly entrenched. Shortly before his death, Gibbs published in 1902 1098: 1065: 1032: 3328:
Altshuler, B L; Aronov, A G; Khmelnitsky, D E (December 30, 1982). "Effects of electron-electron collisions with small energy transfers on quantum localisation".
1935:
The ensemble formalism can be used to analyze general mechanical systems with uncertainty in knowledge about the state of a system. Ensembles are also used in:
1142: 3718: 2285: 1738:(random) behaviour into the system. Stochastic behaviour destroys information contained in the ensemble. While this is technically inaccurate (aside from 1822: 1640:
averages, in ergodic systems. With the inclusion of a connection to a stochastic heat bath, they can also model canonical and grand canonical conditions.
554:
in 1884. According to Gibbs, the term "statistical", in the context of mechanics, i.e. statistical mechanics, was first used by the Scottish physicist
2485:"Illustrations of the dynamical theory of gases. Part II. On the process of diffusion of two or more kinds of moving particles among one another," 837: 330: 2191:
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya (March 12, 2013). "Statistical mechanics of complex neural systems and high dimensional data".
4310: 2716: 1527:
A few large systems with interaction have been solved. By the use of subtle mathematical techniques, exact solutions have been found for a few
574: 2539:
Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability, independence, and tendency towards equilibrium".
4080: 2094: 1750:
influences on the variables of interest. By replacing these correlations with randomness proper, the calculations can be made much easier.
1220: 2020:. Many experimental studies of matter are entirely based on the statistical description of a system. These include the scattering of cold 4399: 3773: 3463:
Mashaghi, Alireza; Ramezanpour, Abolfazl (March 16, 2018). "Statistical physics of medical diagnostics: Study of a probabilistic model".
2064: 1553: 660:
axes. In quantum statistical mechanics, the ensemble is a probability distribution over pure states and can be compactly summarized as a
644: 599: 124: 3778: 3711: 17: 1508:
Some large systems consist of many separable microscopic systems, and each of the subsystems can be analysed independently. Notably,
1707:
calculate the final result, after the external imbalances have been removed and the ensemble has settled back down to equilibrium.)
511:
Statistical mechanics was initiated in the 1870s with the work of Boltzmann, much of which was collectively published in his 1896
3686: 3196:
Hill, R; Healy, B; Holloway, L; Kuncic, Z; Thwaites, D; Baldock, C (March 2014). "Advances in kilovoltage x-ray beam dosimetry".
1809:: In liquids and dense gases, it is not valid to immediately discard the correlations between particles after one collision. The 4278: 520: 3704: 3601: 3561: 3529: 3312: 3123: 3031: 2946: 2752: 2683: 2617: 2515: 2433: 2408: 2253: 1760:: An early form of stochastic mechanics appeared even before the term "statistical mechanics" had been coined, in studies of 422: 647:, which is a large collection of virtual, independent copies of the system in various states. The statistical ensemble is a 1829: 1711: 695: 391:. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion. 3636: 2291: 1875: 1848: 434: 323: 1432: 1890: 1108: 841: 822: 777: 158: 3669: 2962:
Touchette, Hugo (2015). "Equivalence and Nonequivalence of Ensembles: Thermodynamic, Macrostate, and Measure Levels".
1923:) in the conductance of an electronic system is the use of the Green–Kubo relations, with the inclusion of stochastic 4073: 2471:"Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres," 1592: 508:, a young student in Vienna, came across Maxwell's paper and spent much of his life developing the subject further. 1513: 166: 86: 1148: 830:
The probability density function is proportional to some function of the ensemble parameters and random variables.
728:
The primary goal of statistical thermodynamics (also known as equilibrium statistical mechanics) is to derive the
865: 802:: In the absence of any further information, we can only assign equal probabilities to each compatible situation. 972:
has been prepared and characterized—in other words, the ensemble that reflects the knowledge about that system.
772:
For an isolated system with an exactly known energy and exactly known composition, the system can be found with
643:
Whereas ordinary mechanics only considers the behaviour of a single state, statistical mechanics introduces the
4420: 4226: 3972: 1739: 1653: 805: 316: 3572: 2111: 2052: 1626:
For dense fluids, another approximate approach is based on reduced distribution functions, in particular the
705:
One special class of ensemble is those ensembles that do not evolve over time. These ensembles are known as
4066: 3741: 2121: 1880: 1777: 1756: 1627: 1521: 1113: 91: 4363: 81: 76: 4194: 4167: 3849: 3765: 3675: 3364: 2722: 1939: 1895: 1798: 1536: 1517: 690:
These two meanings are equivalent for many purposes, and will be used interchangeably in this article.
542: 96: 2635:
On the Fundamental Formula of Statistical Mechanics, with Applications to Astronomy and Thermodynamics
1598: 1383: 913: 799: 734: 418: 942:
phenomenon, which has applications in many areas of science, from functional analysis to methods of
789:
described below. There are various arguments in favour of the equal a priori probability postulate:
4300: 4025: 4008: 1920: 1885: 1852: 1340: 1118: 993: 939: 919: 877: 729: 648: 411: 395: 150: 3412:
Ramezanpour, Abolfazl; Beam, Andrew L.; Chen, Jonathan H.; Mashaghi, Alireza (November 19, 2020).
3053:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
4425: 3872: 3862: 3788: 1776:
for granted as a complete randomization, the motions of particles in a gas would follow a simple
1768:
had demonstrated that molecular collisions would lead to apparently chaotic motion inside a gas.
1761: 1643:
Mixed methods involving non-equilibrium statistical mechanical results (see below) may be useful.
1637: 983: 943: 890: 869: 786: 454: 410:—in terms of microscopic parameters that fluctuate about average values and are characterized by 212: 134: 58: 632: 4384: 4246: 3919: 3414:"Statistical Physics for Medical Diagnostics: Learning, Inference, and Optimization Algorithms" 1912: 1844: 1658:
Many physical phenomena involve quasi-thermodynamic processes out of equilibrium, for example:
1560: 745: 715: 612:. For both types of mechanics, the standard mathematical approach is to consider two concepts: 2938: 2931: 2673: 2660: 1071: 744:(steady state). Statistical equilibrium does not mean that the particles have stopped moving ( 464:
The founding of the field of statistical mechanics is generally credited to three physicists:
4389: 4358: 4142: 3804: 2768: 2484: 2470: 1668: 1568: 1326: 683: 676: 657: 628: 229: 3643:
Sklogwiki - Thermodynamics, statistical mechanics, and the computer simulation of materials.
398:, a field for which it was successful in explaining macroscopic physical properties—such as 4348: 4172: 4132: 3947: 3482: 3386: 3337: 3256: 3205: 3152: 3070: 2981: 2893: 2831: 2780: 2712: 2597: 2558: 2353: 2314: 2222: 2210: 1955: 1864: 1715: 1038: 1005: 757: 699: 621: 551: 500: 484: 426: 272: 1595:
is a classic Monte Carlo method which was initially used to sample the canonical ensemble.
740:
Whereas statistical mechanics proper involves dynamics, here the attention is focussed on
8: 4323: 4182: 4177: 4162: 4137: 4114: 4090: 4013: 3992: 3648: 3049:"Blessing of dimensionality: mathematical foundations of the statistical physics of data" 2041: 1945: 1765: 1689: 1616: 1579:, where they are used to model radiation transport for radiation dosimetry calculations. 935: 905: 813: 616:
The complete state of the mechanical system at a given time, mathematically encoded as a
605: 582:, however they were of such generality that they were found to adapt easily to the later 579: 555: 524: 496: 478: 267: 257: 69: 3486: 3390: 3341: 3260: 3209: 3156: 3074: 2985: 2897: 2835: 2784: 2601: 2562: 2357: 2318: 2214: 2168: 2143: 4379: 4256: 4251: 4204: 4040: 3952: 3929: 3910: 3890: 3854: 3656: 3632: 3612: 3472: 3440: 3413: 3376: 3280: 3229: 3173: 3140: 3091: 3060: 3048: 2997: 2971: 2911: 2883: 2821: 2574: 2548: 2200: 2017: 1662: 1633: 1583: 1572: 1540: 1127: 988: 926: 899: 873: 793: 515:. Boltzmann's original papers on the statistical interpretation of thermodynamics, the 384: 356: 142: 3540: 3349: 3268: 3217: 3164: 4394: 4343: 4288: 4268: 4154: 4045: 3942: 3915: 3826: 3816: 3809: 3783: 3597: 3557: 3525: 3498: 3445: 3308: 3272: 3221: 3178: 3119: 3096: 3027: 3001: 2942: 2915: 2847: 2748: 2679: 2638: 2613: 2521: 2511: 2429: 2404: 2381: 2376: 2341: 2249: 2173: 2060: 2029: 1981: 1916: 1900: 1851:, is that the response of a system when near equilibrium is precisely related to the 1817: 1675: 1612: 1321: 882:
There are three equilibrium ensembles with a simple form that can be defined for any
833:
Thermodynamic state functions are described by ensemble averages of random variables.
609: 583: 528: 430: 292: 234: 3284: 3247:
Rogers, D W O (2006). "Fifty years of Monte Carlo simulations for medical physics".
3233: 2578: 4333: 4273: 4199: 3937: 3679: 3549: 3490: 3435: 3425: 3394: 3345: 3264: 3213: 3168: 3160: 3086: 3078: 3019: 2989: 2901: 2839: 2788: 2605: 2566: 2371: 2361: 2322: 2241: 2218: 2163: 2155: 2013: 1997: 1769: 1620: 550:
The term "statistical mechanics" was coined by the American mathematical physicist
505: 468: 446: 380: 287: 262: 111: 3987: 2269:
Berger, Adam L.; Pietra, Vincent J. Della; Pietra, Stephen A. Della (March 1996).
667:
As is usual for probabilities, the ensemble can be interpreted in different ways:
4353: 4263: 4209: 4109: 3982: 3977: 3905: 3900: 3867: 3794: 2037: 2009: 1962: 1810: 1805: 1773: 1696: 1576: 1331: 883: 785:
The equal a priori probability postulate therefore provides a motivation for the
492: 277: 239: 219: 3430: 2570: 4283: 4238: 4216: 4104: 4030: 3746: 3655:
Cohen, Doron (2011). "Lecture Notes in Statistical Mechanics and Mesoscopics".
3645:
SklogWiki is particularly orientated towards liquids and soft condensed matter.
3494: 3398: 2906: 2871: 2159: 2072: 1969: 1564: 1512:
of non-interacting particles have this property, allowing exact derivations of
661: 282: 189: 101: 53: 2993: 2305:
Jaynes, E. T. (May 15, 1957). "Information Theory and Statistical Mechanics".
2245: 4414: 4293: 4018: 2642: 2366: 2098: 2087: 2068: 1985: 1788: 1719: 809: 407: 4058: 2792: 2525: 2326: 737:, and the microscopic behaviours and motions occurring inside the material. 4318: 4035: 3502: 3449: 3276: 3225: 3182: 3100: 3082: 2851: 2385: 2177: 2079: 2005: 1860: 1747: 1743: 1532: 376: 302: 2594:
Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems
3844: 3839: 3381: 2453: 2083: 1973: 1685: 671:
an ensemble can be taken to represent the various possible states that a
653: 617: 399: 297: 199: 194: 184: 3696: 3617: 2270: 1927:
by interactions between various electrons by use of the Keldysh method.
1734:
One approach to non-equilibrium statistical mechanics is to incorporate
4338: 4328: 3834: 3023: 1989: 1792: 1735: 854:
At infinite temperature, all the microstates have the same probability.
352: 2843: 586:, and still form the foundation of statistical mechanics to this day. 43: 4189: 3895: 1924: 1871:
A few of the theoretical tools used to make this connection include:
1781: 1528: 1509: 1307:{\displaystyle {\mathcal {Z}}=\sum _{k}e^{-(E_{k}-\mu N_{k})/k_{B}T}} 909: 595: 533: 516: 388: 372: 3611:
Flamm, Dieter (1998). "History and outlook of statistical physics".
1915:. As an example, one approach to compute quantum coherence effects ( 3799: 3477: 3065: 2888: 2826: 2553: 1681: 947: 403: 367:, its applications include many problems in the fields of physics, 224: 3661: 3576: 2976: 2205: 2040:. Statistical physics is thus finding applications in the area of 1911:
An advanced approach uses a combination of stochastic methods and
429:
that are driven by imbalances. Examples of such processes include
3964: 3553: 2609: 2021: 1669:
electric currents carried by the motion of charges in a conductor
481:, who developed models of probability distribution of such states 472: 368: 344: 2508:
The Man Who Changed Everything – the Life of James Clerk Maxwell
2093:
describing the quantum system. This can be shown under various
2008:. In solid state physics, statistical physics aids the study of 491:
In 1859, after reading a paper on the diffusion of molecules by
2428:(in Portuguese). Rio de Janeiro: CiĂŞncia Moderna. p. 156. 2001: 1859:
This provides an indirect avenue for obtaining numbers such as
1795:), where the electrons are indeed analogous to a rarefied gas. 1575:, and related fields, and have diverse applications including 627:
An equation of motion which carries the state forward in time:
2454:
Compendium of the foundations of classical statistical physics
1780:
that would rapidly restore a gas to an equilibrium state (see
1587:
included, the errors are reduced to an arbitrarily low level.
359:
to large assemblies of microscopic entities. Sometimes called
2342:"How can statistical mechanics contribute to social science?" 2117:
List of textbooks in thermodynamics and statistical mechanics
2025: 1993: 1949: 106: 3642: 3141:"GPU-based high-performance computing for radiation therapy" 2596:. Series on Advances in Statistical Mechanics. Vol. 8. 849:
where the third postulate can be replaced by the following:
3411: 3018:. Mathematical Surveys and Monographs. Vol. 89. 2005. 2271:"A maximum entropy approach to natural language processing" 458: 417:
While classical thermodynamics is primarily concerned with
3594:
Statistical Physics: Statics, Dynamics and Renormalization
3327: 2142:
Teschendorff, Andrew E.; Feinberg, Andrew P. (July 2021).
1980:
Statistical physics explains and quantitatively describes
1619:
to include the effect of weak interactions, leading to a
763:
A common approach found in many textbooks is to take the
604:
In physics, two types of mechanics are usually examined:
3365:"Inelastic scattering time for conductance fluctuations" 2771:(1957). "Information Theory and Statistical Mechanics". 1647: 3195: 2426:
FĂ­sica EstatĂ­stica do EquilĂ­brio: um curso introdutĂłrio
2193:
Journal of Statistical Mechanics: Theory and Experiment
425:
to the issues of microscopically modeling the speed of
589: 394:
Statistical mechanics arose out of the development of
3363:
Aleiner, I. L.; Blanter, Ya. M. (February 28, 2002).
3305:
Equilibrium and Non-Equilibrium Statistical Mechanics
2810: 1611:
For rarefied non-ideal gases, approaches such as the
1435: 1386: 1343: 1223: 1151: 1130: 1074: 1041: 1008: 3139:
Jia, Xun; Ziegenhein, Peter; Jiang, Steve B (2014).
2141: 1663:
heat transport by the internal motions in a material
3462: 2659:(London, England: Longmans, Green, and Co., 1871), 2541:
Studies in History and Philosophy of Modern Physics
2190: 904:describes a system of fixed composition that is in 748:), rather, only that the ensemble is not evolving. 3138: 2930: 2268: 1500:There are some cases which allow exact solutions. 1474:{\displaystyle \Omega =-k_{B}T\log {\mathcal {Z}}} 1473: 1420: 1371: 1306: 1208: 1136: 1092: 1059: 1026: 953:Important cases where the thermodynamic ensembles 471:, who developed the fundamental interpretation of 3671:Videos of lecture series in statistical mechanics 2144:"Statistical mechanics meets single-cell biology" 4412: 3691:this article in the web archive on 2012 April 28 2047: 859: 686:), in the limit of an infinite number of trials. 504:towards equilibrium. Five years later, in 1864, 3522:Fundamentals of Statistical and Thermal Physics 3047:Gorban, A. N.; Tyukin, I. Y. (April 28, 2018). 2933:Fundamentals of Statistical and Thermal Physics 2346:Proceedings of the National Academy of Sciences 825:together with the following set of postulates: 3687:Configuration integral (statistical mechanics) 3538: 3362: 3116:Exactly solved models in statistical mechanics 2718:Elementary Principles in Statistical Mechanics 2591: 1636:computer simulations can be used to calculate 575:Elementary Principles in Statistical Mechanics 461:is simply the kinetic energy of their motion. 4088: 4074: 3712: 2095:mathematical formalisms for quantum mechanics 1740:hypothetical situations involving black holes 1601:, also used to sample the canonical ensemble. 723: 546:Cover of Gibbs' text on statistical mechanics 324: 3046: 1847:. A remarkable result, as formalized by the 1797:A quantum technique related in theme is the 1209:{\displaystyle Z=\sum _{k}e^{-E_{k}/k_{B}T}} 421:, statistical mechanics has been applied in 1837: 1554:Monte Carlo method in statistical mechanics 967:Large systems with long-range interactions. 934:For systems containing many particles (the 445:In 1738, Swiss physicist and mathematician 4081: 4067: 3719: 3705: 3298: 3296: 3294: 2865: 2863: 2861: 2806: 2804: 2802: 2592:Ebeling, Werner; Sokolov, Igor M. (2005). 1563:to yield insight into the properties of a 487:, who coined the name of the field in 1884 331: 317: 42: 3726: 3660: 3616: 3573:"Statistical Physics and other resources" 3476: 3439: 3429: 3380: 3330:Journal of Physics C: Solid State Physics 3172: 3090: 3064: 2975: 2961: 2905: 2887: 2825: 2738: 2736: 2734: 2732: 2552: 2375: 2365: 2340:Durlauf, Steven N. (September 14, 1999). 2204: 2167: 1772:subsequently showed that, by taking this 1695:systems being pumped by external forces ( 351:is a mathematical framework that applies 3649:Thermodynamics and Statistical Mechanics 3591: 2872:"The Mathematics of the Ensemble Theory" 2707: 2705: 2703: 2701: 2699: 2697: 2695: 2447: 2445: 2238:Statistical Mechanics of Neural Networks 2067:(probability distribution over possible 751: 541: 3302: 3291: 3016:The Concentration of Measure Phenomenon 2858: 2799: 2745:The Principles of Statistical Mechanics 2671: 2423: 2403:(2nd ed.). CRC Press. p. 15. 2339: 1567:. Monte Carlo methods are important in 840:matches with the entropy as defined in 475:in terms of a collection of microstates 14: 4413: 4279:Atomic, molecular, and optical physics 3246: 3113: 2767: 2742: 2729: 2538: 2451: 2304: 1702:and irreversible processes in general. 1486: 4062: 3700: 3654: 3610: 2711: 2692: 2675:The enigma of probability and physics 2632: 2505: 2442: 2398: 2235: 2097:. One such formalism is provided by 1729: 1648:Non-equilibrium statistical mechanics 433:and flows of particles and heat. The 423:non-equilibrium statistical mechanics 27:Physics of many interacting particles 3689:, 2008. this wiki site is down; see 3570: 3539:MĂĽller-Kirsten, Harald J W. (2013). 3519: 2928: 2922: 2399:Huang, Kerson (September 21, 2009). 1678:driven by a decrease in free energy, 1665:, driven by a temperature imbalance, 964:Large systems at a phase transition. 765:equal a priori probability postulate 240:Grand potential / Landau free energy 3637:Stanford Encyclopedia of Philosophy 3633:Philosophy of Statistical Mechanics 2869: 2401:Introduction to Statistical Physics 694:ensemble evolution is given by the 590:Principles: mechanics and ensembles 24: 3635:article by Lawrence Sklar for the 3513: 1466: 1436: 1226: 823:fundamental thermodynamic relation 25: 4437: 3626: 2000:, and the structural features of 1906: 3755: 2223:10.1088/1742-5468/2013/03/P03014 1671:, driven by a voltage imbalance, 957:give identical results include: 709:and their condition is known as 620:(classical mechanics) or a pure 4400:Timeline of physics discoveries 3456: 3405: 3356: 3321: 3249:Physics in Medicine and Biology 3240: 3198:Physics in Medicine and Biology 3189: 3145:Physics in Medicine and Biology 3132: 3107: 3040: 3008: 2955: 2814:The Journal of Chemical Physics 2761: 2665: 2649: 2626: 2585: 2532: 2499: 2460: 1930: 1876:Fluctuation–dissipation theorem 1849:fluctuation–dissipation theorem 1714:or its quantum equivalent, the 1421:{\displaystyle F=-k_{B}T\log Z} 866:Ensemble (mathematical physics) 780:consistent with that knowledge. 435:fluctuation–dissipation theorem 2964:Journal of Statistical Physics 2743:Tolman, Richard Chace (1979). 2417: 2392: 2333: 2298: 2262: 2229: 2184: 2135: 1654:Non-equilibrium thermodynamics 1547: 1281: 1252: 13: 1: 3542:Basics of Statistical Physics 2128: 2112:Quantum statistical mechanics 2053:Quantum statistical mechanics 2048:Quantum statistical mechanics 1593:Metropolis–Hastings algorithm 1372:{\displaystyle S=k_{B}\log W} 860:Three thermodynamic ensembles 767:. This postulate states that 698:(classical mechanics) or the 631:(classical mechanics) or the 453:which laid the basis for the 3742:Principle of maximum entropy 1881:Onsager reciprocal relations 1778:Boltzmann transport equation 1757:Boltzmann transport equation 1628:radial distribution function 1531:. Some examples include the 1514:Maxwell–Boltzmann statistics 1114:Canonical partition function 7: 4364:Quantum information science 3431:10.3390/diagnostics10110972 3350:10.1088/0022-3719/15/36/018 3269:10.1088/0031-9155/51/13/R17 3218:10.1088/0031-9155/59/6/R183 3165:10.1088/0031-9155/59/4/R151 2571:10.1016/j.shpsb.2017.01.001 2104: 2086:operator of trace 1 on the 2078:, which is a non-negative, 1891:Landauer–BĂĽttiker formalism 806:Maximum information entropy 82:Indistinguishable particles 10: 4442: 4195:Classical electromagnetism 3766:Statistical thermodynamics 3495:10.1103/PhysRevE.97.032118 3399:10.1103/PhysRevB.65.115317 3114:Baxter, Rodney J. (1982). 2907:10.1016/j.rinp.2022.105230 2452:Uffink, Jos (March 2006). 2160:10.1038/s41576-021-00341-z 2063:. In quantum mechanics, a 2061:quantum mechanical systems 2004:. It underlies the modern 1992:, collective phenomena in 1940:propagation of uncertainty 1799:random phase approximation 1651: 1551: 1537:square-lattice Ising model 863: 836:The entropy as defined by 724:Statistical thermodynamics 679:, a form of knowledge), or 593: 440: 365:statistical thermodynamics 18:Statistical thermodynamics 4372: 4309: 4237: 4153: 4125: 4097: 4001: 3963: 3928: 3883: 3825: 3764: 3753: 3734: 3592:Kadanoff, Leo P. (2000). 2994:10.1007/s10955-015-1212-2 2870:Gao, Xiang (March 2022). 2678:. Springer. p. 174. 2278:Computational Linguistics 2246:10.1007/978-981-16-7570-6 1599:Path integral Monte Carlo 1317: 1103: 800:Principle of indifference 735:thermodynamic equilibrium 419:thermodynamic equilibrium 412:probability distributions 4301:Condensed matter physics 4026:Condensed matter physics 4009:Statistical field theory 2367:10.1073/pnas.96.19.10582 1921:conductance fluctuations 1838:Near-equilibrium methods 1605: 1522:Bose–Einstein statistics 1495: 1119:Grand partition function 1093:{\displaystyle T,\mu ,V} 976:Thermodynamic ensembles 940:concentration of measure 920:Grand canonical ensemble 878:Grand canonical ensemble 842:classical thermodynamics 730:classical thermodynamics 649:probability distribution 396:classical thermodynamics 3884:Mathematical approaches 3873:Lennard-Jones potential 3789:thermodynamic potential 2937:. McGraw–Hill. p.  2793:10.1103/PhysRev.106.620 2747:. Courier Corporation. 2723:Charles Scribner's Sons 2672:Mayants, Lazar (1984). 2327:10.1103/PhysRev.106.620 2236:Huang, Haiping (2021). 2148:Nature Reviews Genetics 1638:microcanonical ensemble 944:artificial intelligence 891:Microcanonical ensemble 870:Microcanonical ensemble 852: 787:microcanonical ensemble 742:statistical equilibrium 711:statistical equilibrium 455:kinetic theory of gases 125:Thermodynamic ensembles 77:Spin–statistics theorem 4385:Nobel Prize in Physics 4247:Relativistic mechanics 3920:conformal field theory 3651:by Richard Fitzpatrick 3303:Balescu, Radu (1975). 3118:. Academic Press Inc. 3083:10.1098/rsta.2017.0237 2510:. Hoboken, NJ: Wiley. 2488:Philosophical Magazine 2474:Philosophical Magazine 1913:linear response theory 1896:Mori–Zwanzig formalism 1845:linear response theory 1561:Monte Carlo simulation 1518:Fermi–Dirac statistics 1475: 1422: 1373: 1308: 1210: 1138: 1094: 1061: 1028: 746:mechanical equilibrium 720:non-isolated systems. 716:mechanical equilibrium 570: 547: 513:Lectures on Gas Theory 427:irreversible processes 4421:Statistical mechanics 4390:Philosophy of physics 3835:Ferromagnetism models 3728:Statistical mechanics 2713:Gibbs, Josiah Willard 2655:James Clerk Maxwell , 2633:Gibbs, J. W. (1885). 2506:Mahon, Basil (2003). 2483:Maxwell, J.C. (1860) 2469:Maxwell, J.C. (1860) 2057:statistical mechanics 1569:computational physics 1476: 1423: 1374: 1327:Helmholtz free energy 1318:Macroscopic function 1309: 1211: 1139: 1104:Microscopic features 1095: 1062: 1060:{\displaystyle T,N,V} 1029: 1027:{\displaystyle E,N,V} 838:Gibbs entropy formula 752:Fundamental postulate 707:equilibrium ensembles 684:empirical probability 677:epistemic probability 560: 545: 495:, Scottish physicist 349:statistical mechanics 230:Helmholtz free energy 159:Isoenthalpic–isobaric 36:Statistical mechanics 4349:Mathematical physics 3596:. World Scientific. 2424:Germano, R. (2022). 2071:) is described by a 2065:statistical ensemble 1956:ensemble forecasting 1886:Green–Kubo relations 1865:thermal conductivity 1716:von Neumann equation 1712:Liouville's equation 1433: 1384: 1341: 1221: 1149: 1128: 1072: 1039: 1006: 961:Microscopic systems. 700:von Neumann equation 658:canonical coordinate 645:statistical ensemble 633:Schrödinger equation 629:Hamilton's equations 624:(quantum mechanics). 622:quantum state vector 600:Statistical ensemble 501:Maxwell distribution 485:Josiah Willard Gibbs 4324:Atmospheric physics 4163:Classical mechanics 4091:branches of physics 4014:elementary particle 3779:partition functions 3487:2018PhRvE..97c2118M 3391:2002PhRvB..65k5317A 3342:1982JPhC...15.7367A 3261:2006PMB....51R.287R 3210:2014PMB....59R.183H 3157:2014PMB....59R.151J 3075:2018RSPTA.37670237G 2986:2015JSP...159..987T 2898:2022ResPh..3405230G 2836:2019JChPh.151c4113G 2785:1957PhRv..106..620J 2602:2005stst.book.....E 2563:2017SHPMP..57...53G 2358:1999PNAS...9610582D 2352:(19): 10582–10584. 2319:1957PhRv..106..620J 2215:2013JSMTE..03..014A 2042:medical diagnostics 1946:regression analysis 1766:James Clerk Maxwell 1690:quantum decoherence 1617:perturbation theory 1487:Calculation methods 977: 936:thermodynamic limit 927:chemical potentials 906:thermal equilibrium 814:information entropy 635:(quantum mechanics) 606:classical mechanics 580:classical mechanics 556:James Clerk Maxwell 525:thermal equilibrium 497:James Clerk Maxwell 479:James Clerk Maxwell 361:statistical physics 353:statistical methods 167:Isothermal–isobaric 70:Particle statistics 4380:History of physics 4041:information theory 3948:correlation length 3943:Critical exponents 3930:Critical phenomena 3911:stochastic process 3891:Boltzmann equation 3784:equations of state 3579:on August 12, 2021 3524:. Waveland Press. 3059:(2118): 20170237. 2876:Results in Physics 2018:critical phenomena 1861:ohmic conductivity 1830:Liouville equation 1730:Stochastic methods 1676:chemical reactions 1634:Molecular dynamics 1584:Monte Carlo method 1573:physical chemistry 1541:hard hexagon model 1471: 1418: 1369: 1304: 1243: 1206: 1167: 1134: 1090: 1057: 1024: 975: 900:Canonical ensemble 874:Canonical ensemble 794:Ergodic hypothesis 696:Liouville equation 548: 431:chemical reactions 385:information theory 357:probability theory 107:Anyonic statistics 4408: 4407: 4395:Physics education 4344:Materials science 4311:Interdisciplinary 4269:Quantum mechanics 4056: 4055: 4046:Boltzmann machine 3916:mean-field theory 3817:Maxwell relations 3603:978-981-02-3764-6 3571:Kadanoff, Leo P. 3563:978-981-4449-53-3 3531:978-1-4786-1005-2 3520:Reif, F. (2009). 3465:Physical Review E 3369:Physical Review B 3336:(36): 7367–7386. 3314:978-0-471-04600-4 3255:(13): R287–R301. 3125:978-0-12-083180-7 3033:978-0-8218-3792-4 2948:978-0-07-051800-1 2929:Reif, F. (1965). 2844:10.1063/1.5111333 2754:978-0-486-63896-6 2685:978-90-277-1674-3 2619:978-981-02-1382-4 2517:978-0-470-86171-4 2435:978-65-5842-144-3 2410:978-1-4200-7902-9 2255:978-981-16-7569-0 2122:Laplace transform 2014:phase transitions 1982:superconductivity 1968:bounded-rational 1948:of gravitational 1917:weak localization 1901:GENERIC formalism 1823:quantum transport 1818:Keldysh formalism 1613:cluster expansion 1484: 1483: 1322:Boltzmann entropy 1234: 1158: 1137:{\displaystyle W} 774:equal probability 610:quantum mechanics 584:quantum mechanics 529:equation of state 341: 340: 235:Gibbs free energy 87:Maxwell–Boltzmann 16:(Redirected from 4433: 4334:Chemical physics 4274:Particle physics 4200:Classical optics 4083: 4076: 4069: 4060: 4059: 3938:Phase transition 3759: 3758: 3721: 3714: 3707: 3698: 3697: 3680:Leonard Susskind 3672: 3666: 3664: 3622: 3620: 3607: 3588: 3586: 3584: 3575:. Archived from 3567: 3547: 3535: 3507: 3506: 3480: 3460: 3454: 3453: 3443: 3433: 3409: 3403: 3402: 3384: 3382:cond-mat/0105436 3360: 3354: 3353: 3325: 3319: 3318: 3300: 3289: 3288: 3244: 3238: 3237: 3204:(6): R183–R231. 3193: 3187: 3186: 3176: 3151:(4): R151–R182. 3136: 3130: 3129: 3111: 3105: 3104: 3094: 3068: 3044: 3038: 3037: 3024:10.1090/surv/089 3012: 3006: 3005: 2979: 2959: 2953: 2952: 2936: 2926: 2920: 2919: 2909: 2891: 2867: 2856: 2855: 2829: 2808: 2797: 2796: 2765: 2759: 2758: 2740: 2727: 2726: 2709: 2690: 2689: 2669: 2663: 2653: 2647: 2646: 2630: 2624: 2623: 2589: 2583: 2582: 2556: 2536: 2530: 2529: 2503: 2497: 2464: 2458: 2457: 2449: 2440: 2439: 2421: 2415: 2414: 2396: 2390: 2389: 2379: 2369: 2337: 2331: 2330: 2302: 2296: 2295: 2290: 2275: 2266: 2260: 2259: 2233: 2227: 2226: 2208: 2188: 2182: 2181: 2171: 2139: 2073:density operator 1770:Ludwig Boltzmann 1621:virial expansion 1480: 1478: 1477: 1472: 1470: 1469: 1454: 1453: 1427: 1425: 1424: 1419: 1405: 1404: 1378: 1376: 1375: 1370: 1359: 1358: 1313: 1311: 1310: 1305: 1303: 1302: 1298: 1297: 1288: 1280: 1279: 1264: 1263: 1242: 1230: 1229: 1215: 1213: 1212: 1207: 1205: 1204: 1200: 1199: 1190: 1185: 1184: 1166: 1143: 1141: 1140: 1135: 1099: 1097: 1096: 1091: 1066: 1064: 1063: 1058: 1033: 1031: 1030: 1025: 1000:Fixed variables 978: 974: 568: 567:J. Clerk Maxwell 552:J. Willard Gibbs 521:transport theory 506:Ludwig Boltzmann 469:Ludwig Boltzmann 447:Daniel Bernoulli 381:computer science 333: 326: 319: 112:Braid statistics 46: 32: 31: 21: 4441: 4440: 4436: 4435: 4434: 4432: 4431: 4430: 4411: 4410: 4409: 4404: 4368: 4354:Medical physics 4305: 4264:Nuclear physics 4233: 4227:Non-equilibrium 4149: 4121: 4093: 4087: 4057: 4052: 3997: 3959: 3924: 3906:BBGKY hierarchy 3901:Vlasov equation 3879: 3868:depletion force 3861:Particles with 3821: 3760: 3756: 3751: 3730: 3725: 3670: 3629: 3618:physics/9803005 3604: 3582: 3580: 3564: 3545: 3532: 3516: 3514:Further reading 3511: 3510: 3461: 3457: 3410: 3406: 3361: 3357: 3326: 3322: 3315: 3301: 3292: 3245: 3241: 3194: 3190: 3137: 3133: 3126: 3112: 3108: 3045: 3041: 3034: 3014: 3013: 3009: 2970:(5): 987–1016. 2960: 2956: 2949: 2927: 2923: 2868: 2859: 2809: 2800: 2773:Physical Review 2766: 2762: 2755: 2741: 2730: 2710: 2693: 2686: 2670: 2666: 2654: 2650: 2631: 2627: 2620: 2590: 2586: 2537: 2533: 2518: 2504: 2500: 2465: 2461: 2450: 2443: 2436: 2422: 2418: 2411: 2397: 2393: 2338: 2334: 2307:Physical Review 2303: 2299: 2288: 2273: 2267: 2263: 2256: 2234: 2230: 2189: 2185: 2140: 2136: 2131: 2126: 2107: 2050: 2038:neural networks 2010:liquid crystals 1970:potential games 1963:neural networks 1933: 1909: 1840: 1835: 1811:BBGKY hierarchy 1806:BBGKY hierarchy 1774:molecular chaos 1732: 1697:optical pumping 1656: 1650: 1608: 1577:medical physics 1556: 1550: 1539:in zero field, 1510:idealized gases 1498: 1489: 1465: 1464: 1449: 1445: 1434: 1431: 1430: 1400: 1396: 1385: 1382: 1381: 1354: 1350: 1342: 1339: 1338: 1332:Grand potential 1293: 1289: 1284: 1275: 1271: 1259: 1255: 1248: 1244: 1238: 1225: 1224: 1222: 1219: 1218: 1195: 1191: 1186: 1180: 1176: 1172: 1168: 1162: 1150: 1147: 1146: 1129: 1126: 1125: 1073: 1070: 1069: 1040: 1037: 1036: 1007: 1004: 1003: 994:Grand canonical 884:isolated system 880: 864:Main articles: 862: 857: 847: 754: 726: 602: 594:Main articles: 592: 569: 566: 499:formulated the 493:Rudolf Clausius 443: 337: 308: 307: 253: 245: 244: 220:Internal energy 215: 205: 204: 180: 172: 171: 151:Grand canonical 127: 117: 116: 72: 28: 23: 22: 15: 12: 11: 5: 4439: 4429: 4428: 4426:Thermodynamics 4423: 4406: 4405: 4403: 4402: 4397: 4392: 4387: 4382: 4376: 4374: 4370: 4369: 4367: 4366: 4361: 4356: 4351: 4346: 4341: 4336: 4331: 4326: 4321: 4315: 4313: 4307: 4306: 4304: 4303: 4298: 4297: 4296: 4291: 4286: 4276: 4271: 4266: 4261: 4260: 4259: 4254: 4243: 4241: 4235: 4234: 4232: 4231: 4230: 4229: 4224: 4217:Thermodynamics 4214: 4213: 4212: 4207: 4197: 4192: 4187: 4186: 4185: 4180: 4175: 4170: 4159: 4157: 4151: 4150: 4148: 4147: 4146: 4145: 4135: 4129: 4127: 4123: 4122: 4120: 4119: 4118: 4117: 4107: 4101: 4099: 4095: 4094: 4086: 4085: 4078: 4071: 4063: 4054: 4053: 4051: 4050: 4049: 4048: 4043: 4038: 4031:Complex system 4028: 4023: 4022: 4021: 4016: 4005: 4003: 3999: 3998: 3996: 3995: 3990: 3985: 3980: 3975: 3969: 3967: 3961: 3960: 3958: 3957: 3956: 3955: 3950: 3940: 3934: 3932: 3926: 3925: 3923: 3922: 3913: 3908: 3903: 3898: 3893: 3887: 3885: 3881: 3880: 3878: 3877: 3876: 3875: 3870: 3859: 3858: 3857: 3852: 3847: 3842: 3831: 3829: 3823: 3822: 3820: 3819: 3814: 3813: 3812: 3807: 3802: 3797: 3786: 3781: 3776: 3770: 3768: 3762: 3761: 3754: 3752: 3750: 3749: 3747:ergodic theory 3744: 3738: 3736: 3732: 3731: 3724: 3723: 3716: 3709: 3701: 3695: 3694: 3683: 3667: 3652: 3646: 3640: 3628: 3627:External links 3625: 3624: 3623: 3608: 3602: 3589: 3568: 3562: 3536: 3530: 3515: 3512: 3509: 3508: 3455: 3404: 3375:(11): 115317. 3355: 3320: 3313: 3290: 3239: 3188: 3131: 3124: 3106: 3039: 3032: 3007: 2954: 2947: 2921: 2857: 2798: 2779:(4): 620–630. 2760: 2753: 2728: 2691: 2684: 2664: 2657:Theory of Heat 2648: 2625: 2618: 2584: 2531: 2516: 2498: 2496: 2495: 2494: : 21–37. 2490:, 4th series, 2481: 2480: : 19–32. 2476:, 4th series, 2459: 2441: 2434: 2416: 2409: 2391: 2332: 2313:(4): 620–630. 2297: 2261: 2254: 2228: 2183: 2154:(7): 459–476. 2133: 2132: 2130: 2127: 2125: 2124: 2119: 2114: 2108: 2106: 2103: 2069:quantum states 2049: 2046: 1978: 1977: 1976:and economics. 1966: 1959: 1953: 1943: 1932: 1929: 1908: 1907:Hybrid methods 1905: 1904: 1903: 1898: 1893: 1888: 1883: 1878: 1839: 1836: 1834: 1833: 1826: 1814: 1802: 1789:semiconductors 1762:kinetic theory 1752: 1731: 1728: 1704: 1703: 1700: 1693: 1679: 1672: 1666: 1649: 1646: 1645: 1644: 1641: 1631: 1624: 1607: 1604: 1603: 1602: 1596: 1565:complex system 1552:Main article: 1549: 1546: 1545: 1544: 1525: 1506: 1497: 1494: 1488: 1485: 1482: 1481: 1468: 1463: 1460: 1457: 1452: 1448: 1444: 1441: 1438: 1428: 1417: 1414: 1411: 1408: 1403: 1399: 1395: 1392: 1389: 1379: 1368: 1365: 1362: 1357: 1353: 1349: 1346: 1335: 1334: 1329: 1324: 1319: 1315: 1314: 1301: 1296: 1292: 1287: 1283: 1278: 1274: 1270: 1267: 1262: 1258: 1254: 1251: 1247: 1241: 1237: 1233: 1228: 1216: 1203: 1198: 1194: 1189: 1183: 1179: 1175: 1171: 1165: 1161: 1157: 1154: 1144: 1133: 1122: 1121: 1116: 1111: 1105: 1101: 1100: 1089: 1086: 1083: 1080: 1077: 1067: 1056: 1053: 1050: 1047: 1044: 1034: 1023: 1020: 1017: 1014: 1011: 1001: 997: 996: 991: 986: 984:Microcanonical 981: 969: 968: 965: 962: 932: 931: 922: 917: 902: 897: 893: 861: 858: 856: 855: 851: 846: 845: 834: 831: 827: 818: 817: 803: 797: 783: 782: 753: 750: 725: 722: 688: 687: 680: 662:density matrix 637: 636: 625: 591: 588: 564: 489: 488: 482: 476: 442: 439: 339: 338: 336: 335: 328: 321: 313: 310: 309: 306: 305: 300: 295: 290: 285: 280: 275: 270: 265: 260: 254: 251: 250: 247: 246: 243: 242: 237: 232: 227: 222: 216: 211: 210: 207: 206: 203: 202: 197: 192: 187: 181: 178: 177: 174: 173: 170: 169: 161: 153: 145: 137: 135:Microcanonical 128: 123: 122: 119: 118: 115: 114: 109: 104: 102:Parastatistics 99: 94: 89: 84: 79: 73: 68: 67: 64: 63: 62: 61: 59:Kinetic theory 56: 54:Thermodynamics 48: 47: 39: 38: 26: 9: 6: 4: 3: 2: 4438: 4427: 4424: 4422: 4419: 4418: 4416: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4377: 4375: 4371: 4365: 4362: 4360: 4359:Ocean physics 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4316: 4314: 4312: 4308: 4302: 4299: 4295: 4294:Modern optics 4292: 4290: 4287: 4285: 4282: 4281: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4258: 4255: 4253: 4250: 4249: 4248: 4245: 4244: 4242: 4240: 4236: 4228: 4225: 4223: 4220: 4219: 4218: 4215: 4211: 4208: 4206: 4203: 4202: 4201: 4198: 4196: 4193: 4191: 4188: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4165: 4164: 4161: 4160: 4158: 4156: 4152: 4144: 4143:Computational 4141: 4140: 4139: 4136: 4134: 4131: 4130: 4128: 4124: 4116: 4113: 4112: 4111: 4108: 4106: 4103: 4102: 4100: 4096: 4092: 4084: 4079: 4077: 4072: 4070: 4065: 4064: 4061: 4047: 4044: 4042: 4039: 4037: 4034: 4033: 4032: 4029: 4027: 4024: 4020: 4019:superfluidity 4017: 4015: 4012: 4011: 4010: 4007: 4006: 4004: 4000: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3970: 3968: 3966: 3962: 3954: 3951: 3949: 3946: 3945: 3944: 3941: 3939: 3936: 3935: 3933: 3931: 3927: 3921: 3917: 3914: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3888: 3886: 3882: 3874: 3871: 3869: 3866: 3865: 3864: 3860: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3837: 3836: 3833: 3832: 3830: 3828: 3824: 3818: 3815: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3792: 3790: 3787: 3785: 3782: 3780: 3777: 3775: 3772: 3771: 3769: 3767: 3763: 3748: 3745: 3743: 3740: 3739: 3737: 3733: 3729: 3722: 3717: 3715: 3710: 3708: 3703: 3702: 3699: 3692: 3688: 3685:Vu-Quoc, L., 3684: 3681: 3677: 3673: 3668: 3663: 3658: 3653: 3650: 3647: 3644: 3641: 3638: 3634: 3631: 3630: 3619: 3614: 3609: 3605: 3599: 3595: 3590: 3578: 3574: 3569: 3565: 3559: 3555: 3551: 3544: 3543: 3537: 3533: 3527: 3523: 3518: 3517: 3504: 3500: 3496: 3492: 3488: 3484: 3479: 3474: 3471:(3): 032118. 3470: 3466: 3459: 3451: 3447: 3442: 3437: 3432: 3427: 3423: 3419: 3415: 3408: 3400: 3396: 3392: 3388: 3383: 3378: 3374: 3370: 3366: 3359: 3351: 3347: 3343: 3339: 3335: 3331: 3324: 3316: 3310: 3306: 3299: 3297: 3295: 3286: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3243: 3235: 3231: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3199: 3192: 3184: 3180: 3175: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3135: 3127: 3121: 3117: 3110: 3102: 3098: 3093: 3088: 3084: 3080: 3076: 3072: 3067: 3062: 3058: 3054: 3050: 3043: 3035: 3029: 3025: 3021: 3017: 3011: 3003: 2999: 2995: 2991: 2987: 2983: 2978: 2973: 2969: 2965: 2958: 2950: 2944: 2940: 2935: 2934: 2925: 2917: 2913: 2908: 2903: 2899: 2895: 2890: 2885: 2881: 2877: 2873: 2866: 2864: 2862: 2853: 2849: 2845: 2841: 2837: 2833: 2828: 2823: 2820:(3): 034113. 2819: 2815: 2807: 2805: 2803: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2764: 2756: 2750: 2746: 2739: 2737: 2735: 2733: 2724: 2720: 2719: 2714: 2708: 2706: 2704: 2702: 2700: 2698: 2696: 2687: 2681: 2677: 2676: 2668: 2662: 2658: 2652: 2644: 2640: 2636: 2629: 2621: 2615: 2611: 2607: 2603: 2599: 2595: 2588: 2580: 2576: 2572: 2568: 2564: 2560: 2555: 2550: 2546: 2542: 2535: 2527: 2523: 2519: 2513: 2509: 2502: 2493: 2489: 2486: 2482: 2479: 2475: 2472: 2468: 2467: 2463: 2455: 2448: 2446: 2437: 2431: 2427: 2420: 2412: 2406: 2402: 2395: 2387: 2383: 2378: 2373: 2368: 2363: 2359: 2355: 2351: 2347: 2343: 2336: 2328: 2324: 2320: 2316: 2312: 2308: 2301: 2293: 2287: 2283: 2279: 2272: 2265: 2257: 2251: 2247: 2243: 2239: 2232: 2224: 2220: 2216: 2212: 2207: 2202: 2199:(3): P03014. 2198: 2194: 2187: 2179: 2175: 2170: 2165: 2161: 2157: 2153: 2149: 2145: 2138: 2134: 2123: 2120: 2118: 2115: 2113: 2110: 2109: 2102: 2100: 2099:quantum logic 2096: 2092: 2089: 2088:Hilbert space 2085: 2081: 2077: 2074: 2070: 2066: 2062: 2058: 2054: 2045: 2043: 2039: 2033: 2031: 2030:visible light 2027: 2023: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1986:superfluidity 1983: 1975: 1971: 1967: 1964: 1960: 1957: 1954: 1951: 1947: 1944: 1941: 1938: 1937: 1936: 1928: 1926: 1922: 1918: 1914: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1873: 1872: 1869: 1866: 1862: 1857: 1856:equilibrium. 1854: 1850: 1846: 1831: 1827: 1825:calculations. 1824: 1820: 1819: 1815: 1812: 1808: 1807: 1803: 1800: 1796: 1794: 1790: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1758: 1754: 1753: 1751: 1749: 1745: 1741: 1737: 1727: 1723: 1721: 1720:Gibbs entropy 1717: 1713: 1708: 1701: 1698: 1694: 1691: 1687: 1683: 1680: 1677: 1673: 1670: 1667: 1664: 1661: 1660: 1659: 1655: 1642: 1639: 1635: 1632: 1629: 1625: 1622: 1618: 1614: 1610: 1609: 1600: 1597: 1594: 1590: 1589: 1588: 1585: 1580: 1578: 1574: 1570: 1566: 1562: 1555: 1542: 1538: 1534: 1530: 1526: 1523: 1519: 1515: 1511: 1507: 1503: 1502: 1501: 1493: 1461: 1458: 1455: 1450: 1446: 1442: 1439: 1429: 1415: 1412: 1409: 1406: 1401: 1397: 1393: 1390: 1387: 1380: 1366: 1363: 1360: 1355: 1351: 1347: 1344: 1337: 1336: 1333: 1330: 1328: 1325: 1323: 1320: 1316: 1299: 1294: 1290: 1285: 1276: 1272: 1268: 1265: 1260: 1256: 1249: 1245: 1239: 1235: 1231: 1217: 1201: 1196: 1192: 1187: 1181: 1177: 1173: 1169: 1163: 1159: 1155: 1152: 1145: 1131: 1124: 1123: 1120: 1117: 1115: 1112: 1110: 1106: 1102: 1087: 1084: 1081: 1078: 1075: 1068: 1054: 1051: 1048: 1045: 1042: 1035: 1021: 1018: 1015: 1012: 1009: 1002: 999: 998: 995: 992: 990: 987: 985: 982: 980: 979: 973: 966: 963: 960: 959: 958: 956: 951: 949: 945: 941: 937: 928: 923: 921: 918: 915: 912:of a precise 911: 907: 903: 901: 898: 894: 892: 889: 888: 887: 885: 879: 875: 871: 867: 853: 850: 843: 839: 835: 832: 829: 828: 826: 824: 815: 811: 810:Gibbs entropy 807: 804: 801: 798: 795: 792: 791: 790: 788: 781: 779: 773: 770: 769: 768: 766: 761: 759: 749: 747: 743: 738: 736: 731: 721: 718: 717: 712: 708: 703: 701: 697: 691: 685: 681: 678: 675:could be in ( 674: 673:single system 670: 669: 668: 665: 663: 659: 655: 650: 646: 641: 634: 630: 626: 623: 619: 615: 614: 613: 611: 607: 601: 597: 587: 585: 581: 577: 576: 563: 559: 557: 553: 544: 540: 538: 536: 530: 526: 522: 518: 514: 509: 507: 502: 498: 494: 486: 483: 480: 477: 474: 470: 467: 466: 465: 462: 460: 456: 452: 451:Hydrodynamica 448: 438: 436: 432: 428: 424: 420: 415: 413: 409: 408:heat capacity 405: 401: 397: 392: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 346: 334: 329: 327: 322: 320: 315: 314: 312: 311: 304: 301: 299: 296: 294: 291: 289: 286: 284: 281: 279: 276: 274: 271: 269: 266: 264: 261: 259: 256: 255: 249: 248: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 217: 214: 209: 208: 201: 198: 196: 193: 191: 188: 186: 183: 182: 176: 175: 168: 165: 162: 160: 157: 154: 152: 149: 146: 144: 141: 138: 136: 133: 130: 129: 126: 121: 120: 113: 110: 108: 105: 103: 100: 98: 95: 93: 92:Bose–Einstein 90: 88: 85: 83: 80: 78: 75: 74: 71: 66: 65: 60: 57: 55: 52: 51: 50: 49: 45: 41: 40: 37: 34: 33: 30: 19: 4319:Astrophysics 4221: 4133:Experimental 4002:Applications 3953:size scaling 3727: 3593: 3581:. Retrieved 3577:the original 3554:10.1142/8709 3541: 3521: 3468: 3464: 3458: 3421: 3417: 3407: 3372: 3368: 3358: 3333: 3329: 3323: 3304: 3252: 3248: 3242: 3201: 3197: 3191: 3148: 3144: 3134: 3115: 3109: 3056: 3052: 3042: 3015: 3010: 2967: 2963: 2957: 2932: 2924: 2879: 2875: 2817: 2813: 2776: 2772: 2763: 2744: 2721:. New York: 2717: 2674: 2667: 2656: 2651: 2634: 2628: 2610:10.1142/2012 2593: 2587: 2544: 2540: 2534: 2507: 2501: 2491: 2487: 2477: 2473: 2462: 2425: 2419: 2400: 2394: 2349: 2345: 2335: 2310: 2306: 2300: 2284:(1): 39–71. 2281: 2277: 2264: 2237: 2231: 2196: 2192: 2186: 2151: 2147: 2137: 2090: 2080:self-adjoint 2075: 2056: 2051: 2034: 2006:astrophysics 1979: 1961:dynamics of 1934: 1931:Applications 1910: 1870: 1858: 1853:fluctuations 1841: 1816: 1804: 1785: 1755: 1748:pseudorandom 1733: 1724: 1709: 1705: 1674:spontaneous 1657: 1581: 1557: 1533:Bethe ansatz 1499: 1490: 970: 954: 952: 950:technology. 933: 896:composition. 881: 848: 819: 784: 775: 771: 764: 762: 755: 741: 739: 727: 714: 710: 706: 704: 692: 689: 672: 666: 642: 638: 603: 573: 571: 561: 549: 534: 512: 510: 490: 463: 450: 444: 416: 393: 377:neuroscience 364: 360: 348: 342: 163: 155: 147: 139: 131: 35: 29: 4222:Statistical 4138:Theoretical 4115:Engineering 3993:von Neumann 3863:force field 3855:percolation 3424:(11): 972. 3418:Diagnostics 2661:p. 309 2456:(Preprint). 2084:trace-class 2059:applied to 1974:game theory 1958:of weather, 1868:mechanics. 1828:Stochastic 1793:transistors 1686:dissipation 1548:Monte Carlo 1505:mechanics). 1109:microstates 914:temperature 654:phase space 618:phase point 400:temperature 288:von Neumann 97:Fermi–Dirac 4415:Categories 4339:Geophysics 4329:Biophysics 4173:Analytical 4126:Approaches 3850:Heisenberg 3678:taught by 3478:1803.10019 3066:1801.03421 2889:2006.00485 2882:: 105230. 2827:1903.02121 2769:Jaynes, E. 2554:1702.01411 2129:References 1990:turbulence 1942:over time, 1736:stochastic 1652:See also: 1529:toy models 1107:Number of 778:microstate 758:sufficient 449:published 252:Scientists 213:Potentials 4289:Molecular 4190:Acoustics 4183:Continuum 4178:Celestial 4168:Newtonian 4155:Classical 4098:Divisions 3973:Boltzmann 3896:H-theorem 3774:Ensembles 3662:1107.0568 3307:. Wiley. 3002:118534661 2977:1403.6608 2916:221978379 2643:702360353 2547:: 53–65. 2206:1301.7115 1925:dephasing 1782:H-theorem 1462:⁡ 1443:− 1437:Ω 1413:⁡ 1394:− 1364:⁡ 1269:μ 1266:− 1250:− 1236:∑ 1174:− 1160:∑ 1082:μ 989:Canonical 910:heat bath 596:Mechanics 558:in 1871: 517:H-theorem 389:sociology 373:chemistry 283:Ehrenfest 263:Boltzmann 143:Canonical 3983:Tsallis 3583:June 18, 3503:29776109 3450:33228143 3285:12066026 3277:16790908 3234:18082594 3226:24584183 3183:24486639 3101:29555807 2852:31325924 2715:(1902). 2579:38272381 2526:52358254 2386:10485867 2178:33875884 2169:10152720 2105:See also 2022:neutrons 1699:, etc.), 1682:friction 948:big data 930:numbers. 565:—  537:-theorem 404:pressure 278:Einstein 225:Enthalpy 190:Einstein 4373:Related 4257:General 4252:Special 4110:Applied 3978:Shannon 3965:Entropy 3676:YouTube 3483:Bibcode 3441:7699346 3387:Bibcode 3338:Bibcode 3257:Bibcode 3206:Bibcode 3174:4003902 3153:Bibcode 3092:5869543 3071:Bibcode 2982:Bibcode 2894:Bibcode 2832:Bibcode 2781:Bibcode 2598:Bibcode 2559:Bibcode 2354:Bibcode 2315:Bibcode 2292:3283782 2211:Bibcode 1744:chaotic 908:with a 776:in any 473:entropy 441:History 369:biology 345:physics 258:Maxwell 4284:Atomic 4239:Modern 4089:Major 3827:Models 3735:Theory 3600:  3560:  3528:  3501:  3448:  3438:  3311:  3283:  3275:  3232:  3224:  3181:  3171:  3122:  3099:  3089:  3030:  3000:  2945:  2914:  2850:  2751:  2682:  2641:  2616:  2577:  2524:  2514:  2432:  2407:  2384:  2374:  2289:  2252:  2176:  2166:  2016:, and 2002:liquid 1998:plasma 1994:solids 1950:orbits 1520:, and 955:do not 876:, and 527:, the 406:, and 293:Tolman 179:Models 4036:chaos 3988:RĂ©nyi 3845:Potts 3840:Ising 3657:arXiv 3613:arXiv 3546:(PDF) 3473:arXiv 3377:arXiv 3281:S2CID 3230:S2CID 3061:arXiv 2998:S2CID 2972:arXiv 2912:S2CID 2884:arXiv 2822:arXiv 2575:S2CID 2549:arXiv 2466:See: 2377:33748 2286:INIST 2274:(PDF) 2201:arXiv 2026:X-ray 1606:Other 1496:Exact 656:with 303:Fermi 298:Debye 273:Gibbs 200:Potts 195:Ising 185:Debye 4210:Wave 4105:Pure 3918:and 3598:ISBN 3585:2023 3558:ISBN 3526:ISBN 3499:PMID 3446:PMID 3309:ISBN 3273:PMID 3222:PMID 3179:PMID 3120:ISBN 3097:PMID 3028:ISBN 2943:ISBN 2848:PMID 2749:ISBN 2680:ISBN 2639:OCLC 2614:ISBN 2522:OCLC 2512:ISBN 2430:ISBN 2405:ISBN 2382:PMID 2250:ISBN 2197:2013 2174:PMID 1996:and 1863:and 1791:(in 1615:use 1591:The 1582:The 946:and 608:and 598:and 459:heat 387:and 355:and 268:Bose 4205:Ray 3674:on 3550:doi 3491:doi 3436:PMC 3426:doi 3395:doi 3346:doi 3265:doi 3214:doi 3169:PMC 3161:doi 3087:PMC 3079:doi 3057:376 3020:doi 2990:doi 2968:159 2939:227 2902:doi 2840:doi 2818:151 2789:doi 2777:106 2606:doi 2567:doi 2372:PMC 2362:doi 2323:doi 2311:106 2242:doi 2219:doi 2164:PMC 2156:doi 2055:is 1972:in 1784:). 1746:or 1459:log 1410:log 1361:log 363:or 343:In 164:NPT 156:NPH 148:µVT 140:NVT 132:NVE 4417:: 3791:: 3556:. 3548:. 3497:. 3489:. 3481:. 3469:97 3467:. 3444:. 3434:. 3422:10 3420:. 3416:. 3393:. 3385:. 3373:65 3371:. 3367:. 3344:. 3334:15 3332:. 3293:^ 3279:. 3271:. 3263:. 3253:51 3251:. 3228:. 3220:. 3212:. 3202:59 3200:. 3177:. 3167:. 3159:. 3149:59 3147:. 3143:. 3095:. 3085:. 3077:. 3069:. 3055:. 3051:. 3026:. 2996:. 2988:. 2980:. 2966:. 2941:. 2910:. 2900:. 2892:. 2880:34 2878:. 2874:. 2860:^ 2846:. 2838:. 2830:. 2816:. 2801:^ 2787:. 2775:. 2731:^ 2694:^ 2637:. 2612:. 2604:. 2573:. 2565:. 2557:. 2545:57 2543:. 2520:. 2492:20 2478:19 2444:^ 2380:. 2370:. 2360:. 2350:96 2348:. 2344:. 2321:. 2309:. 2282:22 2280:. 2276:. 2248:. 2240:. 2217:. 2209:. 2195:. 2172:. 2162:. 2152:22 2150:. 2146:. 2101:. 2082:, 2044:. 2028:, 2024:, 2012:, 1988:, 1984:, 1919:, 1764:. 1688:, 1684:, 1571:, 1535:, 1516:, 872:, 868:, 816:). 756:A 664:. 539:. 523:, 519:, 414:. 402:, 383:, 379:, 375:, 371:, 347:, 4082:e 4075:t 4068:v 3810:G 3805:F 3800:H 3795:U 3720:e 3713:t 3706:v 3693:. 3682:. 3665:. 3659:: 3639:. 3621:. 3615:: 3606:. 3587:. 3566:. 3552:: 3534:. 3505:. 3493:: 3485:: 3475:: 3452:. 3428:: 3401:. 3397:: 3389:: 3379:: 3352:. 3348:: 3340:: 3317:. 3287:. 3267:: 3259:: 3236:. 3216:: 3208:: 3185:. 3163:: 3155:: 3128:. 3103:. 3081:: 3073:: 3063:: 3036:. 3022:: 3004:. 2992:: 2984:: 2974:: 2951:. 2918:. 2904:: 2896:: 2886:: 2854:. 2842:: 2834:: 2824:: 2795:. 2791:: 2783:: 2757:. 2725:. 2688:. 2645:. 2622:. 2608:: 2600:: 2581:. 2569:: 2561:: 2551:: 2528:. 2438:. 2413:. 2388:. 2364:: 2356:: 2329:. 2325:: 2317:: 2294:. 2258:. 2244:: 2225:. 2221:: 2213:: 2203:: 2180:. 2158:: 2091:H 2076:S 1965:, 1952:, 1832:. 1801:. 1692:, 1630:. 1623:. 1543:. 1524:. 1467:Z 1456:T 1451:B 1447:k 1440:= 1416:Z 1407:T 1402:B 1398:k 1391:= 1388:F 1367:W 1356:B 1352:k 1348:= 1345:S 1300:T 1295:B 1291:k 1286:/ 1282:) 1277:k 1273:N 1261:k 1257:E 1253:( 1246:e 1240:k 1232:= 1227:Z 1202:T 1197:B 1193:k 1188:/ 1182:k 1178:E 1170:e 1164:k 1156:= 1153:Z 1132:W 1088:V 1085:, 1079:, 1076:T 1055:V 1052:, 1049:N 1046:, 1043:T 1022:V 1019:, 1016:N 1013:, 1010:E 844:. 812:( 535:H 332:e 325:t 318:v 20:)

Index

Statistical thermodynamics
Statistical mechanics

Thermodynamics
Kinetic theory
Particle statistics
Spin–statistics theorem
Indistinguishable particles
Maxwell–Boltzmann
Bose–Einstein
Fermi–Dirac
Parastatistics
Anyonic statistics
Braid statistics
Thermodynamic ensembles
Microcanonical
Canonical
Grand canonical
Isoenthalpic–isobaric
Isothermal–isobaric
Debye
Einstein
Ising
Potts
Potentials
Internal energy
Enthalpy
Helmholtz free energy
Gibbs free energy
Grand potential / Landau free energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑