Knowledge

Stellar nucleosynthesis

Source 📝

6011: 468: 31: 451: 295: 6023: 6071: 5698: 645: 761:, which stirs the hydrogen fusion region and keeps it well mixed with the surrounding proton-rich region. This core convection occurs in stars where the CNO cycle contributes more than 20% of the total energy. As the star ages and the core temperature increases, the region occupied by the convection zone slowly shrinks from 20% of the mass down to the inner 8% of the mass. The Sun produces on the order of 1% of its energy from the CNO cycle. 425:. This review paper collected and refined earlier research into a heavily cited picture that gave promise of accounting for the observed relative abundances of the elements; but it did not itself enlarge Hoyle's 1954 picture for the origin of primary nuclei as much as many assumed, except in the understanding of nucleosynthesis of those elements heavier than iron by neutron capture. Significant improvements were made by 6059: 661: 6035: 6047: 5709: 1448: 1961: 2131: 397:
in 1938, is more important in more massive main-sequence stars. These works concerned the energy generation capable of keeping stars hot. A clear physical description of the proton–proton chain and of the CNO cycle appears in a 1968 textbook. Bethe's two papers did not address the creation of heavier
274:. The need for a physical description was already inspired by the relative abundances of the chemical elements in the solar system. Those abundances, when plotted on a graph as a function of the atomic number of the element, have a jagged sawtooth shape that varies by factors of tens of millions (see 748:
emission. The CNO cycle is very temperature sensitive, a 10% rise of temperature would produce a 350% rise in energy production. About 90% of the CNO cycle energy generation occurs within the inner 15% of the star's mass, hence it is strongly concentrated at the core. This results in such an intense
719:
nucleus (one proton plus one neutron) along with an ejected positron and neutrino. In each complete fusion cycle, the proton–proton chain reaction releases about 26.2 MeV. The proton–proton chain reaction cycle is relatively insensitive to temperature; a 10% rise of temperature would increase
1245: 743:
that uses nuclei of carbon, nitrogen and oxygen as intermediaries and in the end produces a helium nucleus as with the proton–proton chain. During a complete CNO cycle, 25.0 MeV of energy is released. The difference in energy production of this cycle, compared to the proton–proton chain
879:. This can then form oxygen, neon, and heavier elements via the alpha process. In this way, the alpha process preferentially produces elements with even numbers of protons by the capture of helium nuclei. Elements with odd numbers of protons are formed by other fusion pathways. 1682: 433:. In 1957 Cameron presented his own independent approach to nucleosynthesis, informed by Hoyle's example, and introduced computers into time-dependent calculations of evolution of nuclear systems. Clayton calculated the first time-dependent models of the 1780: 1968: 2289:"This result therefore paves the way toward a direct measurement of the solar metallicity using CNO neutrinos. Our findings quantify the relative contribution of CNO fusion in the Sun to be of the order of 1 per cent."—M. Agostini, et al. 1766: 1225: 859:
and to nearby galaxies. Despite the name, stars on a blue loop from the red giant branch are typically not blue in colour but are rather yellow giants, possibly Cepheid variables. They fuse helium until the core is largely
203:. However, this does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later in its life, a low-mass star will slowly eject its atmosphere via 1443:{\displaystyle {\frac {r}{V}}=n_{A}n_{B}\int _{0}^{\infty }{\frac {S(E)}{E}}\,e^{-{\sqrt {\frac {E_{\text{G}}}{E}}}}2{\sqrt {\frac {E}{\pi (kT)^{3}}}}e^{-{\frac {E}{kT}}}\,{\sqrt {\frac {2E}{m_{\text{R}}}}}dE} 764:
The type of hydrogen fusion process that dominates in a star is determined by the temperature dependency differences between the two reactions. The proton–proton chain reaction starts at temperatures about
1529: 822:
Main sequence stars accumulate helium in their cores as a result of hydrogen fusion, but the core does not become hot enough to initiate helium fusion. Helium fusion first begins when a star leaves the
1597: 720:
energy production by this method by 46%, hence, this hydrogen fusion process can occur in up to a third of the star's radius and occupy half the star's mass. For stars above 35% of the Sun's mass, the
447:
in 1965, as well as of the burning of silicon into the abundant alpha-particle nuclei and iron-group elements in 1968, and discovered radiogenic chronologies for determining the age of the elements.
278:). This suggested a natural process that is not random. A second stimulus to understanding the processes of stellar nucleosynthesis occurred during the 20th century, when it was realized that the 1011: 385:
analyzed the different possibilities for reactions by which hydrogen is fused into helium. He defined two processes that he believed to be the sources of energy in stars. The first one, the
2280:
Particle physicist Andrea Pocar points out, "Confirmation of CNO burning in our sun, where it operates at only one percent, reinforces our confidence that we understand how stars work."
1581: 5549: 1057: 3336:
Agostini, M.; AltenmĂŒller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Biondi, R.; Bravo, D.; Caccianiga, B. (25 November 2020).
954: 259:
rebounding outward. The shock front briefly raises temperatures by roughly 50%, thereby causing furious burning for about a second. This final burning in massive stars, called
1689: 1091: 1122: 1956:{\displaystyle e^{-{\frac {E}{kT}}-{\sqrt {\frac {E_{\text{G}}}{E}}}}\approx e^{-{\frac {3E_{0}}{kT}}}\exp \left(-{\frac {(E-E_{0})^{2}}{{\frac {4}{3}}E_{0}kT}}\right)} 1148: 2126:{\displaystyle {\frac {r}{V}}\approx n_{A}\,n_{B}\,{\frac {4{\sqrt {2}}}{\sqrt {3m_{\text{R}}}}}\,{\sqrt {E_{0}}}{\frac {S(E_{0})}{kT}}e^{-{\frac {3E_{0}}{kT}}}} 402:. Hoyle followed that in 1954 with a paper describing how advanced fusion stages within massive stars would synthesize the elements from carbon to iron in mass. 792:, the CNO cycle becomes the dominant source of energy. This temperature is achieved in the cores of main-sequence stars with at least 1.3 times the mass of the 342:
and raised the possibility that the heavier elements are produced in stars. This was a preliminary step toward the idea of stellar nucleosynthesis. In 1928
2608: 827:
after accumulating sufficient helium in its core to ignite it. In stars around the mass of the Sun, this begins at the tip of the red giant branch with a
398:
nuclei, however. That theory was begun by Fred Hoyle in 1946 with his argument that a collection of very hot nuclei would assemble thermodynamically into
3642: 2318: 1239: 3710:; Buchmann, Lothar; Cecil, F. Edward; Champagne, Arthur E.; de Braeckeleer, Ludwig; Duba, Charles A. (1998-10-01). "Solar fusion cross sections". 405:
Hoyle's theory was extended to other processes, beginning with the publication of the 1957 review paper "Synthesis of the Elements in Stars" by
2259:
in typical stars, the two reaction rates are equal at a temperature value that is within the core temperature ranges of main-sequence stars.
784:, but thereafter it increases more rapidly in efficiency as the temperature rises, than does the proton–proton reaction. Above approximately 374:
and Gamow himself to derive the rate at which nuclear reactions would occur at the high temperatures believed to exist in stellar interiors.
3612: 3567: 3323: 5746: 3592: 2944: 2862: 2360: 3538: 776:, making it the dominant fusion mechanism in smaller stars. A self-maintaining CNO chain requires a higher temperature of approximately 971: 1453: 804:. As a main-sequence star ages, the core temperature will rise, resulting in a steadily increasing contribution from its CNO cycle. 875:
In all cases, helium is fused to carbon via the triple-alpha process, i.e., three helium nuclei are transformed into carbon via
271: 6106: 4012: 2980: 2898: 2857: 5581: 4159: 4130: 3457: 3426: 3264: 3236: 3183: 3095: 3034: 2714: 872:. After the helium is exhausted in the core of a star, helium fusion will continue in a shell around the carbon–oxygen core. 868:. The most massive stars become supergiants when they leave the main sequence and quickly start helium fusion as they become 2819:
Clayton, D. D.; Fowler, W. A.; Hull, T. E.; Zimmerman, B. A. (1961). "Neutron capture chains in heavy element synthesis".
2358:
Hoyle, F. (1954). "On Nuclear Reactions Occurring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel".
1235:) depends on the details of the nuclear interaction, and has the dimension of an energy multiplied for a cross section. 5556: 4875: 911: 138: 715:. This creates a helium-4 nucleus through a sequence of reactions that begin with the fusion of two protons to form a 141:
of the elements. It explains why the observed abundances of elements change over time and why some elements and their
4185: 3280: 275: 183:
because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by
1677:{\displaystyle {\frac {\partial }{\partial E}}\left(-{\sqrt {\frac {E_{\text{G}}}{E}}}-{\frac {E}{kT}}\right)\,=\,0} 3936: 3934:
Hoyle, F. (1954). "On Nuclear Reactions occurring in very hot stars: Synthesis of elements from carbon to nickel".
3563: 3414: 2229: 2170: 712: 626: 386: 6010: 1583:
and at low energies from the Gamow factor, the integral almost vanished everywhere except around the peak, called
847:. Such a star initially moves away from the AGB toward bluer colours, then loops back again to what is called the 394: 5739: 5268: 2805: 2597: 839:
where it burns helium in its core. More massive stars ignite helium in their core without a flash and execute a
6111: 5561: 5198: 5182: 4217: 1541: 17: 389:, is the dominant energy source in stars with masses up to about the mass of the Sun. The second process, the 5608: 5475: 471:
A version of the periodic table indicating the origins – including stellar nucleosynthesis – of the elements.
303: 5591: 5542: 5517: 4810: 3649: 363: 5532: 5512: 2735: 4895: 1031: 6101: 6001: 5732: 5596: 5527: 5497: 4122: 3682: 3116: 3087: 2255:
keV·b. Incidentally, since the former reaction has a much higher Gamow factor, and due to the relative
729: 3472:
Schuler, S. C.; King, J. R.; The, L.-S. (2009), "Stellar Nucleosynthesis in the Hyades Open Cluster",
362:
which is effective only at very short distances. In the following decade the Gamow factor was used by
270:
A stimulus to the development of the theory of nucleosynthesis was the discovery of variations in the
5603: 5480: 5457: 5039: 4488: 4483: 4478: 4473: 4468: 4463: 4078: 4020: 3474: 2985: 2502: 2446: 2407: 264: 216: 149:
in 1946, who later refined it in 1954. Further advances were made, especially to nucleosynthesis by
6096: 6091: 4746: 4620: 4255: 114: 1062: 732:. As a result, there is little mixing of fresh hydrogen into the core or fusion products outward. 5898: 5863: 5798: 5522: 5273: 5072: 4982: 4942: 4850: 4421: 4347: 4141: 3534: 2903: 844: 725: 697: 551: 491: 51: 1100: 5893: 5883: 5683: 5663: 5435: 5430: 5328: 5223: 5172: 4977: 4967: 4640: 4438: 4406: 4297: 4280: 4175: 4008: 3303: 961: 700:
and the carbon–nitrogen–oxygen (CNO) cycle. Ninety percent of all stars, with the exception of
546: 536: 426: 235: 227: 3828: 3629: 3443: 3418: 3256: 3173: 2739: 2706: 2637: 5537: 5507: 5502: 5492: 5420: 5208: 4374: 3678: 3204: 3081: 3024: 2256: 414: 323: 166: 4655: 3139: 3077: 5888: 5878: 5678: 5576: 5566: 5415: 5383: 5177: 4972: 4957: 4270: 4087: 4029: 3945: 3904: 3859: 3790: 3729: 3686: 3493: 3359: 3216: 3135: 2994: 2953: 2912: 2871: 2830: 2665: 2560: 2511: 2455: 2416: 2399: 2369: 2327: 813: 724:
toward the surface is sufficiently low and energy transfer from the core region remains by
541: 511: 359: 358:
between them and approach each other closely enough to undergo nuclear reaction due to the
200: 70: 8: 6063: 5942: 5833: 5813: 5808: 5138: 5121: 4792: 4694: 4517: 4073: 3449: 3053: 2629: 696:
atmosphere. There are two predominant processes by which stellar hydrogen fusion occurs:
605: 354:
formula yielding the probability for two contiguous nuclei to overcome the electrostatic
5278: 4091: 4033: 3949: 3908: 3863: 3825:
Studying Stellar Rotation and Convection: Theoretical Background and Seismic Diagnostics
3794: 3771:
Adelberger, E. G. (2011). "Solar fusion cross sections. II. Theppchain and CNO cycles".
3733: 3497: 3363: 3281:"Neutrinos yield first experimental evidence of catalyzed fusion dominant in many stars" 3220: 2998: 2957: 2916: 2875: 2834: 2669: 2564: 2515: 2459: 2420: 2373: 2331: 1761:{\displaystyle E_{0}=\left({\frac {1}{2}}kT{\sqrt {E_{\text{G}}}}\right)^{\frac {2}{3}}} 6051: 5673: 5634: 5586: 5571: 5485: 5425: 5348: 5258: 5228: 5218: 5162: 5084: 4775: 4411: 4210: 4103: 4000: 3986: 3806: 3780: 3753: 3719: 3703: 3699: 3509: 3483: 3391: 3349: 3307: 3151: 3125: 2779: 2174: 1142: 754: 378: 219:
is used to describe the creation of elements during the explosion of a massive star or
3505: 5823: 5793: 5763: 5624: 5049: 5022: 5002: 4802: 4586: 4574: 4401: 4381: 4335: 4317: 4285: 4155: 4126: 3970: 3965: 3922: 3877: 3810: 3745: 3453: 3422: 3395: 3383: 3375: 3260: 3232: 3179: 3178:, Astrophysics and space science library, vol. 179, Springer, pp. 200–214, 3091: 3030: 2939: 2842: 2821: 2783: 2771: 2754: 2710: 2683: 2633: 2578: 2527: 1128: 836: 832: 686: 430: 410: 406: 351: 196: 180: 162: 158: 34: 5109: 4107: 4055: 3757: 3513: 3337: 3155: 211:, while a higher–mass star will eject mass via a sudden catastrophic event called a 6039: 6027: 5853: 5818: 5803: 5755: 5452: 5405: 5355: 5343: 5321: 5316: 5243: 5203: 5150: 4932: 4855: 4830: 4724: 4645: 4369: 4330: 4147: 4095: 4045: 4037: 3953: 3912: 3867: 3798: 3737: 3604: 3501: 3367: 3224: 3143: 3002: 2961: 2920: 2879: 2838: 2763: 2673: 2568: 2551: 2519: 2463: 2424: 2377: 2335: 852: 824: 685:
stars. It is also called "hydrogen burning", which should not be confused with the
634: 485: 367: 319: 299: 252: 208: 184: 134: 102: 3999: 3147: 3114:(March 2009). "On the magnetic topology of partially and fully convective stars". 1220:{\displaystyle \sigma (E)={\frac {S(E)}{E}}e^{-{\sqrt {\frac {E_{\text{G}}}{E}}}}} 5963: 5858: 5828: 5639: 5442: 5311: 5155: 5126: 5067: 5062: 4937: 4665: 4630: 4564: 4510: 4505: 4450: 4260: 4179: 4116: 4076:; A. Heger; T. A. Weaver (2002). "The evolution and explosion of massive stars". 3895: 3850: 3707: 2656: 758: 740: 527: 467: 355: 239: 150: 98: 3338:"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" 2523: 1238:
One then integrates over all energies to get the total reaction rate, using the
314:
and also raised the possibility that the heavier elements are produced in stars.
6075: 6015: 5984: 5968: 5701: 5467: 5306: 5133: 5104: 5079: 5012: 4701: 4569: 4455: 4357: 4247: 4237: 4099: 3823:
Goupil, M., Belkacem, K., Neiner, C., LigniĂšres, F., & Green, J. J., eds.,
3741: 3319: 2924: 1538:
Since this integration has an exponential damping at high energies of the form
965: 869: 331: 231: 192: 106: 4041: 3802: 3371: 3228: 2429: 2340: 2313: 689: 619: 6085: 5873: 5788: 5653: 5447: 5410: 5378: 5253: 4962: 4785: 4756: 4734: 4352: 4325: 4302: 4203: 3749: 3550:
Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J., eds.,
3379: 2467: 851:. An important consequence of blue loops is that they give rise to classical 848: 817: 682: 517: 371: 188: 177:, which became one of the most heavily cited papers in astrophysics history. 2767: 450: 251:(from silicon to nickel) is actually caused by the upper layers of the star 30: 5947: 5713: 5388: 5338: 5333: 5233: 5116: 5099: 5057: 5027: 5017: 4952: 4835: 4780: 4761: 4741: 4719: 4711: 4554: 4547: 4386: 4307: 4290: 3926: 3917: 3890: 3881: 3872: 3845: 3387: 2775: 2687: 2678: 2651: 2582: 2531: 1532: 1132: 828: 701: 618:"Hydrogen burning" redirects here. For the combustion of hydrogen gas, see 347: 343: 294: 204: 90: 4151: 3985:
Ray, A. (2004). "Stars as thermonuclear reactors: Their fuels and ashes".
282:
released from nuclear fusion reactions accounted for the longevity of the
5773: 5629: 5301: 5293: 5283: 5263: 5238: 5167: 5089: 4845: 4820: 4815: 4729: 4689: 4650: 4615: 4598: 4593: 4265: 3991: 3977: 3724: 3311: 3111: 2190: 2153: 1094: 876: 721: 531: 327: 245: 220: 145:
are much more abundant than others. The theory was initially proposed by
2798: 5924: 5778: 5213: 4910: 4883: 4860: 4840: 4825: 4677: 4581: 4559: 4537: 4532: 4396: 3559: 2158: 750: 681:
nucleus) is the dominant process that generates energy in the cores of
592: 455: 422: 418: 382: 256: 174: 170: 146: 6070: 4050: 3413:, Springer-Praxis books in astrophysics and astronomy (2nd ed.), 5919: 5911: 5903: 5868: 5783: 5400: 5248: 5032: 4997: 4992: 4987: 4947: 4900: 4890: 4684: 4660: 4635: 4542: 4493: 4426: 4416: 4391: 4364: 4340: 4275: 4004: 3588: 2573: 2233: 2185: 2166: 856: 840: 736: 716: 693: 630: 598: 578: 572: 497: 441: 434: 390: 212: 61: 5724: 3335: 2546: 2497: 735:
In higher-mass stars, the dominant energy production process is the
644: 5393: 5094: 4768: 4527: 4500: 3957: 3584: 3354: 3006: 2965: 2883: 2381: 2162: 745: 678: 479: 335: 307: 230:
and its associated heating, resulting in the subsequent burning of
130: 118: 3785: 3643:"University College London astrophysics course: lecture 7 – Stars" 3581:
Chemistry in Space: From Interstellar Matter to the Origin of Life
3488: 3130: 2398:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W.A.; Hoyle, F. (1957).
1131:, there is an exponential damping at low energies that depends on 5668: 5143: 4905: 4672: 4625: 4608: 4603: 4522: 3698: 3411:
New light on dark stars: red dwarfs, low-mass stars, brown dwarfs
3057: 2161:, due to the relation between the intermediate bound state (e.g. 565: 142: 126: 2444:
Suess, H. E.; Urey, H. C. (1956). "Abundances of the Elements".
5658: 5646: 4865: 4751: 3555: 3530: 2752:
Clayton, D. D. (2007). "History of Science: Hoyle's Equation".
865: 861: 772: 585: 504: 339: 322:, on the basis of the precise measurements of atomic masses by 311: 279: 122: 84: The Sun's core temperature, at which PP is more efficient 41:) of the following fusion processes at different temperatures ( 3029:, Greenwood guides to the universe, ABC-CLIO, pp. 65–67, 1524:{\displaystyle m_{\text{R}}={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}} 4013:"Synthesis of the elements in stars: forty years of progress" 1097:. Thus semi-classically the cross section is proportional to 3203:
Jeffrey, C. Simon (2010), Goswami, A.; Reddy, B. E. (eds.),
660: 78: Combined energy generation of PP and CNO within a star 5007: 4226: 4189: 4072: 2397: 707:
In the cores of lower-mass main-sequence stars such as the
559: 399: 154: 110: 5708: 2818: 2799:
Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis
677:
Hydrogen fusion (nuclear fusion of four protons to form a
5373: 2149: 793: 708: 475:
The most important reactions in stellar nucleosynthesis:
283: 242:. However, most of the nucleosynthesis in the mass range 4195: 964:
of each single elementary binary reaction composing the
855:, of central importance in determining distances in the 1028:
Semi-classically, the cross section is proportional to
2858:"Nucleosynthesis of Heavy Elements by Neutron Capture" 1103: 744:
reaction, is accounted for by the energy lost through
5999: 2937: 2896: 2856:
Seeger, P. A.; Fowler, W. A.; Clayton, D. D. (1965).
1971: 1783: 1692: 1600: 1544: 1456: 1248: 1151: 1065: 1034: 974: 914: 2938:
Bodansky, D.; Clayton, D. D.; Fowler, W. A. (1968).
2897:
Bodansky, D.; Clayton, D. D.; Fowler, W. A. (1968).
670:
The helium nucleus is released at the top-left step.
226:
The advanced sequence of burning fuels is driven by
4011:; G. M. Hale; A. E. Champagne; et al. (1997). 3972:
Principles of Stellar Evolution and Nucleosynthesis
3435: 3167: 3165: 3072: 3070: 3068: 3066: 2855: 2732:
Principles of Stellar Evolution and Nucleosynthesis
2483:
Principles of Stellar Evolution and Nucleosynthesis
2157:, but are damped by a huge factor when involving a 3969: 3175:Structure and evolution of single and binary stars 2940:"Nuclear Quasi-Equilibrium during Silicon Burning" 2125: 1955: 1760: 1676: 1575: 1523: 1442: 1219: 1116: 1085: 1051: 1025:, and averaging is performed over all velocities. 1005: 948: 3244: 2981:"Cosmoradiogenic Chronologies of Nucleosynthesis" 2319:Monthly Notices of the Royal Astronomical Society 796:. The Sun itself has a core temperature of about 753:energy transfer becomes more important than does 330:, proposed that stars obtained their energy from 267:, is the final epoch of stellar nucleosynthesis. 113:. Stellar nucleosynthesis has occurred since the 6083: 3162: 3063: 711:, the dominant energy production process is the 3611:(Cambridge: Cambridge University Press, 2011), 3402: 3205:"Principles and Perspectives in Cosmochemistry" 1006:{\displaystyle k=\langle \sigma (v)\,v\rangle } 302:proposed that stars obtained their energy from 3471: 3441: 3198: 3196: 3194: 2607:. Houston Astronomical Society. pp. 6–8. 704:, are fusing hydrogen by these two processes. 5740: 4211: 2931: 2890: 2314:"The synthesis of the elements from hydrogen" 1770:The exponent can then be approximated around 3527:Physics and Technology of Sustainable Energy 3465: 3250: 3171: 3109: 3103: 3076: 3018: 3016: 1021:) is the cross-section at relative velocity 1000: 981: 458:showing nucleosynthesis and elements formed. 272:abundances of elements found in the universe 4182:(Nobel prize site, accessed 6 January 2020) 3409:Reid, I. Neill; Hawley, Suzanne L. (2005), 3191: 2945:The Astrophysical Journal Supplement Series 2863:The Astrophysical Journal Supplement Series 2361:The Astrophysical Journal Supplement Series 2353: 2351: 2307: 2305: 5747: 5733: 4218: 4204: 3770: 3445:Evolution of stars and stellar populations 3442:Salaris, Maurizio; Cassisi, Santi (2005), 3408: 3209:Astrophysics and Space Science Proceedings 2849: 2474: 2228:keV·b, while the limiting reaction in the 1965:And the reaction rate is approximated as: 887:The reaction rate density between species 27:Creation of chemical elements within stars 4049: 3990: 3916: 3871: 3784: 3723: 3487: 3353: 3172:de Loore, Camiel W. H.; Doom, C. (1992), 3129: 3013: 2677: 2572: 2544: 2495: 2443: 2428: 2339: 2173:. Note that typical core temperatures in 2038: 2006: 1995: 1670: 1666: 1576:{\displaystyle \sim e^{-{\frac {E}{kT}}}} 1409: 1318: 1038: 996: 942: 931: 757:. As a result, the core region becomes a 2899:"Nucleosynthesis During Silicon Burning" 2547:"The Internal Constitution of the Stars" 2498:"The internal constitution of the stars" 2348: 2302: 2169:and the beta decay half-life, as in the 466: 449: 293: 29: 4139: 4114: 3964: 3202: 2978: 2796: 2751: 2480: 835:helium core, and the star moves to the 381:entitled "Energy Production in Stars", 14: 6084: 3251:Karttunen, Hannu; Oja, Heikki (2007), 2705:. Cambridge University Press. p.  2393: 2391: 137:, it yields accurate estimates of the 5754: 5728: 4199: 3933: 3888: 3843: 3827:(Berlin/Heidelberg: Springer, 2013), 3022: 2649: 2595: 2357: 2311: 1127:However, since the reaction involves 3702:; Austin, Sam M.; Bahcall, John N.; 3316:Radiochemistry and Nuclear Chemistry 3083:Introduction to Stellar Astrophysics 2700: 2400:"Synthesis of the Elements in Stars" 558:Production of elements heavier than 37:plot of the relative energy output ( 3984: 2388: 2236:from two protons, has a much lower 2184:Thus, the limiting reaction in the 530:: a process found most commonly in 421:, more commonly referred to as the 24: 4118:Handbook of Isotopes in the Cosmos 3837: 3255:(5th ed.), Springer, p.  1607: 1603: 1292: 1052:{\displaystyle \pi \,\lambda ^{2}} 613: 25: 6123: 4169: 949:{\displaystyle r=n_{A}\,n_{B}\,k} 276:history of nucleosynthesis theory 199:star), and progressively burning 6069: 6057: 6045: 6033: 6021: 6009: 5707: 5697: 5696: 3937:Astrophysical Journal Supplement 2614:from the original on 2013-12-03. 882: 807: 659: 643: 462: 326:and a preliminary suggestion by 3817: 3764: 3692: 3667: 3635: 3618: 3598: 3573: 3544: 3519: 3329: 3297: 3273: 3042: 2972: 2812: 2806:Atomic Energy of Canada Limited 2790: 2745: 2724: 2694: 2643: 2283: 2274: 393:, which was also considered by 346:derived what is now called the 286:as a source of heat and light. 2618: 2589: 2538: 2489: 2485:. University of Chicago Press. 2437: 2072: 2059: 1908: 1888: 1371: 1361: 1309: 1303: 1240:Maxwell–Boltzmann distribution 1179: 1173: 1161: 1155: 993: 987: 13: 1: 6107:Stellar astrophysics concepts 5609:Timeline of stellar astronomy 3628:(Weinheim: Wiley-VCH, 2015), 2262: 395:Carl Friedrich von WeizsĂ€cker 153:of the elements heavier than 3891:"Energy Production in Stars" 3846:"Energy Production in Stars" 3058:Wadsworth Publishing Company 2843:10.1016/0003-4916(61)90067-7 2652:"Energy Production in Stars" 2296: 2230:proton–proton chain reaction 2171:proton–proton chain reaction 1086:{\displaystyle \lambda =h/p} 713:proton–proton chain reaction 651:Proton–proton chain reaction 627:Proton–proton chain reaction 524:Fusion of heavier elements: 498:carbon–nitrogen–oxygen cycle 391:carbon–nitrogen–oxygen cycle 387:proton–proton chain reaction 7: 5269:Hertzsprung–Russell diagram 4140:Iliadis, Christian (2007). 4115:Clayton, Donald D. (2003). 3506:10.1088/0004-637X/701/1/837 3148:10.1051/0004-6361:200811450 2736:University of Chicago Press 2703:The Life and Death of Stars 2524:10.1126/science.52.1341.233 1117:{\textstyle {\frac {m}{E}}} 255:, creating a compressional 10: 6128: 5183:Kelvin–Helmholtz mechanism 4123:Cambridge University Press 4100:10.1103/RevModPhys.74.1015 3742:10.1103/RevModPhys.70.1265 3683:Princeton University Press 3675:Astrophysics in a Nutshell 3117:Astronomy and Astrophysics 3088:Cambridge University Press 2925:10.1103/PhysRevLett.20.161 2797:Cameron, A. G. W. (1957). 2596:Selle, D. (October 2012). 895:, having number densities 811: 624: 620:Hydrogen § Combustion 617: 289: 5977: 5956: 5933: 5842: 5762: 5692: 5617: 5466: 5364: 5292: 5191: 5048: 4923: 4801: 4710: 4446: 4437: 4316: 4246: 4233: 4225: 4079:Reviews of Modern Physics 4042:10.1103/RevModPhys.69.995 4021:Reviews of Modern Physics 3803:10.1103/RevModPhys.83.195 3773:Reviews of Modern Physics 3712:Reviews of Modern Physics 3475:The Astrophysical Journal 3372:10.1038/s41586-020-2934-0 3229:10.1007/978-3-642-10352-0 3023:Jones, Lauren V. (2009), 2986:The Astrophysical Journal 2545:Eddington, A. S. (1920). 2496:Eddington, A. S. (1920). 2447:Reviews of Modern Physics 2430:10.1103/RevModPhys.29.547 2408:Reviews of Modern Physics 749:outward energy flux that 265:supernova nucleosynthesis 261:explosive nucleosynthesis 217:supernova nucleosynthesis 5562:With multiple exoplanets 4143:Nuclear Physics of Stars 3626:Nuclear Physics of Stars 3050:Foundations of Astronomy 2468:10.1103/RevModPhys.28.53 2267: 730:convective heat transfer 253:collapsing onto the core 5799:Double electron capture 4348:Asymptotic giant branch 4146:. Weinheim: Wiley-VCH. 3535:Oxford University Press 3140:2009A&A...496..787R 2979:Clayton, D. D. (1964). 2904:Physical Review Letters 2768:10.1126/science.1151167 2730:Clayton, D. D. (1968). 2481:Clayton, D. D. (1968). 2341:10.1093/mnras/106.5.343 845:asymptotic giant branch 726:radiative heat transfer 552:Silicon-burning process 95:stellar nucleosynthesis 5684:Tidal disruption event 5173:Circumstellar envelope 4407:Luminous blue variable 3918:10.1103/PhysRev.55.434 3873:10.1103/PhysRev.55.103 3609:The Exoplanet Handbook 2679:10.1103/PhysRev.55.434 2127: 1957: 1762: 1678: 1577: 1525: 1444: 1221: 1118: 1087: 1053: 1007: 962:reaction rate constant 950: 690:combustion of hydrogen 547:Oxygen-burning process 537:Carbon-burning process 472: 459: 427:Alastair G. W. Cameron 315: 228:gravitational collapse 86: 6112:Concepts in astronomy 5209:Effective temperature 4152:10.1002/9783527618750 3889:Bethe, H. A. (1939). 3844:Bethe, H. A. (1939). 3552:Fundamental Astronomy 3253:Fundamental astronomy 2650:Bethe, H. A. (1939). 2598:"Why the Stars Shine" 2257:abundance of elements 2181:of the order of keV. 2128: 1958: 1763: 1679: 1578: 1526: 1445: 1222: 1119: 1095:de Broglie wavelength 1088: 1054: 1008: 951: 470: 453: 297: 173:in their famous 1957 167:William Alfred Fowler 33: 5679:Planet-hosting stars 5557:With resolved images 5528:Historical brightest 5458:Photometric-standard 5384:Solar radio emission 5178:Eddington luminosity 4958:Triple-alpha process 4896:Thorne–ƻytkow object 4271:Young stellar object 4176:"How the Sun Shines" 3452:, pp. 119–123, 3314:, & Ekberg, C., 2701:Lang, K. R. (2013). 2188:, proton capture by 1969: 1781: 1690: 1598: 1542: 1454: 1246: 1149: 1101: 1063: 1032: 972: 912: 843:before reaching the 814:Triple-alpha process 542:Neon-burning process 512:triple-alpha process 360:strong nuclear force 5943:Photodisintegration 5864:Proton–proton chain 5834:Spontaneous fission 5814:Isomeric transition 5809:Internal conversion 5503:Highest temperature 5274:Color–color diagram 5139:Protoplanetary disk 4943:Proton–proton chain 4621:Chemically peculiar 4092:2002RvMP...74.1015W 4034:1997RvMP...69..995W 3950:1954ApJS....1..121H 3909:1939PhRv...55..434B 3864:1939PhRv...55..103B 3795:2011RvMP...83..195A 3734:1998RvMP...70.1265A 3706:; Bogaert, Gilles; 3700:Adelberger, Eric G. 3655:on January 15, 2017 3498:2009ApJ...701..837S 3450:John Wiley and Sons 3364:2020Natur.587..577B 3221:2010ASSP...16.....G 3215:, Springer: 64–66, 3090:, pp. 93–100, 3078:Böhm-Vitense, Erika 2999:1964ApJ...139..637C 2958:1968ApJS...16..299B 2917:1968PhRvL..20..161B 2876:1965ApJS...11..121S 2835:1961AnPhy..12..331C 2762:(5858): 1876–1877. 2670:1939PhRv...55..434B 2565:1920Natur.106...14E 2516:1920Obs....43..341E 2460:1956RvMP...28...53S 2421:1957RvMP...29..547B 2374:1954ApJS....1..121H 2332:1946MNRAS.106..343H 2175:main-sequence stars 1296: 698:proton–proton chain 606:Photodisintegration 492:proton–proton chain 454:Cross section of a 440:in 1961 and of the 139:observed abundances 52:Proton–proton chain 5508:Lowest temperature 5259:Photometric system 5229:Absolute magnitude 5163:Circumstellar dust 4776:Stellar black hole 4412:Stellar population 4298:Herbig–Haro object 3966:Clayton, Donald D. 3026:Stars and galaxies 2312:Hoyle, F. (1946). 2232:, the creation of 2123: 1953: 1758: 1674: 1573: 1521: 1440: 1282: 1242:and the relation: 1217: 1143:Arrhenius equation 1114: 1083: 1049: 1003: 946: 755:radiative transfer 473: 460: 352:quantum-mechanical 316: 87: 6102:Stellar astronomy 5997: 5996: 5993: 5992: 5824:Positron emission 5794:Double beta decay 5756:Nuclear processes 5722: 5721: 5625:Substellar object 5604:Planetary nebulae 5023:Luminous red nova 4933:Deuterium burning 4919: 4918: 4402:Instability strip 4382:Wolf-Rayet nebula 4336:Horizontal branch 4281:Pre-main-sequence 4161:978-3-527-40602-9 4132:978-0-521-82381-4 3704:Balantekin, A. B. 3459:978-0-470-09220-0 3428:978-3-540-25124-8 3348:(7835): 577–582. 3266:978-3-540-34143-7 3238:978-3-642-10368-1 3185:978-0-7923-1768-5 3110:Reiners, Ansgar; 3097:978-0-521-34871-3 3036:978-0-313-34075-8 2822:Annals of Physics 2716:978-1-107-01638-5 2559:(2653): 233–240. 2510:(1341): 341–358. 2119: 2084: 2051: 2036: 2035: 2032: 2018: 1980: 1946: 1927: 1867: 1827: 1826: 1820: 1805: 1755: 1740: 1737: 1720: 1659: 1641: 1640: 1634: 1614: 1569: 1519: 1464: 1432: 1431: 1428: 1405: 1382: 1381: 1344: 1343: 1337: 1316: 1257: 1213: 1212: 1206: 1186: 1129:quantum tunneling 1112: 853:Cepheid variables 837:horizontal branch 728:, rather than by 431:Donald D. Clayton 197:horizontal branch 163:Geoffrey Burbidge 135:predictive theory 115:original creation 109:reactions within 103:chemical elements 35:Logarithmic scale 16:(Redirected from 6119: 6074: 6073: 6062: 6061: 6060: 6050: 6049: 6048: 6038: 6037: 6036: 6026: 6025: 6024: 6014: 6013: 6005: 5954: 5953: 5854:Deuterium fusion 5819:Neutron emission 5804:Electron capture 5749: 5742: 5735: 5726: 5725: 5714:Stars portal 5712: 5711: 5700: 5699: 5356:Planetary system 5279:Strömgren sphere 5151:Asteroseismology 4872:Black hole star 4444: 4443: 4370:Planetary nebula 4331:Red-giant branch 4220: 4213: 4206: 4197: 4196: 4165: 4136: 4111: 4086:(4): 1015–1071. 4069: 4067: 4066: 4060: 4054:. Archived from 4053: 4017: 3996: 3994: 3992:astro-ph/0405568 3981: 3975: 3961: 3930: 3920: 3885: 3875: 3832: 3821: 3815: 3814: 3788: 3768: 3762: 3761: 3727: 3725:astro-ph/9805121 3718:(4): 1265–1291. 3708:Brown, Lowell S. 3696: 3690: 3671: 3665: 3664: 3662: 3660: 3654: 3648:. Archived from 3647: 3639: 3633: 3622: 3616: 3602: 3596: 3577: 3571: 3548: 3542: 3523: 3517: 3516: 3491: 3469: 3463: 3462: 3439: 3433: 3431: 3406: 3400: 3399: 3357: 3333: 3327: 3318:(Cambridge, MA: 3308:Liljenzin, J.-O. 3301: 3295: 3294: 3292: 3291: 3277: 3271: 3269: 3248: 3242: 3241: 3200: 3189: 3188: 3169: 3160: 3159: 3133: 3107: 3101: 3100: 3074: 3061: 3060:, 1986), p. 245. 3046: 3040: 3039: 3020: 3011: 3010: 2976: 2970: 2969: 2935: 2929: 2928: 2894: 2888: 2887: 2853: 2847: 2846: 2816: 2810: 2809: 2808:. Report CRL-41. 2803: 2794: 2788: 2787: 2749: 2743: 2728: 2722: 2720: 2698: 2692: 2691: 2681: 2647: 2641: 2622: 2616: 2615: 2613: 2602: 2593: 2587: 2586: 2576: 2574:10.1038/106014a0 2542: 2536: 2535: 2493: 2487: 2486: 2478: 2472: 2471: 2441: 2435: 2434: 2432: 2404: 2395: 2386: 2385: 2355: 2346: 2345: 2343: 2309: 2290: 2287: 2281: 2278: 2254: 2227: 2208: 2206: 2205: 2198: 2197: 2156: 2146:) are typically 2132: 2130: 2129: 2124: 2122: 2121: 2120: 2118: 2110: 2109: 2108: 2095: 2085: 2083: 2075: 2071: 2070: 2054: 2052: 2050: 2049: 2040: 2037: 2034: 2033: 2030: 2021: 2020: 2019: 2014: 2008: 2005: 2004: 1994: 1993: 1981: 1973: 1962: 1960: 1959: 1954: 1952: 1948: 1947: 1945: 1938: 1937: 1928: 1920: 1917: 1916: 1915: 1906: 1905: 1886: 1870: 1869: 1868: 1866: 1858: 1857: 1856: 1843: 1830: 1829: 1828: 1822: 1821: 1818: 1812: 1811: 1806: 1804: 1793: 1767: 1765: 1764: 1759: 1757: 1756: 1748: 1746: 1742: 1741: 1739: 1738: 1735: 1729: 1721: 1713: 1702: 1701: 1683: 1681: 1680: 1675: 1665: 1661: 1660: 1658: 1647: 1642: 1636: 1635: 1632: 1626: 1625: 1615: 1613: 1602: 1582: 1580: 1579: 1574: 1572: 1571: 1570: 1568: 1557: 1530: 1528: 1527: 1522: 1520: 1518: 1517: 1516: 1504: 1503: 1493: 1492: 1491: 1482: 1481: 1471: 1466: 1465: 1462: 1449: 1447: 1446: 1441: 1433: 1430: 1429: 1426: 1420: 1412: 1411: 1408: 1407: 1406: 1404: 1393: 1383: 1380: 1379: 1378: 1353: 1352: 1347: 1346: 1345: 1339: 1338: 1335: 1329: 1328: 1317: 1312: 1298: 1295: 1290: 1281: 1280: 1271: 1270: 1258: 1250: 1226: 1224: 1223: 1218: 1216: 1215: 1214: 1208: 1207: 1204: 1198: 1197: 1187: 1182: 1168: 1123: 1121: 1120: 1115: 1113: 1105: 1092: 1090: 1089: 1084: 1079: 1058: 1056: 1055: 1050: 1048: 1047: 1012: 1010: 1009: 1004: 955: 953: 952: 947: 941: 940: 930: 929: 825:red giant branch 803: 801: 791: 789: 783: 781: 775: 770: 663: 647: 635:Deuterium fusion 486:Deuterium fusion 320:Arthur Eddington 300:Arthur Eddington 250: 209:planetary nebula 185:burning hydrogen 83: 77: 71:Triple-α process 68: 59: 49: 44: 40: 21: 6127: 6126: 6122: 6121: 6120: 6118: 6117: 6116: 6097:Nuclear physics 6092:Nucleosynthesis 6082: 6081: 6080: 6068: 6058: 6056: 6046: 6044: 6034: 6032: 6022: 6020: 6008: 6000: 5998: 5989: 5973: 5964:Neutron capture 5952: 5935: 5929: 5846:nucleosynthesis 5845: 5838: 5829:Proton emission 5784:Gamma radiation 5765: 5758: 5753: 5723: 5718: 5706: 5688: 5613: 5582:Milky Way novae 5518:Smallest volume 5462: 5443:Radial velocity 5366: 5360: 5312:Common envelope 5288: 5187: 5156:Helioseismology 5127:Bipolar outflow 5068:Microturbulence 5063:Convection zone 5044: 4938:Lithium burning 4925:Nucleosynthesis 4915: 4797: 4706: 4433: 4312: 4261:Molecular cloud 4242: 4229: 4224: 4186:Nucleosynthesis 4180:John N. Bahcall 4172: 4162: 4133: 4064: 4062: 4058: 4028:(4): 995–1084. 4015: 4009:A. M. Boesgaard 3896:Physical Review 3851:Physical Review 3840: 3838:Further reading 3835: 3822: 3818: 3769: 3765: 3697: 3693: 3672: 3668: 3658: 3656: 3652: 3645: 3641: 3640: 3636: 3623: 3619: 3603: 3599: 3578: 3574: 3549: 3545: 3524: 3520: 3470: 3466: 3460: 3440: 3436: 3429: 3407: 3403: 3334: 3330: 3302: 3298: 3289: 3287: 3279: 3278: 3274: 3267: 3249: 3245: 3239: 3201: 3192: 3186: 3170: 3163: 3108: 3104: 3098: 3086:, vol. 3, 3075: 3064: 3047: 3043: 3037: 3021: 3014: 2977: 2973: 2936: 2932: 2895: 2891: 2854: 2850: 2817: 2813: 2801: 2795: 2791: 2750: 2746: 2729: 2725: 2717: 2699: 2695: 2657:Physical Review 2648: 2644: 2623: 2619: 2611: 2600: 2594: 2590: 2543: 2539: 2503:The Observatory 2494: 2490: 2479: 2475: 2442: 2438: 2402: 2396: 2389: 2356: 2349: 2310: 2303: 2299: 2294: 2293: 2288: 2284: 2279: 2275: 2270: 2265: 2252: 2246: 2225: 2219: 2204: 2202: 2201: 2200: 2196: 2193: 2192: 2191: 2189: 2147: 2145: 2111: 2104: 2100: 2096: 2094: 2090: 2086: 2076: 2066: 2062: 2055: 2053: 2045: 2041: 2039: 2029: 2025: 2013: 2009: 2007: 2000: 1996: 1989: 1985: 1972: 1970: 1967: 1966: 1933: 1929: 1919: 1918: 1911: 1907: 1901: 1897: 1887: 1885: 1881: 1877: 1859: 1852: 1848: 1844: 1842: 1838: 1834: 1817: 1813: 1810: 1797: 1792: 1788: 1784: 1782: 1779: 1778: 1776: 1747: 1734: 1730: 1728: 1712: 1711: 1707: 1706: 1697: 1693: 1691: 1688: 1687: 1651: 1646: 1631: 1627: 1624: 1620: 1616: 1606: 1601: 1599: 1596: 1595: 1593: 1561: 1556: 1552: 1548: 1543: 1540: 1539: 1512: 1508: 1499: 1495: 1494: 1487: 1483: 1477: 1473: 1472: 1470: 1461: 1457: 1455: 1452: 1451: 1425: 1421: 1413: 1410: 1397: 1392: 1388: 1384: 1374: 1370: 1357: 1351: 1334: 1330: 1327: 1323: 1319: 1299: 1297: 1291: 1286: 1276: 1272: 1266: 1262: 1249: 1247: 1244: 1243: 1203: 1199: 1196: 1192: 1188: 1169: 1167: 1150: 1147: 1146: 1140: 1104: 1102: 1099: 1098: 1075: 1064: 1061: 1060: 1043: 1039: 1033: 1030: 1029: 973: 970: 969: 936: 932: 925: 921: 913: 910: 909: 908:, is given by: 907: 885: 870:red supergiants 820: 812:Main articles: 810: 799: 797: 787: 785: 779: 777: 768: 766: 759:convection zone 741:catalytic cycle 675: 674: 673: 672: 671: 669: 664: 655: 654: 653: 648: 637: 625:Main articles: 623: 616: 614:Hydrogen fusion 528:Lithium burning 465: 356:Coulomb barrier 292: 243: 201:higher elements 151:neutron capture 85: 81: 79: 75: 73: 66: 64: 57: 55: 47: 42: 38: 28: 23: 22: 15: 12: 11: 5: 6125: 6115: 6114: 6109: 6104: 6099: 6094: 6079: 6078: 6066: 6054: 6042: 6030: 6018: 5995: 5994: 5991: 5990: 5988: 5987: 5985:(n-p) reaction 5981: 5979: 5975: 5974: 5972: 5971: 5969:Proton capture 5966: 5960: 5958: 5951: 5950: 5945: 5939: 5937: 5931: 5930: 5928: 5927: 5922: 5917: 5909: 5901: 5896: 5891: 5886: 5881: 5876: 5871: 5866: 5861: 5856: 5850: 5848: 5840: 5839: 5837: 5836: 5831: 5826: 5821: 5816: 5811: 5806: 5801: 5796: 5791: 5786: 5781: 5776: 5770: 5768: 5760: 5759: 5752: 5751: 5744: 5737: 5729: 5720: 5719: 5717: 5716: 5704: 5693: 5690: 5689: 5687: 5686: 5681: 5676: 5671: 5666: 5661: 5656: 5651: 5650: 5649: 5644: 5643: 5642: 5637: 5621: 5619: 5615: 5614: 5612: 5611: 5606: 5601: 5600: 5599: 5594: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5553: 5552: 5547: 5546: 5545: 5535: 5530: 5525: 5520: 5515: 5513:Largest volume 5510: 5505: 5500: 5490: 5489: 5488: 5483: 5472: 5470: 5464: 5463: 5461: 5460: 5455: 5450: 5445: 5440: 5439: 5438: 5433: 5428: 5418: 5413: 5408: 5403: 5398: 5397: 5396: 5391: 5386: 5381: 5370: 5368: 5362: 5361: 5359: 5358: 5353: 5352: 5351: 5346: 5341: 5331: 5326: 5325: 5324: 5319: 5314: 5309: 5298: 5296: 5290: 5289: 5287: 5286: 5281: 5276: 5271: 5266: 5261: 5256: 5251: 5246: 5241: 5236: 5231: 5226: 5224:Magnetic field 5221: 5216: 5211: 5206: 5201: 5195: 5193: 5189: 5188: 5186: 5185: 5180: 5175: 5170: 5165: 5160: 5159: 5158: 5148: 5147: 5146: 5141: 5134:Accretion disk 5131: 5130: 5129: 5124: 5114: 5113: 5112: 5110:AlfvĂ©n surface 5107: 5105:Stellar corona 5102: 5097: 5092: 5082: 5080:Radiation zone 5077: 5076: 5075: 5070: 5060: 5054: 5052: 5046: 5045: 5043: 5042: 5037: 5036: 5035: 5030: 5025: 5020: 5015: 5005: 5000: 4995: 4990: 4985: 4980: 4975: 4970: 4965: 4960: 4955: 4950: 4945: 4940: 4935: 4929: 4927: 4921: 4920: 4917: 4916: 4914: 4913: 4908: 4903: 4898: 4893: 4888: 4887: 4886: 4881: 4878: 4870: 4869: 4868: 4863: 4858: 4853: 4848: 4843: 4838: 4833: 4828: 4818: 4813: 4807: 4805: 4799: 4798: 4796: 4795: 4790: 4789: 4788: 4778: 4773: 4772: 4771: 4766: 4765: 4764: 4759: 4749: 4739: 4738: 4737: 4727: 4722: 4716: 4714: 4708: 4707: 4705: 4704: 4702:Blue straggler 4699: 4698: 4697: 4687: 4682: 4681: 4680: 4670: 4669: 4668: 4663: 4658: 4653: 4648: 4643: 4638: 4633: 4628: 4618: 4613: 4612: 4611: 4606: 4601: 4591: 4590: 4589: 4579: 4578: 4577: 4572: 4567: 4557: 4552: 4551: 4550: 4545: 4540: 4530: 4525: 4520: 4515: 4514: 4513: 4508: 4498: 4497: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4460:Main sequence 4458: 4453: 4447: 4441: 4439:Classification 4435: 4434: 4432: 4431: 4430: 4429: 4424: 4414: 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4378: 4377: 4375:Protoplanetary 4367: 4362: 4361: 4360: 4355: 4345: 4344: 4343: 4333: 4328: 4322: 4320: 4314: 4313: 4311: 4310: 4305: 4300: 4295: 4294: 4293: 4288: 4283: 4278: 4268: 4263: 4258: 4252: 4250: 4244: 4243: 4241: 4240: 4234: 4231: 4230: 4223: 4222: 4215: 4208: 4200: 4194: 4193: 4183: 4171: 4170:External links 4168: 4167: 4166: 4160: 4137: 4131: 4112: 4074:Woosley, S. E. 4070: 4001:G. Wallerstein 3997: 3982: 3962: 3958:10.1086/190005 3931: 3903:(5): 434–456. 3886: 3858:(1): 541–547. 3839: 3836: 3834: 3833: 3816: 3779:(1): 195–245. 3763: 3691: 3666: 3634: 3617: 3597: 3572: 3543: 3518: 3482:(1): 837–849, 3464: 3458: 3434: 3427: 3401: 3328: 3320:Academic Press 3304:Choppin, G. R. 3296: 3272: 3265: 3243: 3237: 3190: 3184: 3161: 3124:(3): 787–790. 3102: 3096: 3062: 3048:Seeds, M. A., 3041: 3035: 3012: 3007:10.1086/147791 2971: 2966:10.1086/190176 2930: 2911:(4): 161–164. 2889: 2884:10.1086/190111 2848: 2829:(3): 331–408. 2811: 2789: 2744: 2723: 2715: 2693: 2664:(5): 434–456. 2642: 2626:Modern Physics 2624:Krane, K. S., 2617: 2588: 2537: 2488: 2473: 2436: 2415:(4): 547–650. 2387: 2382:10.1086/190005 2347: 2326:(5): 343–383. 2300: 2298: 2295: 2292: 2291: 2282: 2272: 2271: 2269: 2266: 2264: 2261: 2244: 2217: 2203: 2194: 2143: 2117: 2114: 2107: 2103: 2099: 2093: 2089: 2082: 2079: 2074: 2069: 2065: 2061: 2058: 2048: 2044: 2028: 2024: 2017: 2012: 2003: 1999: 1992: 1988: 1984: 1979: 1976: 1951: 1944: 1941: 1936: 1932: 1926: 1923: 1914: 1910: 1904: 1900: 1896: 1893: 1890: 1884: 1880: 1876: 1873: 1865: 1862: 1855: 1851: 1847: 1841: 1837: 1833: 1825: 1816: 1809: 1803: 1800: 1796: 1791: 1787: 1774: 1754: 1751: 1745: 1733: 1727: 1724: 1719: 1716: 1710: 1705: 1700: 1696: 1673: 1669: 1664: 1657: 1654: 1650: 1645: 1639: 1630: 1623: 1619: 1612: 1609: 1605: 1591: 1567: 1564: 1560: 1555: 1551: 1547: 1515: 1511: 1507: 1502: 1498: 1490: 1486: 1480: 1476: 1469: 1460: 1439: 1436: 1424: 1419: 1416: 1403: 1400: 1396: 1391: 1387: 1377: 1373: 1369: 1366: 1363: 1360: 1356: 1350: 1342: 1333: 1326: 1322: 1315: 1311: 1308: 1305: 1302: 1294: 1289: 1285: 1279: 1275: 1269: 1265: 1261: 1256: 1253: 1211: 1202: 1195: 1191: 1185: 1181: 1178: 1175: 1172: 1166: 1163: 1160: 1157: 1154: 1138: 1111: 1108: 1082: 1078: 1074: 1071: 1068: 1046: 1042: 1037: 1002: 999: 995: 992: 989: 986: 983: 980: 977: 966:nuclear fusion 945: 939: 935: 928: 924: 920: 917: 899: 884: 881: 809: 806: 665: 658: 657: 656: 649: 642: 641: 640: 639: 638: 615: 612: 611: 610: 609: 608: 603: 602: 601: 595: 583: 582: 581: 575: 556: 555: 554: 549: 544: 539: 534: 522: 521: 520: 514: 502: 501: 500: 494: 488: 464: 461: 377:In 1939, in a 332:nuclear fusion 304:nuclear fusion 291: 288: 107:nuclear fusion 80: 74: 65: 56: 46: 26: 18:Stellar fusion 9: 6: 4: 3: 2: 6124: 6113: 6110: 6108: 6105: 6103: 6100: 6098: 6095: 6093: 6090: 6089: 6087: 6077: 6072: 6067: 6065: 6055: 6053: 6043: 6041: 6031: 6029: 6019: 6017: 6012: 6007: 6006: 6003: 5986: 5983: 5982: 5980: 5976: 5970: 5967: 5965: 5962: 5961: 5959: 5955: 5949: 5946: 5944: 5941: 5940: 5938: 5932: 5926: 5923: 5921: 5918: 5916: 5914: 5910: 5908: 5906: 5902: 5900: 5897: 5895: 5892: 5890: 5887: 5885: 5882: 5880: 5877: 5875: 5872: 5870: 5867: 5865: 5862: 5860: 5857: 5855: 5852: 5851: 5849: 5847: 5841: 5835: 5832: 5830: 5827: 5825: 5822: 5820: 5817: 5815: 5812: 5810: 5807: 5805: 5802: 5800: 5797: 5795: 5792: 5790: 5789:Cluster decay 5787: 5785: 5782: 5780: 5777: 5775: 5772: 5771: 5769: 5767: 5761: 5757: 5750: 5745: 5743: 5738: 5736: 5731: 5730: 5727: 5715: 5710: 5705: 5703: 5695: 5694: 5691: 5685: 5682: 5680: 5677: 5675: 5674:Intergalactic 5672: 5670: 5667: 5665: 5662: 5660: 5657: 5655: 5654:Galactic year 5652: 5648: 5645: 5641: 5638: 5636: 5633: 5632: 5631: 5628: 5627: 5626: 5623: 5622: 5620: 5616: 5610: 5607: 5605: 5602: 5598: 5595: 5593: 5590: 5589: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5551: 5548: 5544: 5541: 5540: 5539: 5536: 5534: 5533:Most luminous 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5499: 5496: 5495: 5494: 5491: 5487: 5484: 5482: 5479: 5478: 5477: 5474: 5473: 5471: 5469: 5465: 5459: 5456: 5454: 5451: 5449: 5448:Proper motion 5446: 5444: 5441: 5437: 5434: 5432: 5429: 5427: 5424: 5423: 5422: 5419: 5417: 5414: 5412: 5411:Constellation 5409: 5407: 5404: 5402: 5399: 5395: 5392: 5390: 5387: 5385: 5382: 5380: 5379:Solar eclipse 5377: 5376: 5375: 5372: 5371: 5369: 5365:Earth-centric 5363: 5357: 5354: 5350: 5347: 5345: 5342: 5340: 5337: 5336: 5335: 5332: 5330: 5327: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5304: 5303: 5300: 5299: 5297: 5295: 5291: 5285: 5282: 5280: 5277: 5275: 5272: 5270: 5267: 5265: 5262: 5260: 5257: 5255: 5252: 5250: 5247: 5245: 5242: 5240: 5237: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5215: 5212: 5210: 5207: 5205: 5202: 5200: 5197: 5196: 5194: 5190: 5184: 5181: 5179: 5176: 5174: 5171: 5169: 5166: 5164: 5161: 5157: 5154: 5153: 5152: 5149: 5145: 5142: 5140: 5137: 5136: 5135: 5132: 5128: 5125: 5123: 5120: 5119: 5118: 5115: 5111: 5108: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5087: 5086: 5083: 5081: 5078: 5074: 5071: 5069: 5066: 5065: 5064: 5061: 5059: 5056: 5055: 5053: 5051: 5047: 5041: 5038: 5034: 5031: 5029: 5026: 5024: 5021: 5019: 5016: 5014: 5011: 5010: 5009: 5006: 5004: 5001: 4999: 4996: 4994: 4991: 4989: 4986: 4984: 4981: 4979: 4976: 4974: 4971: 4969: 4966: 4964: 4963:Alpha process 4961: 4959: 4956: 4954: 4951: 4949: 4946: 4944: 4941: 4939: 4936: 4934: 4931: 4930: 4928: 4926: 4922: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4885: 4882: 4879: 4877: 4874: 4873: 4871: 4867: 4864: 4862: 4859: 4857: 4854: 4852: 4849: 4847: 4844: 4842: 4839: 4837: 4834: 4832: 4829: 4827: 4824: 4823: 4822: 4819: 4817: 4814: 4812: 4809: 4808: 4806: 4804: 4800: 4794: 4791: 4787: 4784: 4783: 4782: 4779: 4777: 4774: 4770: 4767: 4763: 4760: 4758: 4755: 4754: 4753: 4750: 4748: 4745: 4744: 4743: 4740: 4736: 4735:Helium planet 4733: 4732: 4731: 4728: 4726: 4725:Parker's star 4723: 4721: 4718: 4717: 4715: 4713: 4709: 4703: 4700: 4696: 4693: 4692: 4691: 4688: 4686: 4683: 4679: 4676: 4675: 4674: 4671: 4667: 4664: 4662: 4659: 4657: 4656:Lambda Boötis 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4634: 4632: 4629: 4627: 4624: 4623: 4622: 4619: 4617: 4614: 4610: 4607: 4605: 4602: 4600: 4597: 4596: 4595: 4592: 4588: 4585: 4584: 4583: 4580: 4576: 4573: 4571: 4568: 4566: 4563: 4562: 4561: 4558: 4556: 4553: 4549: 4546: 4544: 4541: 4539: 4536: 4535: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4512: 4509: 4507: 4504: 4503: 4502: 4499: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4461: 4459: 4457: 4454: 4452: 4449: 4448: 4445: 4442: 4440: 4436: 4428: 4425: 4423: 4422:Superluminous 4420: 4419: 4418: 4415: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4376: 4373: 4372: 4371: 4368: 4366: 4363: 4359: 4356: 4354: 4351: 4350: 4349: 4346: 4342: 4339: 4338: 4337: 4334: 4332: 4329: 4327: 4326:Main sequence 4324: 4323: 4321: 4319: 4315: 4309: 4306: 4304: 4303:Hayashi track 4301: 4299: 4296: 4292: 4289: 4287: 4284: 4282: 4279: 4277: 4274: 4273: 4272: 4269: 4267: 4264: 4262: 4259: 4257: 4254: 4253: 4251: 4249: 4245: 4239: 4236: 4235: 4232: 4228: 4221: 4216: 4214: 4209: 4207: 4202: 4201: 4198: 4192:'s Cosmicopia 4191: 4187: 4184: 4181: 4177: 4174: 4173: 4163: 4157: 4153: 4149: 4145: 4144: 4138: 4134: 4128: 4124: 4121:. Cambridge: 4120: 4119: 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4080: 4075: 4071: 4061:on 2009-03-26 4057: 4052: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4022: 4014: 4010: 4007:; P. Parker; 4006: 4002: 3998: 3993: 3988: 3983: 3979: 3974: 3973: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3939: 3938: 3932: 3928: 3924: 3919: 3914: 3910: 3906: 3902: 3898: 3897: 3892: 3887: 3883: 3879: 3874: 3869: 3865: 3861: 3857: 3853: 3852: 3847: 3842: 3841: 3830: 3826: 3820: 3812: 3808: 3804: 3800: 3796: 3792: 3787: 3782: 3778: 3774: 3767: 3759: 3755: 3751: 3747: 3743: 3739: 3735: 3731: 3726: 3721: 3717: 3713: 3709: 3705: 3701: 3695: 3688: 3684: 3680: 3676: 3670: 3651: 3644: 3638: 3631: 3627: 3624:Iliadis, C., 3621: 3614: 3610: 3606: 3601: 3594: 3590: 3586: 3582: 3576: 3569: 3565: 3561: 3557: 3553: 3547: 3540: 3536: 3532: 3528: 3525:Wolf, E. L., 3522: 3515: 3511: 3507: 3503: 3499: 3495: 3490: 3485: 3481: 3477: 3476: 3468: 3461: 3455: 3451: 3447: 3446: 3438: 3430: 3424: 3420: 3416: 3412: 3405: 3397: 3393: 3389: 3385: 3381: 3377: 3373: 3369: 3365: 3361: 3356: 3351: 3347: 3343: 3339: 3332: 3325: 3321: 3317: 3313: 3309: 3305: 3300: 3286: 3282: 3276: 3268: 3262: 3258: 3254: 3247: 3240: 3234: 3230: 3226: 3222: 3218: 3214: 3210: 3206: 3199: 3197: 3195: 3187: 3181: 3177: 3176: 3168: 3166: 3157: 3153: 3149: 3145: 3141: 3137: 3132: 3127: 3123: 3119: 3118: 3113: 3106: 3099: 3093: 3089: 3085: 3084: 3079: 3073: 3071: 3069: 3067: 3059: 3055: 3051: 3045: 3038: 3032: 3028: 3027: 3019: 3017: 3008: 3004: 3000: 2996: 2992: 2988: 2987: 2982: 2975: 2967: 2963: 2959: 2955: 2951: 2947: 2946: 2941: 2934: 2926: 2922: 2918: 2914: 2910: 2906: 2905: 2900: 2893: 2885: 2881: 2877: 2873: 2869: 2865: 2864: 2859: 2852: 2844: 2840: 2836: 2832: 2828: 2824: 2823: 2815: 2807: 2800: 2793: 2785: 2781: 2777: 2773: 2769: 2765: 2761: 2757: 2756: 2748: 2741: 2737: 2733: 2727: 2718: 2712: 2708: 2704: 2697: 2689: 2685: 2680: 2675: 2671: 2667: 2663: 2659: 2658: 2653: 2646: 2639: 2635: 2631: 2627: 2621: 2610: 2606: 2599: 2592: 2584: 2580: 2575: 2570: 2566: 2562: 2558: 2554: 2553: 2548: 2541: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2504: 2499: 2492: 2484: 2477: 2469: 2465: 2461: 2457: 2453: 2449: 2448: 2440: 2431: 2426: 2422: 2418: 2414: 2410: 2409: 2401: 2394: 2392: 2383: 2379: 2375: 2371: 2367: 2363: 2362: 2354: 2352: 2342: 2337: 2333: 2329: 2325: 2321: 2320: 2315: 2308: 2306: 2301: 2286: 2277: 2273: 2260: 2258: 2250: 2243: 2239: 2235: 2231: 2223: 2216: 2212: 2207: 2187: 2182: 2180: 2176: 2172: 2168: 2164: 2160: 2155: 2151: 2142: 2138: 2133: 2115: 2112: 2105: 2101: 2097: 2091: 2087: 2080: 2077: 2067: 2063: 2056: 2046: 2042: 2026: 2022: 2015: 2010: 2001: 1997: 1990: 1986: 1982: 1977: 1974: 1963: 1949: 1942: 1939: 1934: 1930: 1924: 1921: 1912: 1902: 1898: 1894: 1891: 1882: 1878: 1874: 1871: 1863: 1860: 1853: 1849: 1845: 1839: 1835: 1831: 1823: 1814: 1807: 1801: 1798: 1794: 1789: 1785: 1773: 1768: 1752: 1749: 1743: 1731: 1725: 1722: 1717: 1714: 1708: 1703: 1698: 1694: 1684: 1671: 1667: 1662: 1655: 1652: 1648: 1643: 1637: 1628: 1621: 1617: 1610: 1590: 1586: 1565: 1562: 1558: 1553: 1549: 1545: 1536: 1534: 1513: 1509: 1505: 1500: 1496: 1488: 1484: 1478: 1474: 1467: 1458: 1437: 1434: 1422: 1417: 1414: 1401: 1398: 1394: 1389: 1385: 1375: 1367: 1364: 1358: 1354: 1348: 1340: 1331: 1324: 1320: 1313: 1306: 1300: 1287: 1283: 1277: 1273: 1267: 1263: 1259: 1254: 1251: 1241: 1236: 1234: 1230: 1209: 1200: 1193: 1189: 1183: 1176: 1170: 1164: 1158: 1152: 1144: 1137: 1134: 1130: 1125: 1109: 1106: 1096: 1080: 1076: 1072: 1069: 1066: 1044: 1040: 1035: 1026: 1024: 1020: 1016: 997: 990: 984: 978: 975: 967: 963: 959: 943: 937: 933: 926: 922: 918: 915: 906: 902: 898: 894: 890: 883:Reaction rate 880: 878: 873: 871: 867: 863: 858: 854: 850: 849:Hayashi track 846: 842: 838: 834: 830: 826: 819: 818:Alpha process 815: 808:Helium fusion 805: 795: 774: 762: 760: 756: 752: 747: 742: 739:, which is a 738: 733: 731: 727: 723: 718: 714: 710: 705: 703: 699: 695: 691: 688: 684: 683:main-sequence 680: 668: 662: 652: 646: 636: 632: 628: 621: 607: 604: 600: 596: 594: 590: 589: 587: 584: 580: 576: 574: 570: 569: 567: 564: 563: 561: 557: 553: 550: 548: 545: 543: 540: 538: 535: 533: 529: 526: 525: 523: 519: 518:alpha process 515: 513: 509: 508: 506: 503: 499: 495: 493: 489: 487: 484: 483: 481: 478: 477: 476: 469: 463:Key reactions 457: 452: 448: 446: 444: 439: 437: 432: 428: 424: 420: 416: 412: 408: 403: 401: 396: 392: 388: 384: 380: 379:Nobel lecture 375: 373: 372:Edward Teller 370:and later by 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 313: 309: 305: 301: 296: 287: 285: 281: 277: 273: 268: 266: 262: 258: 254: 248: 247: 241: 237: 233: 229: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 189:main sequence 186: 182: 178: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 72: 63: 53: 36: 32: 19: 6064:Solar System 5948:Photofission 5912: 5904: 5843: 5577:White dwarfs 5567:Brown dwarfs 5550:Most distant 5498:Most massive 5476:Proper names 5436:Photographic 5389:Solar System 5367:observations 5294:Star systems 5117:Stellar wind 5100:Chromosphere 5073:Oscillations 4953:Helium flash 4924: 4803:Hypothetical 4781:X-ray binary 4720:Compact star 4555:Bright giant 4308:Henyey track 4286:Herbig Ae/Be 4142: 4117: 4083: 4077: 4063:. Retrieved 4056:the original 4025: 4019: 4005:I. Iben, Jr. 3976:. New York: 3971: 3941: 3935: 3900: 3894: 3855: 3849: 3824: 3819: 3776: 3772: 3766: 3715: 3711: 3694: 3674: 3669: 3657:. Retrieved 3650:the original 3637: 3625: 3620: 3608: 3605:Perryman, M. 3600: 3580: 3579:Rehder, D., 3575: 3551: 3546: 3526: 3521: 3479: 3473: 3467: 3444: 3437: 3410: 3404: 3345: 3341: 3331: 3315: 3299: 3288:. Retrieved 3284: 3275: 3252: 3246: 3212: 3208: 3174: 3121: 3115: 3112:Basri, Gibor 3105: 3082: 3049: 3044: 3025: 2990: 2984: 2974: 2949: 2943: 2933: 2908: 2902: 2892: 2867: 2861: 2851: 2826: 2820: 2814: 2792: 2759: 2753: 2747: 2731: 2726: 2702: 2696: 2661: 2655: 2645: 2625: 2620: 2604: 2591: 2556: 2550: 2540: 2507: 2501: 2491: 2482: 2476: 2454:(1): 53–74. 2451: 2445: 2439: 2412: 2406: 2365: 2359: 2323: 2317: 2285: 2276: 2248: 2241: 2237: 2221: 2214: 2210: 2183: 2178: 2140: 2136: 2134: 1964: 1771: 1769: 1685: 1588: 1584: 1537: 1533:reduced mass 1237: 1232: 1228: 1141:, giving an 1135: 1133:Gamow factor 1126: 1027: 1022: 1018: 1014: 957: 904: 900: 896: 892: 888: 886: 874: 829:helium flash 821: 763: 734: 706: 702:white dwarfs 676: 666: 650: 532:brown dwarfs 474: 442: 435: 404: 376: 348:Gamow factor 344:George Gamow 317: 269: 260: 244: 225: 207:, forming a 205:stellar wind 191:star), then 181:Stars evolve 179: 94: 91:astrophysics 88: 6052:Outer space 5774:Alpha decay 5764:Radioactive 5630:Brown dwarf 5406:Circumpolar 5284:Kraft break 5264:Color index 5239:Metallicity 5199:Designation 5168:Cosmic dust 5090:Photosphere 4856:Dark-energy 4831:Electroweak 4816:Black dwarf 4747:Radio-quiet 4730:White dwarf 4616:White dwarf 4266:Bok globule 3978:McGraw-Hill 3944:: 121–146. 3312:Rydberg, J. 3054:Belmont, CA 2870:: 121–126. 2630:Hoboken, NJ 722:energy flux 667:CNO-I cycle 328:Jean Perrin 221:white dwarf 215:. The term 129:during the 6086:Categories 5925:rp-process 5899:Si burning 5889:Ne burning 5859:Li burning 5779:Beta decay 5592:Candidates 5587:Supernovae 5572:Red dwarfs 5431:Extinction 5219:Kinematics 5214:Luminosity 5192:Properties 5085:Atmosphere 4983:Si burning 4973:Ne burning 4911:White hole 4884:Quasi-star 4811:Blue dwarf 4666:Technetium 4582:Hypergiant 4560:Supergiant 4065:2006-08-04 4051:2152/61093 3673:Maoz, D., 3560:Heidelberg 3417:, p.  3355:2006.15115 3290:2020-11-26 2804:(Report). 2263:References 2251:(0) = 4×10 2159:beta decay 2135:Values of 1585:Gamow peak 833:degenerate 751:convective 593:rp-process 456:supergiant 383:Hans Bethe 368:Houtermans 324:F.W. Aston 257:shock wave 171:Fred Hoyle 147:Fred Hoyle 6040:Astronomy 6028:Chemistry 5936:processes 5920:p-process 5894:O burning 5884:C burning 5874:α process 5869:CNO cycle 5523:Brightest 5421:Magnitude 5401:Pole star 5322:Symbiotic 5317:Eclipsing 5249:Starlight 5050:Structure 5040:Supernova 5033:Micronova 5028:Recurrent 5013:Symbiotic 4998:p-process 4993:r-process 4988:s-process 4978:O burning 4968:C burning 4948:CNO cycle 4891:Gravastar 4427:Hypernova 4417:Supernova 4392:Dredge-up 4365:Blue loop 4358:super-AGB 4341:Red clump 4318:Evolution 4276:Protostar 4256:Accretion 4248:Formation 3811:119117147 3786:1004.2318 3750:0034-6861 3685:, 2007), 3679:Princeton 3591:, 2010), 3589:Wiley-VCH 3566:, 1987), 3537:, 2018), 3489:0906.4812 3396:227174644 3380:1476-4687 3322:, 2013), 3131:0901.1659 2784:118423007 2636:, 1983), 2605:Guidestar 2297:Citations 2234:deuterium 2224:(0) = 3.5 2186:CNO cycle 2167:half-life 2092:− 1983:≈ 1895:− 1883:− 1875:⁡ 1840:− 1832:≈ 1808:− 1790:− 1644:− 1622:− 1608:∂ 1604:∂ 1594:, where: 1554:− 1546:∼ 1390:− 1359:π 1325:− 1293:∞ 1284:∫ 1194:− 1153:σ 1067:λ 1041:λ 1036:π 1001:⟩ 985:σ 982:⟨ 968:process: 857:Milky Way 841:blue loop 802:10 K 790:10 K 782:10 K 737:CNO cycle 717:deuterium 694:oxidizing 631:CNO cycle 599:p-process 588:capture: 579:s-process 573:r-process 568:capture: 423:BFH paper 318:In 1920, 298:In 1920, 213:supernova 175:BFH paper 62:CNO cycle 5978:Exchange 5915:-process 5907:-process 5879:Triple-α 5702:Category 5597:Remnants 5493:Extremes 5453:Parallax 5426:Apparent 5416:Asterism 5394:Sunlight 5344:Globular 5329:Multiple 5254:Variable 5244:Rotation 5204:Dynamics 5095:Starspot 4769:Magnetar 4712:Remnants 4528:Subgiant 4501:Subdwarf 4353:post-AGB 4108:55932331 3968:(1968). 3927:17835673 3882:17835673 3758:16061677 3585:Weinheim 3564:Springer 3514:10626836 3415:Springer 3388:33239797 3285:phys.org 3156:15159121 3080:(1992), 2776:18096793 2688:17835673 2609:Archived 2583:17747682 2532:17747682 2163:diproton 2148:10 – 10 1059:, where 771:10  746:neutrino 687:chemical 679:helium-4 507:fusion: 482:fusion: 480:Hydrogen 445:-process 438:-process 411:Burbidge 407:Burbidge 364:Atkinson 338:to form 336:hydrogen 310:to form 308:hydrogen 159:Margaret 143:isotopes 131:Big Bang 119:hydrogen 99:creation 6076:Science 6016:Physics 6002:Portals 5957:Capture 5844:Stellar 5669:Gravity 5618:Related 5538:Nearest 5486:Chinese 5334:Cluster 5307:Contact 5144:Proplyd 5018:Remnant 4906:Blitzar 4880:Hawking 4836:Strange 4786:Burster 4742:Neutron 4695:Extreme 4646:He-weak 4291:T Tauri 4088:Bibcode 4030:Bibcode 3946:Bibcode 3905:Bibcode 3860:Bibcode 3791:Bibcode 3730:Bibcode 3494:Bibcode 3360:Bibcode 3217:Bibcode 3136:Bibcode 2995:Bibcode 2993:: 637. 2954:Bibcode 2952:: 299. 2913:Bibcode 2872:Bibcode 2831:Bibcode 2755:Science 2666:Bibcode 2561:Bibcode 2512:Bibcode 2456:Bibcode 2417:Bibcode 2370:Bibcode 2368:: 121. 2328:Bibcode 1531:is the 1093:is the 960:is the 831:from a 566:Neutron 429:and by 290:History 249:= 28–56 240:silicon 133:. As a 127:lithium 97:is the 5659:Galaxy 5647:Planet 5635:Desert 5543:bright 5481:Arabic 5302:Binary 5122:Bubble 4846:Planck 4821:Exotic 4757:Binary 4752:Pulsar 4690:Helium 4651:Barium 4594:Carbon 4587:Yellow 4575:Yellow 4548:Yellow 4387:PG1159 4158:  4129:  4106:  3925:  3880:  3829:p. 211 3809:  3756:  3748:  3659:May 8, 3630:p. 185 3613:p. 398 3568:p. 250 3556:Berlin 3531:Oxford 3512:  3456:  3425:  3394:  3386:  3378:  3342:Nature 3324:p. 357 3263:  3235:  3182:  3154:  3094:  3033:  2782:  2774:  2740:p. 365 2713:  2686:  2638:p. 410 2581:  2552:Nature 2530:  2253:  2226:  2209:, has 1686:Thus: 1450:where 1227:where 1013:here, 956:where 866:oxygen 862:carbon 692:in an 633:, and 586:Proton 505:Helium 415:Fowler 340:helium 312:helium 280:energy 236:oxygen 232:carbon 193:helium 123:helium 82:  76:  69:  67:  60:  58:  50:  48:  5934:Other 5766:decay 5664:Guest 5468:Lists 5349:Super 5003:Fusor 4876:Black 4861:Quark 4841:Preon 4826:Boson 4762:X-ray 4678:Shell 4631:Ap/Bp 4533:Giant 4451:Early 4397:OH/IR 4227:Stars 4178:, by 4104:S2CID 4059:(PDF) 4016:(PDF) 3987:arXiv 3807:S2CID 3781:arXiv 3754:S2CID 3720:arXiv 3687:ch. 3 3653:(PDF) 3646:(PDF) 3593:p. 30 3510:S2CID 3484:arXiv 3392:S2CID 3350:arXiv 3152:S2CID 3126:arXiv 2802:(PDF) 2780:S2CID 2634:Wiley 2612:(PDF) 2601:(PDF) 2403:(PDF) 2268:Notes 2177:give 1587:, at 419:Hoyle 157:, by 111:stars 5339:Open 5234:Mass 5058:Core 5008:Nova 4901:Iron 4851:Dark 4661:Lead 4641:HgMn 4636:CEMP 4565:Blue 4538:Blue 4456:Late 4238:List 4190:NASA 4156:ISBN 4127:ISBN 3923:PMID 3878:PMID 3746:ISSN 3661:2020 3539:p. 5 3454:ISBN 3423:ISBN 3384:PMID 3376:ISSN 3261:ISBN 3233:ISBN 3180:ISBN 3092:ISBN 3031:ISBN 2772:PMID 2711:ISBN 2684:PMID 2579:PMID 2528:PMID 2247:) ~ 2220:) ~ 1777:as: 891:and 864:and 816:and 798:1.57 597:The 591:The 577:The 571:The 560:iron 516:The 510:The 496:The 490:The 417:and 400:iron 366:and 350:, a 238:and 169:and 161:and 155:iron 125:and 54:(PP) 5640:Sub 5374:Sun 4793:SGR 4570:Red 4543:Red 4188:in 4148:doi 4096:doi 4046:hdl 4038:doi 3954:doi 3913:doi 3868:doi 3799:doi 3738:doi 3502:doi 3480:701 3419:108 3368:doi 3346:587 3257:247 3225:doi 3144:doi 3122:496 3003:doi 2991:139 2962:doi 2921:doi 2880:doi 2839:doi 2764:doi 2760:318 2707:167 2674:doi 2569:doi 2557:106 2520:doi 2464:doi 2425:doi 2378:doi 2336:doi 2324:106 2150:keV 1872:exp 794:Sun 786:1.7 778:1.6 709:Sun 334:of 306:of 284:Sun 263:or 117:of 105:by 101:of 89:In 45:): 6088:: 4673:Be 4626:Am 4609:CH 4604:CN 4523:OB 4518:WR 4154:. 4125:. 4102:. 4094:. 4084:74 4082:. 4044:. 4036:. 4026:69 4024:. 4018:. 4003:; 3952:. 3940:. 3921:. 3911:. 3901:55 3899:. 3893:. 3876:. 3866:. 3856:55 3854:. 3848:. 3805:. 3797:. 3789:. 3777:83 3775:. 3752:. 3744:. 3736:. 3728:. 3716:70 3714:. 3681:: 3607:, 3587:: 3562:: 3533:, 3508:, 3500:, 3492:, 3478:, 3448:, 3421:, 3390:. 3382:. 3374:. 3366:. 3358:. 3344:. 3340:. 3310:, 3306:, 3283:. 3259:, 3231:, 3223:, 3213:16 3211:, 3207:, 3193:^ 3164:^ 3150:. 3142:. 3134:. 3120:. 3065:^ 3056:: 3015:^ 3001:. 2989:. 2983:. 2960:. 2950:16 2948:. 2942:. 2919:. 2909:20 2907:. 2901:. 2878:. 2868:11 2866:. 2860:. 2837:. 2827:12 2825:. 2778:. 2770:. 2758:. 2738:. 2734:. 2709:. 2682:. 2672:. 2662:55 2660:. 2654:. 2632:: 2603:. 2577:. 2567:. 2555:. 2549:. 2526:. 2518:. 2508:43 2506:. 2500:. 2462:. 2452:28 2450:. 2423:. 2413:29 2411:. 2405:. 2390:^ 2376:. 2364:. 2350:^ 2334:. 2322:. 2316:. 2304:^ 2179:kT 2165:) 1535:. 1145:: 1124:. 877:Be 629:, 562:: 413:, 409:, 234:, 223:. 165:, 121:, 93:, 6004:: 5913:s 5905:r 5748:e 5741:t 5734:v 4866:Q 4685:B 4599:S 4511:B 4506:O 4494:M 4489:K 4484:G 4479:F 4474:A 4469:B 4464:O 4219:e 4212:t 4205:v 4164:. 4150:: 4135:. 4110:. 4098:: 4090:: 4068:. 4048:: 4040:: 4032:: 3995:. 3989:: 3980:. 3960:. 3956:: 3948:: 3942:1 3929:. 3915:: 3907:: 3884:. 3870:: 3862:: 3831:. 3813:. 3801:: 3793:: 3783:: 3760:. 3740:: 3732:: 3722:: 3689:. 3677:( 3663:. 3632:. 3615:. 3595:. 3583:( 3570:. 3558:/ 3554:( 3541:. 3529:( 3504:: 3496:: 3486:: 3432:. 3398:. 3370:: 3362:: 3352:: 3326:. 3293:. 3270:. 3227:: 3219:: 3158:. 3146:: 3138:: 3128:: 3052:( 3009:. 3005:: 2997:: 2968:. 2964:: 2956:: 2927:. 2923:: 2915:: 2886:. 2882:: 2874:: 2845:. 2841:: 2833:: 2786:. 2766:: 2742:. 2721:. 2719:. 2690:. 2676:: 2668:: 2640:. 2628:( 2585:. 2571:: 2563:: 2534:. 2522:: 2514:: 2470:. 2466:: 2458:: 2433:. 2427:: 2419:: 2384:. 2380:: 2372:: 2366:1 2344:. 2338:: 2330:: 2249:S 2245:0 2242:E 2240:( 2238:S 2222:S 2218:0 2215:E 2213:( 2211:S 2199:N 2195:7 2154:b 2152:· 2144:0 2141:E 2139:( 2137:S 2116:T 2113:k 2106:0 2102:E 2098:3 2088:e 2081:T 2078:k 2073:) 2068:0 2064:E 2060:( 2057:S 2047:0 2043:E 2031:R 2027:m 2023:3 2016:2 2011:4 2002:B 1998:n 1991:A 1987:n 1978:V 1975:r 1950:) 1943:T 1940:k 1935:0 1931:E 1925:3 1922:4 1913:2 1909:) 1903:0 1899:E 1892:E 1889:( 1879:( 1864:T 1861:k 1854:0 1850:E 1846:3 1836:e 1824:E 1819:G 1815:E 1802:T 1799:k 1795:E 1786:e 1775:0 1772:E 1753:3 1750:2 1744:) 1736:G 1732:E 1726:T 1723:k 1718:2 1715:1 1709:( 1704:= 1699:0 1695:E 1672:0 1668:= 1663:) 1656:T 1653:k 1649:E 1638:E 1633:G 1629:E 1618:( 1611:E 1592:0 1589:E 1566:T 1563:k 1559:E 1550:e 1514:2 1510:m 1506:+ 1501:1 1497:m 1489:2 1485:m 1479:1 1475:m 1468:= 1463:R 1459:m 1438:E 1435:d 1427:R 1423:m 1418:E 1415:2 1402:T 1399:k 1395:E 1386:e 1376:3 1372:) 1368:T 1365:k 1362:( 1355:E 1349:2 1341:E 1336:G 1332:E 1321:e 1314:E 1310:) 1307:E 1304:( 1301:S 1288:0 1278:B 1274:n 1268:A 1264:n 1260:= 1255:V 1252:r 1233:E 1231:( 1229:S 1210:E 1205:G 1201:E 1190:e 1184:E 1180:) 1177:E 1174:( 1171:S 1165:= 1162:) 1159:E 1156:( 1139:G 1136:E 1110:E 1107:m 1081:p 1077:/ 1073:h 1070:= 1045:2 1023:v 1019:v 1017:( 1015:σ 998:v 994:) 991:v 988:( 979:= 976:k 958:k 944:k 938:B 934:n 927:A 923:n 919:= 916:r 905:B 903:, 901:A 897:n 893:B 889:A 800:× 788:× 780:× 773:K 769:× 767:4 622:. 443:r 436:s 246:A 195:( 187:( 43:T 39:Δ 20:)

Index

Stellar fusion

Logarithmic scale
Proton–proton chain
CNO cycle
Triple-α process
astrophysics
creation
chemical elements
nuclear fusion
stars
original creation
hydrogen
helium
lithium
Big Bang
predictive theory
observed abundances
isotopes
Fred Hoyle
neutron capture
iron
Margaret
Geoffrey Burbidge
William Alfred Fowler
Fred Hoyle
BFH paper
Stars evolve
burning hydrogen
main sequence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑