Knowledge

Stone duality

Source 📝

25: 629:) (hence the notation pt) with a suitable topology. But how can we recover the set of points just from the locale, though it is not given as a lattice of sets? It is certain that one cannot expect in general that pt can reproduce all of the original elements of a topological space just from its lattice of open sets – for example all sets with the 502:– the various names are primarily used to distinguish several categories that have the same class of objects but different morphisms: frame morphisms, locale morphisms and homomorphisms of complete Heyting algebras). Now an obvious question is: To what extent is a topological space characterized by its locale of open sets? 633:
yield (up to isomorphism) the same locale, such that the information on the specific set is no longer present. However, there is still a reasonable technique for obtaining "points" from a locale, which indeed gives an example of a central construction for Stone-type duality theorems.
736:) → Ω(1). The open set lattice of the one-element topological space Ω(1) is just (isomorphic to) the two-element locale 2 = { 0, 1 } with 0 < 1. After these observations it appears reasonable to define the set of points of a locale 469: 892:
Now that a set of points is available for any locale, it remains to equip this set with an appropriate topology in order to define the object part of the functor pt. This is done by defining the open sets of
592:
of frames and frame morphisms. Using the tools of category theory, the task of finding a characterization of topological spaces in terms of their open set lattices is equivalent to finding a functor from
687:
clearly determines one point: the element that it "points" to. Therefore, the set of points of a topological space is equivalently characterized as the set of functions from 1 to
1344:
of spatial locales. This main result is completed by the observation that for the functor pt o Ω, sending each space to the points of its open set lattice is left adjoint to the
314: 1227: 265: 1214:. Using the characterization via meet-prime elements of the open set lattice, one sees that this is the case if and only if every meet-prime open set is of the form 771:
to 2. But these morphisms are characterized equivalently by the inverse images of the two elements of 2. From the properties of frame morphisms, one can derive that
299: 114: 228: 1151:
At this point we already have more than enough data to obtain the desired result: the functors Ω and pt define an adjunction between the categories
937:
as morphisms, but one can of course state a similar definition for all of the other equivalent characterizations. It can be shown that setting Ω(pt(
759:), it is worthwhile to clarify the concept of a point of a locale further. The perspective motivated above suggests to consider a point of a locale 54: 1128:
as described above. Another convenient description is given by viewing points of a locale as meet-prime elements. In this case we have ψ(
407: 844:(0) is a principal prime ideal. It turns out that all of these descriptions uniquely determine the initial frame morphism. We sum up: 702:, all set-theoretic elements of a space are lost, but – using a fundamental idea of category theory – one can as well work on the 1040:
to 2. Again, this can be formalized using the other descriptions of points of a locale as well – for example just calculate (
144:
Probably the most general duality that is classically referred to as "Stone duality" is the duality between the category
1451: 130: 136:
This article gives pointers to special cases of Stone duality and explains a very general instance thereof in detail.
1467: 1433: 1413: 1391: 1226:. Alternatively, every join-prime closed set is the closure of a unique point, where "join-prime" can be replaced by 235:(in fact, this statement is equivalent to that assumption). The significance of this result stems from the fact that 76: 884:
All of these descriptions have their place within the theory and it is convenient to switch between them as needed.
47: 394: 211:
Now one can easily obtain a number of other dualities by restricting to certain special classes of sober spaces:
1090:)) was applied. This mapping is indeed a frame morphism. Conversely, we can define a continuous function ψ from 334:
The starting point for the theory is the fact that every topological space is characterized by a set of points
313:
and totally order-disconnected). One obtains a representation of distributive lattices via ordered topologies:
247: 305:
Stone's representation for distributive lattices can be extended via an equivalence of coherent spaces and
126: 1368:. The case of the functor Ω o pt is symmetric but a special name for this operation is not commonly used. 295: 232: 1459: 1425: 1405: 1527: 181: 37: 568:(like any inverse image map) preserves finite intersections and arbitrary unions and therefore is a 173: 161: 41: 33: 374:
are given by set unions and finite set intersections, respectively. Furthermore, it contains both
208:. The involved constructions are characteristic for this kind of duality, and are detailed below. 1191:). For this it is necessary that both ψ and φ are isomorphisms in their respective categories. 1164: 752:(consider again the indiscrete topology, for which the open set lattice has only one "point"). 165: 58: 1522: 1306: 581: 106: 94: 837: 825: 808: 801: 533: 1477: 1443: 653:, but there is in fact a more useful description for our current investigation. Any point 8: 630: 153: 1056:
As noted several times before, pt and Ω usually are not inverses. In general neither is
1494: 1397: 780: 193: 122: 1249:)) is always surjective. It is additionally injective if and only if any two elements 666:
from the one element topological space 1 (all subsets of which are open) to the space
1517: 1463: 1429: 1422:
Categorical foundations. Special topics in order, topology, algebra, and sheaf theory
1409: 1387: 1345: 1071: 102: 1490: 1473: 1439: 1379: 602: 363: 205: 1301:
If this condition is satisfied for all elements of the locale, then the locale is
509:
of topological spaces has as morphisms the continuous functions, where a function
1383: 621:
that in a certain sense "inverts" the operation of Ω by assigning to each locale
383: 306: 272: 250: 98: 1207: 703: 220: 118: 1511: 1424:. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: 1230:
since we are in a distributive lattice. Spaces with this property are called
1060: 514: 310: 1458:. Cambridge Tracts in Theoretical Computer Science. Vol. 5. Cambridge: 321:
Many other Stone-type dualities could be added to these basic dualities.
280: 149: 90: 748:) is in one-to-one correspondence to a point of the topological space 1211: 379: 525: 464:{\displaystyle x\wedge \bigvee S=\bigvee \{\,x\wedge s:s\in S\,\},} 367: 351: 343: 1499: 744:
to 2. Yet, there is no guarantee that every point of the locale Ω(
505:
As already hinted at above, one can go even further. The category
371: 109:. Today, these dualities are usually collected under the label 1493:(2011). "A topos-theoretic approach to Stone-type dualities". 324: 1175:
The above adjunction is not an equivalence of the categories
1484: 1167:ψ and φ provide the required unit and counit, respectively. 315:
Priestley's representation theorem for distributive lattices
1328:) is sober. Hence, it follows that the above adjunction of 1420:
Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004).
613:
The goal of this section is to define a functor pt from
266:
Stone's representation theorem for distributive lattices
637:
Let us first look at the points of a topological space
121:. Stone-type dualities also provide the foundation for 1336:
restricts to an equivalence of the full subcategories
1309:
for a similar condition in more general categories.)
972:
rather canonically by defining, for a frame morphism
410: 271:
When restricting further to coherent spaces that are
1269:
can be separated by points of the locale, formally:
300:
Stone's representation theorem for Boolean algebras
139: 115:
Stone's representation theorem for Boolean algebras
1394:. (available free online at the website mentioned) 1120:is just the characteristic function for the point 463: 223:(and coherent maps) is equivalent to the category 1377:Stanley N. Burris and H. P. Sankappanavar, 1981. 1078:)). However, when introducing the topology of pt( 961:))). It is common to abbreviate this space as pt( 1509: 1051: 641:. One is usually tempted to consider a point of 46:but its sources remain unclear because it lacks 1419: 1404:, Cambridge Studies in Advanced Mathematics 3, 815:preserves finite infima and thus the principal 800:preserves arbitrary suprema). In addition, the 1144:} denotes the topological closure of the set { 231:(and coherent maps), on the assumption of the 113:, since they form a natural generalization of 1312:Finally, one can verify that for every space 490:) is not an arbitrary complete lattice but a 401:) inherits the following distributivity law: 953:} does really yield a topological space (pt( 755:Before defining the required topology on pt( 455: 429: 1305:, or said to have enough points. (See also 329: 325:Duality of sober spaces and spatial locales 968:Finally pt can be defined on morphisms of 362:) has certain special properties: it is a 192:is the basis for the mathematical area of 164:with appropriate frame homomorphisms. The 1498: 1489: 1163:, where pt is right adjoint to Ω and the 564:). Furthermore, it is easy to check that 454: 432: 290:, the restriction yields the subcategory 77:Learn how and when to remove this message 1450: 397:finite infima and arbitrary suprema, Ω( 200:—the category of all locales, of which 117:. These concepts are named in honor of 16:Relationship between certain categories 1510: 1170: 1012:. In words, we obtain a morphism from 740:to be the set of frame morphisms from 694:When using the functor Ω to pass from 309:(ordered topological spaces, that are 783:), which contains a greatest element 683:. Conversely, any function from 1 to 608: 657:gives rise to a continuous function 18: 196:, which is devoted to the study of 13: 1320:) is spatial and for every locale 14: 1539: 887: 1183:(or, equivalently, a duality of 1148:} and \ is just set-difference. 239:in turn is dual to the category 140:Overview of Stone-type dualities 23: 933:. Here we viewed the points of 540:. Thus any continuous function 390:) into the powerset lattice of 1380:A Course in Universal Algebra. 852:is equivalently described as: 229:coherent (or spectral) locales 93:, there is an ample supply of 1: 1371: 1052:The adjunction of Top and Loc 1032:before applying the morphism 874:a completely prime filter of 474:for every element (open set) 127:theoretical computer science 7: 1020:) by applying the morphism 862:a principal prime ideal of 552:defines an inverse mapping 275:, one obtains the category 233:Boolean prime ideal theorem 172:is the category of spatial 10: 1544: 1460:Cambridge University Press 1426:Cambridge University Press 1406:Cambridge University Press 1082:) above, a mapping φ from 775:(0) is a lower set (since 723:is mapped to a morphism Ω( 1237:Conversely, for a locale 828:. Now the set-inverse of 524:) of any open set in the 1281:, then there is a point 1265:is not less-or-equal to 868:a meet-prime element of 492:complete Heyting algebra 330:The lattice of open sets 32:This article includes a 1165:natural transformations 838:completely prime filter 350:, i.e. a subset of the 182:categorical equivalence 61:more precise citations. 1485:Abstract Stone Duality 1206:)) is a homeomorphism 855:a frame morphism from 706:. Indeed, any "point" 465: 107:partially ordered sets 1307:well-pointed category 582:contravariant functor 513:is continuous if the 466: 358:. It is known that Ω( 125:and are exploited in 95:categorical dualities 1340:of sober spaces and 848:A point of a locale 763:as a frame morphism 408: 154:continuous functions 1408:, Cambridge, 1982. 1228:(join-) irreducible 1171:The duality theorem 631:indiscrete topology 625:a set of points pt( 298:. Thus one obtains 1456:Topology via logic 925:for every element 826:meet-prime element 609:Points of a locale 584:from the category 570:morphism of frames 461: 194:pointless topology 123:pointless topology 105:and categories of 103:topological spaces 34:list of references 1491:Caramello, Olivia 1364:)) is called its 1346:inclusion functor 1016:to 2 (a point of 580:then Ω becomes a 572:. If we define Ω( 478:and every subset 346:of elements from 283:. On the side of 156:and the category 129:for the study of 87: 86: 79: 1535: 1528:Duality theories 1504: 1502: 1481: 1447: 1098:)) by setting ψ( 1072:order-isomorphic 588:to the category 470: 468: 467: 462: 364:complete lattice 307:Priestley spaces 296:Boolean algebras 206:full subcategory 131:formal semantics 97:between certain 82: 75: 71: 68: 62: 57:this article by 48:inline citations 27: 26: 19: 1543: 1542: 1538: 1537: 1536: 1534: 1533: 1532: 1508: 1507: 1470: 1452:Vickers, Steven 1436: 1398:P. T. Johnstone 1384:Springer-Verlag 1374: 1222:} for a unique 1173: 1119: 1110: 1054: 1036:that maps from 890: 823: 802:principal ideal 791: 731: 714: 704:function spaces 678: 665: 611: 532:is open in the 409: 406: 405: 338:and a system Ω( 332: 327: 288: 258: 244: 221:coherent spaces 142: 83: 72: 66: 63: 52: 38:related reading 28: 24: 17: 12: 11: 5: 1541: 1531: 1530: 1525: 1520: 1506: 1505: 1487: 1482: 1468: 1448: 1434: 1417: 1395: 1373: 1370: 1366:soberification 1356:. For a space 1299: 1298: 1289:) such that p( 1208:if and only if 1172: 1169: 1115: 1106: 1053: 1050: 923: 922: 889: 888:The functor pt 886: 882: 881: 880: 879: 872: 866: 860: 819: 787: 727: 710: 674: 661: 645:as an element 610: 607: 472: 471: 460: 457: 453: 450: 447: 444: 441: 438: 435: 431: 428: 425: 422: 419: 416: 413: 331: 328: 326: 323: 319: 318: 303: 286: 269: 256: 242: 141: 138: 119:Marshall Stone 85: 84: 42:external links 31: 29: 22: 15: 9: 6: 4: 3: 2: 1540: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1513: 1501: 1496: 1492: 1488: 1486: 1483: 1479: 1475: 1471: 1469:0-521-36062-5 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1435:0-521-83414-7 1431: 1427: 1423: 1418: 1415: 1414:0-521-23893-5 1411: 1407: 1403: 1399: 1396: 1393: 1392:3-540-90578-2 1389: 1385: 1382: 1381: 1376: 1375: 1369: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1310: 1308: 1304: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1271: 1270: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1235: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1192: 1190: 1186: 1182: 1178: 1168: 1166: 1162: 1158: 1154: 1149: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1114: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1070: 1066: 1062: 1059: 1049: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 971: 966: 964: 960: 956: 952: 948: 944: 940: 936: 932: 928: 920: 916: 912: 908: 904: 900: 899: 898: 896: 885: 877: 873: 871: 867: 865: 861: 858: 854: 853: 851: 847: 846: 845: 843: 839: 835: 832:(0) given by 831: 827: 822: 818: 814: 810: 806: 803: 799: 795: 790: 786: 782: 778: 774: 770: 766: 762: 758: 753: 751: 747: 743: 739: 735: 730: 726: 722: 718: 713: 709: 705: 701: 697: 692: 690: 686: 682: 677: 673: 669: 664: 660: 656: 652: 648: 644: 640: 635: 632: 628: 624: 620: 616: 606: 604: 600: 596: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 544:from a space 543: 539: 535: 531: 527: 523: 519: 516: 515:inverse image 512: 508: 503: 501: 497: 494:(also called 493: 489: 485: 481: 477: 458: 451: 448: 445: 442: 439: 436: 433: 426: 423: 420: 417: 414: 411: 404: 403: 402: 400: 396: 393: 389: 385: 381: 377: 373: 369: 366:within which 365: 361: 357: 353: 349: 345: 341: 337: 322: 316: 312: 308: 304: 301: 297: 293: 289: 282: 279:of so-called 278: 274: 270: 267: 264:—one obtains 263: 259: 252: 249: 245: 238: 234: 230: 226: 222: 218: 215:The category 214: 213: 212: 209: 207: 203: 199: 195: 191: 187: 183: 179: 175: 171: 167: 166:dual category 163: 159: 155: 151: 147: 137: 134: 132: 128: 124: 120: 116: 112: 111:Stone duality 108: 104: 100: 96: 92: 81: 78: 70: 60: 56: 50: 49: 43: 39: 35: 30: 21: 20: 1523:Order theory 1455: 1421: 1402:Stone Spaces 1401: 1378: 1365: 1361: 1357: 1353: 1349: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1311: 1302: 1300: 1294: 1293:) = 1 and p( 1290: 1286: 1282: 1278: 1274: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1236: 1231: 1223: 1219: 1215: 1203: 1199: 1195: 1194:For a space 1193: 1188: 1184: 1180: 1176: 1174: 1160: 1156: 1152: 1150: 1145: 1141: 1140:}, where Cl{ 1137: 1133: 1129: 1125: 1121: 1116: 1112: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1068: 1064: 1061:homeomorphic 1057: 1055: 1045: 1041: 1037: 1033: 1029: 1025: 1024:to get from 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 967: 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 924: 918: 914: 910: 906: 902: 894: 891: 883: 875: 869: 863: 856: 849: 841: 833: 829: 820: 816: 812: 804: 797: 793: 788: 784: 776: 772: 768: 764: 760: 756: 754: 749: 745: 741: 737: 733: 728: 724: 720: 716: 711: 707: 699: 695: 693: 688: 684: 680: 675: 671: 670:by defining 667: 662: 658: 654: 650: 646: 642: 638: 636: 626: 622: 618: 614: 612: 598: 594: 589: 585: 577: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 529: 521: 517: 510: 506: 504: 499: 495: 491: 487: 483: 479: 475: 473: 398: 391: 387: 382:. Since the 375: 359: 355: 347: 339: 335: 333: 320: 291: 284: 281:Stone spaces 276: 261: 254: 248:distributive 240: 236: 224: 216: 210: 201: 197: 189: 185: 177: 169: 157: 150:sober spaces 145: 143: 135: 110: 88: 73: 64: 53:Please help 45: 809:prime ideal 796:(0) (since 649:of the set 548:to a space 486:). Hence Ω( 370:and finite 260:is dual to 246:of bounded 176:denoted by 160:of spatial 91:mathematics 59:introducing 1512:Categories 1478:0668.54001 1444:1034.18001 1372:References 1261:for which 1124:from 1 to 1067:)) nor is 99:categories 67:March 2018 1500:1103.3493 1212:bijective 1111:), where 836:(1) is a 807:(0) is a 601:which is 449:∈ 437:∧ 427:⋁ 418:⋁ 415:∧ 395:preserves 384:embedding 380:empty set 344:open sets 273:Hausdorff 253:. Hence, 1518:Topology 1454:(1989). 1094:to pt(Ω( 1086:to Ω(pt( 1074:to Ω(pt( 1063:to pt(Ω( 996:) as pt( 957:), Ω(pt( 941:)) = {φ( 921:) = 1 }, 840:because 781:monotone 526:codomain 378:and the 352:powerset 251:lattices 1360:, pt(Ω( 1303:spatial 1273:if not 1245:→ Ω(pt( 1202:→ pt(Ω( 992:) → pt( 603:adjoint 560:) to Ω( 556:from Ω( 368:suprema 311:compact 174:locales 55:improve 1476:  1466:  1442:  1432:  1412:  1390:  1297:) = 0. 1285:in pt( 1210:it is 1102:) = Ω( 1048:)(0). 988:): pt( 905:) = { 811:since 715:: 1 → 679:(1) = 605:to Ω. 534:domain 500:locale 372:infima 237:CohLoc 225:CohLoc 180:. The 162:frames 1495:arXiv 1348:from 1324:, pt( 1241:, φ: 1232:sober 1218:\ Cl{ 1198:, ψ: 1136:\ Cl{ 984:, pt( 976:from 909:∈ pt( 897:) as 824:is a 767:from 732:): Ω( 496:frame 482:of Ω( 386:of Ω( 342:) of 277:Stone 262:CohSp 217:CohSp 204:is a 152:with 40:, or 1464:ISBN 1430:ISBN 1410:ISBN 1388:ISBN 1342:SLoc 1332:and 1316:, Ω( 1253:and 1187:and 1179:and 1155:and 1132:) = 1004:) = 945:) | 913:) | 859:to 2 792:= V 576:) = 292:Bool 285:DLat 255:DLat 241:DLat 202:SLoc 190:SLoc 188:and 178:SLoc 170:SFrm 158:SFrm 1474:Zbl 1440:Zbl 1354:Top 1352:to 1350:Sob 1338:Sob 1334:Loc 1330:Top 1257:of 1189:Frm 1185:Top 1181:Loc 1177:Top 1161:Frm 1157:Loc 1153:Top 1028:to 980:to 970:Frm 965:). 929:of 893:pt( 779:is 721:Top 719:in 700:Frm 698:to 696:Top 619:Top 617:to 615:Frm 599:Top 597:to 595:Frm 590:Frm 586:Top 536:of 528:of 507:Top 498:or 354:of 294:of 227:of 219:of 198:Loc 186:Sob 184:of 168:of 148:of 146:Sob 101:of 89:In 1514:: 1472:. 1462:. 1438:. 1428:. 1400:, 1386:. 1277:≤ 1234:. 1159:= 1044:o 1008:o 1000:)( 949:∈ 901:φ( 691:. 287:01 257:01 243:01 133:. 44:, 36:, 1503:. 1497:: 1480:. 1446:. 1416:. 1362:X 1358:X 1326:L 1322:L 1318:X 1314:X 1295:b 1291:a 1287:L 1283:p 1279:b 1275:a 1267:b 1263:a 1259:L 1255:b 1251:a 1247:L 1243:L 1239:L 1224:x 1220:x 1216:X 1204:X 1200:X 1196:X 1146:x 1142:x 1138:x 1134:X 1130:x 1126:X 1122:x 1117:x 1113:p 1108:x 1104:p 1100:x 1096:X 1092:X 1088:L 1084:L 1080:L 1076:L 1069:L 1065:X 1058:X 1046:g 1042:p 1038:M 1034:p 1030:M 1026:L 1022:g 1018:L 1014:L 1010:g 1006:p 1002:p 998:g 994:L 990:M 986:g 982:M 978:L 974:g 963:L 959:L 955:L 951:L 947:a 943:a 939:L 935:L 931:L 927:a 919:a 917:( 915:p 911:L 907:p 903:a 895:L 878:. 876:L 870:L 864:L 857:L 850:L 842:p 834:p 830:p 821:p 817:a 813:p 805:p 798:p 794:p 789:p 785:a 777:p 773:p 769:L 765:p 761:L 757:X 750:X 746:X 742:L 738:L 734:X 729:x 725:p 717:X 712:x 708:p 689:X 685:X 681:x 676:x 672:p 668:X 663:x 659:p 655:x 651:X 647:x 643:X 639:X 627:L 623:L 578:f 574:f 566:f 562:X 558:Y 554:f 550:Y 546:X 542:f 538:f 530:f 522:O 520:( 518:f 511:f 488:X 484:X 480:S 476:x 459:, 456:} 452:S 446:s 443:: 440:s 434:x 430:{ 424:= 421:S 412:x 399:X 392:X 388:X 376:X 360:X 356:X 348:X 340:X 336:X 317:. 302:. 268:. 80:) 74:( 69:) 65:( 51:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
categorical dualities
categories
topological spaces
partially ordered sets
Stone's representation theorem for Boolean algebras
Marshall Stone
pointless topology
theoretical computer science
formal semantics
sober spaces
continuous functions
frames
dual category
locales
categorical equivalence
pointless topology
full subcategory
coherent spaces
coherent (or spectral) locales
Boolean prime ideal theorem
distributive
lattices

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.