Knowledge

Streaming current

Source 📝

91:. The degree of coagulation of raw water may be monitored by the use of an SCM to provide a positive feedback control of coagulant injection. As the streaming current of the wastewater increases, more coagulant agent is injected into the stream. The higher levels of coagulant agent cause the small colloidal particles to coagulate and sediment out of the stream. Since less colloid particles are in the wastewater stream, the streaming potential decreases. The SCM recognizes this and subsequently reduces the amount of coagulant agent injected into the wastewater stream. The implementation of SCM feedback control has led to a significant materials cost reduction, one that was not realized until the early 1980s. In addition to monitoring capabilities, the streaming current could, in theory, generate usable 135:
placed on either side of a fluidic geometry across which a known pressure difference is applied. When both electrodes are held at the same potential, the streaming current is measured directly as the electric current flowing through the electrodes. Alternatively, the electrodes can be left floating,
82:
are used for evaluations of formations. Streaming potential has to be considered in design for flow of poorly conductive fluids (e.g., gasoline lines) because of the danger of buildup of high voltages. The streaming current monitor (SCM) is a fundamental tool for monitoring
856:
Menachem Elimelech and Amy E. Childress, "Zeta Potential of Reverse Osmosis Membranes: Implications for Membrane Performance". U.S. Department of the Interior, Bureau of Reclamation, Denver Office. Water Treatment Technology Program Report No. 10. December
253: 435: 118:
The transport of counterions along with the pressure-driven fluid flow gives rise to a net charge transport: the streaming current. The reverse effect, generating a fluid flow by applying a potential difference, is called
340: 843:"Measurement and Interpretation of Electrokinetic Phenomena", International Union of Pure and Applied Chemistry, Technical Report, published in Pure Appl. Chem., vol 77, 10, pp. 1753–1805, 2005 156: 552: 684: 351: 139:
A streaming potential is defined as positive when the electric potential is higher on the high pressure end of the flow system than on the low pressure end.
830: 670: 715: 269: 776: 560:
there is no surface conduction (which typically may become important when the zeta potential is large, e.g., |ζ| > 50 mV)
729:
Olthuis, Wouter; Schippers, Bob; Eijkel, Jan; Van Den Berg, Albert (2005). "Energy from streaming current and potential".
691: 877: 96: 107:
Adjacent to the channel walls, the charge-neutrality of the liquid is violated due to the presence of the
248:{\displaystyle I_{str}=-{\frac {\epsilon _{rs}\epsilon _{0}a^{2}\pi }{\eta }}{\frac {\Delta P}{L}}\zeta } 656: 95:. This process, however, has yet to be applied as typical streaming potential mechanical to electrical 88: 872: 739: 528: 28: 797: 108: 54:
The first observation of the streaming potential is generally attributed to the German physicist
844: 734: 470: 260: 79: 75: 55: 8: 120: 66:
Streaming currents in well-defined geometries are a sensitive method to characterize the
824: 664: 430:{\displaystyle U_{str}={\frac {\epsilon _{rs}\epsilon _{0}\zeta }{\eta K_{L}}}\Delta P} 44: 345:
At steady state, the streaming potential built up across the flow system is given by:
51:
is driven by a pressure gradient through a channel or porous plug with charged walls.
772: 709: 32: 744: 263:
current, which is equal in magnitude to the streaming current at steady state, is:
40: 36: 816: 136:
allowing a streaming potential to build up between the two ends of the channel.
637: 618: 147: 92: 67: 748: 525:
the double layer is not too large compared to the pores or capillaries (i.e.,
866: 555: 481: 591:
Mansouri et al. The Journal of Physical Chemistry C, 112(42), 16192 (2008)
131:
A typical setup to measure streaming currents consists of two reversible
84: 48: 810: 766: 768:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
112: 488: 143: 132: 728: 71: 585:
F.H.J. van der Heyden et al., Phys. Rev. Lett. 95, 116104 (2005)
588:
C. Werner et al., J. Colloid Interface Sci. 208, 329 (1998)
582:
J. Lyklema, Fundamentals of Interface and Colloid Science
653:
Electrokinetically Driven Microfluidics and Nanofluidics
335:{\displaystyle I_{c}=K_{L}a^{2}\pi {\frac {U_{str}}{L}}} 455:- streaming potential at zero net current conditions, V 531: 448:- streaming current under short-circuit conditions, A 354: 272: 159: 650: 546: 429: 334: 247: 811:Karniadakis, G.M., Beskok, A., Aluru, N. (2005). 514:The equation above is usually referred to as the 70:of surfaces, which is important in the fields of 864: 563:there is no electrical double layer polarization 510:- specific conductivity of the bulk liquid, S·m 615:Fundamentals of Interface and Colloid Science 142:The value of streaming current observed in a 829:: CS1 maint: multiple names: authors list ( 669:: CS1 maint: multiple names: authors list ( 764: 612: 804: 791: 738: 608: 606: 604: 572:the geometry is that of a capillary/tube. 569:there is no axial concentration gradient 566:the surface is homogeneous in properties 760: 758: 865: 714:: CS1 maint: archived copy as title ( 631: 601: 78:. In geology, measurements of related 126: 785: 755: 644: 554:), where κ is the reciprocal of the 13: 421: 230: 115:attracted by the charged surface. 14: 889: 731:Sensors and Actuators B: Chemical 625: 521:The above equations assume that: 634:Electrokinetics in Microfluidics 850: 516:Helmholtz–Smoluchowski equation 61: 837: 771:. Cambridge University Press. 722: 677: 1: 651:Chang, H.C., Yeo, L. (2009). 595: 576: 547:{\displaystyle \kappa a\gg 1} 497:ΔP - pressure difference, Pa 473:of the liquid, dimensionless 7: 89:wastewater treatment plants 10: 894: 657:Cambridge University Press 146:is usually related to the 794:Theoretical Microfluidics 749:10.1016/j.snb.2005.03.039 102: 47:which originates when an 813:Microflows and Nanoflows 31:studied in the areas of 29:electrokinetic phenomena 16:Electrokinetic phenomena 798:Oxford University Press 503:a - capillary radius, m 500:L - capillary length, m 462:- conduction current, A 109:electrical double layer 548: 431: 336: 249: 150:through the relation: 549: 494:ζ - zeta potential, V 491:of the liquid, kg·m·s 471:relative permittivity 432: 337: 250: 80:spontaneous potential 56:Georg Hermann Quincke 27:are two interrelated 765:Kirby, B.J. (2010). 733:. 111–112: 385–389. 613:Lyklema, J. (1995). 529: 352: 270: 157: 878:Colloidal chemistry 121:electroosmotic flow 25:streaming potential 792:Bruus, H. (2007). 544: 427: 332: 245: 127:Measurement method 111:: a thin layer of 778:978-0-521-11903-0 419: 330: 240: 225: 76:interface science 33:surface chemistry 21:streaming current 885: 873:Electric current 858: 854: 848: 841: 835: 834: 828: 820: 808: 802: 801: 789: 783: 782: 762: 753: 752: 742: 726: 720: 719: 713: 705: 703: 702: 696: 690:. Archived from 689: 681: 675: 674: 668: 660: 648: 642: 641: 629: 623: 622: 610: 553: 551: 550: 545: 436: 434: 433: 428: 420: 418: 417: 416: 403: 399: 398: 389: 388: 375: 370: 369: 341: 339: 338: 333: 331: 326: 325: 310: 305: 304: 295: 294: 282: 281: 254: 252: 251: 246: 241: 236: 228: 226: 221: 217: 216: 207: 206: 197: 196: 183: 175: 174: 93:electrical power 41:electric current 37:electrochemistry 893: 892: 888: 887: 886: 884: 883: 882: 863: 862: 861: 855: 851: 842: 838: 822: 821: 817:Springer Verlag 809: 805: 790: 786: 779: 763: 756: 740:10.1.1.590.7603 727: 723: 707: 706: 700: 698: 694: 687: 685:"Archived copy" 683: 682: 678: 662: 661: 649: 645: 632:Li, D. (2004). 630: 626: 611: 602: 598: 579: 530: 527: 526: 509: 479: 468: 461: 454: 447: 412: 408: 404: 394: 390: 381: 377: 376: 374: 359: 355: 353: 350: 349: 315: 311: 309: 300: 296: 290: 286: 277: 273: 271: 268: 267: 229: 227: 212: 208: 202: 198: 189: 185: 184: 182: 164: 160: 158: 155: 154: 129: 105: 99:are around 1%. 64: 17: 12: 11: 5: 891: 881: 880: 875: 860: 859: 849: 836: 803: 784: 777: 754: 721: 676: 643: 638:Academic Press 624: 619:Academic Press 599: 597: 594: 593: 592: 589: 586: 583: 578: 575: 574: 573: 570: 567: 564: 561: 558: 543: 540: 537: 534: 512: 511: 507: 504: 501: 498: 495: 492: 485: 484:of vacuum, F·m 477: 474: 466: 463: 459: 456: 452: 449: 445: 438: 437: 426: 423: 415: 411: 407: 402: 397: 393: 387: 384: 380: 373: 368: 365: 362: 358: 343: 342: 329: 324: 321: 318: 314: 308: 303: 299: 293: 289: 285: 280: 276: 257: 256: 244: 239: 235: 232: 224: 220: 215: 211: 205: 201: 195: 192: 188: 181: 178: 173: 170: 167: 163: 148:zeta potential 128: 125: 104: 101: 68:zeta potential 63: 60: 39:. They are an 15: 9: 6: 4: 3: 2: 890: 879: 876: 874: 871: 870: 868: 853: 846: 840: 832: 826: 818: 814: 807: 799: 795: 788: 780: 774: 770: 769: 761: 759: 750: 746: 741: 736: 732: 725: 717: 711: 697:on 2016-03-04 693: 686: 680: 672: 666: 658: 654: 647: 639: 635: 628: 620: 616: 609: 607: 605: 600: 590: 587: 584: 581: 580: 571: 568: 565: 562: 559: 557: 541: 538: 535: 532: 524: 523: 522: 519: 517: 505: 502: 499: 496: 493: 490: 486: 483: 480:- electrical 475: 472: 464: 457: 450: 443: 442: 441: 424: 413: 409: 405: 400: 395: 391: 385: 382: 378: 371: 366: 363: 360: 356: 348: 347: 346: 327: 322: 319: 316: 312: 306: 301: 297: 291: 287: 283: 278: 274: 266: 265: 264: 262: 242: 237: 233: 222: 218: 213: 209: 203: 199: 193: 190: 186: 179: 176: 171: 168: 165: 161: 153: 152: 151: 149: 145: 140: 137: 134: 124: 122: 116: 114: 110: 100: 98: 94: 90: 86: 81: 77: 73: 69: 59: 57: 52: 50: 46: 42: 38: 34: 30: 26: 22: 852: 839: 812: 806: 793: 787: 767: 730: 724: 699:. Retrieved 692:the original 679: 652: 646: 633: 627: 614: 556:Debye length 520: 515: 513: 487:η - dynamic 482:permittivity 439: 344: 258: 141: 138: 130: 117: 106: 97:efficiencies 65: 62:Applications 53: 24: 20: 18: 113:counterions 85:coagulation 49:electrolyte 867:Categories 701:2013-05-07 596:References 577:Literature 261:conduction 133:electrodes 825:cite book 735:CiteSeerX 665:cite book 539:≫ 533:κ 489:viscosity 440:Symbols: 422:Δ 406:η 401:ζ 392:ϵ 379:ϵ 307:π 243:ζ 231:Δ 223:η 219:π 200:ϵ 187:ϵ 180:− 144:capillary 58:in 1859. 45:potential 710:cite web 72:colloid 775:  737:  103:Origin 857:1996. 845:(pdf) 695:(PDF) 688:(PDF) 831:link 773:ISBN 716:link 671:link 259:The 74:and 35:and 23:and 745:doi 453:str 446:str 87:in 43:or 869:: 827:}} 823:{{ 815:. 796:. 757:^ 743:. 712:}} 708:{{ 667:}} 663:{{ 655:. 636:. 617:. 603:^ 518:. 469:- 467:rs 123:. 19:A 847:. 833:) 819:. 800:. 781:. 751:. 747:: 718:) 704:. 673:) 659:. 640:. 621:. 542:1 536:a 508:L 506:K 478:0 476:ε 465:ε 460:c 458:I 451:U 444:I 425:P 414:L 410:K 396:0 386:s 383:r 372:= 367:r 364:t 361:s 357:U 328:L 323:r 320:t 317:s 313:U 302:2 298:a 292:L 288:K 284:= 279:c 275:I 255:. 238:L 234:P 214:2 210:a 204:0 194:s 191:r 177:= 172:r 169:t 166:s 162:I

Index

electrokinetic phenomena
surface chemistry
electrochemistry
electric current
potential
electrolyte
Georg Hermann Quincke
zeta potential
colloid
interface science
spontaneous potential
coagulation
wastewater treatment plants
electrical power
efficiencies
electrical double layer
counterions
electroosmotic flow
electrodes
capillary
zeta potential
conduction
relative permittivity
permittivity
viscosity
Debye length



Academic Press

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.