Knowledge

Structure theorem for finitely generated modules over a principal ideal domain

Source 📝

2701:
with minor modifications. There is still a unique torsion part, with a torsionfree complement (unique up to isomorphism), but a torsionfree module over a Dedekind domain is no longer necessarily free. Torsionfree modules over a Dedekind domain are determined (up to isomorphism) by rank and
835: 413: 2726:
which are simultaneously direct sums of two indecomposable modules and direct sums of three indecomposable modules, showing the analogue of the primary decomposition cannot hold for infinitely generated modules, even over the integers,
249: 1635: 2475: 2286: 1834: 1445: 1211: 526: 666: 2422: 2354: 457:. Since the ideals should be proper, these factors must not themselves be invertible (this avoids trivial factors in the sum), and the inclusion of the ideals means one has divisibility 970: 2228: 2710:(rank one free modules) is replaced by a direct sum into rank one projective modules: the individual summands are not uniquely determined, but the Steinitz class (of the sum) is. 2750:, the group of all sequences of integers under termwise addition. In general, the question of which infinitely generated torsion-free abelian groups are free depends on which 2527: 1937: 1538: 271: 1012: 2497: 1740: 580:
is actually a field, then all occurring ideals must be zero, and one obtains the decomposition of a finite dimensional vector space into a direct sum of one-dimensional
1312: 1364: 1244: 1045: 559: 2098: 1685: 1475: 1106: 1076: 896: 865: 647: 620: 443: 1940: 32: 1991: 1906: 2044: 1264: 2734:
Another issue that arises with non-finitely generated modules is that there are torsion-free modules which are not free. For instance, consider the ring
2600:
For rings that are not principal ideal domains, unique decomposition need not even hold for modules over a ring generated by two elements. For the ring
2682:
into a direct sum of indecomposable modules is directly related (via the ideal class group) to the failure of the unique factorization of elements of
2718:
Similarly for modules that are not finitely generated, one cannot expect such a nice decomposition: even the number of factors may vary. There are
584:; the number of such factors is fixed, namely the dimension of the space, but there is a lot of freedom for choosing the subspaces themselves (if 177: 1582: 2561:
and related results give conditions under which a module has something like a primary decomposition, a decomposition as a direct sum of
1318:, so the primary decomposition is a decomposition into indecomposable modules, and thus every finitely generated module over a PID is a 2427: 2698: 2247: 148:
The structure theorem for finitely generated modules over a principal ideal domain usually appears in the following two forms.
1760: 1376: 2873: 2854: 2807: 2778: 1119: 830:{\displaystyle R^{f}\oplus \bigoplus _{i}R/(d_{i})=R^{f}\oplus R/(d_{1})\oplus R/(d_{2})\oplus \cdots \oplus R/(d_{n-f})\;,} 653:
for the module. Explicitly, this means that any two modules sharing the same set of invariants are necessarily isomorphic.
460: 1548:
This yields the invariant factor decomposition, and the diagonal entries of Smith normal form are the invariant factors.
2186:, and similar canonical submodules corresponding to each (distinct) invariant factor, which yield a canonical sequence: 142: 2828: 2047: 2359: 2291: 2546:
is a more general result for finite groups (or modules over an arbitrary ring). In this generality, one obtains a
2134: 169: 920: 2192: 2163:
While the invariants (rank, invariant factors, and elementary divisors) are unique, the isomorphism between
129:
finite (to see this it suffices to construct the morphism that sends the elements of the canonical basis of
2754:
exist. A consequence is that any structure theorem for infinitely generated modules depends on a choice of
2543: 2238: 137:.) By changing the choice of generating set, one can in fact describe the module as the quotient of some 2578: 2151: 650: 408:{\displaystyle M\cong \bigoplus _{i}R/(d_{i})=R/(d_{1})\oplus R/(d_{2})\oplus \cdots \oplus R/(d_{n}).} 2558: 2051: 1490: 110: 36: 2502: 1914: 1503: 2706:(which takes value in the ideal class group), and the decomposition into a direct sum of copies of 978: 2480: 1710: 2120: 1695:, then exists right inverse of the projection map (it suffices to lift each of the generators of 2878: 2747: 1327: 1276: 103: 43: 1882:
This includes the classification of finite-dimensional vector spaces as a special case, where
2802:, New York: Springer, pp. 218–226, Section IV.6: Modules over a Principal Ideal Domain, 2562: 2551: 2172: 2147: 2139: 2126: 2116: 1336: 1319: 1315: 1216: 1017: 531: 258: 2057: 2838: 2795: 2788: 1994: 1663: 1453: 1084: 1054: 874: 843: 625: 598: 421: 83: 54:. The result provides a simple framework to understand various canonical form results for 39: 1908:. Since fields have no non-trivial ideals, every finitely generated vector space is free. 8: 1961: 1885: 1649: 172: 59: 51: 2697:
the ideal class group is the only obstruction, and the structure theorem generalizes to
2547: 2529:
summand, as this is the torsion submodule (equivalently here, the 2-torsion elements).
2234: 2020: 1249: 446: 2850: 2824: 2803: 2774: 2594: 2573:
The primary decomposition generalizes to finitely generated modules over commutative
2108: 1692: 1560: 1541: 528:. The free part is visible in the part of the decomposition corresponding to factors 1657: 2130: 2112: 450: 134: 24: 2834: 2816: 2784: 2694: 2574: 1704: 1323: 581: 118: 2751: 2703: 2168: 2101: 29:
structure theorem for finitely generated modules over a principal ideal domain
2867: 2746:-module which is not free. Another classical example of such a module is the 1747: 1494: 1048: 262: 55: 2176: 2143: 71: 2593:
submodules does not generalize as far, and the failure is measured by the
244:{\displaystyle (d_{1})\supseteq (d_{2})\supseteq \cdots \supseteq (d_{n})} 1653: 1630:{\displaystyle 0\rightarrow tM\rightarrow M\rightarrow M/tM\rightarrow 0} 20: 2823:(2 ed.), New York: W. H. Freeman and Company, pp. xviii+499, 2755: 1998: 91: 79: 1568: 47: 1116:. In a PID, nonzero primary ideals are powers of primes, and so 117:
might not exist. However such a module is still isomorphic to a
2616:
generated by 2 and 1 + âˆšâˆ’5 are indecomposable. While
2470:{\displaystyle {\begin{bmatrix}1&0\\1&1\end{bmatrix}}} 133:
to the generators of the module, and take the quotient by its
1493:
because a PID is Noetherian, an even stronger condition than
46:(PID) can be uniquely decomposed in much the same way that 2849:, Graduate Texts in Mathematics No. 189, Springer-Verlag, 2281:{\displaystyle M\approx \mathbf {Z} \oplus \mathbf {Z} /2} 2175:
decomposition. This follows because there are non-trivial
1950:
be a linear operator on a finite-dimensional vector space
561:. Such factors, if any, occur at the end of the sequence. 1873:
is decomposed into cyclic modules of the indicated types.
1941:
fundamental theorem of finitely generated abelian groups
1829:{\displaystyle N_{p}=\{m\in tM\mid \exists i,mp^{i}=0\}} 1440:{\displaystyle R^{f}\oplus (\bigoplus _{i}R/(q_{i}))\;,} 1333:
As before, it is possible to write the free part (where
33:
fundamental theorem of finitely generated abelian groups
1206:{\displaystyle (q_{i})=(p_{i}^{r_{i}})=(p_{i})^{r_{i}}} 2436: 1652:
module, and such a module over a commutative PID is a
2505: 2483: 2430: 2362: 2294: 2250: 2195: 2179:
of these modules which do not preserve the summands.
2060: 2023: 1964: 1917: 1888: 1763: 1713: 1666: 1585: 1506: 1456: 1379: 1339: 1279: 1252: 1219: 1122: 1087: 1057: 1020: 981: 923: 877: 846: 669: 628: 601: 570:, the isomorphism giving the decomposition itself is 534: 521:{\displaystyle d_{1}\,|\,d_{2}\,|\,\cdots \,|\,d_{n}} 463: 424: 274: 180: 2758:
axioms and may be invalid under a different choice.
1489:Every finitely generated module over a PID is also 445:of the ideals are unique up to multiplication by a 2521: 2491: 2469: 2416: 2348: 2280: 2222: 2092: 2038: 2017:can be viewed as a finitely generated module over 1985: 1931: 1900: 1828: 1734: 1679: 1629: 1532: 1469: 1439: 1358: 1306: 1258: 1238: 1205: 1100: 1070: 1039: 1006: 964: 890: 859: 829: 641: 614: 553: 520: 437: 407: 243: 2713: 2699:finitely generated modules over a Dedekind domain 2424:is another basis, and the change of basis matrix 151: 2865: 2815: 2182:However, one has a canonical torsion submodule 564:While the direct sum is uniquely determined by 82:generating set, then one may extract from it a 2565:in which the summands are unique up to order. 2171:is not unique, and does not even preserve the 2050:, and the product of invariant factors is the 2417:{\displaystyle (1,{\bar {1}}),(0,{\bar {1}})} 2349:{\displaystyle (1,{\bar {0}}),(0,{\bar {1}})} 1326:, this can be seen as a manifestation of the 1078:are unique (up to multiplication by units). 2769:Dummit, David S.; Foote, Richard M. (2004), 1849:is a direct sum of cyclic modules, and that 1823: 1777: 2768: 2054:. Combined with a standard matrix form for 168:, there is a unique decreasing sequence of 2794: 2568: 1433: 965:{\displaystyle \bigoplus _{i}R/(q_{i})\;,} 958: 823: 2584: 1925: 1869:Putting the previous two steps together, 1540:(relations to generators), and put it in 1246:, the resulting indecomposable module is 898:'s in the original sequence which are 0. 507: 501: 497: 491: 480: 474: 2666:which give a different decomposition of 2644:summands give indecomposable submodules 901: 2589:By contrast, unique decomposition into 2223:{\displaystyle 0<\cdots <T<M.} 1862:for a finite number of distinct primes 1266:itself, and this is inside the part of 109:is no longer true, since a basis for a 90:of vectors, and the space is therefore 2866: 2674:. The failure of uniquely factorizing 656:Some prefer to write the free part of 622:elements, together with the number of 2009:, yields structure information about 145:, and this is the structure theorem. 1575:and this gives short exact sequence: 1500:Take a presentation, which is a map 156:For every finitely generated module 2844: 2046:. The last invariant factor is the 98:. The corresponding statement with 13: 2532: 1795: 14: 2890: 2773:(3rd ed.), New York: Wiley, 914:is isomorphic to one of the form 2577:, and this result is called the 2507: 2499:. However, it does preserve the 2485: 2266: 2258: 2150:(this latter only holds over an 1640:Where the map is a projection. 906:Every finitely generated module 2135:primary rational canonical form 1485:One proof proceeds as follows: 2714:Non-finitely generated modules 2522:{\displaystyle \mathbf {Z} /2} 2477:does not preserve the summand 2411: 2405: 2390: 2384: 2378: 2363: 2343: 2337: 2322: 2316: 2310: 2295: 2087: 2081: 2070: 2064: 2033: 2027: 1980: 1974: 1932:{\displaystyle R=\mathbb {Z} } 1877: 1691:. Since every free module is 1621: 1604: 1598: 1589: 1533:{\displaystyle R^{r}\to R^{g}} 1517: 1430: 1427: 1414: 1393: 1320:completely decomposable module 1301: 1288: 1187: 1173: 1167: 1142: 1136: 1123: 1034: 1021: 995: 982: 955: 942: 910:over a principal ideal domain 820: 801: 781: 768: 754: 741: 714: 701: 503: 493: 476: 399: 386: 366: 353: 339: 326: 312: 299: 238: 225: 213: 200: 194: 181: 162:over a principal ideal domain 152:Invariant factor decomposition 86:consisting of a finite number 1: 2847:Lectures on modules and rings 2761: 2686:into irreducible elements of 2158: 1840:, and it turns out that each 1007:{\displaystyle (q_{i})\neq R} 16:Statement in abstract algebra 2874:Theorems in abstract algebra 2492:{\displaystyle \mathbf {Z} } 1735:{\displaystyle M=tM\oplus F} 1707:(left split) M splits into: 1551:Another outline of a proof: 574:in general. For instance if 65: 7: 2597:, which vanishes for PIDs. 31:is a generalization of the 10: 2895: 2152:algebraically closed field 1836:. This is a submodule of 1660:, so it is isomorphic to: 651:complete set of invariants 2640:; thus the images of the 2537: 2052:characteristic polynomial 1480: 1366:) separately and express 1307:{\displaystyle R/(q_{i})} 141:by a particularly simple 111:finitely generated module 1648:is a finitely generated 1567:. Torsion module can be 35:and roughly states that 2121:rational canonical form 1687:for a positive integer 1359:{\displaystyle q_{i}=0} 1270:that is a free module. 1239:{\displaystyle q_{i}=0} 1040:{\displaystyle (q_{i})} 649:which are zero, form a 554:{\displaystyle d_{i}=0} 2585:Indecomposable modules 2579:Lasker–Noether theorem 2563:indecomposable modules 2523: 2493: 2471: 2418: 2350: 2282: 2224: 2100:, this yields various 2094: 2093:{\displaystyle K/p(T)} 2040: 1987: 1933: 1902: 1830: 1736: 1681: 1631: 1534: 1471: 1441: 1360: 1328:Lasker-Noether theorem 1308: 1260: 1240: 1207: 1102: 1072: 1041: 1008: 966: 892: 861: 831: 643: 616: 555: 522: 439: 409: 245: 104:principal ideal domain 44:principal ideal domain 2796:Hungerford, Thomas W. 2620:is not isomorphic to 2569:Primary decomposition 2559:Krull–Schmidt theorem 2544:Jordan–Hölder theorem 2524: 2494: 2472: 2419: 2351: 2283: 2239:Jordan–Hölder theorem 2225: 2148:Jordan canonical form 2140:primary decomposition 2127:primary decomposition 2117:Frobenius normal form 2095: 2041: 2001:with coefficients in 1988: 1934: 1903: 1831: 1757:we can then speak of 1737: 1682: 1680:{\displaystyle R^{n}} 1632: 1535: 1472: 1470:{\displaystyle q_{i}} 1442: 1361: 1309: 1261: 1241: 1208: 1103: 1101:{\displaystyle q_{i}} 1073: 1071:{\displaystyle q_{i}} 1042: 1009: 967: 902:Primary decomposition 893: 891:{\displaystyle d_{i}} 862: 860:{\displaystyle d_{i}} 832: 644: 642:{\displaystyle d_{i}} 617: 615:{\displaystyle d_{i}} 556: 523: 440: 438:{\displaystyle d_{i}} 410: 257:is isomorphic to the 246: 2503: 2481: 2428: 2360: 2292: 2248: 2193: 2058: 2021: 1962: 1915: 1886: 1761: 1711: 1664: 1583: 1504: 1454: 1377: 1337: 1277: 1250: 1217: 1120: 1085: 1055: 1018: 979: 921: 875: 844: 667: 626: 599: 532: 461: 422: 272: 178: 2845:Lam, T. Y. (1999), 2356:is one basis, then 1986:{\displaystyle R=K} 1901:{\displaystyle R=K} 1853:is a direct sum of 1166: 1110:elementary divisors 52:prime factorization 2748:Baer–Specker group 2742:is a torsion-free 2738:of integers. Then 2612:and its submodule 2608:, both the module 2548:composition series 2519: 2489: 2467: 2461: 2414: 2346: 2278: 2235:composition series 2220: 2090: 2048:minimal polynomial 2036: 1983: 1929: 1898: 1826: 1732: 1677: 1627: 1571:as a submodule of 1530: 1491:finitely presented 1467: 1450:where the visible 1437: 1405: 1356: 1322:. Since PID's are 1304: 1256: 1236: 1203: 1145: 1098: 1068: 1037: 1004: 962: 933: 888: 857: 840:where the visible 827: 692: 639: 612: 551: 518: 435: 405: 290: 241: 37:finitely generated 23:, in the field of 2856:978-0-387-98428-5 2809:978-0-387-90518-1 2780:978-0-471-43334-7 2632:is isomorphic to 2595:ideal class group 2408: 2381: 2340: 2313: 2244:For instance, if 2109:invariant factors 2039:{\displaystyle K} 1693:projective module 1561:torsion submodule 1542:Smith normal form 1396: 1259:{\displaystyle R} 924: 871:is the number of 867:are nonzero, and 683: 451:invariant factors 449:, and are called 281: 102:generalized to a 2886: 2859: 2841: 2821:Basic algebra. I 2817:Jacobson, Nathan 2812: 2791: 2771:Abstract algebra 2693:However, over a 2658: <  2575:Noetherian rings 2550:, rather than a 2528: 2526: 2525: 2520: 2515: 2510: 2498: 2496: 2495: 2490: 2488: 2476: 2474: 2473: 2468: 2466: 2465: 2423: 2421: 2420: 2415: 2410: 2409: 2401: 2383: 2382: 2374: 2355: 2353: 2352: 2347: 2342: 2341: 2333: 2315: 2314: 2306: 2287: 2285: 2284: 2279: 2274: 2269: 2261: 2229: 2227: 2226: 2221: 2131:companion matrix 2113:companion matrix 2099: 2097: 2096: 2091: 2077: 2045: 2043: 2042: 2037: 1992: 1990: 1989: 1984: 1938: 1936: 1935: 1930: 1928: 1907: 1905: 1904: 1899: 1835: 1833: 1832: 1827: 1816: 1815: 1773: 1772: 1741: 1739: 1738: 1733: 1686: 1684: 1683: 1678: 1676: 1675: 1636: 1634: 1633: 1628: 1614: 1539: 1537: 1536: 1531: 1529: 1528: 1516: 1515: 1476: 1474: 1473: 1468: 1466: 1465: 1446: 1444: 1443: 1438: 1426: 1425: 1413: 1404: 1389: 1388: 1365: 1363: 1362: 1357: 1349: 1348: 1324:Noetherian rings 1313: 1311: 1310: 1305: 1300: 1299: 1287: 1265: 1263: 1262: 1257: 1245: 1243: 1242: 1237: 1229: 1228: 1212: 1210: 1209: 1204: 1202: 1201: 1200: 1199: 1185: 1184: 1165: 1164: 1163: 1153: 1135: 1134: 1107: 1105: 1104: 1099: 1097: 1096: 1077: 1075: 1074: 1069: 1067: 1066: 1046: 1044: 1043: 1038: 1033: 1032: 1013: 1011: 1010: 1005: 994: 993: 971: 969: 968: 963: 954: 953: 941: 932: 897: 895: 894: 889: 887: 886: 866: 864: 863: 858: 856: 855: 836: 834: 833: 828: 819: 818: 800: 780: 779: 767: 753: 752: 740: 729: 728: 713: 712: 700: 691: 679: 678: 648: 646: 645: 640: 638: 637: 621: 619: 618: 613: 611: 610: 591: 579: 569: 560: 558: 557: 552: 544: 543: 527: 525: 524: 519: 517: 516: 506: 496: 490: 489: 479: 473: 472: 444: 442: 441: 436: 434: 433: 414: 412: 411: 406: 398: 397: 385: 365: 364: 352: 338: 337: 325: 311: 310: 298: 289: 256: 250: 248: 247: 242: 237: 236: 212: 211: 193: 192: 167: 161: 25:abstract algebra 2894: 2893: 2889: 2888: 2887: 2885: 2884: 2883: 2864: 2863: 2862: 2857: 2831: 2810: 2781: 2764: 2752:large cardinals 2722:-submodules of 2716: 2695:Dedekind domain 2657: 2650: 2587: 2571: 2540: 2535: 2533:Generalizations 2511: 2506: 2504: 2501: 2500: 2484: 2482: 2479: 2478: 2460: 2459: 2454: 2448: 2447: 2442: 2432: 2431: 2429: 2426: 2425: 2400: 2399: 2373: 2372: 2361: 2358: 2357: 2332: 2331: 2305: 2304: 2293: 2290: 2289: 2270: 2265: 2257: 2249: 2246: 2245: 2194: 2191: 2190: 2161: 2102:canonical forms 2073: 2059: 2056: 2055: 2022: 2019: 2018: 1963: 1960: 1959: 1924: 1916: 1913: 1912: 1887: 1884: 1883: 1880: 1861: 1848: 1811: 1807: 1768: 1764: 1762: 1759: 1758: 1712: 1709: 1708: 1705:splitting lemma 1671: 1667: 1665: 1662: 1661: 1610: 1584: 1581: 1580: 1524: 1520: 1511: 1507: 1505: 1502: 1501: 1483: 1461: 1457: 1455: 1452: 1451: 1421: 1417: 1409: 1400: 1384: 1380: 1378: 1375: 1374: 1344: 1340: 1338: 1335: 1334: 1295: 1291: 1283: 1278: 1275: 1274: 1251: 1248: 1247: 1224: 1220: 1218: 1215: 1214: 1195: 1191: 1190: 1186: 1180: 1176: 1159: 1155: 1154: 1149: 1130: 1126: 1121: 1118: 1117: 1108:are called the 1092: 1088: 1086: 1083: 1082: 1062: 1058: 1056: 1053: 1052: 1028: 1024: 1019: 1016: 1015: 989: 985: 980: 977: 976: 949: 945: 937: 928: 922: 919: 918: 904: 882: 878: 876: 873: 872: 851: 847: 845: 842: 841: 808: 804: 796: 775: 771: 763: 748: 744: 736: 724: 720: 708: 704: 696: 687: 674: 670: 668: 665: 664: 633: 629: 627: 624: 623: 606: 602: 600: 597: 596: 585: 575: 565: 539: 535: 533: 530: 529: 512: 508: 502: 492: 485: 481: 475: 468: 464: 462: 459: 458: 429: 425: 423: 420: 419: 418:The generators 393: 389: 381: 360: 356: 348: 333: 329: 321: 306: 302: 294: 285: 273: 270: 269: 252: 232: 228: 207: 203: 188: 184: 179: 176: 175: 163: 157: 154: 121:of some module 68: 56:square matrices 17: 12: 11: 5: 2892: 2882: 2881: 2876: 2861: 2860: 2855: 2842: 2829: 2813: 2808: 2792: 2779: 2765: 2763: 2760: 2715: 2712: 2704:Steinitz class 2655: 2648: 2591:indecomposable 2586: 2583: 2570: 2567: 2539: 2536: 2534: 2531: 2518: 2514: 2509: 2487: 2464: 2458: 2455: 2453: 2450: 2449: 2446: 2443: 2441: 2438: 2437: 2435: 2413: 2407: 2404: 2398: 2395: 2392: 2389: 2386: 2380: 2377: 2371: 2368: 2365: 2345: 2339: 2336: 2330: 2327: 2324: 2321: 2318: 2312: 2309: 2303: 2300: 2297: 2277: 2273: 2268: 2264: 2260: 2256: 2253: 2231: 2230: 2219: 2216: 2213: 2210: 2207: 2204: 2201: 2198: 2169:canonical form 2160: 2157: 2156: 2155: 2137: 2124: 2089: 2086: 2083: 2080: 2076: 2072: 2069: 2066: 2063: 2035: 2032: 2029: 2026: 1982: 1979: 1976: 1973: 1970: 1967: 1927: 1923: 1920: 1897: 1894: 1891: 1879: 1876: 1875: 1874: 1867: 1857: 1844: 1825: 1822: 1819: 1814: 1810: 1806: 1803: 1800: 1797: 1794: 1791: 1788: 1785: 1782: 1779: 1776: 1771: 1767: 1731: 1728: 1725: 1722: 1719: 1716: 1674: 1670: 1638: 1637: 1626: 1623: 1620: 1617: 1613: 1609: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1577: 1576: 1546: 1545: 1527: 1523: 1519: 1514: 1510: 1498: 1482: 1479: 1464: 1460: 1448: 1447: 1436: 1432: 1429: 1424: 1420: 1416: 1412: 1408: 1403: 1399: 1395: 1392: 1387: 1383: 1355: 1352: 1347: 1343: 1316:indecomposable 1303: 1298: 1294: 1290: 1286: 1282: 1255: 1235: 1232: 1227: 1223: 1198: 1194: 1189: 1183: 1179: 1175: 1172: 1169: 1162: 1158: 1152: 1148: 1144: 1141: 1138: 1133: 1129: 1125: 1095: 1091: 1065: 1061: 1049:primary ideals 1036: 1031: 1027: 1023: 1003: 1000: 997: 992: 988: 984: 973: 972: 961: 957: 952: 948: 944: 940: 936: 931: 927: 903: 900: 885: 881: 854: 850: 838: 837: 826: 822: 817: 814: 811: 807: 803: 799: 795: 792: 789: 786: 783: 778: 774: 770: 766: 762: 759: 756: 751: 747: 743: 739: 735: 732: 727: 723: 719: 716: 711: 707: 703: 699: 695: 690: 686: 682: 677: 673: 636: 632: 609: 605: 550: 547: 542: 538: 515: 511: 505: 500: 495: 488: 484: 478: 471: 467: 432: 428: 416: 415: 404: 401: 396: 392: 388: 384: 380: 377: 374: 371: 368: 363: 359: 355: 351: 347: 344: 341: 336: 332: 328: 324: 320: 317: 314: 309: 305: 301: 297: 293: 288: 284: 280: 277: 263:cyclic modules 240: 235: 231: 227: 224: 221: 218: 215: 210: 206: 202: 199: 196: 191: 187: 183: 153: 150: 67: 64: 15: 9: 6: 4: 3: 2: 2891: 2880: 2879:Module theory 2877: 2875: 2872: 2871: 2869: 2858: 2852: 2848: 2843: 2840: 2836: 2832: 2830:0-7167-1480-9 2826: 2822: 2818: 2814: 2811: 2805: 2801: 2797: 2793: 2790: 2786: 2782: 2776: 2772: 2767: 2766: 2759: 2757: 2753: 2749: 2745: 2741: 2737: 2732: 2730: 2725: 2721: 2711: 2709: 2705: 2700: 2696: 2691: 2689: 2685: 2681: 2678: âŠ•  2677: 2673: 2670: âŠ•  2669: 2665: 2662: âŠ•  2661: 2654: 2647: 2643: 2639: 2636: âŠ•  2635: 2631: 2628: âŠ•  2627: 2623: 2619: 2615: 2611: 2607: 2604: =  2603: 2598: 2596: 2592: 2582: 2580: 2576: 2566: 2564: 2560: 2555: 2553: 2549: 2545: 2530: 2516: 2512: 2462: 2456: 2451: 2444: 2439: 2433: 2402: 2396: 2393: 2387: 2375: 2369: 2366: 2334: 2328: 2325: 2319: 2307: 2301: 2298: 2275: 2271: 2262: 2254: 2251: 2242: 2240: 2236: 2217: 2214: 2211: 2208: 2205: 2202: 2199: 2196: 2189: 2188: 2187: 2185: 2180: 2178: 2177:automorphisms 2174: 2170: 2166: 2153: 2149: 2145: 2144:Jordan blocks 2141: 2138: 2136: 2132: 2128: 2125: 2122: 2118: 2114: 2110: 2107: 2106: 2105: 2103: 2084: 2078: 2074: 2067: 2061: 2053: 2049: 2030: 2024: 2016: 2012: 2008: 2005:evaluated at 2004: 2000: 1996: 1977: 1971: 1968: 1965: 1957: 1953: 1949: 1944: 1942: 1921: 1918: 1909: 1895: 1892: 1889: 1872: 1868: 1865: 1860: 1856: 1852: 1847: 1843: 1839: 1820: 1817: 1812: 1808: 1804: 1801: 1798: 1792: 1789: 1786: 1783: 1780: 1774: 1769: 1765: 1756: 1752: 1749: 1748:prime element 1745: 1744: 1743: 1729: 1726: 1723: 1720: 1717: 1714: 1706: 1702: 1698: 1694: 1690: 1672: 1668: 1659: 1655: 1651: 1647: 1643: 1624: 1618: 1615: 1611: 1607: 1601: 1595: 1592: 1586: 1579: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1553: 1552: 1549: 1543: 1525: 1521: 1512: 1508: 1499: 1496: 1492: 1488: 1487: 1486: 1478: 1477:are nonzero. 1462: 1458: 1434: 1422: 1418: 1410: 1406: 1401: 1397: 1390: 1385: 1381: 1373: 1372: 1371: 1369: 1353: 1350: 1345: 1341: 1331: 1329: 1325: 1321: 1317: 1296: 1292: 1284: 1280: 1273:The summands 1271: 1269: 1253: 1233: 1230: 1225: 1221: 1196: 1192: 1181: 1177: 1170: 1160: 1156: 1150: 1146: 1139: 1131: 1127: 1115: 1111: 1093: 1089: 1081:The elements 1079: 1063: 1059: 1050: 1029: 1025: 1001: 998: 990: 986: 959: 950: 946: 938: 934: 929: 925: 917: 916: 915: 913: 909: 899: 883: 879: 870: 852: 848: 824: 815: 812: 809: 805: 797: 793: 790: 787: 784: 776: 772: 764: 760: 757: 749: 745: 737: 733: 730: 725: 721: 717: 709: 705: 697: 693: 688: 684: 680: 675: 671: 663: 662: 661: 659: 654: 652: 634: 630: 607: 603: 593: 589: 583: 578: 573: 568: 562: 548: 545: 540: 536: 513: 509: 498: 486: 482: 469: 465: 456: 452: 448: 430: 426: 402: 394: 390: 382: 378: 375: 372: 369: 361: 357: 349: 345: 342: 334: 330: 322: 318: 315: 307: 303: 295: 291: 286: 282: 278: 275: 268: 267: 266: 264: 260: 255: 233: 229: 222: 219: 216: 208: 204: 197: 189: 185: 174: 171: 166: 160: 149: 146: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 105: 101: 97: 93: 89: 85: 81: 77: 74:over a field 73: 63: 61: 57: 53: 49: 45: 41: 38: 34: 30: 26: 22: 2846: 2820: 2799: 2770: 2743: 2739: 2735: 2733: 2728: 2723: 2719: 2717: 2707: 2692: 2687: 2683: 2679: 2675: 2671: 2667: 2663: 2659: 2652: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2599: 2590: 2588: 2572: 2556: 2541: 2243: 2232: 2183: 2181: 2164: 2162: 2014: 2010: 2006: 2002: 1955: 1951: 1947: 1945: 1910: 1881: 1870: 1863: 1858: 1854: 1850: 1845: 1841: 1837: 1754: 1750: 1700: 1696: 1688: 1650:torsion free 1645: 1641: 1639: 1572: 1564: 1556: 1550: 1547: 1484: 1449: 1367: 1332: 1272: 1267: 1113: 1109: 1080: 974: 911: 907: 905: 868: 839: 660:separately: 657: 655: 595:The nonzero 594: 587: 576: 571: 566: 563: 454: 417: 253: 164: 158: 155: 147: 138: 130: 126: 122: 114: 106: 99: 95: 87: 75: 72:vector space 69: 28: 18: 1999:polynomials 1939:yields the 1878:Corollaries 1654:free module 21:mathematics 2868:Categories 2762:References 2756:set theory 2552:direct sum 2173:direct sum 2159:Uniqueness 1656:of finite 1555:Denote by 572:not unique 251:such that 92:isomorphic 2406:¯ 2379:¯ 2338:¯ 2311:¯ 2263:⊕ 2255:≈ 2203:⋯ 1958:. Taking 1796:∃ 1793:∣ 1784:∈ 1727:⊕ 1622:→ 1605:→ 1599:→ 1590:→ 1518:→ 1495:coherence 1398:⨁ 1391:⊕ 999:≠ 926:⨁ 813:− 791:⊕ 788:⋯ 785:⊕ 758:⊕ 731:⊕ 685:⨁ 681:⊕ 582:subspaces 499:⋯ 376:⊕ 373:⋯ 370:⊕ 343:⊕ 283:⨁ 279:≅ 223:⊇ 220:⋯ 217:⊇ 198:⊇ 143:submodule 66:Statement 2819:(1985), 2798:(1980), 2233:Compare 2167:and its 1569:embedded 1014:and the 119:quotient 48:integers 2839:0780184 2800:Algebra 2789:2286236 2651:,  2146:yields 2133:yields 2115:yields 1995:algebra 1911:Taking 1213:. When 70:When a 50:have a 42:over a 40:modules 2853:  2837:  2827:  2806:  2787:  2777:  2538:Groups 2288:, and 2119:(aka, 1993:, the 1746:For a 1703:). By 1481:Proofs 1051:. The 975:where 590:> 1 173:ideals 170:proper 135:kernel 80:finite 78:has a 60:fields 27:, the 1954:over 1699:into 125:with 113:over 84:basis 58:over 2851:ISBN 2825:ISBN 2804:ISBN 2775:ISBN 2557:The 2542:The 2212:< 2206:< 2200:< 1946:Let 1697:M/tM 1658:rank 1559:the 1314:are 1047:are 586:dim 447:unit 2237:in 1997:of 1753:in 1563:of 1370:as 1112:of 592:). 453:of 261:of 259:sum 94:to 19:In 2870:: 2835:MR 2833:, 2785:MR 2783:, 2731:. 2690:. 2624:, 2581:. 2554:. 2241:. 2142:+ 2129:+ 2111:+ 2104:: 2013:. 1943:. 1851:tM 1838:tM 1742:. 1646:tM 1557:tM 1330:. 265:: 62:. 2744:Z 2740:Q 2736:Z 2729:Z 2724:Q 2720:Z 2708:R 2688:R 2684:R 2680:R 2676:R 2672:R 2668:R 2664:R 2660:R 2656:2 2653:L 2649:1 2646:L 2642:M 2638:M 2634:M 2630:R 2626:R 2622:M 2618:R 2614:M 2610:R 2606:Z 2602:R 2517:2 2513:/ 2508:Z 2486:Z 2463:] 2457:1 2452:1 2445:0 2440:1 2434:[ 2412:) 2403:1 2397:, 2394:0 2391:( 2388:, 2385:) 2376:1 2370:, 2367:1 2364:( 2344:) 2335:1 2329:, 2326:0 2323:( 2320:, 2317:) 2308:0 2302:, 2299:1 2296:( 2276:2 2272:/ 2267:Z 2259:Z 2252:M 2218:. 2215:M 2209:T 2197:0 2184:T 2165:M 2154:) 2123:) 2088:) 2085:T 2082:( 2079:p 2075:/ 2071:] 2068:T 2065:[ 2062:K 2034:] 2031:T 2028:[ 2025:K 2015:V 2011:T 2007:T 2003:K 1981:] 1978:T 1975:[ 1972:K 1969:= 1966:R 1956:K 1952:V 1948:T 1926:Z 1922:= 1919:R 1896:K 1893:= 1890:R 1871:M 1866:. 1864:p 1859:p 1855:N 1846:p 1842:N 1824:} 1821:0 1818:= 1813:i 1809:p 1805:m 1802:, 1799:i 1790:M 1787:t 1781:m 1778:{ 1775:= 1770:p 1766:N 1755:R 1751:p 1730:F 1724:M 1721:t 1718:= 1715:M 1701:M 1689:n 1673:n 1669:R 1644:/ 1642:M 1625:0 1619:M 1616:t 1612:/ 1608:M 1602:M 1596:M 1593:t 1587:0 1573:M 1565:M 1544:. 1526:g 1522:R 1513:r 1509:R 1497:. 1463:i 1459:q 1435:, 1431:) 1428:) 1423:i 1419:q 1415:( 1411:/ 1407:R 1402:i 1394:( 1386:f 1382:R 1368:M 1354:0 1351:= 1346:i 1342:q 1302:) 1297:i 1293:q 1289:( 1285:/ 1281:R 1268:M 1254:R 1234:0 1231:= 1226:i 1222:q 1197:i 1193:r 1188:) 1182:i 1178:p 1174:( 1171:= 1168:) 1161:i 1157:r 1151:i 1147:p 1143:( 1140:= 1137:) 1132:i 1128:q 1124:( 1114:M 1094:i 1090:q 1064:i 1060:q 1035:) 1030:i 1026:q 1022:( 1002:R 996:) 991:i 987:q 983:( 960:, 956:) 951:i 947:q 943:( 939:/ 935:R 930:i 912:R 908:M 884:i 880:d 869:f 853:i 849:d 825:, 821:) 816:f 810:n 806:d 802:( 798:/ 794:R 782:) 777:2 773:d 769:( 765:/ 761:R 755:) 750:1 746:d 742:( 738:/ 734:R 726:f 722:R 718:= 715:) 710:i 706:d 702:( 698:/ 694:R 689:i 676:f 672:R 658:M 635:i 631:d 608:i 604:d 588:M 577:R 567:M 549:0 546:= 541:i 537:d 514:n 510:d 504:| 494:| 487:2 483:d 477:| 470:1 466:d 455:M 431:i 427:d 403:. 400:) 395:n 391:d 387:( 383:/ 379:R 367:) 362:2 358:d 354:( 350:/ 346:R 340:) 335:1 331:d 327:( 323:/ 319:R 316:= 313:) 308:i 304:d 300:( 296:/ 292:R 287:i 276:M 254:M 239:) 234:n 230:d 226:( 214:) 209:2 205:d 201:( 195:) 190:1 186:d 182:( 165:R 159:M 139:R 131:R 127:n 123:R 115:R 107:R 100:F 96:F 88:n 76:F

Index

mathematics
abstract algebra
fundamental theorem of finitely generated abelian groups
finitely generated
modules
principal ideal domain
integers
prime factorization
square matrices
fields
vector space
finite
basis
isomorphic
principal ideal domain
finitely generated module
quotient
kernel
submodule
proper
ideals
sum
cyclic modules
unit
invariant factors
subspaces
complete set of invariants
primary ideals
indecomposable
completely decomposable module

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑