Knowledge

Superposition principle

Source đź“ť

45: 640: 2860: 2534:. Bernoulli argued that any sonorous body could vibrate in a series of simple modes with a well-defined frequency of oscillation. As he had earlier indicated, these modes could be superposed to produce more complex vibrations. In his reaction to Bernoulli's memoirs, Euler praised his colleague for having best developed the physical part of the problem of vibrating strings, but denied the generality and superiority of the multi-modes solution. 541:), the equation describing the wave is linear. When this is true, the superposition principle can be applied. That means that the net amplitude caused by two or more waves traversing the same space is the sum of the amplitudes that would have been produced by the individual waves separately. For example, two waves traveling towards each other will pass right through each other without any distortion on the other side. (See image at the top.) 623: 491: 2848: 69: 2354: 2041: 1825: 570:
The difference is one of convenience and convention. If the waves to be superposed originate from a few coherent sources, say, two, the effect is called interference. On the other hand, if the waves to be superposed originate by subdividing a wavefront into infinitesimal coherent wavelets (sources),
2467:
of combined loads when the effects are linear (i.e., each load does not affect the results of the other loads, and the effect of each load does not significantly alter the geometry of the structural system). Mode superposition method uses the natural frequencies and mode shapes to characterize the
561:
and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them. The best we can do, roughly speaking, is to say that when there are only a few sources, say two, interfering, then the result is usually called interference, but if
675:
In most realistic physical situations, the equation governing the wave is only approximately linear. In these situations, the superposition principle only approximately holds. As a rule, the accuracy of the approximation tends to improve as the amplitude of the wave gets smaller. For examples of
503: 579:
In as much as the interference fringes observed by Young were the diffraction pattern of the double slit, this chapter is, therefore, a continuation of Chapter 8 . On the other hand, few opticians would regard the Michelson interferometer as an example of diffraction. Some of the important
2451:
by a linear transformation. Thus, the superposition principle can be used to simplify the computation of fields that arise from a given charge and current distribution. The principle also applies to other linear differential equations arising in physics, such as the
1494:
Using these facts, if a list can be compiled of solutions to the first equation, then these solutions can be carefully put into a superposition such that it will satisfy the second equation. This is one common method of approaching boundary-value problems.
2424:, the input (an applied time-varying voltage signal) is related to the output (a current or voltage anywhere in the circuit) by a linear transformation. Thus, a superposition (i.e., sum) of input signals will yield the superposition of the responses. 2349:{\displaystyle {\begin{aligned}{\dot {x}}_{1}&=Ax_{1}+Bu_{1}+\phi (y_{d}),&&x_{1}(0)=x_{0},\\{\dot {x}}_{2}&=Ax_{2}+Bu_{2}+\phi \left(c^{\mathsf {T}}x_{1}+c^{\mathsf {T}}x_{2}\right)-\phi (y_{d}),&&x_{2}(0)=0\end{aligned}}} 1619: 580:
categories of diffraction relate to the interference that accompanies division of the wavefront, so Feynman's observation to some extent reflects the difficulty that we may have in distinguishing division of amplitude and division of wavefront.
2016: 418:. Due to the superposition principle, each of these sinusoids can be analyzed separately, and its individual response can be computed. (The response is itself a sinusoid, with the same frequency as the stimulus, but generally a different 1396: 894: 1612: 399:. If the superposition holds, then it automatically also holds for all linear operations applied on these functions (due to definition), such as gradients, differentials or integrals (if they exist). 745:." However, the sum of two rays to compose a superpositioned ray is undefined. As a result, Dirac himself uses ket vector representations of states to decompose or split, for example, a ket vector 599:
between waves is based on this idea. When two or more waves traverse the same space, the net amplitude at each point is the sum of the amplitudes of the individual waves. In some cases, such as in
2046: 1624: 1492: 264: 722:
whose behavior is particularly simple. Since the Schrödinger equation is linear, the behavior of the original wave function can be computed through the superposition principle this way.
1885: 931: 368:
theory, that are applicable. Because physical systems are generally only approximately linear, the superposition principle is only an approximation of the true physical behavior.
1279: 494:
Two waves traveling in opposite directions across the same medium combine linearly. In this animation, both waves have the same wavelength and the sum of amplitudes results in a
1082: 966: 813: 778: 2403: 1874: 571:
the effect is called diffraction. That is the difference between the two phenomena is of degree only, and basically, they are two limiting cases of superposition effects.
317: 1219: 1181: 407:
By writing a very general stimulus (in a linear system) as the superposition of stimuli of a specific and simple form, often the response becomes easier to compute.
2036: 1276:
are both linear operators, then the superposition principle says that a superposition of solutions to the first equation is another solution to the first equation:
1047: 1020: 993: 164: 1820:{\displaystyle {\begin{aligned}{\dot {x}}_{1}&=Ax_{1}+Bu_{1},&&x_{1}(0)=x_{0},\\{\dot {x}}_{2}&=Ax_{2}+Bu_{2},&&x_{2}(0)=0\end{aligned}}} 626:
green wave traverse to the right while blue wave traverse left, the net red wave amplitude at each point is the sum of the amplitudes of the individual waves.
818: 1126:." Though reasoning by Dirac includes atomicity of observation, which is valid, as for phase, they actually mean phase translation symmetry derived from 99:, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input 426:.) According to the superposition principle, the response to the original stimulus is the sum (or integral) of all the individual sinusoidal responses. 2749:
Mechanical Engineering Design, By Joseph Edward Shigley, Charles R. Mischke, Richard Gordon Budynas, Published 2004 McGraw-Hill Professional, p. 192
1512: 743:
if the ket vector corresponding to a state is multiplied by any complex number, not zero, the resulting ket vector will correspond to the same state
349:
of the beam. The importance of linear systems is that they are easier to analyze mathematically; there is a large body of mathematical techniques,
2614: 1087:
There are exact correspondences between the superposition presented in the main on this page and the quantum superposition. For example, the
2644: 2629: 2526:
in 1753: "The general motion of a vibrating system is given by a superposition of its proper vibrations." The principle was rejected by
1401: 176: 2782: 2852: 1124:
the superposition that occurs in quantum mechanics is of an essentially different nature from any occurring in the classical theory
75:
motion as superposition of two motions. The rolling motion of the wheel can be described as a combination of two separate motions:
2824: 2663: 2505:
The superposition principle can be applied when small deviations from a known solution to a nonlinear system are analyzed by
17: 510:
Waves are usually described by variations in some parameters through space and time—for example, height in a water wave,
2691:
Solem, J. C.; Biedenharn, L. C. (1993). "Understanding geometrical phases in quantum mechanics: An elementary example".
725:
The projective nature of quantum-mechanical-state space causes some confusion, because a quantum mechanical state is a
2770: 2754: 2359: 1830: 2580: 596: 590: 558: 272: 31: 2882: 1186: 714:. A primary approach to computing the behavior of a wave function is to write it as a superposition (called " 380: 1151: 899: 615:, the summed variation will have a bigger amplitude than any of the components individually; this is called 2550: 2038:
is a nonlinear function. By the additive state decomposition, the system can be additively decomposed into
1879: 1504: 64:
holds only approximately in water and only for waves with small amplitudes relative to their wavelengths.
1052: 936: 783: 748: 468:), the behavior of any light wave can be understood as a superposition of the behavior of these simpler 600: 2733: 2674: 1127: 44: 2499: 2464: 1130:, which is also applicable to classical states, as shown above with classical polarization states. 730: 464:, and direction). As long as the superposition principle holds (which is often but not always; see 346: 2011:{\displaystyle {\dot {x}}=Ax+B(u_{1}+u_{2})+\phi \left(c^{\mathsf {T}}x\right),\qquad x(0)=x_{0},} 2892: 2655: 2488: 1118:
writes: "The principle of superposition ... has no analogy in classical physics". According to
711: 2833: 2432: 2417: 1139: 523: 135: 76: 676:
phenomena that arise when the superposition principle does not exactly hold, see the articles
2781:
Topics on Numerics for Wave Propagation, Basque Center for Applied Mathematics, 2012, Spain,
2613:
Lectures in Physics, Vol, 1, 1963, pg. 30-1, Addison Wesley Publishing Company Reading, Mass
2585: 2531: 1222: 715: 693: 515: 1391:{\displaystyle F(y_{1})=F(y_{2})=\cdots =0\quad \Rightarrow \quad F(y_{1}+y_{2}+\cdots )=0,} 395:. Note that when vectors or vector fields are involved, a superposition is interpreted as a 2700: 2476: 2021: 1108: 1025: 998: 971: 461: 320: 267: 38: 2864: 140: 27:
Fundamental physics principle stating that physical solutions of linear systems are linear
8: 2604:
The Penguin Dictionary of Physics, ed. Valerie Illingworth, 1991, Penguin Books, London.
2570: 2560: 681: 430: 384: 30:
This article is about the superposition principle in linear systems. For other uses, see
2704: 2765:
Finite Element Procedures, Bathe, K. J., Prentice-Hall, Englewood Cliffs, 1996, p. 785
2716: 1882:
can be applied to both linear and nonlinear systems. Next, consider a nonlinear system
562:
there is a large number of them, it seems that the word diffraction is more often used.
376: 2820: 2766: 2750: 2720: 2659: 1226: 1144:
A common type of boundary value problem is (to put it abstractly) finding a function
699: 534: 361: 357: 2793: 2519: 2708: 2575: 2555: 2523: 2440: 1096: 719: 703: 677: 465: 438: 434: 411: 353: 350: 338: 2495: 2436: 550: 365: 342: 167: 387:
of those forms. The stimuli and responses could be numbers, functions, vectors,
2887: 2538: 2527: 2448: 2444: 2421: 337:
because many physical systems can be modeled as linear systems. For example, a
53: 2798:
Wave propagation in Periodic Structures: Electric Filters and Crystal Lattices
2876: 2506: 2453: 707: 538: 530: 495: 485: 423: 96: 639: 529:
In any system with waves, the waveform at a given time is a function of the
2491:
to develop analytical elements capable of being combined in a single model.
2472: 1878:
Superposition principle is only available for linear systems. However, the
1115: 1104: 1088: 392: 388: 171: 2565: 2460: 334: 2859: 968:
allows a well-defined meaning to be given to the relative phases of the
718:") of (possibly infinitely many) other wave functions of a certain type— 2712: 2480: 1119: 1092: 738: 612: 469: 453: 396: 49: 889:{\displaystyle |\psi _{i}\rangle =\sum _{j}{C_{j}}|\phi _{j}\rangle ,} 1234: 604: 519: 457: 419: 415: 61: 533:(i.e., external forces, if any, that create or affect the wave) and 68: 511: 402: 80: 622: 502: 490: 433:, the stimulus is written as the superposition of infinitely many 414:, the stimulus is written as the superposition of infinitely many 341:
can be modeled as a linear system where the input stimulus is the
2484: 2428: 330: 72: 2847: 2740:, 4th edition, Oxford, UK: Oxford University Press, p. 14. 2681:, 4th edition, Oxford, UK: Oxford University Press, p. 17. 1607:{\displaystyle {\dot {x}}=Ax+B(u_{1}+u_{2}),\qquad x(0)=x_{0}.} 1616:
By superposition principle, the system can be decomposed into
1100: 449: 702:, a principal task is to compute how a certain type of wave 2407:
This decomposition can help to simplify controller design.
557:
No-one has ever been able to define the difference between
518:
in a light wave. The value of this parameter is called the
481: 445: 391:, time-varying signals, or any other object that satisfies 57: 537:
of the system. In many cases (for example, in the classic
170:. Superposition can be defined by two simpler properties: 52:(diagonal lines) from a distant source and waves from the 544: 2463:, superposition is used to solve for beam and structure 2435:
imply that the (possibly time-varying) distributions of
710:, and the equation governing its behavior is called the 166:
that satisfies the superposition principle is called a
2537:
Later it became accepted, largely through the work of
2522:, the principle of superposition was first stated by 2362: 2044: 2024: 1888: 1833: 1622: 1515: 1404: 1282: 1189: 1154: 1114:
Nevertheless, on the topic of quantum superposition,
1055: 1028: 1001: 974: 939: 902: 821: 786: 751: 275: 179: 143: 448:. For example, in electromagnetic theory, ordinary 2397: 2348: 2030: 2010: 1868: 1819: 1606: 1486: 1390: 1213: 1175: 1076: 1041: 1014: 987: 960: 925: 888: 807: 772: 311: 258: 158: 2814: 1487:{\displaystyle G(y_{1})+G(y_{2})=G(y_{1}+y_{2}).} 506:two waves permeate without influencing each other 2874: 2628:, PHI Learning Pvt. Ltd., Oct 18, 2013, p. 361. 2475:, the superposition principle is applied to the 403:Relation to Fourier analysis and similar methods 259:{\displaystyle F(x_{1}+x_{2})=F(x_{1})+F(x_{2})} 2690: 1498: 1107:representing different types of classical pure 607:than the component variations; this is called 437:, and the response is then a superposition of 2410: 1049:does not affect the equivalence class of the 1071: 995:., but an absolute (same amount for all the 955: 880: 837: 802: 780:into superposition of component ket vectors 767: 670: 444:Fourier analysis is particularly common for 2643:, Cambridge University Press, Nov 8, 2012. 345:on the beam and the output response is the 1133: 2498:, the superposition principle is used in 1261:is required to equal on the boundary of 706:and behaves. The wave is described by a 687: 621: 526:specifying the amplitude at each point. 501: 489: 329:This principle has many applications in 67: 43: 2468:dynamic response of a linear structure. 371:The superposition principle applies to 14: 2875: 2817:Applied Partial Differential Equations 2648: 2268: 2243: 1962: 926:{\displaystyle C_{j}\in {\textbf {C}}} 545:Wave diffraction vs. wave interference 1398:while the boundary values superpose: 637: 603:, the summed variation has a smaller 522:of the wave and the wave itself is a 475: 2641:Introduction to the Physics of Waves 1245:would be an operator that restricts 584: 2738:The Principles of Quantum Mechanics 2679:The Principles of Quantum Mechanics 1097:two-level quantum mechanical system 918: 549:With regard to wave superposition, 452:is described as a superposition of 83:, and rotation without translation. 24: 2807: 1077:{\displaystyle |\psi _{i}\rangle } 961:{\displaystyle |\psi _{i}\rangle } 808:{\displaystyle |\phi _{j}\rangle } 773:{\displaystyle |\psi _{i}\rangle } 25: 2904: 2840: 1509:Consider a simple linear system: 1183:with some boundary specification 2858: 2846: 2487:. This principle is used in the 638: 37:For the geologic principle, see 2787: 2775: 2759: 1979: 1575: 1340: 1336: 933:. The equivalence class of the 611:. In other cases, such as in a 591:Interference (wave propagation) 2800:, McGraw–Hill, New York, p. 2. 2743: 2727: 2684: 2668: 2633: 2618: 2607: 2598: 2398:{\displaystyle x=x_{1}+x_{2}.} 2333: 2327: 2308: 2295: 2148: 2142: 2123: 2110: 1989: 1983: 1942: 1916: 1869:{\displaystyle x=x_{1}+x_{2}.} 1804: 1798: 1704: 1698: 1585: 1579: 1569: 1543: 1478: 1452: 1443: 1430: 1421: 1408: 1376: 1344: 1337: 1321: 1308: 1299: 1286: 1199: 1193: 1164: 1158: 1057: 941: 866: 823: 788: 753: 429:As another common example, in 306: 300: 288: 279: 253: 240: 231: 218: 209: 183: 153: 147: 32:Superposition (disambiguation) 13: 1: 2863:The dictionary definition of 2658:publisher Dover, 1957, p. 62 2591: 1227:Dirichlet boundary conditions 1148:that satisfies some equation 381:linear differential equations 2834:Superposition of sound waves 2551:Additive state decomposition 1880:additive state decomposition 1505:Additive state decomposition 1499:Additive state decomposition 575:Yet another source concurs: 7: 2544: 1257:would be the function that 312:{\displaystyle F(ax)=aF(x)} 10: 2909: 2815:Haberman, Richard (2004). 2513: 2411:Other example applications 1502: 1137: 691: 601:noise-canceling headphones 588: 479: 36: 29: 1128:time translation symmetry 671:Departures from linearity 617:constructive interference 566:Other authors elaborate: 431:Green's function analysis 375:linear system, including 2500:model predictive control 731:projective Hilbert space 609:destructive interference 514:in a sound wave, or the 48:Superposition of almost 2853:Superposition principle 2489:analytic element method 1214:{\displaystyle G(y)=z.} 1134:Boundary-value problems 1103:) is also known as the 95:, states that, for all 89:superposition principle 2693:Foundations of Physics 2418:electrical engineering 2399: 2350: 2032: 2012: 1870: 1821: 1608: 1488: 1392: 1215: 1177: 1176:{\displaystyle F(y)=0} 1140:Boundary-value problem 1078: 1043: 1022:) phase change on the 1016: 989: 962: 927: 890: 809: 774: 627: 582: 573: 564: 507: 499: 313: 260: 160: 93:superposition property 84: 65: 2626:Physics for Engineers 2586:Quantum superposition 2400: 2351: 2033: 2031:{\displaystyle \phi } 2013: 1871: 1822: 1609: 1489: 1393: 1237:operator in a region 1216: 1178: 1138:Further information: 1079: 1044: 1042:{\displaystyle C_{j}} 1017: 1015:{\displaystyle C_{j}} 990: 988:{\displaystyle C_{j}} 963: 928: 891: 810: 775: 716:quantum superposition 694:Quantum superposition 688:Quantum superposition 625: 577: 568: 555: 516:electromagnetic field 505: 493: 480:Further information: 314: 261: 161: 123:) produces response ( 71: 47: 18:Superposition theorem 2883:Mathematical physics 2855:at Wikimedia Commons 2483:pumping in an ideal 2360: 2042: 2022: 1886: 1831: 1620: 1513: 1402: 1280: 1187: 1152: 1053: 1026: 999: 972: 937: 900: 819: 784: 749: 712:Schrödinger equation 385:systems of equations 273: 177: 159:{\displaystyle F(x)} 141: 39:law of superposition 2705:1993FoPh...23..185S 2654:Quantum Mechanics, 2561:Coherence (physics) 2443:are related to the 2433:Maxwell's equations 1249:to the boundary of 682:nonlinear acoustics 662:Two waves 180° out 659:Two waves in phase 377:algebraic equations 2713:10.1007/BF01883623 2395: 2346: 2344: 2028: 2008: 1866: 1817: 1815: 1604: 1484: 1388: 1223:Laplace's equation 1211: 1173: 1074: 1039: 1012: 985: 958: 923: 886: 852: 805: 770: 628: 595:The phenomenon of 535:initial conditions 508: 500: 476:Wave superposition 309: 256: 156: 111:produces response 103:produces response 85: 66: 2851:Media related to 2826:978-0-13-065243-0 2819:. Prentice Hall. 2664:978-0-486-66772-0 2181: 2059: 1898: 1737: 1637: 1525: 1268:In the case that 920: 843: 720:stationary states 700:quantum mechanics 668: 667: 585:Wave interference 439:impulse responses 435:impulse functions 16:(Redirected from 2900: 2862: 2850: 2830: 2801: 2791: 2785: 2779: 2773: 2763: 2757: 2747: 2741: 2731: 2725: 2724: 2688: 2682: 2672: 2666: 2652: 2646: 2637: 2631: 2622: 2616: 2611: 2605: 2602: 2576:Impulse response 2571:Green's function 2556:Beat (acoustics) 2524:Daniel Bernoulli 2404: 2402: 2401: 2396: 2391: 2390: 2378: 2377: 2355: 2353: 2352: 2347: 2345: 2326: 2325: 2315: 2307: 2306: 2288: 2284: 2283: 2282: 2273: 2272: 2271: 2258: 2257: 2248: 2247: 2246: 2225: 2224: 2209: 2208: 2189: 2188: 2183: 2182: 2174: 2163: 2162: 2141: 2140: 2130: 2122: 2121: 2103: 2102: 2087: 2086: 2067: 2066: 2061: 2060: 2052: 2037: 2035: 2034: 2029: 2017: 2015: 2014: 2009: 2004: 2003: 1975: 1971: 1967: 1966: 1965: 1941: 1940: 1928: 1927: 1900: 1899: 1891: 1875: 1873: 1872: 1867: 1862: 1861: 1849: 1848: 1826: 1824: 1823: 1818: 1816: 1797: 1796: 1786: 1781: 1780: 1765: 1764: 1745: 1744: 1739: 1738: 1730: 1719: 1718: 1697: 1696: 1686: 1681: 1680: 1665: 1664: 1645: 1644: 1639: 1638: 1630: 1613: 1611: 1610: 1605: 1600: 1599: 1568: 1567: 1555: 1554: 1527: 1526: 1518: 1493: 1491: 1490: 1485: 1477: 1476: 1464: 1463: 1442: 1441: 1420: 1419: 1397: 1395: 1394: 1389: 1369: 1368: 1356: 1355: 1320: 1319: 1298: 1297: 1221:For example, in 1220: 1218: 1217: 1212: 1182: 1180: 1179: 1174: 1083: 1081: 1080: 1075: 1070: 1069: 1060: 1048: 1046: 1045: 1040: 1038: 1037: 1021: 1019: 1018: 1013: 1011: 1010: 994: 992: 991: 986: 984: 983: 967: 965: 964: 959: 954: 953: 944: 932: 930: 929: 924: 922: 921: 912: 911: 895: 893: 892: 887: 879: 878: 869: 864: 863: 862: 851: 836: 835: 826: 814: 812: 811: 806: 801: 800: 791: 779: 777: 776: 771: 766: 765: 756: 678:nonlinear optics 642: 630: 629: 466:nonlinear optics 456:(waves of fixed 412:Fourier analysis 410:For example, in 364:transforms, and 356:methods such as 354:linear transform 351:frequency-domain 325: 318: 316: 315: 310: 265: 263: 262: 257: 252: 251: 230: 229: 208: 207: 195: 194: 165: 163: 162: 157: 91:, also known as 21: 2908: 2907: 2903: 2902: 2901: 2899: 2898: 2897: 2873: 2872: 2843: 2838: 2827: 2810: 2808:Further reading 2805: 2804: 2792: 2788: 2780: 2776: 2764: 2760: 2748: 2744: 2734:Dirac, P. A. M. 2732: 2728: 2689: 2685: 2675:Dirac, P. A. M. 2673: 2669: 2653: 2649: 2639:Tim Freegarde, 2638: 2634: 2623: 2619: 2612: 2608: 2603: 2599: 2594: 2547: 2532:Joseph Lagrange 2516: 2496:process control 2479:of two or more 2449:magnetic fields 2413: 2386: 2382: 2373: 2369: 2361: 2358: 2357: 2343: 2342: 2321: 2317: 2314: 2302: 2298: 2278: 2274: 2267: 2266: 2262: 2253: 2249: 2242: 2241: 2237: 2236: 2232: 2220: 2216: 2204: 2200: 2190: 2184: 2173: 2172: 2171: 2168: 2167: 2158: 2154: 2136: 2132: 2129: 2117: 2113: 2098: 2094: 2082: 2078: 2068: 2062: 2051: 2050: 2049: 2045: 2043: 2040: 2039: 2023: 2020: 2019: 1999: 1995: 1961: 1960: 1956: 1955: 1951: 1936: 1932: 1923: 1919: 1890: 1889: 1887: 1884: 1883: 1857: 1853: 1844: 1840: 1832: 1829: 1828: 1814: 1813: 1792: 1788: 1785: 1776: 1772: 1760: 1756: 1746: 1740: 1729: 1728: 1727: 1724: 1723: 1714: 1710: 1692: 1688: 1685: 1676: 1672: 1660: 1656: 1646: 1640: 1629: 1628: 1627: 1623: 1621: 1618: 1617: 1595: 1591: 1563: 1559: 1550: 1546: 1517: 1516: 1514: 1511: 1510: 1507: 1501: 1472: 1468: 1459: 1455: 1437: 1433: 1415: 1411: 1403: 1400: 1399: 1364: 1360: 1351: 1347: 1315: 1311: 1293: 1289: 1281: 1278: 1277: 1188: 1185: 1184: 1153: 1150: 1149: 1142: 1136: 1105:PoincarĂ© sphere 1065: 1061: 1056: 1054: 1051: 1050: 1033: 1029: 1027: 1024: 1023: 1006: 1002: 1000: 997: 996: 979: 975: 973: 970: 969: 949: 945: 940: 938: 935: 934: 917: 916: 907: 903: 901: 898: 897: 874: 870: 865: 858: 854: 853: 847: 831: 827: 822: 820: 817: 816: 796: 792: 787: 785: 782: 781: 761: 757: 752: 750: 747: 746: 737:. According to 696: 690: 673: 663: 634: 593: 587: 551:Richard Feynman 547: 488: 478: 405: 366:linear operator 323: 274: 271: 270: 247: 243: 225: 221: 203: 199: 190: 186: 178: 175: 174: 168:linear function 142: 139: 138: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2906: 2896: 2895: 2893:Systems theory 2890: 2885: 2871: 2870: 2856: 2842: 2841:External links 2839: 2837: 2836: 2831: 2825: 2811: 2809: 2806: 2803: 2802: 2786: 2774: 2758: 2742: 2726: 2699:(2): 185–195. 2683: 2667: 2647: 2632: 2617: 2606: 2596: 2595: 2593: 2590: 2589: 2588: 2583: 2578: 2573: 2568: 2563: 2558: 2553: 2546: 2543: 2539:Joseph Fourier 2528:Leonhard Euler 2520:LĂ©on Brillouin 2515: 2512: 2511: 2510: 2503: 2492: 2469: 2457: 2425: 2422:linear circuit 2412: 2409: 2394: 2389: 2385: 2381: 2376: 2372: 2368: 2365: 2341: 2338: 2335: 2332: 2329: 2324: 2320: 2316: 2313: 2310: 2305: 2301: 2297: 2294: 2291: 2287: 2281: 2277: 2270: 2265: 2261: 2256: 2252: 2245: 2240: 2235: 2231: 2228: 2223: 2219: 2215: 2212: 2207: 2203: 2199: 2196: 2193: 2191: 2187: 2180: 2177: 2170: 2169: 2166: 2161: 2157: 2153: 2150: 2147: 2144: 2139: 2135: 2131: 2128: 2125: 2120: 2116: 2112: 2109: 2106: 2101: 2097: 2093: 2090: 2085: 2081: 2077: 2074: 2071: 2069: 2065: 2058: 2055: 2048: 2047: 2027: 2007: 2002: 1998: 1994: 1991: 1988: 1985: 1982: 1978: 1974: 1970: 1964: 1959: 1954: 1950: 1947: 1944: 1939: 1935: 1931: 1926: 1922: 1918: 1915: 1912: 1909: 1906: 1903: 1897: 1894: 1865: 1860: 1856: 1852: 1847: 1843: 1839: 1836: 1812: 1809: 1806: 1803: 1800: 1795: 1791: 1787: 1784: 1779: 1775: 1771: 1768: 1763: 1759: 1755: 1752: 1749: 1747: 1743: 1736: 1733: 1726: 1725: 1722: 1717: 1713: 1709: 1706: 1703: 1700: 1695: 1691: 1687: 1684: 1679: 1675: 1671: 1668: 1663: 1659: 1655: 1652: 1649: 1647: 1643: 1636: 1633: 1626: 1625: 1603: 1598: 1594: 1590: 1587: 1584: 1581: 1578: 1574: 1571: 1566: 1562: 1558: 1553: 1549: 1545: 1542: 1539: 1536: 1533: 1530: 1524: 1521: 1503:Main article: 1500: 1497: 1483: 1480: 1475: 1471: 1467: 1462: 1458: 1454: 1451: 1448: 1445: 1440: 1436: 1432: 1429: 1426: 1423: 1418: 1414: 1410: 1407: 1387: 1384: 1381: 1378: 1375: 1372: 1367: 1363: 1359: 1354: 1350: 1346: 1343: 1339: 1335: 1332: 1329: 1326: 1323: 1318: 1314: 1310: 1307: 1304: 1301: 1296: 1292: 1288: 1285: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1172: 1169: 1166: 1163: 1160: 1157: 1135: 1132: 1073: 1068: 1064: 1059: 1036: 1032: 1009: 1005: 982: 978: 957: 952: 948: 943: 915: 910: 906: 885: 882: 877: 873: 868: 861: 857: 850: 846: 842: 839: 834: 830: 825: 804: 799: 795: 790: 769: 764: 760: 755: 692:Main article: 689: 686: 672: 669: 666: 665: 660: 657: 654: 653: 649: 648: 644: 643: 636: 589:Main article: 586: 583: 546: 543: 477: 474: 404: 401: 393:certain axioms 308: 305: 302: 299: 296: 293: 290: 287: 284: 281: 278: 255: 250: 246: 242: 239: 236: 233: 228: 224: 220: 217: 214: 211: 206: 202: 198: 193: 189: 185: 182: 155: 152: 149: 146: 115:, then input ( 97:linear systems 26: 9: 6: 4: 3: 2: 2905: 2894: 2891: 2889: 2886: 2884: 2881: 2880: 2878: 2869:at Wiktionary 2868: 2867: 2861: 2857: 2854: 2849: 2845: 2844: 2835: 2832: 2828: 2822: 2818: 2813: 2812: 2799: 2795: 2794:Brillouin, L. 2790: 2784: 2778: 2772: 2771:0-13-301458-4 2768: 2762: 2756: 2755:0-07-252036-1 2752: 2746: 2739: 2735: 2730: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2687: 2680: 2676: 2671: 2665: 2661: 2657: 2656:Kramers, H.A. 2651: 2645: 2642: 2636: 2630: 2627: 2624:N. K. VERMA, 2621: 2615: 2610: 2601: 2597: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2548: 2542: 2540: 2535: 2533: 2529: 2525: 2521: 2518:According to 2508: 2507:linearization 2504: 2501: 2497: 2493: 2490: 2486: 2482: 2478: 2474: 2470: 2466: 2462: 2458: 2455: 2454:heat equation 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2423: 2419: 2415: 2414: 2408: 2405: 2392: 2387: 2383: 2379: 2374: 2370: 2366: 2363: 2339: 2336: 2330: 2322: 2318: 2311: 2303: 2299: 2292: 2289: 2285: 2279: 2275: 2263: 2259: 2254: 2250: 2238: 2233: 2229: 2226: 2221: 2217: 2213: 2210: 2205: 2201: 2197: 2194: 2192: 2185: 2178: 2175: 2164: 2159: 2155: 2151: 2145: 2137: 2133: 2126: 2118: 2114: 2107: 2104: 2099: 2095: 2091: 2088: 2083: 2079: 2075: 2072: 2070: 2063: 2056: 2053: 2025: 2005: 2000: 1996: 1992: 1986: 1980: 1976: 1972: 1968: 1957: 1952: 1948: 1945: 1937: 1933: 1929: 1924: 1920: 1913: 1910: 1907: 1904: 1901: 1895: 1892: 1881: 1876: 1863: 1858: 1854: 1850: 1845: 1841: 1837: 1834: 1810: 1807: 1801: 1793: 1789: 1782: 1777: 1773: 1769: 1766: 1761: 1757: 1753: 1750: 1748: 1741: 1734: 1731: 1720: 1715: 1711: 1707: 1701: 1693: 1689: 1682: 1677: 1673: 1669: 1666: 1661: 1657: 1653: 1650: 1648: 1641: 1634: 1631: 1614: 1601: 1596: 1592: 1588: 1582: 1576: 1572: 1564: 1560: 1556: 1551: 1547: 1540: 1537: 1534: 1531: 1528: 1522: 1519: 1506: 1496: 1481: 1473: 1469: 1465: 1460: 1456: 1449: 1446: 1438: 1434: 1427: 1424: 1416: 1412: 1405: 1385: 1382: 1379: 1373: 1370: 1365: 1361: 1357: 1352: 1348: 1341: 1333: 1330: 1327: 1324: 1316: 1312: 1305: 1302: 1294: 1290: 1283: 1275: 1271: 1266: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1233:would be the 1232: 1228: 1224: 1208: 1205: 1202: 1196: 1190: 1170: 1167: 1161: 1155: 1147: 1141: 1131: 1129: 1125: 1121: 1117: 1112: 1110: 1106: 1102: 1098: 1094: 1091:to represent 1090: 1085: 1066: 1062: 1034: 1030: 1007: 1003: 980: 976: 950: 946: 913: 908: 904: 883: 875: 871: 859: 855: 848: 844: 840: 832: 828: 797: 793: 762: 758: 744: 740: 736: 732: 728: 723: 721: 717: 713: 709: 708:wave function 705: 701: 695: 685: 683: 679: 661: 658: 656: 655: 651: 650: 646: 645: 641: 632: 631: 624: 620: 618: 614: 610: 606: 602: 598: 592: 581: 576: 572: 567: 563: 560: 554: 552: 542: 540: 539:wave equation 536: 532: 527: 525: 521: 517: 513: 504: 497: 496:standing wave 492: 487: 486:Wave equation 483: 473: 471: 467: 463: 459: 455: 451: 447: 442: 440: 436: 432: 427: 425: 421: 417: 413: 408: 400: 398: 394: 390: 389:vector fields 386: 382: 378: 374: 369: 367: 363: 359: 355: 352: 348: 344: 340: 336: 332: 327: 322: 303: 297: 294: 291: 285: 282: 276: 269: 248: 244: 237: 234: 226: 222: 215: 212: 204: 200: 196: 191: 187: 180: 173: 169: 150: 144: 137: 132: 130: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 82: 78: 74: 70: 63: 59: 55: 51: 46: 40: 33: 19: 2866:interference 2865: 2816: 2797: 2789: 2777: 2761: 2745: 2737: 2729: 2696: 2692: 2686: 2678: 2670: 2650: 2640: 2635: 2625: 2620: 2609: 2600: 2581:Interference 2536: 2530:and then by 2517: 2473:hydrogeology 2406: 1877: 1615: 1508: 1273: 1269: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1230: 1145: 1143: 1123: 1113: 1109:polarization 1089:Bloch sphere 1086: 742: 734: 726: 724: 697: 674: 616: 608: 597:interference 594: 578: 574: 569: 565: 559:interference 556: 548: 528: 509: 462:polarization 443: 428: 409: 406: 372: 370: 328: 133: 128: 124: 120: 116: 112: 108: 107:, and input 104: 100: 92: 88: 86: 2566:Convolution 2481:water wells 2465:deflections 2461:engineering 470:plane waves 454:plane waves 335:engineering 268:homogeneity 77:translation 50:plane waves 2877:Categories 2592:References 1093:pure state 896:where the 704:propagates 613:line array 397:vector sum 347:deflection 172:additivity 2721:121930907 2293:ϕ 2290:− 2230:ϕ 2179:˙ 2108:ϕ 2057:˙ 2026:ϕ 1949:ϕ 1896:˙ 1735:˙ 1635:˙ 1523:˙ 1374:⋯ 1338:⇒ 1328:⋯ 1235:Laplacian 1072:⟩ 1063:ψ 956:⟩ 947:ψ 914:∈ 881:⟩ 872:ϕ 845:∑ 838:⟩ 829:ψ 803:⟩ 794:ϕ 768:⟩ 759:ψ 664:of phase 635:waveform 605:amplitude 520:amplitude 458:frequency 420:amplitude 416:sinusoids 62:Linearity 2796:(1946). 2736:(1958). 2677:(1958). 2545:See also 2477:drawdown 2445:electric 2441:currents 1111:states. 733:, not a 633:combined 524:function 512:pressure 136:function 81:rotation 79:without 2701:Bibcode 2514:History 2485:aquifer 2437:charges 2429:physics 2420:, in a 1116:Kramers 652:wave 2 647:wave 1 553:wrote: 531:sources 362:Laplace 358:Fourier 331:physics 73:Rolling 56:of the 2823:  2769:  2753:  2719:  2662:  2018:where 1253:, and 735:vector 383:, and 321:scalar 2888:Waves 2783:p. 39 2717:S2CID 2356:with 1827:with 1225:with 1120:Dirac 1101:qubit 1095:of a 739:Dirac 450:light 446:waves 424:phase 58:ducks 2821:ISBN 2767:ISBN 2751:ISBN 2660:ISBN 2447:and 2439:and 1272:and 815:as: 680:and 484:and 482:Wave 422:and 360:and 343:load 339:beam 333:and 319:for 266:and 87:The 54:wake 2709:doi 2494:In 2471:In 2459:In 2427:In 2416:In 1122:: " 741:: " 729:in 727:ray 698:In 373:any 131:). 2879:: 2715:. 2707:. 2697:23 2695:. 2541:. 2431:, 1265:. 1241:, 1229:, 1084:. 684:. 619:. 472:. 460:, 441:. 379:, 326:. 134:A 127:+ 119:+ 60:. 2829:. 2723:. 2711:: 2703:: 2509:. 2502:. 2456:. 2393:. 2388:2 2384:x 2380:+ 2375:1 2371:x 2367:= 2364:x 2340:0 2337:= 2334:) 2331:0 2328:( 2323:2 2319:x 2312:, 2309:) 2304:d 2300:y 2296:( 2286:) 2280:2 2276:x 2269:T 2264:c 2260:+ 2255:1 2251:x 2244:T 2239:c 2234:( 2227:+ 2222:2 2218:u 2214:B 2211:+ 2206:2 2202:x 2198:A 2195:= 2186:2 2176:x 2165:, 2160:0 2156:x 2152:= 2149:) 2146:0 2143:( 2138:1 2134:x 2127:, 2124:) 2119:d 2115:y 2111:( 2105:+ 2100:1 2096:u 2092:B 2089:+ 2084:1 2080:x 2076:A 2073:= 2064:1 2054:x 2006:, 2001:0 1997:x 1993:= 1990:) 1987:0 1984:( 1981:x 1977:, 1973:) 1969:x 1963:T 1958:c 1953:( 1946:+ 1943:) 1938:2 1934:u 1930:+ 1925:1 1921:u 1917:( 1914:B 1911:+ 1908:x 1905:A 1902:= 1893:x 1864:. 1859:2 1855:x 1851:+ 1846:1 1842:x 1838:= 1835:x 1811:0 1808:= 1805:) 1802:0 1799:( 1794:2 1790:x 1783:, 1778:2 1774:u 1770:B 1767:+ 1762:2 1758:x 1754:A 1751:= 1742:2 1732:x 1721:, 1716:0 1712:x 1708:= 1705:) 1702:0 1699:( 1694:1 1690:x 1683:, 1678:1 1674:u 1670:B 1667:+ 1662:1 1658:x 1654:A 1651:= 1642:1 1632:x 1602:. 1597:0 1593:x 1589:= 1586:) 1583:0 1580:( 1577:x 1573:, 1570:) 1565:2 1561:u 1557:+ 1552:1 1548:u 1544:( 1541:B 1538:+ 1535:x 1532:A 1529:= 1520:x 1482:. 1479:) 1474:2 1470:y 1466:+ 1461:1 1457:y 1453:( 1450:G 1447:= 1444:) 1439:2 1435:y 1431:( 1428:G 1425:+ 1422:) 1417:1 1413:y 1409:( 1406:G 1386:, 1383:0 1380:= 1377:) 1371:+ 1366:2 1362:y 1358:+ 1353:1 1349:y 1345:( 1342:F 1334:0 1331:= 1325:= 1322:) 1317:2 1313:y 1309:( 1306:F 1303:= 1300:) 1295:1 1291:y 1287:( 1284:F 1274:G 1270:F 1263:R 1259:y 1255:z 1251:R 1247:y 1243:G 1239:R 1231:F 1209:. 1206:z 1203:= 1200:) 1197:y 1194:( 1191:G 1171:0 1168:= 1165:) 1162:y 1159:( 1156:F 1146:y 1099:( 1067:i 1058:| 1035:j 1031:C 1008:j 1004:C 981:j 977:C 951:i 942:| 919:C 909:j 905:C 884:, 876:j 867:| 860:j 856:C 849:j 841:= 833:i 824:| 798:j 789:| 763:i 754:| 498:. 324:a 307:) 304:x 301:( 298:F 295:a 292:= 289:) 286:x 283:a 280:( 277:F 254:) 249:2 245:x 241:( 238:F 235:+ 232:) 227:1 223:x 219:( 216:F 213:= 210:) 205:2 201:x 197:+ 192:1 188:x 184:( 181:F 154:) 151:x 148:( 145:F 129:Y 125:X 121:B 117:A 113:Y 109:B 105:X 101:A 41:. 34:. 20:)

Index

Superposition theorem
Superposition (disambiguation)
law of superposition

plane waves
wake
ducks
Linearity

Rolling
translation
rotation
linear systems
function
linear function
additivity
homogeneity
scalar
physics
engineering
beam
load
deflection
frequency-domain
linear transform
Fourier
Laplace
linear operator
algebraic equations
linear differential equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑