Knowledge

Supramolecular chemistry

Source 📝

217: 168: 133: 149: 183: 198: 2315: 2224: 2133: 2069: 121: 3877: 3901: 872:. Non-covalent bonds between the reactants and a "template" hold the reactive sites of the reactants close together, facilitating the desired chemistry. This technique is particularly useful for situations where the desired reaction conformation is thermodynamically or kinetically unlikely, such as in the preparation of large macrocycles. This pre-organization also serves purposes such as minimizing side reactions, lowering the 3913: 3889: 54:, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, 759:
In that example a macrocyclic ring with 4 protonated nitrogen atoms encapsulates a chloride anion; illustrations of ITC data and a titration curve are reproduced in Steed&Atwood. (pp 15–16) The value of the equilibrium constant and the stoichiometry of the species formed were found to be strongly
1379:
Design based on supramolecular chemistry has led to numerous applications in the creation of functional biomaterials and therapeutics. Supramolecular biomaterials afford a number of modular and generalizable platforms with tunable mechanical, chemical and biological properties. These include systems
891:
consist of molecules that are linked only as a consequence of their topology. Some non-covalent interactions may exist between the different components (often those that were used in the construction of the system), but covalent bonds do not. Supramolecular chemistry, and template-directed synthesis
809:
Molecular self-assembly is the construction of systems without guidance or management from an outside source (other than to provide a suitable environment). The molecules are directed to assemble through non-covalent interactions. Self-assembly may be subdivided into intermolecular self-assembly (to
850:
Molecular recognition is the specific binding of a guest molecule to a complementary host molecule to form a host–guest complex. Often, the definition of which species is the "host" and which is the "guest" is arbitrary. The molecules are able to identify each other using non-covalent interactions.
952:
describes a process by which a host is constructed from small molecules using a suitable molecular species as a template. After construction, the template is removed leaving only the host. The template for host construction may be subtly different from the guest that the finished host binds to. In
267:
occurred when it was realized that there are two separate strands of nucleotides connected through hydrogen bonds. The use of non-covalent bonds is essential to replication because they allow the strands to be separated and used to template new double stranded DNA. Concomitantly, chemists began to
997:
Supramolecular systems are rarely designed from first principles. Rather, chemists have a range of well-studied structural and functional building blocks that they are able to use to build up larger functional architectures. Many of these exist as whole families of similar units, from which the
1210:
The understanding of intermolecular interactions in solids has undergone a major renaissance via inputs from different experimental and computational methods in the last decade. This includes high-pressure studies in solids and "in situ" crystallization of compounds which are liquids at room
307:
for Chemistry which was awarded to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen in recognition of their work in this area. The development of selective "host–guest" complexes in particular, in which a host molecule recognizes and selectively binds a certain guest, was cited as an
880:. After the reaction has taken place, the template may remain in place, be forcibly removed, or may be "automatically" decomplexed on account of the different recognition properties of the reaction product. The template may be as simple as a single metal ion or may be extremely complex. 1211:
temperature along with the use of electron density analysis, crystal structure prediction and DFT calculations in solid state to enable a quantitative understanding of the nature, energetics and topological properties associated with such interactions in crystals.
1402:
Supramolecular chemistry has been used to demonstrate computation functions on a molecular scale. In many cases, photonic or chemical signals have been used in these components, but electrical interfacing of these units has also been shown by supramolecular
772:
have strong hydrogen bonding, electrostatic, and charge-transfer capabilities, and are therefore able to become involved in complex equilibria with the system, even breaking complexes completely. For this reason, the choice of solvent can be critical.
1842:
Janeta, Mateusz; John, Ɓukasz; Ejfler, Jolanta; Lis, Tadeusz; Szafert, SƂawomir (2016-08-02). "Multifunctional imine-POSS as uncommon 3D nanobuilding blocks for supramolecular hybrid materials: synthesis, structural characterization, and properties".
1123:
Supramolecular metallocycles are macrocyclic aggregates with metal ions in the ring, often formed from angular and linear modules. Common metallocycle shapes in these types of applications include triangles, squares, and pentagons, each bearing
335:
motifs became integrated into supramolecular systems in order to increase functionality, research into synthetic self-replicating system began, and work on molecular information processing devices began. The emerging science of
867:
Molecular recognition and self-assembly may be used with reactive species in order to pre-organize a system for a chemical reaction (to form one or more covalent bonds). It may be considered a special case of supramolecular
920:
covalent bonds are broken and formed in a reversible reaction under thermodynamic control. While covalent bonds are key to the process, the system is directed by non-covalent forces to form the lowest energy structures.
2832:
RodrĂ­guez-VĂĄzquez, Nuria; Fuertes, Alberto; AmorĂ­n, Manuel; Granja, Juan R. (2016). "Chapter 14. Bioinspired Artificial Sodium and Potassium Ion Channels". In Sigel, Astrid; Sigel, Helmut; Sigel, Roland K.O. (eds.).
299:
became active in synthesizing shape- and ion-selective receptors, and throughout the 1980s research in the area gathered a rapid pace with concepts such as mechanically interlocked molecular architectures emerging.
1324:
Supramolecular chemistry has found many applications, in particular molecular self-assembly processes have been applied to the development of new materials. Large structures can be readily accessed using
968:
are molecules or molecular assemblies that can perform functions such as linear or rotational movement, switching, and entrapment. These devices exist at the boundary between supramolecular chemistry and
365:
Supramolecular complexes are formed by non-covalent interactions between two chemical moieties, which can be described as an host and a guest. Most commonly, the interacting species are held together by
216: 1390:
has also made critical advances as a result of supramolecular chemistry providing encapsulation and targeted release mechanisms. In addition, supramolecular systems have been designed to disrupt
1329:
synthesis as they are composed of small molecules requiring fewer steps to synthesize. Thus most of the bottom-up approaches to nanotechnology are based on supramolecular chemistry. Many
680: 782: 1098:
are very useful in supramolecular chemistry, as they provide whole cavities that can completely surround guest molecules and may be chemically modified to fine-tune their properties.
421: 1151:
Many supramolecular systems require their components to have suitable spacing and conformations relative to each other, and therefore easily employed structural units are required.
1917: 182: 1815:
Schmitt, J. L.; Stadler, A. M.; Kyritsakas, N.; Lehn, J. M. (2003). "Helicity-Encoded Molecular Strands: Efficient Access by the Hydrazone Route and Structural Features".
132: 633: 2935: 933:
architectures can be used to learn about both the biological model and the synthetic implementation. Examples include photoelectrochemical systems, catalytic systems,
729: 706: 607: 584: 1371:
are also used in catalysis to create microenvironments suitable for reactions (or steps in reactions) to progress that is not possible to use on a macroscopic scale.
2146:
Daze, K. (2012). "Supramolecular hosts that recognize methyllysines and disrupt the interaction between a modified histone tail and its epigenetic reader protein".
1386:
Supramolecular chemistry is also important to the development of new pharmaceutical therapies by understanding the interactions at a drug binding site. The area of
1741:
Anderson, S.; Anderson, H. L.; Bashall, A.; McPartlin, M.; Sanders, J. K. M. (1995). "Assembly and Crystal Structure of a Photoactive Array of Five Porphyrins".
167: 148: 749: 248:
and host–guest chemistry. In the early twentieth century non-covalent bonds were understood in gradually more detail, with the hydrogen bond being described by
1383:
A supramolecular approach has been used extensively to create artificial ion channels for the transport of sodium and potassium ions into and out of cells.
1969:
Sessler, Jonathan L.; Gross, Dustin E.; Cho, Won-Seob; Lynch, Vincent M.; Schmidtchen, Franz P.; Bates, Gareth W.; Light, Mark E.; Gale, Philip A. (2006).
1351:
and catalysis. Non-covalent interactions are extremely important in catalysis, binding reactants into conformations suitable for reaction and lowering the
2237:
Lehn, J. M. (1990). "Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self-Organization".
279:
Eventually, chemists were able to take these concepts and apply them to synthetic systems. The breakthrough came in the 1960s with the synthesis of the
1679:
Day, A. I.; Blanch, R. J.; Arnold, A. P.; Lorenzo, S.; Lewis, G. R.; Dance, I. (2002). "A Cucurbituril-Based Gyroscane: A New Supramolecular Form".
296: 197: 2675: 1714:
Bravo, J. A.; Raymo, F. I. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. (1998). "High Yielding Template-Directed Syntheses of Rotaxanes".
888: 154: 94: 2754:
Choudhury, R. (2012). "Deep-Cavity Cavitand Octa Acid as a Hydrogen Donor: Photofunctionalization with Nitrenes Generated from Azidoadamantanes".
2972: 1139: 2626: 1727: 1109:, cucurbiturils and crown ethers are readily synthesized in large quantities, and are therefore convenient for use in supramolecular systems. 957:
interactions, but more complex systems also incorporate hydrogen bonding and other interactions to improve binding strength and specificity.
3073: 3078: 892:
in particular, is key to the efficient synthesis of the compounds. Examples of mechanically interlocked molecular architectures include
2545:
Functional Metallosupramolecular Materials, Editors: John George Hardy, Felix H Schacher, Royal Society of Chemistry, Cambridge 2015,
1380:
based on supramolecular assembly of peptides, host–guest macrocycles, high-affinity hydrogen bonding, and metal–ligand interactions.
2689: 120: 3056: 2401: 1692: 3100: 431: 2708: 2651: 1953: 1918:"Chemistry and Physics Nobels Hail Discoveries on Life and Superconductors; Three Share Prize for Synthesis of Vital Enzymes" 1524: 1015:
with dioxyarenes or diaminoarenes have been used extensively for the construction of mechanically interlocked systems and in
3112: 3051: 768:
The molecular environment around a supramolecular system is also of prime importance to its operation and stability. Many
2965: 1652:
Hasenknopf, B.; Lehn, J. M.; Kneisel, B. O.; Baum, G.; Fenske, D. (1996). "Self-Assembly of a Circular Double Helicate".
2688:
Schneider, H.-J. ( Ed.) (2012) Applications of Supramolecular Chemistry, CRC Press Taylor & Francis Boca Raton etc,
2884: 1304:
has been used as a route to produce modified enzymes, electrically contacted enzymes, and even photoswitchable enzymes.
1195:
can be used as scaffolds for the construction of complex systems and also for interfacing electrochemical systems with
3939: 2789:
Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert (18 December 2015). "Supramolecular biomaterials".
2602: 752: 3917: 1391: 641: 1435:
have been demonstrated on a conceptual level. Even full-scale computations have been achieved by semi-synthetic
3796: 2958: 233: 391: 3239: 2993: 1326: 259:
and other biological processes. For instance, the important breakthrough that allowed the elucidation of the
2883:
Bertrand, N.; Gauthier, M. A.; Bouvet, C. L.; Moreau, P.; Petitjean, A.; Leroux, J. C.; Leblond, J. (2011).
760:
solvent-dependent. With nitromethane solutions values of ΔH = 8.55 kJmol and ΔS = -9.1 JKmol were obtained.
105:
is crucial to understanding many biological processes that rely on these forces for structure and function.
1228:
have highly tunable photochemical and electrochemical activity as well as the potential to form complexes.
3516: 3003: 385:, will be in equilibrium with each other. In the simplest case, p=q=1, the equilibrium can be written as 3893: 3442: 3413: 3393: 3346: 2944: 917: 98: 2940: 3031: 1575:
Biedermann, F.; Schneider, H.J. (2016). "Experimental Binding Energies in Supramolecular Complexes".
905: 822:
and polypeptides). Molecular self-assembly also allows the construction of larger structures such as
260: 2520: 2314: 2223: 2132: 2068: 1238:
groups can change their shapes and properties, including binding properties, upon exposure to light.
3786: 3341: 1342: 1200: 986: 249: 174: 102: 90: 1772:-xylylenediammonium chloride and calcium hydrogensulfate adducts of the cavitand 'cucurbituril', C 929:
Many synthetic supramolecular systems are designed to copy functions of biological systems. These
3724: 3635: 3598: 3482: 3408: 3229: 3212: 3155: 2723: 1356: 1301: 811: 204: 78: 1310:
has been used both as a structural and as a functional unit in synthetic supramolecular systems.
311:
In the 1990s, supramolecular chemistry became even more sophisticated, with researchers such as
38:. The strength of the forces responsible for spatial organization of the system range from weak 3642: 3630: 3521: 3386: 3160: 3026: 2558:
Lee, S. J.; Lin, W. (2008). "Chiral Metallocycles: Rational Synthesis and Novel Applications".
1355:
energy of reaction. Template-directed synthesis is a special case of supramolecular catalysis.
1086:
properties in addition to the complexation itself. These units are used a great deal by nature.
612: 1611: 1067:
is of great utility in the construction of complex architectures of many individual molecules.
711: 688: 589: 566: 3791: 3688: 3673: 3603: 3526: 3358: 3308: 3217: 3142: 3041: 327:
developing sensors and methods of electronic and biological interfacing. During this period,
312: 245: 86: 67: 370:. The definition excludes compounds formed by electrostatic interactions, which are called 3781: 3736: 3511: 3331: 3261: 3018: 2998: 2798: 2381: 2341: 2277: 2186: 2095: 2031: 1481: 1432: 1044: 1008: 949: 427: 237: 55: 39: 2546: 434:
by any of the techniques described below. Some examples are shown in the following table.
240:
developed supramolecular chemistry's philosophical roots. In 1894, Fischer suggested that
8: 3804: 3758: 3683: 3656: 3554: 3536: 3489: 3427: 3323: 3303: 3172: 3167: 3068: 1971:"Calix[4]pyrrole as a Chloride Anion Receptor: Solvent and Countercation Effects" 1408: 1404: 1016: 974: 839: 815: 316: 284: 82: 63: 2802: 2345: 2281: 2190: 2099: 2035: 1485: 3944: 3881: 3847: 3709: 3678: 3559: 3501: 3199: 3182: 3177: 3132: 3095: 3085: 3046: 2915: 2669: 2643:
Understanding intermolecular interactions in the solid state: approaches and techniques
2620: 2448: 2423:
Zhang, S. (2003). "Fabrication of novel biomaterials through molecular self-assembly".
2298: 2289: 2265: 2207: 2198: 2174: 2116: 2107: 2083: 2052: 2043: 2019: 1995: 1970: 1420: 1241: 1235: 982: 790: 734: 59: 2479: 3900: 3862: 3827: 3810: 3748: 3666: 3661: 3589: 3574: 3544: 3465: 3432: 3403: 3398: 3373: 3363: 3283: 3271: 3150: 3063: 2907: 2871: 2846: 2814: 2771: 2704: 2657: 2647: 2608: 2598: 2575: 2440: 2405: 2359: 2303: 2212: 2121: 2057: 2000: 1949: 1868: 1860: 1696: 1634: 1592: 1557: 1520: 1497: 1448: 1192: 1182: 1037: 965: 873: 831: 560: 268:
recognize and study synthetic structures based on non-covalent interactions, such as
256: 2919: 2452: 3905: 3822: 3477: 3336: 3313: 3266: 3207: 2899: 2838: 2806: 2763: 2567: 2502: 2475: 2432: 2397: 2349: 2293: 2285: 2246: 2202: 2194: 2155: 2111: 2103: 2047: 2039: 1990: 1982: 1941: 1899: 1852: 1824: 1797: 1750: 1723: 1688: 1661: 1626: 1584: 1549: 1489: 1412: 1352: 1347:
A major application of supramolecular chemistry is the design and understanding of
1125: 938: 852: 798: 794: 328: 241: 27: 2903: 3763: 3719: 3714: 3608: 3584: 3418: 3381: 3234: 3224: 3107: 2842: 2385: 1249: 1083: 1034: 978: 877: 835: 292: 106: 1728:
10.1002/(SICI)1099-0690(199811)1998:11<2565::AID-EJOC2565>3.0.CO;2-8
1588: 1171:. The chemistry for creating and connecting these units is very well understood. 3647: 3625: 3620: 3615: 3570: 3566: 3549: 3506: 3437: 3298: 3293: 3278: 3090: 3008: 2018:
Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S. (2008).
1453: 1424: 1330: 1290: 1225: 1075: 970: 934: 901: 337: 332: 324: 288: 43: 2661: 1801: 3933: 3852: 3741: 3697: 3422: 3256: 3251: 3244: 3122: 2612: 1903: 1864: 1387: 1231: 1174: 1135: 1079: 827: 367: 320: 273: 71: 51: 47: 2493:
Balzani, V.; GĂłmez-LĂłpez, M.; Stoddart, J. F. (1998). "Molecular Machines".
2328:
Li, F.; Clegg, J. K.; Lindoy, L. F.; MacQuart, R. B.; Meehan, G. V. (2011).
1493: 1293:, and has been used as the recognition motif to construct synthetic systems. 3729: 3579: 3494: 3470: 3460: 3452: 3353: 3288: 3187: 3036: 2947:– Thematic Series in the Open Access Beilstein Journal of Organic Chemistry 2911: 2850: 2818: 2775: 2742: 2641: 2579: 2444: 2409: 2377: 2363: 2307: 2250: 2216: 2125: 2061: 2004: 1872: 1828: 1754: 1700: 1665: 1638: 1630: 1596: 1561: 1553: 1436: 1416: 1131: 1102: 345: 189: 139: 1945: 1501: 3127: 2837:. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 485–556. 2735:
Chemoresponsive Materials /Stimulation by Chemical and Biological Signals
1168: 1095: 1052: 1023: 468: 340:
also had a strong influence on the subject, with building blocks such as
304: 280: 2950: 1540:
Schneider, H. (2009). "Binding Mechanisms in Supramolecular Complexes".
3753: 2402:
10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E
2354: 2329: 2159: 1856: 1693:
10.1002/1521-3773(20020118)41:2<275::AID-ANIE275>3.0.CO;2-M
1364: 1215: 1204: 1196: 1186: 1113: 1106: 1064: 1048: 1012: 973:, and prototypes have been demonstrated using supramolecular concepts. 930: 303:
The importance of supramolecular chemistry was established by the 1987
2767: 2571: 2506: 1986: 781: 3815: 3117: 2982: 2810: 1268: 1260: 1221: 1164: 1156: 1071: 1056: 869: 856: 819: 512: 444:
values for complexes of medicinal interest in methanol at 25 Â°C
349: 341: 222:
3D interpenetrated network in the crystal structure of silsesquioxane
23: 2831: 2175:"Chemistry and application of flexible porous coordination polymers" 2084:"Metallo-supramolecular modules as a paradigm for materials science" 1887: 3837: 2593:
Atwood, J. L.; Gokel, George W.; Barbour, Leonard J. (2017-06-22).
2436: 2266:"Electrochromic materials using mechanically interlocked molecules" 1368: 1360: 1348: 1264: 1178: 1160: 1120:
can be synthesised to provide more tailored recognition properties.
1117: 1027: 897: 893: 883: 823: 786: 769: 534: 490: 371: 208: 158: 35: 2020:"Challenges and breakthroughs in recent research on self-assembly" 255:
The use of these principles led to an increasing understanding of
3857: 1297: 1245: 269: 244:
take the form of a "lock and key", the fundamental principles of
31: 2466:
Dickert, F. (1999). "Molecular imprinting in chemical sensing".
1740: 77:
Important concepts advanced by supramolecular chemistry include
1286: 1282: 1060: 954: 232:
The existence of intermolecular forces was first postulated by
2724:
http://pubs.rsc.org/bookshop/collections/series?issn=2046-0066
188:
Host–guest complex with a p-xylylenediammonium bound within a
1428: 1253: 2885:"New pharmaceutical applications for macromolecular binders" 2882: 2330:"Metallosupramolecular self-assembly of a universal 3-ravel" 1814: 3832: 2376: 1431:-switchable units, and even by molecular motion. Synthetic 2492: 2172: 3842: 2701:
Supramolecular Chemistry: From Molecules to Nanomaterials
1651: 1307: 845: 264: 2936:
2D and 3D Models of Dodecahedrane and Cuneane Assemblies
1609: 1189:
offer nanometer-sized structure and encapsulation units.
998:
analog with the exact desired properties can be chosen.
2788: 2547:
https://pubs.rsc.org/en/content/ebook/978-1-78262-267-3
1888:"Einfluss der Configuration auf die Wirkung der Enzyme" 1713: 1610:
Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. (2007).
1271:, are useful in supramolecular electrochemical devices. 1199:. Regular surfaces can be used for the construction of 851:
Key applications of this field are the construction of
109:
are often the inspiration for supramolecular research.
1678: 989:
for the 'design and synthesis of molecular machines'.
2327: 737: 714: 691: 644: 615: 592: 569: 394: 1968: 1216:
Photo-chemically and electro-chemically active units
1155:
Commonly used spacers and connecting groups include
586:, for this reaction is the sum of an enthalpy term, 2640:Chopra, Deepak, Royal Society of Chemistry (2019). 2173:Bureekaew, S.; Shimomura, S.; Kitagawa, S. (2008). 1841: 1574: 2872:http://pubs.rsc.org/en/content/ebook/9781849735520 2592: 2239:Angewandte Chemie International Edition in English 1743:Angewandte Chemie International Edition in English 1654:Angewandte Chemie International Edition in English 743: 723: 700: 674: 627: 601: 578: 415: 2646:. London; Cambridge: Royal Society of Chemistry. 731:values can be determined at a given temperature, 377:In solution, the host H, guest G, and complexes H 287:. Following this work, other researchers such as 3931: 2017: 889:Mechanically interlocked molecular architectures 884:Mechanically interlocked molecular architectures 95:mechanically-interlocked molecular architectures 1134:are metallomacrocycles generated via a similar 1040:and other simple hydrogen bonding interactions. 1001: 1892:Berichte der Deutschen Chemischen Gesellschaft 1397: 862: 2966: 2263: 1936:Steed, Jonathan W.; Atwood, Jerry L. (2009). 1472:Lehn, J. (1993). "Supramolecular Chemistry". 1275: 1078:around metal ions gives access to catalytic, 911: 430:, K, for this reaction can, in principle, be 2674:: CS1 maint: multiple names: authors list ( 2270:Science and Technology of Advanced Materials 2179:Science and Technology of Advanced Materials 2088:Science and Technology of Advanced Materials 2024:Science and Technology of Advanced Materials 1128:that connect the pieces via "self-assembly." 1935: 675:{\displaystyle \Delta G=\Delta H-T\Delta S} 126:Self-assembly of a circular double helicate 2973: 2959: 2625:: CS1 maint: location missing publisher ( 1916:Schmeck, Harold M. Jr. (October 15, 1987) 1768:Freeman, W. A. (1984). "Structures of the 1281:The extremely strong complexation between 1030:is ubiquitous in supramolecular chemistry. 804: 2980: 2835:The Alkali Metal Ions: Their Role in Life 2753: 2699:Gale, P.A. and Steed, J.W. (eds.) (2012) 2595:Comprehensive Supramolecular Chemistry II 2353: 2297: 2206: 2115: 2051: 1994: 1539: 1394:that are important to cellular function. 2743:https://dx.doi.org/10.1039/9781782622420 2633: 1931: 1929: 953:its simplest form, imprinting uses only 814:), and intramolecular self-assembly (or 780: 416:{\displaystyle H+G\leftrightharpoons HG} 352:becoming involved in synthetic systems. 138:Host–guest complex within another host ( 2465: 2390:Angewandte Chemie International Edition 1885: 1767: 1681:Angewandte Chemie International Edition 1619:Angewandte Chemie International Edition 1319: 876:of the reaction, and producing desired 3932: 2737:, Schneider, H.-J. ; Ed:, (2015) 2639: 2597:. Amsterdam, Netherlands. p. 46. 2557: 2388:(2002). "Dynamic Covalent Chemistry". 2380:; Cantrill, S. J.; Cousins, G. R. L.; 960: 846:Molecular recognition and complexation 2954: 2422: 2081: 2011: 1926: 1716:European Journal of Organic Chemistry 3888: 2236: 2145: 1514: 1471: 1411:has been accomplished by the use of 1333:are based on molecular recognition. 3912: 2551: 2521:"The Nobel Prize in Chemistry 2016" 2468:TrAC Trends in Analytical Chemistry 2264:Ikeda, T.; Stoddart, J. F. (2008). 1612:"Supramolecular Chemistry in Water" 1146: 13: 2722:, Royal Soc. Chem. Cambridge UK . 1009:pi-pi charge-transfer interactions 992: 715: 692: 666: 654: 645: 619: 593: 570: 155:Mechanically-interlocked molecules 14: 3956: 2929: 2864:Smart Materials for Drug Delivery 360: 236:in 1873. However, Nobel laureate 3911: 3899: 3887: 3876: 3875: 2870:) Royal Soc. Chem. Cambridge UK 2756:The Journal of Organic Chemistry 2313: 2222: 2131: 2067: 1790:Acta Crystallographica Section B 753:Isothermal titration calorimetry 215: 196: 181: 166: 147: 131: 119: 2876: 2857: 2825: 2782: 2747: 2739:The Royal Society of Chemistry, 2728: 2713: 2693: 2682: 2586: 2539: 2513: 2486: 2459: 2416: 2370: 2321: 2257: 2230: 2166: 2139: 2075: 1962: 1910: 1879: 1835: 1808: 1761: 1314: 1252:, and therefore can be used in 755:. For an example, see Sessler. 1734: 1707: 1672: 1645: 1603: 1568: 1533: 1508: 1465: 1090: 924: 763: 404: 234:Johannes Diderik van der Waals 1: 3240:Interface and colloid science 2994:Glossary of chemical formulae 2904:10.1016/j.jconrel.2011.04.027 2892:Journal of Controlled Release 2560:Accounts of Chemical Research 2495:Accounts of Chemical Research 2480:10.1016/S0165-9936(98)00123-X 1459: 944: 242:enzyme–substrate interactions 2843:10.1007/978-3-319-21756-7_14 2290:10.1088/1468-6996/9/1/014104 2199:10.1088/1468-6996/9/1/014108 2108:10.1088/1468-6996/9/1/014103 2044:10.1088/1468-6996/9/1/014109 1392:protein–protein interactions 1336: 1002:Synthetic recognition motifs 7: 3517:Bioorganometallic chemistry 3004:List of inorganic compounds 2945:Supramolecular Chemistry II 2720:Smart Materials Book Series 1589:10.1021/acs.chemrev.5b00583 1442: 1398:Data storage and processing 1374: 863:Template-directed synthesis 776: 10: 3961: 3443:Dynamic covalent chemistry 3414:Enantioselective synthesis 3394:Physical organic chemistry 3347:Organolanthanide chemistry 1542:Angew. Chem. Int. Ed. Engl 1340: 1276:Biologically-derived units 918:dynamic covalent chemistry 912:Dynamic covalent chemistry 355: 227: 112: 99:dynamic covalent chemistry 3871: 3774: 3535: 3451: 3372: 3322: 3198: 3141: 3032:Electroanalytical methods 3017: 2989: 1802:10.1107/S0108768184002354 1201:self-assembled monolayers 906:molecular Borromean rings 628:{\displaystyle T\Delta S} 103:non-covalent interactions 3940:Supramolecular chemistry 3787:Nobel Prize in Chemistry 3703:Supramolecular chemistry 3342:Organometallic chemistry 2941:Supramolecular Chemistry 1938:Supramolecular Chemistry 1904:10.1002/cber.18940270364 1517:Supramolecular Chemistry 1343:Supramolecular catalysis 987:Nobel Prize in Chemistry 724:{\displaystyle \Delta S} 701:{\displaystyle \Delta G} 602:{\displaystyle \Delta H} 579:{\displaystyle \Delta G} 308:important contribution. 261:double helical structure 22:refers to the branch of 20:Supramolecular chemistry 3725:Combinatorial chemistry 3636:Food physical chemistry 3599:Environmental chemistry 3483:Bioorthogonal chemistry 3409:Retrosynthetic analysis 3230:Chemical thermodynamics 3213:Spectroelectrochemistry 3156:Computational chemistry 1940:(2nd ed.). Wiley. 1494:10.1126/science.8511582 812:supramolecular assembly 805:Molecular self-assembly 79:molecular self-assembly 3797:of element discoveries 3643:Agricultural chemistry 3631:Carbohydrate chemistry 3522:Bioinorganic chemistry 3387:Alkane stereochemistry 3332:Coordination chemistry 3161:Mathematical chemistry 3027:Instrumental chemistry 2251:10.1002/anie.199013041 1829:10.1002/hlca.200390137 1817:Helvetica Chimica Acta 1755:10.1002/anie.199510961 1666:10.1002/anie.199618381 1631:10.1002/anie.200602815 1554:10.1002/anie.200802947 1026:binding with metal or 979:Sir J. Fraser Stoddart 838:, and is important to 801: 745: 725: 702: 676: 629: 603: 580: 417: 252:and Rodebush in 1920. 3792:Timeline of chemistry 3689:Post-mortem chemistry 3674:Clandestine chemistry 3604:Atmospheric chemistry 3527:Biophysical chemistry 3359:Solid-state chemistry 3309:Equilibrium chemistry 3218:Photoelectrochemistry 2527:. Nobel Media AB 2014 2334:Nature Communications 2082:Kurth, D. G. (2008). 1946:10.1002/9780470740880 1433:molecular logic gates 1357:Encapsulation systems 1259:Other units, such as 1256:and electrochemistry. 1248:have multiple stable 784: 746: 726: 703: 677: 630: 604: 581: 418: 313:James Fraser Stoddart 246:molecular recognition 87:molecular recognition 40:intermolecular forces 3782:History of chemistry 3737:Chemical engineering 3512:Bioorganic chemistry 3262:Structural chemistry 2999:List of biomolecules 2425:Nature Biotechnology 1886:Fischer, E. (1894). 1320:Materials technology 1138:approach from fused 1070:The complexation of 950:Molecular imprinting 735: 712: 689: 642: 613: 609:and an entropy term 590: 567: 428:equilibrium constant 392: 238:Hermann Emil Fischer 175:host–guest chemistry 91:host–guest chemistry 64:van der Waals forces 44:electrostatic charge 3805:The central science 3759:Ceramic engineering 3684:Forensic toxicology 3657:Chemistry education 3555:Radiation chemistry 3537:Interdisciplinarity 3490:Medicinal chemistry 3428:Fullerene chemistry 3304:Microwave chemistry 3173:Molecular mechanics 3168:Molecular modelling 2803:2016NatMa..15...13W 2346:2011NatCo...2..205L 2282:2008STAdM...9a4104I 2191:2008STAdM...9a4108B 2100:2008STAdM...9a4103G 2036:2008STAdM...9a4109A 1981:(37): 12281–12288. 1851:(31): 12312–12321. 1845:Dalton Transactions 1486:1993Sci...260.1762L 1405:signal transduction 1289:is instrumental in 1017:crystal engineering 975:Jean-Pierre Sauvage 961:Molecular machinery 840:crystal engineering 818:as demonstrated by 445: 319:and highly complex 317:molecular machinery 285:Charles J. Pedersen 16:Branch of chemistry 3848:Chemical substance 3710:Chemical synthesis 3679:Forensic chemistry 3560:Actinide chemistry 3502:Clinical chemistry 3183:Molecular geometry 3178:Molecular dynamics 3133:Elemental analysis 3086:Separation process 2355:10.1038/ncomms1208 2160:10.1039/C2SC20583A 1857:10.1039/C6DT02134D 1413:molecular switches 1242:Tetrathiafulvalene 983:Bernard L. Feringa 966:Molecular machines 802: 791:biological machine 741: 721: 698: 672: 625: 599: 576: 439: 413: 107:Biological systems 68:pi–pi interactions 60:hydrophobic forces 56:metal coordination 3927: 3926: 3863:Quantum mechanics 3828:Chemical compound 3811:Chemical reaction 3749:Materials science 3667:General chemistry 3662:Amateur chemistry 3590:Photogeochemistry 3575:Stellar chemistry 3545:Nuclear chemistry 3466:Molecular biology 3433:Polymer chemistry 3404:Organic synthesis 3399:Organic reactions 3364:Ceramic chemistry 3354:Cluster chemistry 3284:Chemical kinetics 3272:Molecular physics 3151:Quantum chemistry 3064:Mass spectrometry 2768:10.1021/jo301499t 2709:978-0-470-74640-0 2653:978-1-78801-079-5 2572:10.1021/ar700216n 2507:10.1021/ar970340y 2382:Sanders, J. K. M. 2245:(11): 1304–1319. 1987:10.1021/ja064012h 1955:978-0-470-51234-0 1749:(10): 1096–1099. 1722:(11): 2565–2571. 1660:(16): 1838–1840. 1526:978-3-527-29311-7 1515:Lehn, J. (1995). 1480:(5115): 1762–23. 1449:Organic chemistry 1421:photoisomerizable 1236:photoisomerizable 1126:functional groups 1033:The formation of 874:activation energy 853:molecular sensors 744:{\displaystyle T} 561:Gibbs free energy 555: 554: 426:The value of the 257:protein structure 83:molecular folding 3952: 3915: 3914: 3903: 3891: 3890: 3879: 3878: 3823:Chemical element 3478:Chemical biology 3337:Magnetochemistry 3314:Mechanochemistry 3267:Chemical physics 3208:Electrochemistry 3113:Characterization 2975: 2968: 2961: 2952: 2951: 2924: 2923: 2889: 2880: 2874: 2866:: Complete Set ( 2861: 2855: 2854: 2829: 2823: 2822: 2811:10.1038/nmat4474 2791:Nature Materials 2786: 2780: 2779: 2762:(5): 1824–1832. 2751: 2745: 2732: 2726: 2717: 2711: 2697: 2691: 2686: 2680: 2679: 2673: 2665: 2637: 2631: 2630: 2624: 2616: 2590: 2584: 2583: 2555: 2549: 2543: 2537: 2536: 2534: 2532: 2517: 2511: 2510: 2490: 2484: 2483: 2463: 2457: 2456: 2420: 2414: 2413: 2374: 2368: 2367: 2357: 2325: 2319: 2318: 2317: 2311: 2301: 2261: 2255: 2254: 2234: 2228: 2227: 2226: 2220: 2210: 2170: 2164: 2163: 2148:Chemical Science 2143: 2137: 2136: 2135: 2129: 2119: 2079: 2073: 2072: 2071: 2065: 2055: 2015: 2009: 2008: 1998: 1975:J. Am. Chem. Soc 1966: 1960: 1959: 1933: 1924: 1914: 1908: 1907: 1898:(3): 2985–2993. 1883: 1877: 1876: 1839: 1833: 1832: 1823:(5): 1598–1624. 1812: 1806: 1805: 1765: 1759: 1758: 1738: 1732: 1731: 1711: 1705: 1704: 1676: 1670: 1669: 1649: 1643: 1642: 1616: 1607: 1601: 1600: 1583:(9): 5216–5300. 1572: 1566: 1565: 1537: 1531: 1530: 1512: 1506: 1505: 1469: 1353:transition state 1250:oxidation states 1147:Structural units 1028:ammonium cations 985:shared the 2016 939:self-replication 795:protein dynamics 750: 748: 747: 742: 730: 728: 727: 722: 707: 705: 704: 699: 681: 679: 678: 673: 634: 632: 631: 626: 608: 606: 605: 600: 585: 583: 582: 577: 446: 438: 422: 420: 419: 414: 323:structures, and 219: 200: 185: 173:An example of a 170: 151: 135: 123: 52:covalent bonding 48:hydrogen bonding 28:chemical systems 3960: 3959: 3955: 3954: 3953: 3951: 3950: 3949: 3930: 3929: 3928: 3923: 3867: 3770: 3764:Polymer science 3720:Click chemistry 3715:Green chemistry 3609:Ocean chemistry 3585:Biogeochemistry 3531: 3447: 3419:Total synthesis 3382:Stereochemistry 3368: 3318: 3235:Surface science 3225:Thermochemistry 3194: 3137: 3108:Crystallography 3013: 2985: 2979: 2932: 2927: 2887: 2881: 2877: 2862: 2858: 2830: 2826: 2787: 2783: 2752: 2748: 2733: 2729: 2718: 2714: 2698: 2694: 2687: 2683: 2667: 2666: 2654: 2638: 2634: 2618: 2617: 2605: 2591: 2587: 2556: 2552: 2544: 2540: 2530: 2528: 2519: 2518: 2514: 2491: 2487: 2464: 2460: 2421: 2417: 2386:Stoddart, J. F. 2375: 2371: 2326: 2322: 2312: 2262: 2258: 2235: 2231: 2221: 2171: 2167: 2144: 2140: 2130: 2080: 2076: 2066: 2016: 2012: 1967: 1963: 1956: 1934: 1927: 1915: 1911: 1884: 1880: 1840: 1836: 1813: 1809: 1787: 1783: 1779: 1775: 1766: 1762: 1739: 1735: 1712: 1708: 1677: 1673: 1650: 1646: 1625:(14): 2366–93. 1614: 1608: 1604: 1573: 1569: 1548:(22): 3924–77. 1538: 1534: 1527: 1513: 1509: 1470: 1466: 1462: 1445: 1400: 1377: 1345: 1339: 1331:smart materials 1322: 1317: 1296:The binding of 1278: 1254:redox reactions 1226:phthalocyanines 1218: 1149: 1093: 1084:electrochemical 1076:phthalocyanines 1035:carboxylic acid 1004: 995: 993:Building blocks 963: 947: 927: 914: 902:molecular knots 886: 878:stereochemistry 865: 848: 836:liquid crystals 807: 779: 766: 736: 733: 732: 713: 710: 709: 690: 687: 686: 643: 640: 639: 614: 611: 610: 591: 588: 587: 568: 565: 564: 443: 393: 390: 389: 384: 380: 363: 358: 329:electrochemical 293:Jean-Marie Lehn 230: 223: 220: 211: 203:Intramolecular 201: 192: 186: 177: 171: 162: 152: 143: 136: 127: 124: 115: 101:. The study of 32:discrete number 17: 12: 11: 5: 3958: 3948: 3947: 3942: 3925: 3924: 3922: 3921: 3909: 3897: 3885: 3872: 3869: 3868: 3866: 3865: 3860: 3855: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3819: 3818: 3808: 3801: 3800: 3799: 3789: 3784: 3778: 3776: 3772: 3771: 3769: 3768: 3767: 3766: 3761: 3756: 3746: 3745: 3744: 3734: 3733: 3732: 3727: 3722: 3717: 3707: 3706: 3705: 3694: 3693: 3692: 3691: 3686: 3676: 3671: 3670: 3669: 3664: 3653: 3652: 3651: 3650: 3648:Soil chemistry 3640: 3639: 3638: 3633: 3626:Food chemistry 3623: 3621:Carbochemistry 3618: 3616:Clay chemistry 3613: 3612: 3611: 3606: 3595: 3594: 3593: 3592: 3587: 3577: 3571:Astrochemistry 3567:Cosmochemistry 3564: 3563: 3562: 3557: 3552: 3550:Radiochemistry 3541: 3539: 3533: 3532: 3530: 3529: 3524: 3519: 3514: 3509: 3507:Neurochemistry 3504: 3499: 3498: 3497: 3487: 3486: 3485: 3475: 3474: 3473: 3468: 3457: 3455: 3449: 3448: 3446: 3445: 3440: 3438:Petrochemistry 3435: 3430: 3425: 3416: 3411: 3406: 3401: 3396: 3391: 3390: 3389: 3378: 3376: 3370: 3369: 3367: 3366: 3361: 3356: 3351: 3350: 3349: 3339: 3334: 3328: 3326: 3320: 3319: 3317: 3316: 3311: 3306: 3301: 3299:Spin chemistry 3296: 3294:Photochemistry 3291: 3286: 3281: 3279:Femtochemistry 3276: 3275: 3274: 3264: 3259: 3254: 3249: 3248: 3247: 3237: 3232: 3227: 3222: 3221: 3220: 3215: 3204: 3202: 3196: 3195: 3193: 3192: 3191: 3190: 3180: 3175: 3170: 3165: 3164: 3163: 3153: 3147: 3145: 3139: 3138: 3136: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3104: 3103: 3098: 3091:Chromatography 3088: 3083: 3082: 3081: 3076: 3071: 3061: 3060: 3059: 3054: 3049: 3044: 3034: 3029: 3023: 3021: 3015: 3014: 3012: 3011: 3009:Periodic table 3006: 3001: 2996: 2990: 2987: 2986: 2978: 2977: 2970: 2963: 2955: 2949: 2948: 2938: 2931: 2930:External links 2928: 2926: 2925: 2875: 2856: 2824: 2781: 2746: 2727: 2712: 2692: 2681: 2652: 2632: 2603: 2585: 2550: 2538: 2525:Nobelprize.org 2512: 2501:(7): 405–414. 2485: 2474:(3): 192–199. 2458: 2437:10.1038/nbt874 2431:(10): 1171–8. 2415: 2396:(6): 898–952. 2369: 2320: 2256: 2229: 2165: 2138: 2074: 2010: 1961: 1954: 1925: 1922:New York Times 1909: 1878: 1834: 1807: 1796:(4): 382–387. 1785: 1781: 1777: 1773: 1760: 1733: 1706: 1671: 1644: 1602: 1567: 1532: 1525: 1507: 1463: 1461: 1458: 1457: 1456: 1454:Nanotechnology 1451: 1444: 1441: 1425:electrochromic 1399: 1396: 1376: 1373: 1341:Main article: 1338: 1335: 1321: 1318: 1316: 1313: 1312: 1311: 1305: 1294: 1291:blood clotting 1277: 1274: 1273: 1272: 1257: 1239: 1229: 1217: 1214: 1213: 1212: 1208: 1190: 1172: 1148: 1145: 1144: 1143: 1129: 1121: 1110: 1092: 1089: 1088: 1087: 1068: 1041: 1031: 1020: 1003: 1000: 994: 991: 971:nanotechnology 962: 959: 946: 943: 935:protein design 926: 923: 913: 910: 885: 882: 864: 861: 847: 844: 806: 803: 778: 775: 765: 762: 751:, by means of 740: 720: 717: 697: 694: 683: 682: 671: 668: 665: 662: 659: 656: 653: 650: 647: 624: 621: 618: 598: 595: 575: 572: 557: 556: 553: 552: 549: 546: 543: 540: 537: 531: 530: 527: 524: 521: 518: 515: 509: 508: 505: 502: 499: 496: 493: 487: 486: 483: 480: 477: 474: 471: 465: 464: 461: 458: 455: 452: 449: 441: 424: 423: 412: 409: 406: 403: 400: 397: 382: 378: 368:hydrogen bonds 362: 361:Thermodynamics 359: 357: 354: 338:nanotechnology 325:Itamar Willner 321:self-assembled 289:Donald J. Cram 274:microemulsions 229: 226: 225: 224: 221: 214: 212: 202: 195: 193: 187: 180: 178: 172: 165: 163: 153: 146: 144: 137: 130: 128: 125: 118: 114: 111: 30:composed of a 15: 9: 6: 4: 3: 2: 3957: 3946: 3943: 3941: 3938: 3937: 3935: 3920: 3919: 3910: 3908: 3907: 3902: 3898: 3896: 3895: 3886: 3884: 3883: 3874: 3873: 3870: 3864: 3861: 3859: 3856: 3854: 3853:Chemical bond 3851: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3817: 3814: 3813: 3812: 3809: 3806: 3802: 3798: 3795: 3794: 3793: 3790: 3788: 3785: 3783: 3780: 3779: 3777: 3773: 3765: 3762: 3760: 3757: 3755: 3752: 3751: 3750: 3747: 3743: 3742:Stoichiometry 3740: 3739: 3738: 3735: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3712: 3711: 3708: 3704: 3701: 3700: 3699: 3698:Nanochemistry 3696: 3695: 3690: 3687: 3685: 3682: 3681: 3680: 3677: 3675: 3672: 3668: 3665: 3663: 3660: 3659: 3658: 3655: 3654: 3649: 3646: 3645: 3644: 3641: 3637: 3634: 3632: 3629: 3628: 3627: 3624: 3622: 3619: 3617: 3614: 3610: 3607: 3605: 3602: 3601: 3600: 3597: 3596: 3591: 3588: 3586: 3583: 3582: 3581: 3578: 3576: 3572: 3568: 3565: 3561: 3558: 3556: 3553: 3551: 3548: 3547: 3546: 3543: 3542: 3540: 3538: 3534: 3528: 3525: 3523: 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3496: 3493: 3492: 3491: 3488: 3484: 3481: 3480: 3479: 3476: 3472: 3469: 3467: 3464: 3463: 3462: 3459: 3458: 3456: 3454: 3450: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3423:Semisynthesis 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3388: 3385: 3384: 3383: 3380: 3379: 3377: 3375: 3371: 3365: 3362: 3360: 3357: 3355: 3352: 3348: 3345: 3344: 3343: 3340: 3338: 3335: 3333: 3330: 3329: 3327: 3325: 3321: 3315: 3312: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3273: 3270: 3269: 3268: 3265: 3263: 3260: 3258: 3257:Sonochemistry 3255: 3253: 3252:Cryochemistry 3250: 3246: 3245:Micromeritics 3243: 3242: 3241: 3238: 3236: 3233: 3231: 3228: 3226: 3223: 3219: 3216: 3214: 3211: 3210: 3209: 3206: 3205: 3203: 3201: 3197: 3189: 3186: 3185: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3162: 3159: 3158: 3157: 3154: 3152: 3149: 3148: 3146: 3144: 3140: 3134: 3131: 3129: 3126: 3124: 3123:Wet chemistry 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3102: 3099: 3097: 3094: 3093: 3092: 3089: 3087: 3084: 3080: 3077: 3075: 3072: 3070: 3067: 3066: 3065: 3062: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3039: 3038: 3035: 3033: 3030: 3028: 3025: 3024: 3022: 3020: 3016: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2991: 2988: 2984: 2976: 2971: 2969: 2964: 2962: 2957: 2956: 2953: 2946: 2942: 2939: 2937: 2934: 2933: 2921: 2917: 2913: 2909: 2905: 2901: 2898:(2): 200–10. 2897: 2893: 2886: 2879: 2873: 2869: 2865: 2860: 2852: 2848: 2844: 2840: 2836: 2828: 2820: 2816: 2812: 2808: 2804: 2800: 2796: 2792: 2785: 2777: 2773: 2769: 2765: 2761: 2757: 2750: 2744: 2740: 2736: 2731: 2725: 2721: 2716: 2710: 2706: 2702: 2696: 2690: 2685: 2677: 2671: 2663: 2659: 2655: 2649: 2645: 2644: 2636: 2628: 2622: 2614: 2610: 2606: 2604:9780128031995 2600: 2596: 2589: 2581: 2577: 2573: 2569: 2566:(4): 521–37. 2565: 2561: 2554: 2548: 2542: 2526: 2522: 2516: 2508: 2504: 2500: 2496: 2489: 2481: 2477: 2473: 2469: 2462: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2419: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2379: 2373: 2365: 2361: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2324: 2316: 2309: 2305: 2300: 2295: 2291: 2287: 2283: 2279: 2276:(1): 014104. 2275: 2271: 2267: 2260: 2252: 2248: 2244: 2240: 2233: 2225: 2218: 2214: 2209: 2204: 2200: 2196: 2192: 2188: 2185:(1): 014108. 2184: 2180: 2176: 2169: 2161: 2157: 2153: 2149: 2142: 2134: 2127: 2123: 2118: 2113: 2109: 2105: 2101: 2097: 2094:(1): 014103. 2093: 2089: 2085: 2078: 2070: 2063: 2059: 2054: 2049: 2045: 2041: 2037: 2033: 2030:(1): 014109. 2029: 2025: 2021: 2014: 2006: 2002: 1997: 1992: 1988: 1984: 1980: 1976: 1972: 1965: 1957: 1951: 1947: 1943: 1939: 1932: 1930: 1923: 1919: 1913: 1905: 1901: 1897: 1893: 1889: 1882: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1838: 1830: 1826: 1822: 1818: 1811: 1803: 1799: 1795: 1791: 1771: 1764: 1756: 1752: 1748: 1744: 1737: 1729: 1725: 1721: 1717: 1710: 1702: 1698: 1694: 1690: 1686: 1682: 1675: 1667: 1663: 1659: 1655: 1648: 1640: 1636: 1632: 1628: 1624: 1620: 1613: 1606: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1563: 1559: 1555: 1551: 1547: 1543: 1536: 1528: 1522: 1519:. Wiley-VCH. 1518: 1511: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1468: 1464: 1455: 1452: 1450: 1447: 1446: 1440: 1438: 1437:DNA computers 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1395: 1393: 1389: 1388:drug delivery 1384: 1381: 1372: 1370: 1366: 1362: 1358: 1354: 1350: 1344: 1334: 1332: 1328: 1309: 1306: 1303: 1299: 1295: 1292: 1288: 1284: 1280: 1279: 1270: 1266: 1263:derivatives, 1262: 1258: 1255: 1251: 1247: 1243: 1240: 1237: 1233: 1230: 1227: 1223: 1220: 1219: 1209: 1206: 1202: 1198: 1194: 1191: 1188: 1184: 1180: 1176: 1175:nanoparticles 1173: 1170: 1167:, and simple 1166: 1162: 1158: 1154: 1153: 1152: 1141: 1140:chelate-rings 1137: 1136:self-assembly 1133: 1132:Metallacrowns 1130: 1127: 1122: 1119: 1115: 1112:More complex 1111: 1108: 1104: 1103:Cyclodextrins 1101: 1100: 1099: 1097: 1085: 1081: 1080:photochemical 1077: 1073: 1069: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1039: 1036: 1032: 1029: 1025: 1021: 1018: 1014: 1010: 1006: 1005: 999: 990: 988: 984: 980: 976: 972: 967: 958: 956: 951: 942: 940: 936: 932: 922: 919: 909: 907: 903: 899: 895: 890: 881: 879: 875: 871: 860: 858: 854: 843: 841: 837: 833: 829: 825: 821: 817: 813: 800: 796: 792: 788: 783: 774: 771: 761: 758: 754: 738: 718: 695: 669: 663: 660: 657: 651: 648: 638: 637: 636: 622: 616: 596: 573: 562: 550: 547: 544: 541: 538: 536: 533: 532: 528: 525: 522: 519: 516: 514: 511: 510: 506: 503: 500: 497: 494: 492: 489: 488: 484: 481: 478: 475: 472: 470: 467: 466: 462: 459: 456: 453: 450: 448: 447: 437: 436: 435: 433: 429: 410: 407: 401: 398: 395: 388: 387: 386: 375: 373: 369: 353: 351: 347: 346:nanoparticles 343: 339: 334: 333:photochemical 330: 326: 322: 318: 314: 309: 306: 301: 298: 294: 290: 286: 282: 277: 275: 271: 266: 262: 258: 253: 251: 247: 243: 239: 235: 218: 213: 210: 206: 205:self-assembly 199: 194: 191: 184: 179: 176: 169: 164: 160: 156: 150: 145: 141: 134: 129: 122: 117: 116: 110: 108: 104: 100: 96: 92: 88: 84: 80: 75: 73: 72:electrostatic 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 3916: 3904: 3892: 3880: 3730:Biosynthesis 3702: 3580:Geochemistry 3495:Pharmacology 3471:Cell biology 3461:Biochemistry 3289:Spectroscopy 3188:VSEPR theory 3037:Spectroscopy 2981:Branches of 2895: 2891: 2878: 2867: 2863: 2859: 2834: 2827: 2797:(1): 13–26. 2794: 2790: 2784: 2759: 2755: 2749: 2738: 2734: 2730: 2719: 2715: 2700: 2695: 2684: 2642: 2635: 2594: 2588: 2563: 2559: 2553: 2541: 2529:. Retrieved 2524: 2515: 2498: 2494: 2488: 2471: 2467: 2461: 2428: 2424: 2418: 2393: 2389: 2378:Rowan, S. J. 2372: 2337: 2333: 2323: 2273: 2269: 2259: 2242: 2238: 2232: 2182: 2178: 2168: 2151: 2147: 2141: 2091: 2087: 2077: 2027: 2023: 2013: 1978: 1974: 1964: 1937: 1921: 1912: 1895: 1891: 1881: 1848: 1844: 1837: 1820: 1816: 1810: 1793: 1789: 1769: 1763: 1746: 1742: 1736: 1719: 1715: 1709: 1687:(2): 275–7. 1684: 1680: 1674: 1657: 1653: 1647: 1622: 1618: 1605: 1580: 1576: 1570: 1545: 1541: 1535: 1516: 1510: 1477: 1473: 1467: 1417:photochromic 1409:Data storage 1401: 1385: 1382: 1378: 1346: 1323: 1315:Applications 1232:Photochromic 1169:alkyl chains 1150: 1094: 1053:terpyridines 1045:complexation 1013:bipyridinium 996: 964: 948: 928: 915: 908:and ravels. 887: 866: 849: 808: 767: 756: 684: 558: 425: 376: 364: 310: 302: 297:Fritz Vögtle 281:crown ethers 278: 254: 231: 190:cucurbituril 140:cucurbituril 76: 19: 18: 3918:WikiProject 3143:Theoretical 3128:Calorimetry 2154:(9): 2695. 1300:with their 1205:multilayers 1114:cyclophanes 1107:calixarenes 1096:Macrocycles 1091:Macrocycles 1049:bipyridines 1024:crown ether 1022:The use of 925:Biomimetics 764:Environment 469:Valinomycin 315:developing 305:Nobel Prize 26:concerning 3934:Categories 3754:Metallurgy 3453:Biological 3019:Analytical 2741:Cambridge 2662:1103809341 2531:14 January 1460:References 1423:units, by 1365:dendrimers 1269:fullerenes 1244:(TTF) and 1222:Porphyrins 1197:electrodes 1187:dendrimers 1183:fullerenes 1165:triphenyls 1072:porphyrins 1065:metal ions 945:Imprinting 931:biomimetic 799:nanoscales 793:that uses 432:determined 350:dendrimers 342:fullerenes 50:to strong 3945:Chemistry 3816:Catalysis 3324:Inorganic 3118:Titration 2983:chemistry 2703:. Wiley. 2670:cite book 2621:cite book 2613:992802408 1865:1477-9234 1577:Chem. Rev 1407:devices. 1369:cavitands 1349:catalysts 1337:Catalysis 1327:bottom-up 1302:cofactors 1265:viologens 1261:benzidine 1161:biphenyls 1157:polyether 1118:cryptands 1063:or other 1057:ruthenium 898:rotaxanes 894:catenanes 870:catalysis 857:catalysis 828:membranes 820:foldamers 716:Δ 693:Δ 667:Δ 661:− 655:Δ 646:Δ 620:Δ 594:Δ 571:Δ 513:Nigericin 405:⇋ 372:ion pairs 74:effects. 36:molecules 24:chemistry 3882:Category 3838:Molecule 3775:See also 3200:Physical 2920:41385952 2912:21571017 2851:26860310 2819:26681596 2776:22931185 2580:18271561 2453:54485012 2445:14520402 2410:12491278 2364:21343923 2308:27877930 2217:27877934 2126:27877929 2062:27877935 2005:16967979 1873:27438046 1701:12491407 1639:17370285 1597:27136957 1562:19415701 1443:See also 1375:Medicine 1361:micelles 1359:such as 1246:quinones 1193:Surfaces 1179:nanorods 1159:chains, 832:vesicles 824:micelles 787:ribosome 777:Concepts 770:solvents 563:change, 535:Monensin 491:Enniatin 270:micelles 209:foldamer 159:rotaxane 3894:Commons 3858:Alchemy 3374:Organic 2799:Bibcode 2342:Bibcode 2340:: 205. 2299:5099799 2278:Bibcode 2208:5099803 2187:Bibcode 2117:5099798 2096:Bibcode 2053:5099804 2032:Bibcode 1996:2572717 1502:8511582 1482:Bibcode 1474:Science 1298:enzymes 816:folding 810:form a 473:<0.7 356:Control 250:Latimer 228:History 113:Gallery 3906:Portal 3052:UV-Vis 2918:  2910:  2849:  2817:  2774:  2707:  2660:  2650:  2611:  2601:  2578:  2451:  2443:  2408:  2362:  2306:  2296:  2215:  2205:  2124:  2114:  2060:  2050:  2003:  1993:  1952:  1871:  1863:  1699:  1637:  1595:  1560:  1523:  1500:  1367:, and 1287:biotin 1283:avidin 1267:, and 1224:, and 1116:, and 1061:silver 1038:dimers 955:steric 757:et.al. 348:, and 97:, and 3079:MALDI 3047:Raman 2916:S2CID 2888:(PDF) 2449:S2CID 1615:(PDF) 1429:redox 1415:with 1055:with 789:is a 685:Both 507:2.34 485:4.42 440:Log K 207:of a 46:, or 3833:Atom 3101:HPLC 2943:and 2908:PMID 2868:2013 2847:PMID 2815:PMID 2772:PMID 2705:ISBN 2676:link 2658:OCLC 2648:ISBN 2627:link 2609:OCLC 2599:ISBN 2576:PMID 2533:2017 2441:PMID 2406:PMID 2360:PMID 2304:PMID 2213:PMID 2122:PMID 2058:PMID 2001:PMID 1950:ISBN 1869:PMID 1861:ISSN 1720:1998 1697:PMID 1635:PMID 1593:PMID 1558:PMID 1521:ISBN 1498:PMID 1427:and 1419:and 1285:and 1234:and 1203:and 1185:and 1163:and 1082:and 1043:The 1007:The 981:and 937:and 855:and 708:and 559:The 551:3.6 504:2.24 501:2.92 498:2.42 495:1.28 482:5.26 476:0.67 331:and 295:and 272:and 70:and 3843:Ion 3074:ICP 3057:NMR 2900:doi 2896:155 2839:doi 2807:doi 2764:doi 2568:doi 2503:doi 2476:doi 2433:doi 2398:doi 2350:doi 2294:PMC 2286:doi 2247:doi 2203:PMC 2195:doi 2156:doi 2112:PMC 2104:doi 2048:PMC 2040:doi 1991:PMC 1983:doi 1979:128 1942:doi 1900:doi 1853:doi 1825:doi 1798:doi 1788:". 1751:doi 1724:doi 1689:doi 1662:doi 1627:doi 1585:doi 1581:116 1550:doi 1490:doi 1478:260 1308:DNA 1074:or 1051:or 1047:of 1011:of 916:In 797:on 548:4.3 545:5.0 542:6.5 539:3.6 526:5.0 523:5.6 520:4.7 479:4.9 463:Cs 442:1,1 283:by 265:DNA 263:of 34:of 3936:: 3573:/ 3569:/ 3421:/ 3096:GC 3069:EI 3042:IR 2914:. 2906:. 2894:. 2890:. 2845:. 2813:. 2805:. 2795:15 2793:. 2770:. 2760:78 2758:. 2672:}} 2668:{{ 2656:. 2623:}} 2619:{{ 2607:. 2574:. 2564:41 2562:. 2523:. 2499:31 2497:. 2472:18 2470:. 2447:. 2439:. 2429:21 2427:. 2404:. 2394:41 2392:. 2384:; 2358:. 2348:. 2336:. 2332:. 2302:. 2292:. 2284:. 2272:. 2268:. 2243:29 2241:. 2211:. 2201:. 2193:. 2181:. 2177:. 2150:. 2120:. 2110:. 2102:. 2090:. 2086:. 2056:. 2046:. 2038:. 2026:. 2022:. 1999:. 1989:. 1977:. 1973:. 1948:. 1928:^ 1920:. 1896:27 1894:. 1890:. 1867:. 1859:. 1849:45 1847:. 1821:86 1819:. 1794:40 1792:. 1786:12 1782:24 1778:36 1774:36 1747:34 1745:. 1718:. 1695:. 1685:41 1683:. 1658:35 1656:. 1633:. 1623:46 1621:. 1617:. 1591:. 1579:. 1556:. 1546:48 1544:. 1496:. 1488:. 1476:. 1439:. 1363:, 1181:, 1177:, 1105:, 1059:, 977:, 941:. 904:, 900:, 896:, 859:. 842:. 834:, 830:, 826:, 785:A 635:. 529:- 460:Rb 454:Na 451:Li 374:. 344:, 291:, 276:. 93:, 89:, 85:, 81:, 66:, 62:, 58:, 42:, 3807:" 3803:" 2974:e 2967:t 2960:v 2922:. 2902:: 2853:. 2841:: 2821:. 2809:: 2801:: 2778:. 2766:: 2678:) 2664:. 2629:) 2615:. 2582:. 2570:: 2535:. 2509:. 2505:: 2482:. 2478:: 2455:. 2435:: 2412:. 2400:: 2366:. 2352:: 2344:: 2338:2 2310:. 2288:: 2280:: 2274:9 2253:. 2249:: 2219:. 2197:: 2189:: 2183:9 2162:. 2158:: 2152:3 2128:. 2106:: 2098:: 2092:9 2064:. 2042:: 2034:: 2028:9 2007:. 1985:: 1958:. 1944:: 1906:. 1902:: 1875:. 1855:: 1831:. 1827:: 1804:. 1800:: 1784:O 1780:N 1776:H 1770:p 1757:. 1753:: 1730:. 1726:: 1703:. 1691:: 1668:. 1664:: 1641:. 1629:: 1599:. 1587:: 1564:. 1552:: 1529:. 1504:. 1492:: 1484:: 1207:. 1142:. 1019:. 739:T 719:S 696:G 670:S 664:T 658:H 652:= 649:G 623:S 617:T 597:H 574:G 517:- 457:K 411:G 408:H 402:G 399:+ 396:H 383:q 381:G 379:p 161:) 157:( 142:)

Index

chemistry
chemical systems
discrete number
molecules
intermolecular forces
electrostatic charge
hydrogen bonding
covalent bonding
metal coordination
hydrophobic forces
van der Waals forces
pi–pi interactions
electrostatic
molecular self-assembly
molecular folding
molecular recognition
host–guest chemistry
mechanically-interlocked molecular architectures
dynamic covalent chemistry
non-covalent interactions
Biological systems
Self-assembly of a circular double helicate
Host–guest complex within another host (cucurbituril)
cucurbituril
Mechanically-interlocked molecules (rotaxane)
Mechanically-interlocked molecules
rotaxane
An example of a host–guest chemistry
host–guest chemistry
Host–guest complex with a p-xylylenediammonium bound within a cucurbituril

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑