Knowledge

Surface plasmon

Source đź“ť

828: 20: 205: 128: 841: 175:
As an SPP propagates along the surface, it loses energy to the metal due to absorption. It can also lose energy due to scattering into free-space or into other directions. The electric field falls off evanescently perpendicular to the metal surface. At low frequencies, the SPP penetration depth into
944:
The ability to dynamically control the plasmonic properties of materials in these nano-devices is key to their development. A new approach that uses plasmon-plasmon interactions has been demonstrated recently. Here the bulk plasmon resonance is induced or suppressed to manipulate the propagation of
1359:
Taverne, S.; Caron, B.; GĂ©tin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E. (2018-01-12). "Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED
180:
formula. In the dielectric, the field will fall off far more slowly. SPPs are very sensitive to slight perturbations within the skin depth and because of this, SPPs are often used to probe inhomogeneities of a surface. For more details, see
77:
The existence of surface plasmons was first predicted in 1957 by Rufus Ritchie. In the following two decades, surface plasmons were extensively studied by many scientists, the foremost of whom were T. Turbadar in the 1950s and 1960s, and
31:
waves. The exponential dependence of the electromagnetic field intensity on the distance away from the interface is shown on the right. These waves can be excited very efficiently with light in the visible range of the electromagnetic
978:
The wavelength and intensity of the plasmon-related absorption and emission peaks are affected by molecular adsorption that can be used in molecular sensors. For example, a fully operational prototype device detecting
119:
Surface plasmon polaritons can be excited by electrons or photons. In the case of photons, it cannot be done directly, but requires a prism, or a grating, or a defect on the metal surface.
934:
changes in thickness, density fluctuations, or molecular absorption. Recent works have also shown that SPR can be used to measure the optical indexes of multi-layered systems, where
149:, where the dispersion relation (relation between frequency and wavevector) is the same as in free space. At a higher frequency, the dispersion relation bends over and reaches an 971:, the second harmonic signal is proportional to the square of the electric field. The electric field is stronger at the interface because of the surface plasmon resulting in a 941:
Surface plasmon-based circuits have been proposed as a means of overcoming the size limitations of photonic circuits for use in high performance data processing nano devices.
891:
Localized surface plasmons arise in small metallic objects, including nanoparticles. Since the translational invariance of the system is lost, a description in terms of
926:(SPR). In SPR, the maximum excitation of surface plasmons are detected by monitoring the reflected power from a prism coupler as a function of incident angle or 1403:
Salvi, JĂ©rĂ´me; Barchiesi, Dominique (2014-04-01). "Measurement of thicknesses and optical properties of thin films from Surface Plasmon Resonance (SPR)".
910:, with increased local-field enhancements. LSP resonances largely depend on the shape of the particle; spherical particles can be studied analytically by 1580:
Xu, Zhida; Chen, Yi; Gartia, Manas; Jiang, Jing; Liu, Logan (2011). "Surface plasmon enhanced broadband spectrophotometry on black silver substrates".
872: 51:
changes sign across the interface (e.g. a metal-dielectric interface, such as a metal sheet in air). SPs have lower energy than bulk (or volume)
1537:
Wenshan Cai; Justin S. White & Mark L. Brongersma (2009). "Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators".
902:
LSPs can be excited directly through incident waves; efficient coupling to the LSP modes correspond to resonances and can be attributed to
1022: 170: 1662:
Minh Hiep, Ha; Endo, Tatsuro; Kerman, Kagan; Chikae, Miyuki; Kim, Do-Kyun; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi (2007).
140: 1259:
Arakawa, E. T.; Williams, M. W.; Hamm, R. N.; Ritchie, R. H. (29 October 1973). "Effect of Damping on Surface Plasmon Dispersion".
983:
in milk has been fabricated. The device is based on monitoring changes in plasmon-related absorption of light by a gold layer.
903: 865: 1343: 1301: 945:
light. This approach has been shown to have a high potential for nanoscale light manipulation and the development of a fully
1047: 953: 62:
The charge motion in a surface plasmon always creates electromagnetic fields outside (as well as inside) the metal. The
1079:
in metals. For lossy cases, the dispersion curve backbends after the reaching the surface plasmon frequency instead of
1002: 968: 1243: 858: 845: 949:-compatible electro-optical plasmonic modulator, said to be a future key component in chip-scale photonic circuits. 1017: 997: 827: 114: 610: 86:, E. Kretschmann, and A. Otto in the 1960s and 1970s. Information transfer in nanoscale structures, similar to 1627:
V. K. Valev (2012). "Characterization of Nanostructured Plasmonic Surfaces with Second Harmonic Generation".
957: 907: 785: 265: 790: 415: 66:
excitation, including both the charge motion and associated electromagnetic field, is called either a
923: 886: 680: 355: 182: 158: 103: 71: 67: 55:
which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an
28: 675: 670: 196: 760: 1708: 1582: 1261: 896: 365: 770: 1335: 1140: 755: 695: 665: 615: 335: 225: 1664:"A localized surface plasmon resonance based immunosensor for the detection of casein in milk" 1502:
Akimov, Yu A; Chu, H S (2012). "Plasmon–plasmon interaction: Controlling light at nanoscale".
47:
oscillations that exist at the interface between any two materials where the real part of the
795: 410: 395: 1323: 922:
The excitation of surface plasmons is frequently used in an experimental technique known as
27:
interface. The charge density oscillations and associated electromagnetic fields are called
1675: 1601: 1546: 1458: 1412: 1369: 1113: 1037: 385: 275: 79: 44: 8: 1713: 1515: 1293: 1012: 1007: 625: 435: 285: 1679: 1605: 1550: 1462: 1416: 1373: 1117: 1591: 1195: 1027: 895:, as in SPPs, can not be made. Also unlike the continuous dispersion relation in SPPs, 805: 765: 740: 488: 479: 1160: 975:. This larger signal is often exploited to produce a stronger second harmonic signal. 1644: 1562: 1519: 1484: 1428: 1385: 1339: 1324: 1297: 1239: 735: 580: 470: 390: 1683: 1636: 1609: 1554: 1511: 1474: 1466: 1420: 1377: 1270: 1205: 1155: 1121: 1052: 972: 440: 405: 400: 360: 330: 300: 260: 220: 154: 150: 1449:(2006). "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions". 1186:(2006). "Generation of traveling surface plasmon waves by free-electron impact". 1104: 750: 700: 570: 325: 237: 1274: 1688: 1663: 1181: 1042: 1032: 911: 832: 800: 780: 775: 730: 650: 585: 483: 370: 215: 23:
Schematic representation of an electron density wave propagating along a metal–
1446: 1424: 1702: 1432: 1389: 1183: 1102:
Ritchie, R. H. (June 1957). "Plasma Losses by Fast Electrons in Thin Films".
1072: 511: 492: 474: 375: 295: 83: 1536: 1470: 1125: 705: 19: 1648: 1566: 1523: 1488: 935: 725: 715: 685: 645: 640: 620: 465: 445: 305: 146: 127: 1076: 961: 810: 745: 720: 690: 635: 630: 562: 204: 24: 1230:
Maradudin, Alexei A.; Sambles, J. Roy; Barnes, William L., eds. (2014).
1200: 1479: 927: 892: 655: 497: 290: 177: 91: 48: 1640: 1613: 1558: 1381: 1209: 1182:
Bashevoy, M.V.; Jonsson, F.; Krasavin, A.V.; Zheludev, N.I.; Chen Y.;
1080: 992: 931: 710: 660: 533: 380: 280: 87: 56: 135:, the surface plasmon curve (red) approaches the photon curve (blue) 1331: 1235: 270: 1596: 171:
Surface plasmon polariton § Propagation length and skin depth
590: 575: 538: 529: 524: 52: 980: 543: 519: 250: 141:
Surface plasmon polariton § Fields and dispersion relation
964:, therefore sensors based on surface plasmons were developed. 1661: 548: 245: 946: 1258: 1071:
This lossless dispersion relation neglects the effects of
1573: 1358: 255: 131:
Lossless dispersion curve for surface plasmons. At low
1229: 1138: 1396: 1281: 1095: 164: 1530: 90:, by means of surface plasmons, is referred to as 1579: 1326:Principles of Surface-Enhanced Raman Spectroscopy 1132: 1700: 1655: 1439: 1495: 1402: 1321: 1225: 1223: 1221: 1219: 157:" (see figure at right). For more details see 1352: 866: 188: 176:the metal is commonly approximated using the 97: 1668:Science and Technology of Advanced Materials 1322:Le Ru, Eric C.; Etchegoin, Pablo G. (2009). 917: 74:for the closed surface of a small particle. 1626: 1620: 1317: 1315: 1313: 1216: 115:Surface plasmon polariton § Excitation 1023:Multi-parametric surface plasmon resonance 873: 859: 203: 16:Coherent delocalized electron oscillations 1687: 1595: 1501: 1478: 1290:Plasmonics: Fundamentals and Applications 1252: 1199: 1159: 1139:Polman, Albert; Harry A. Atwater (2005). 1310: 930:. This technique can be used to observe 126: 18: 1101: 1701: 145:At low frequency, an SPP approaches a 122: 1445: 1287: 1141:"Plasmonics: optics at the nanoscale" 1048:Surface plasmon resonance microscopy 952:Some other surface effects such as 13: 1003:Extraordinary optical transmission 969:surface second harmonic generation 960:are induced by surface plasmon of 899:of the particle are discretized. 14: 1725: 165:Propagation length and skin depth 1018:Heat-assisted magnetic recording 998:Dual-polarization interferometry 840: 839: 826: 1516:10.1088/0957-4484/23/44/444004 1175: 1065: 1: 1161:10.1016/S1369-7021(04)00685-6 1089: 958:surface-enhanced fluorescence 108: 70:at a planar interface, or a 7: 1275:10.1103/PhysRevLett.31.1127 986: 10: 1730: 1689:10.1016/j.stam.2006.12.010 1362:Journal of Applied Physics 1081:asymptotically increasing. 884: 416:Spin gapless semiconductor 189:Localized surface plasmons 168: 138: 112: 101: 98:Surface plasmon polaritons 1425:10.1007/s00339-013-8038-z 1288:Maier, Stefan A. (2007). 973:non-linear optical effect 938:failed to give a result. 924:surface plasmon resonance 918:Experimental applications 887:Localized surface plasmon 356:Electronic band structure 183:surface plasmon polariton 159:surface plasmon polariton 104:Surface plasmon polariton 72:localized surface plasmon 68:surface plasmon polariton 29:surface plasmon-polariton 1058: 266:Bose–Einstein condensate 197:Condensed matter physics 1583:Applied Physics Letters 1471:10.1126/science.1114849 1262:Physical Review Letters 1126:10.1103/PhysRev.106.874 147:Sommerfeld-Zenneck wave 954:surface-enhanced Raman 136: 33: 1075:factors, such as the 897:electromagnetic modes 411:Topological insulator 130: 22: 1038:Plasmonics (journal) 429:Electronic phenomena 276:Fermionic condensate 45:delocalized electron 1680:2007STAdM...8..331M 1635:(44): 15454–15471. 1606:2011ApPhL..98x1904X 1551:2009NanoL...9.4403C 1463:2006Sci...311..189O 1417:2014ApPhA.115..245S 1374:2018JAP...123b3108T 1294:Springer Publishing 1118:1957PhRv..106..874R 1013:Gap surface plasmon 1008:Free electron model 436:Quantum Hall effect 123:Dispersion relation 49:dielectric function 1028:Plasma oscillation 833:Physics portal 137: 34: 1641:10.1021/la302485c 1614:10.1063/1.3599551 1559:10.1021/nl902701b 1405:Applied Physics A 1382:10.1063/1.5003869 1345:978-0-444-52779-0 1303:978-0-387-33150-8 1269:(18): 1127–1129. 1232:Modern Plasmonics 1210:10.1021/nl060941v 883: 882: 581:Granular material 349:Electronic phases 1721: 1694: 1693: 1691: 1659: 1653: 1652: 1624: 1618: 1617: 1599: 1577: 1571: 1570: 1534: 1528: 1527: 1499: 1493: 1492: 1482: 1457:(5758): 189–93. 1443: 1437: 1436: 1400: 1394: 1393: 1356: 1350: 1349: 1329: 1319: 1308: 1307: 1285: 1279: 1278: 1256: 1250: 1249: 1238:. p. 1–23. 1227: 1214: 1213: 1203: 1179: 1173: 1172: 1170: 1168: 1163: 1145: 1136: 1130: 1129: 1099: 1083: 1077:intrinsic losses 1069: 1053:Waves in plasmas 875: 868: 861: 848: 843: 842: 835: 831: 830: 441:Spin Hall effect 331:Phase transition 301:Luttinger liquid 238:States of matter 221:Phase transition 207: 193: 192: 155:plasma frequency 151:asymptotic limit 37:Surface plasmons 1729: 1728: 1724: 1723: 1722: 1720: 1719: 1718: 1699: 1698: 1697: 1660: 1656: 1625: 1621: 1578: 1574: 1545:(12): 4403–11. 1535: 1531: 1500: 1496: 1444: 1440: 1401: 1397: 1357: 1353: 1346: 1320: 1311: 1304: 1286: 1282: 1257: 1253: 1246: 1228: 1217: 1201:physics/0604227 1180: 1176: 1166: 1164: 1148:Materials Today 1143: 1137: 1133: 1105:Physical Review 1100: 1096: 1092: 1087: 1086: 1070: 1066: 1061: 989: 956:scattering and 920: 889: 879: 838: 825: 824: 817: 816: 815: 605: 597: 596: 595: 571:Amorphous solid 565: 555: 554: 553: 532: 514: 504: 503: 502: 491: 489:Antiferromagnet 482: 480:Superparamagnet 473: 460: 459:Magnetic phases 452: 451: 450: 430: 422: 421: 420: 350: 342: 341: 340: 326:Order parameter 320: 319:Phase phenomena 312: 311: 310: 240: 230: 191: 173: 167: 143: 125: 117: 111: 106: 100: 43:) are coherent 17: 12: 11: 5: 1727: 1717: 1716: 1711: 1709:Quasiparticles 1696: 1695: 1654: 1619: 1590:(24): 241904. 1572: 1529: 1510:(44): 444004. 1504:Nanotechnology 1494: 1438: 1411:(1): 245–255. 1395: 1351: 1344: 1309: 1302: 1280: 1251: 1244: 1215: 1174: 1131: 1112:(5): 874–881. 1093: 1091: 1088: 1085: 1084: 1063: 1062: 1060: 1057: 1056: 1055: 1050: 1045: 1043:Spinplasmonics 1040: 1035: 1033:Plasmonic lens 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 988: 985: 919: 916: 885:Main article: 881: 880: 878: 877: 870: 863: 855: 852: 851: 850: 849: 836: 819: 818: 814: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 607: 606: 603: 602: 599: 598: 594: 593: 588: 586:Liquid crystal 583: 578: 573: 567: 566: 561: 560: 557: 556: 552: 551: 546: 541: 536: 527: 522: 516: 515: 512:Quasiparticles 510: 509: 506: 505: 501: 500: 495: 486: 477: 471:Superdiamagnet 468: 462: 461: 458: 457: 454: 453: 449: 448: 443: 438: 432: 431: 428: 427: 424: 423: 419: 418: 413: 408: 403: 398: 396:Thermoelectric 393: 391:Superconductor 388: 383: 378: 373: 371:Mott insulator 368: 363: 358: 352: 351: 348: 347: 344: 343: 339: 338: 333: 328: 322: 321: 318: 317: 314: 313: 309: 308: 303: 298: 293: 288: 283: 278: 273: 268: 263: 258: 253: 248: 242: 241: 236: 235: 232: 231: 229: 228: 223: 218: 212: 209: 208: 200: 199: 190: 187: 169:Main article: 166: 163: 139:Main article: 124: 121: 113:Main article: 110: 107: 102:Main article: 99: 96: 80:E. N. Economou 15: 9: 6: 4: 3: 2: 1726: 1715: 1712: 1710: 1707: 1706: 1704: 1690: 1685: 1681: 1677: 1673: 1669: 1665: 1658: 1650: 1646: 1642: 1638: 1634: 1630: 1623: 1615: 1611: 1607: 1603: 1598: 1593: 1589: 1585: 1584: 1576: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1525: 1521: 1517: 1513: 1509: 1505: 1498: 1490: 1486: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1448: 1442: 1434: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1399: 1391: 1387: 1383: 1379: 1375: 1371: 1368:(2): 023108. 1367: 1363: 1355: 1347: 1341: 1337: 1333: 1330:. Amsterdam: 1328: 1327: 1318: 1316: 1314: 1305: 1299: 1295: 1291: 1284: 1276: 1272: 1268: 1264: 1263: 1255: 1247: 1245:9780444595263 1241: 1237: 1234:. Amsterdam: 1233: 1226: 1224: 1222: 1220: 1211: 1207: 1202: 1197: 1193: 1189: 1185: 1184:Stockman M.I. 1178: 1162: 1157: 1153: 1149: 1142: 1135: 1127: 1123: 1119: 1115: 1111: 1107: 1106: 1098: 1094: 1082: 1078: 1074: 1068: 1064: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 990: 984: 982: 976: 974: 970: 965: 963: 959: 955: 950: 948: 942: 939: 937: 933: 929: 925: 915: 913: 909: 905: 900: 898: 894: 888: 876: 871: 869: 864: 862: 857: 856: 854: 853: 847: 837: 834: 829: 823: 822: 821: 820: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 611:Van der Waals 609: 608: 601: 600: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 568: 564: 559: 558: 550: 547: 545: 542: 540: 537: 535: 531: 528: 526: 523: 521: 518: 517: 513: 508: 507: 499: 496: 494: 490: 487: 485: 481: 478: 476: 472: 469: 467: 464: 463: 456: 455: 447: 444: 442: 439: 437: 434: 433: 426: 425: 417: 414: 412: 409: 407: 406:Ferroelectric 404: 402: 401:Piezoelectric 399: 397: 394: 392: 389: 387: 384: 382: 379: 377: 376:Semiconductor 374: 372: 369: 367: 364: 362: 359: 357: 354: 353: 346: 345: 337: 334: 332: 329: 327: 324: 323: 316: 315: 307: 304: 302: 299: 297: 296:Superfluidity 294: 292: 289: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 252: 249: 247: 244: 243: 239: 234: 233: 227: 224: 222: 219: 217: 214: 213: 211: 210: 206: 202: 201: 198: 195: 194: 186: 184: 179: 172: 162: 160: 156: 152: 148: 142: 134: 129: 120: 116: 105: 95: 93: 89: 85: 84:Heinz Raether 81: 75: 73: 69: 65: 60: 59:(or plasma). 58: 54: 50: 46: 42: 38: 30: 26: 21: 1671: 1667: 1657: 1632: 1628: 1622: 1587: 1581: 1575: 1542: 1539:Nano Letters 1538: 1532: 1507: 1503: 1497: 1454: 1450: 1441: 1408: 1404: 1398: 1365: 1361: 1354: 1325: 1292:. New York: 1289: 1283: 1266: 1260: 1254: 1231: 1191: 1188:Nano Letters 1187: 1177: 1165:. Retrieved 1151: 1147: 1134: 1109: 1103: 1097: 1067: 977: 966: 962:noble metals 951: 943: 940: 936:ellipsometry 921: 901: 890: 741:von Klitzing 446:Kondo effect 306:Time crystal 286:Fermi liquid 174: 153:called the " 144: 132: 118: 76: 63: 61: 57:electron gas 40: 36: 35: 1480:11693/38263 1167:January 26, 563:Soft matter 484:Ferromagnet 1714:Plasmonics 1703:Categories 1674:(4): 331. 1360:cathode". 1334:. p.  1090:References 928:wavelength 912:Mie theory 908:scattering 904:absorption 893:wavevector 706:Louis NĂ©el 696:Schrieffer 604:Scientists 498:Spin glass 493:Metamagnet 475:Paramagnet 291:Supersolid 178:skin depth 109:Excitation 92:plasmonics 25:dielectric 1597:1402.1730 1447:Ă–zbay, E. 1433:1432-0630 1390:0021-8979 993:Biosensor 932:nanometer 806:Wetterich 786:Abrikosov 701:Josephson 671:Van Vleck 661:Luttinger 534:Polariton 466:Diamagnet 386:Conductor 381:Semimetal 366:Insulator 281:Fermi gas 88:photonics 32:spectrum. 1649:22889193 1629:Langmuir 1567:19827771 1524:23080049 1489:16410515 1332:Elsevier 1236:Elsevier 1194:: 1113. 987:See also 846:Category 791:Ginzburg 766:Laughlin 726:Kadanoff 681:Shockley 666:Anderson 621:von Laue 271:Bose gas 53:plasmons 1676:Bibcode 1602:Bibcode 1547:Bibcode 1459:Bibcode 1451:Science 1413:Bibcode 1370:Bibcode 1114:Bibcode 1073:damping 796:Leggett 771:Störmer 756:Bednorz 716:Giaever 686:Bardeen 676:Hubbard 651:Peierls 641:Onsager 591:Polymer 576:Colloid 539:Polaron 530:Plasmon 525:Exciton 1647:  1565:  1522:  1487:  1431:  1388:  1342:  1338:–179. 1300:  1242:  1154:: 56. 981:casein 844:  811:Perdew 801:Parisi 761:MĂĽller 751:Rohrer 746:Binnig 736:Wilson 731:Fisher 691:Cooper 656:Landau 544:Magnon 520:Phonon 361:Plasma 261:Plasma 251:Liquid 216:Phases 1592:arXiv 1196:arXiv 1144:(PDF) 1059:Notes 711:Esaki 636:Bloch 631:Debye 626:Bragg 616:Onnes 549:Roton 246:Solid 64:total 1645:PMID 1563:PMID 1520:PMID 1485:PMID 1429:ISSN 1386:ISSN 1340:ISBN 1298:ISBN 1240:ISBN 1169:2011 947:CMOS 906:and 781:Tsui 776:Yang 721:Kohn 646:Mott 1684:doi 1637:doi 1610:doi 1555:doi 1512:doi 1475:hdl 1467:doi 1455:311 1421:doi 1409:115 1378:doi 1366:123 1336:174 1271:doi 1206:doi 1156:doi 1122:doi 1110:106 967:In 336:QCP 256:Gas 226:QCP 41:SPs 1705:: 1682:. 1670:. 1666:. 1643:. 1633:28 1631:. 1608:. 1600:. 1588:98 1586:. 1561:. 1553:. 1541:. 1518:. 1508:23 1506:. 1483:. 1473:. 1465:. 1453:. 1427:. 1419:. 1407:. 1384:. 1376:. 1364:. 1312:^ 1296:. 1267:31 1265:. 1218:^ 1204:. 1190:. 1150:. 1146:. 1120:. 1108:. 914:. 185:. 161:. 94:. 82:, 1692:. 1686:: 1678:: 1672:8 1651:. 1639:: 1616:. 1612:: 1604:: 1594:: 1569:. 1557:: 1549:: 1543:9 1526:. 1514:: 1491:. 1477:: 1469:: 1461:: 1435:. 1423:: 1415:: 1392:. 1380:: 1372:: 1348:. 1306:. 1277:. 1273:: 1248:. 1212:. 1208:: 1198:: 1192:6 1171:. 1158:: 1152:8 1128:. 1124:: 1116:: 874:e 867:t 860:v 133:k 39:(

Index


dielectric
surface plasmon-polariton
delocalized electron
dielectric function
plasmons
electron gas
surface plasmon polariton
localized surface plasmon
E. N. Economou
Heinz Raether
photonics
plasmonics
Surface plasmon polariton
Surface plasmon polariton § Excitation

Surface plasmon polariton § Fields and dispersion relation
Sommerfeld-Zenneck wave
asymptotic limit
plasma frequency
surface plasmon polariton
Surface plasmon polariton § Propagation length and skin depth
skin depth
surface plasmon polariton
Condensed matter physics

Phases
Phase transition
QCP
States of matter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑