Knowledge

Sylow theorems

Source 📝

820: 3235: 7620: 3279: 52: 5496: 1636:
to give statements about the structure of its subgroups: essentially, it gives a technique to transport basic number-theoretic information about a group to its group structure. From this observation, classifying finite groups becomes a game of finding which combinations/constructions of groups of
6518:
of the input (the degree of the group times the number of generators). These algorithms are described in textbook form in Seress, and are now becoming practical as the constructive recognition of finite simple groups becomes a reality. In particular, versions of this algorithm are used in the
5158: 3297:
is even, then 4 divides the order of the group, and the subgroups of order 2 are no longer Sylow subgroups, and in fact they fall into two conjugacy classes, geometrically according to whether they pass through two vertices or two faces. These are related by an
1615:
The Sylow theorems are a powerful statement about the structure of groups in general, but are also powerful in applications of finite group theory. This is because they give a method for using the prime decomposition of the cardinality of a finite group
3642:
Since Sylow's theorem ensures the existence of p-subgroups of a finite group, it's worthwhile to study groups of prime power order more closely. Most of the examples use Sylow's theorem to prove that a group of a particular order is not
3518: 4432:
The Sylow theorems have been proved in a number of ways, and the history of the proofs themselves is the subject of many papers, including Waterhouse, Scharlau, Casadio and Zappa, Gow, and to some extent Meo.
5491:{\displaystyle |\Omega |={p^{k}m \choose p^{k}}=\prod _{j=0}^{p^{k}-1}{\frac {p^{k}m-j}{p^{k}-j}}=m\prod _{j=1}^{p^{k}-1}{\frac {p^{k-\nu _{p}(j)}m-j/p^{\nu _{p}(j)}}{p^{k-\nu _{p}(j)}-j/p^{\nu _{p}(j)}}}} 4448:-subgroups in various ways, and each such action can be exploited to prove one of the Sylow theorems. The following proofs are based on combinatorial arguments of Wielandt. In the following, we use 3223: 3156: 6499:
itself. The algorithmic version of this (and many improvements) is described in textbook form in Butler, including the algorithm described in Cannon. These versions are still used in the
1718: 4080: 2395: 1920: 3053: 5942: 1637:
smaller order can be applied to construct a group. For example, a typical application of these theorems is in the classification of finite groups of some fixed cardinality, e.g.
1206: 2461: 3271:
odd, 2 = 2 is the highest power of 2 dividing the order, and thus subgroups of order 2 are Sylow subgroups. These are the groups generated by a reflection, of which there are
497: 472: 435: 3079: 2168: 1768: 1853: 4608: 4498: 5899: 4472: 2888: 2811: 2255: 2229: 2126: 1794: 1671: 3773: 2965: 2915: 2775: 2608: 2581: 2500: 2328: 2290: 2004: 1453: 1385: 4546: 2997: 1064: 7623: 2935: 2851: 2831: 2748: 2728: 2708: 2688: 2668: 2648: 2628: 2554: 2534: 1634: 1600: 1580: 1560: 1536: 1516: 1496: 1475: 1425: 1405: 1358: 1338: 1318: 1297: 1273: 1253: 1233: 1168: 1148: 1128: 1108: 1088: 1030: 1010: 990: 967: 932: 1681:
Collections of subgroups that are each maximal in one sense or another are common in group theory. The surprising result here is that in the case of
799: 3450: 6941: 4409: 6633: 3782:≡ 1 (mod 3). The only value satisfying these constraints is 1; therefore, there is only one subgroup of order 3, and it must be 4405: 4192:
shows that a Sylow subgroup of a normal subgroup provides a factorization of a finite group. A slight generalization known as
905: 357: 5668: 4845: 4719: 4685: 7677: 4424:'s strengthening of the conjugacy portion of Sylow's theorem to control what sorts of elements are used in the conjugation. 1212: 307: 3903:
then has 10 distinct cyclic subgroups of order 3, each of which has 2 elements of order 3 (plus the identity). This means
3647:. For groups of small order, the congruence condition of Sylow's theorem is often sufficient to force the existence of a 3169: 904:
contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the
2016: 792: 302: 7568: 7262: 7242: 6667: 863: 841: 3106: 834: 3275:, and they are all conjugate under rotations; geometrically the axes of symmetry pass through a vertex and a side. 2890:). However, there are groups that have proper, non-trivial normal subgroups but no normal Sylow subgroups, such as 1684: 4025: 3852:, and so the group is not simple, or is of prime order and is cyclic. This rules out every group up to order 30 1957: 718: 17: 2351: 7611: 7309: 6520: 1866: 785: 3026: 3610:-subgroup, which is abelian, as all diagonal matrices commute, and because Theorem 2 states that all Sylow 5904: 7606: 6500: 1173: 402: 216: 2401: 7560: 6569: 6422: 4622: 4437: 889: 134: 4886: 4764:
elements, providing the desired subgroup. This is the maximal possible size of a stabilizer subgroup
7601: 3800:
must equal 1 (mod 5); thus it must also have a single normal subgroup of order 5. Since 3 and 5 are
7364: 4334:)-conjugate. Burnside's fusion theorem can be used to give a more powerful factorization called a 1067: 828: 600: 334: 211: 99: 480: 455: 418: 3809: 3525: 6998: 4089:. One may easily prove this theorem by Sylow's third theorem. Indeed, observe that the number 3058: 2131: 1929:
The following theorems were first proposed and proven by Ludwig Sylow in 1872, and published in
1727: 7359: 6533: 4393: 4189: 2041:, then there exists an element (and thus a cyclic subgroup generated by this element) of order 1815: 845: 750: 540: 4587: 4477: 4404:
has on the structure of the entire group. This control is exploited at several stages of the
7461:
Kantor, William M.; Taylor, Donald E. (1988). "Polynomial-time versions of Sylow's theorem".
7114: 6578: 6573: 5866: 4451: 3837: 2860: 2783: 2012: 1931: 624: 2234: 2204: 2105: 1773: 1640: 7578: 7539: 7492: 7445: 7389: 7325: 7272: 7206: 7148: 7098: 7067: 7045: 7015: 6978: 6924: 6871: 4417: 3758: 3289:
reflections no longer correspond to Sylow 2-subgroups, and fall into two conjugacy classes.
2943: 2893: 2753: 2586: 2559: 2478: 2306: 2268: 1982: 1431: 1363: 564: 552: 170: 104: 7586: 7547: 7500: 7453: 7397: 7333: 7288: 7222: 7164: 7106: 7053: 6994: 6932: 6879: 6599: 8: 6848:
Casadio, Giuseppina; Zappa, Guido (1990). "History of the Sylow theorem and its proofs".
5119: 4521: 4016: 2972: 2335: 1040: 877: 139: 34: 6942:"A formal proof of Sylow's theorem. An experiment in abstract algebra with Isabelle HOL" 1046: 7276: 7210: 7172: 7152: 6982: 6622: 6603: 4335: 4004: 3299: 2920: 2836: 2816: 2733: 2713: 2693: 2673: 2653: 2633: 2613: 2539: 2519: 1619: 1585: 1565: 1545: 1521: 1501: 1481: 1460: 1410: 1390: 1343: 1323: 1303: 1282: 1258: 1238: 1218: 1153: 1133: 1113: 1093: 1073: 1015: 995: 975: 952: 917: 124: 96: 7028: 7010: 7682: 7650: 7634: 7631: 7564: 7527: 7523: 7480: 7476: 7433: 7428: 7409: 7377: 7373: 7313: 7258: 7214: 7194: 7156: 7136: 7086: 7081: 7062: 7033: 6966: 6912: 6859: 6663: 6607: 6507: 4383: 4000: 1721: 529: 372: 266: 7343:"Polynomial-time algorithms for finding elements of prime order and Sylow subgroups" 6421:
The problem of finding a Sylow subgroup of a given group is an important problem in
3007:
There is an analogue of the Sylow theorems for infinite groups. One defines a Sylow
695: 7653: 7582: 7543: 7519: 7496: 7472: 7449: 7423: 7393: 7369: 7342: 7329: 7284: 7250: 7218: 7186: 7160: 7128: 7102: 7076: 7049: 7023: 6990: 6986: 6958: 6928: 6902: 6875: 6595: 6587: 6543: 4401: 970: 897: 680: 672: 664: 656: 648: 636: 576: 516: 506: 348: 290: 165: 7299: 7280: 7574: 7535: 7488: 7441: 7385: 7321: 7268: 7246: 7202: 7144: 7094: 7041: 6974: 6920: 6867: 6515: 5774: 3783: 3648: 2940:
The third bullet point of the third theorem has as an immediate consequence that
2854: 2083: 1539: 764: 757: 743: 700: 588: 511: 341: 255: 195: 75: 3992:= 6 is perfectly possible. And in fact, the smallest simple non-cyclic group is 7405: 3849: 3250: 3234: 771: 707: 397: 377: 279: 200: 190: 175: 160: 114: 91: 27:
Theorems that help decompose a finite group based on prime factors of its order
6962: 3245:
all reflections are conjugate, as reflections correspond to Sylow 2-subgroups.
7671: 7619: 7531: 7484: 7437: 7381: 7317: 7198: 7140: 7090: 7037: 6970: 6916: 6907: 6888: 6863: 6538: 4421: 3345: 690: 612: 446: 319: 185: 7296:
Cannon, John J. (1971). "Computing local structure of large finite groups".
7508:
Kantor, William M. (1990). "Finding Sylow normalizers in polynomial time".
4413: 3833: 3829: 3813: 3644: 1950: 1276: 912: 901: 545: 244: 233: 180: 155: 150: 109: 80: 43: 7254: 3575:
is a subgroup where all its elements have orders which are powers of 
5778: 3845: 3513:{\displaystyle {\begin{bmatrix}x^{im}&0\\0&x^{jm}\end{bmatrix}}} 3249:
A simple illustration of Sylow subgroups and the Sylow theorems are the
1922:. These properties can be exploited to further analyze the structure of 7190: 7132: 6662:. with contribution by Victor J. Katz. Pearson Education. p. 322. 6591: 6121: 4243:)-conjugate. The proof is a simple application of Sylow's theorem: If 2503: 712: 440: 6850: 3278: 7658: 7639: 5505:
remains in any of the factors inside the product on the right. Hence
5097:, one can show the existence of ω of the former type by showing that 533: 6510:, it has been proven, in Kantor and Kantor and Taylor, that a Sylow 893: 70: 3899:
would have a normal subgroup of order 3, and could not be simple.
6548: 5599:
denote the set of points of Ω that are fixed under the action of
3844:
states that if the order of a group is the product of one or two
3801: 2967: 1968: 1033: 885: 412: 326: 7414: 51: 2011:
The following weaker version of theorem 1 was first proved by
7119: 6475:. In other words, a polycyclic generating system of a Sylow 5825: 3817: 3804:, the intersection of these two subgroups is trivial, and so 6748: 4392:
Less trivial applications of the Sylow theorems include the
2917:. Groups that are of prime-power order have no proper Sylow 2780:
An important consequence of Theorem 2 is that the condition
6893: 3935:
also has 24 distinct elements of order 5. But the order of
5675:
by assumption. The result follows immediately by writing
4408:, and for instance defines the case divisions used in the 3828:
A more complex example involves the order of the smallest
3567:
and all its powers have an order which is a power of 
7629: 7175:(1959). "Ein Beweis für die Existenz der Sylowgruppen". 6808: 5152:
places), and can also be shown by a simple computation:
3939:
is only 30, so a simple group of order 30 cannot exist.
3816:
of order 15. Thus, there is only one group of order 15 (
7648: 6700: 5840:
act on Ω by left multiplication. Applying the Lemma to
4436:
One proof of the Sylow theorems exploits the notion of
3684:
Group of order 30, groups of order 20, groups of order
6949: 3459: 3019:-power order) that is maximal for inclusion among all 1724:
to each other and have the largest possible order: if
1215:. Lagrange's theorem states that for any finite group 6676: 5907: 5869: 5161: 4590: 4524: 4480: 4454: 4028: 3761: 3738:= 15 is such a number using the Sylow theorems: Let 3453: 3172: 3109: 3061: 3029: 3002: 2975: 2946: 2923: 2896: 2863: 2839: 2819: 2786: 2756: 2736: 2716: 2696: 2676: 2656: 2636: 2616: 2589: 2562: 2542: 2522: 2481: 2404: 2354: 2309: 2271: 2237: 2207: 2134: 2108: 1985: 1869: 1818: 1776: 1730: 1687: 1643: 1622: 1588: 1568: 1548: 1524: 1504: 1484: 1463: 1434: 1413: 1393: 1366: 1346: 1326: 1306: 1285: 1261: 1241: 1221: 1176: 1156: 1136: 1116: 1096: 1076: 1049: 1018: 998: 978: 955: 920: 483: 458: 421: 2630:-subgroup, and so is conjugate to every other Sylow 1235:
the order (number of elements) of every subgroup of
6784: 6772: 6736: 6688: 6298:denote the set of fixed points of this action. Let 4350:is contained in the center of its normalizer, then 3306:, half the minimal rotation in the dihedral group. 892:that give detailed information about the number of 7559:. Cambridge Tracts in Mathematics. Vol. 152. 6820: 6796: 6760: 6274:, and it follows that this number is a divisor of 5936: 5893: 5490: 4602: 4540: 4492: 4466: 4074: 3786:(since it has no distinct conjugates). Similarly, 3767: 3614:-subgroups are conjugate to each other, the Sylow 3512: 3218:{\displaystyle n_{p}\equiv 1\ (\mathrm {mod} \ p)} 3217: 3150: 3073: 3047: 2991: 2959: 2929: 2909: 2882: 2845: 2825: 2805: 2769: 2742: 2722: 2702: 2682: 2662: 2642: 2622: 2602: 2575: 2548: 2528: 2494: 2455: 2389: 2322: 2284: 2249: 2223: 2162: 2120: 1998: 1914: 1847: 1788: 1762: 1712: 1665: 1628: 1594: 1574: 1554: 1530: 1510: 1490: 1469: 1447: 1419: 1399: 1379: 1352: 1332: 1312: 1291: 1267: 1247: 1227: 1200: 1162: 1142: 1122: 1102: 1082: 1058: 1024: 1004: 984: 961: 926: 491: 466: 429: 7011:"The mathematical life of Cauchy's group theorem" 6940:Kammüller, Florian; Paulson, Lawrence C. (1999). 5213: 5181: 3432:. Thus by Theorem 1, the order of the Sylow 3302:, which can be represented by rotation through π/ 2516:The Sylow theorems imply that for a prime number 7669: 7624:Abstract Algebra/Group Theory/The Sylow Theorems 6939: 6651: 6487:(including the identity) and taking elements of 1542:to each other. Furthermore, the number of Sylow 1211:The Sylow theorems assert a partial converse to 7117:(1980). "The early proofs of Sylow's theorem". 6614: 5536:It may be noted that conversely every subgroup 3888:= 10, since neither 4 nor 7 divides 10, and if 2650:-subgroup. Due to the maximality condition, if 6724: 6712: 5114:(if none existed, that valuation would exceed 4427: 3907:has at least 20 distinct elements of order 3. 3823: 3151:{\displaystyle n_{p}=|\operatorname {Cl} (K)|} 2813:is equivalent to the condition that the Sylow 7510: 7463: 7350: 7239:Fundamental Algorithms for Permutation Groups 7177: 6514:-subgroup and its normalizer can be found in 4003:over 5 elements. It has order 60, and has 24 3699:distinct primes are some of the applications. 3309:Another example are the Sylow p-subgroups of 1090:) that is not a proper subgroup of any other 876:In mathematics, specifically in the field of 793: 7460: 7305: 6847: 6814: 6706: 6574:"Théorèmes sur les groupes de substitutions" 6491:-power order contained in the normalizer of 6479:-subgroup can be found by starting from any 4175: − 1)! ≡ −1 (mod  3015:-subgroup (that is, every element in it has 3055:denote the set of conjugates of a subgroup 1713:{\displaystyle \operatorname {Syl} _{p}(G)} 7113: 6682: 5591:-group, let Ω be a finite set acted on by 4744:The proof will show the existence of some 4075:{\displaystyle (p-1)!\equiv -1{\pmod {p}}} 1275:. The Sylow theorems state that for every 800: 786: 7427: 7363: 7080: 7027: 6906: 4610:, and let Ω denote the set of subsets of 3749:be the number of Sylow 3-subgroups. Then 3713:has more than one Sylow 5-subgroup, then 1518:-subgroups of a group (for a given prime 864:Learn how and when to remove this message 485: 460: 423: 7298:Computers in Algebra and Number Theory ( 7245:. Vol. 559. Berlin, New York City: 7171: 7060: 6742: 6694: 6657: 6562: 6294:act on Ω by conjugation, and again let Ω 6216:. For this group action, the stabilizer 3812:of groups of order 3 and 5, that is the 3277: 3233: 2390:{\displaystyle n_{p}\equiv 1{\pmod {p}}} 1562:-subgroups of a group for a given prime 888:named after the Norwegian mathematician 827:This article includes a list of general 7404: 7340: 6790: 6778: 4978:, the ones we are looking for, one has 3637: 3011:-subgroup in an infinite group to be a 1915:{\displaystyle {\text{gcd}}(|G:P|,p)=1} 14: 7670: 7554: 7507: 7295: 7236: 6826: 6802: 6766: 6754: 6623:"Classification of groups of order 60" 6620: 6195:-subgroup. By Theorem 2, the orbit of 4406:classification of finite simple groups 3721: 3048:{\displaystyle \operatorname {Cl} (K)} 2583:. Conversely, if a subgroup has order 906:classification of finite simple groups 358:Classification of finite simple groups 7649: 7630: 6568: 6206:, so by the orbit-stabilizer theorem 4895:, which counts the number of factors 4163: − 2)! ≡ 1 (mod  1070:of every group element is a power of 7410:"Sylow's theorem in polynomial time" 6639:from the original on 28 October 2020 6428:One proof of the existence of Sylow 5937:{\displaystyle p\nmid |\Omega _{0}|} 4500:for the negation of this statement. 4444:acts on itself or on the set of its 4440:in various creative ways. The group 4396:, which studies the control a Sylow 4100:-subgroups in the symmetric group 3705:(Groups of order 60): If the order | 2189:be a prime factor with multiplicity 1427:. Moreover, every subgroup of order 813: 7008: 6886: 6730: 6718: 6471:is also such that is divisible by 4232:-conjugate if and only if they are 4064: 4010: 3742:be a group of order 15 = 3 · 5 and 3730:are such that every group of order 3447:, is the set of diagonal matrices 2379: 1201:{\displaystyle {\text{Syl}}_{p}(G)} 24: 7300:Proc. SIAM-AMS Sympos. Appl. Math. 6889:"Sylow's proof of Sylow's theorem" 6660:A First Course In Abstract Algebra 5920: 5185: 5167: 4474:as notation for "a divides b" and 4267:is contained in the normalizer of 3202: 3199: 3196: 3003:Sylow theorems for infinite groups 2456:{\displaystyle n_{p}=|G:N_{G}(P)|} 833:it lacks sufficient corresponding 25: 7694: 7594: 7243:Lecture Notes in Computer Science 4625:on Ω by left multiplication: for 4410:Alperin–Brauer–Gorenstein theorem 4184: 3881:must equal 1 (mod 3). Therefore, 3553:, its primitive roots have order 7618: 7063:"Die Entdeckung der Sylow-Sätze" 4126:times the number of p-cycles in 2556:-subgroup is of the same order, 818: 50: 7230: 6444:and the index is divisible by 6432:-subgroups is constructive: if 5797:, then there exists an element 5746:, then there exists an element 4057: 4007:of order 5, and 20 of order 3. 3874:must divide 10 ( = 2 · 5), and 2511: 2372: 2193:of the order of a finite group 2102:, then there exists an element 1963:of the order of a finite group 1300:of the order of a finite group 7308:. Vol. 4. Providence RI: 6172:Let Ω be the set of all Sylow 6072:denote the order of any Sylow 5930: 5915: 5888: 5876: 5641:will lie in an orbit of order 5480: 5474: 5443: 5437: 5409: 5403: 5369: 5363: 5171: 5163: 4773:, since for any fixed element 4548:is divisible by a prime power 4534: 4526: 4342:is a finite group whose Sylow 4068: 4058: 4041: 4029: 3953:must divide 6 ( = 2 · 3) and 3924:must divide 6 ( = 2 · 3), and 3734:is cyclic. One can show that 3338: ≡ 1 (mod  3212: 3192: 3144: 3140: 3134: 3124: 3042: 3036: 3023:-subgroups in the group. Let 2985: 2977: 2449: 2445: 2439: 2419: 2383: 2373: 1903: 1893: 1879: 1875: 1828: 1820: 1740: 1732: 1707: 1701: 1653: 1645: 1195: 1189: 1039:(meaning its cardinality is a 719:Infinite dimensional Lie group 13: 1: 7029:10.1016/S0315-0860(03)00003-X 6836: 6521:Magma computer algebra system 6416: 6184:act on Ω by conjugation. Let 5777:to each other (and therefore 4200:is a finite group with Sylow 3333:are primes ≥ 3 and 1610: 1150:-subgroups for a given prime 7678:Theorems about finite groups 7557:Permutation Group Algorithms 7524:10.1016/0196-6774(90)90009-4 7477:10.1016/0196-6774(88)90002-8 7429:10.1016/0022-0000(85)90052-2 7374:10.1016/0196-6774(85)90029-X 7341:Kantor, William M. (1985a). 7082:10.1016/0315-0860(88)90048-1 5148:from it involves a carry in 4956:. This means that for those 4416:whose Sylow 2-subgroup is a 3158:is finite, then every Sylow 1676: 492:{\displaystyle \mathbb {Z} } 467:{\displaystyle \mathbb {Z} } 430:{\displaystyle \mathbb {Z} } 7: 7607:Encyclopedia of Mathematics 7061:Scharlau, Winfried (1988). 6526: 6501:GAP computer algebra system 6091:denote the number of Sylow 5765:. In particular, all Sylow 4428:Proof of the Sylow theorems 4283:, but in the normalizer of 3824:Small groups are not simple 3229: 2300:. Then the following hold: 2086:to each other. That is, if 1720:, all members are actually 1605: 217:List of group theory topics 10: 7699: 7561:Cambridge University Press 6658:Fraleigh, John B. (2004). 6423:computational group theory 5671:), which is a multiple of 5118:). This is an instance of 4885:, and therefore using the 4279:are conjugate not only in 3162:-subgroup is conjugate to 3074:{\displaystyle K\subset G} 2857:(Theorem 3 can often show 2163:{\displaystyle g^{-1}Hg=K} 1763:{\displaystyle |G|=p^{n}m} 1407:that divides the order of 6841: 6393:} so that, by the Lemma, 5824:Let Ω be the set of left 5696:over all distinct orbits 5144:digits zero, subtracting 5090:over all distinct orbits 4887:additive p-adic valuation 4251:, then the normalizer of 4194:Burnside's fusion theorem 3978:| = 60 = 2 · 3 · 5, then 3960:must equal 1 (mod 7), so 3946:| = 42 = 2 · 3 · 7. Here 3931:must equal 1 (mod 5). So 1848:{\displaystyle |P|=p^{n}} 6908:10.33232/BIMS.0033.55.63 6815:Kantor & Taylor 1988 6707:Casadio & Zappa 1990 6555: 5564:, namely any one of the 5533:, completing the proof. 4846:orbit-stabilizer theorem 4603:{\displaystyle p\nmid u} 4552:has a subgroup of order 4493:{\displaystyle a\nmid b} 3974:On the other hand, for | 3557:− 1, which implies that 335:Elementary abelian group 212:Glossary of group theory 6963:10.1023/A:1006269330992 5894:{\displaystyle p\nmid } 4467:{\displaystyle a\mid b} 4271:). By Sylow's theorem 3810:internal direct product 3726:Some non-prime numbers 2883:{\displaystyle n_{p}=1} 2806:{\displaystyle n_{p}=1} 2292:be the number of Sylow 2197:, so that the order of 1967:, there exists a Sylow 1582:is congruent to 1 (mod 1387:, the highest power of 1320:, there exists a Sylow 1130:. The set of all Sylow 848:more precise citations. 7302:, New York City, 1970) 7120:Arch. Hist. Exact Sci. 7115:Waterhouse, William C. 6894:Irish Math. Soc. Bull. 6851:Boll. Storia Sci. Mat. 6448:, then the normalizer 6308:and observe that then 5944:, hence in particular 5938: 5895: 5492: 5338: 5255: 5000:, while for any other 4604: 4542: 4494: 4468: 4394:focal subgroup theorem 4354:has a normal subgroup 4139: − 2)! 4076: 3769: 3514: 3290: 3246: 3219: 3152: 3075: 3049: 2993: 2961: 2931: 2911: 2884: 2847: 2827: 2807: 2771: 2744: 2724: 2704: 2684: 2664: 2644: 2624: 2604: 2577: 2550: 2530: 2496: 2457: 2391: 2324: 2286: 2251: 2250:{\displaystyle n>0} 2225: 2224:{\displaystyle p^{n}m} 2164: 2122: 2121:{\displaystyle g\in G} 2037:dividing the order of 2000: 1916: 1849: 1790: 1789:{\displaystyle n>0} 1764: 1714: 1667: 1666:{\displaystyle |G|=60} 1630: 1596: 1576: 1556: 1532: 1512: 1492: 1471: 1449: 1421: 1401: 1381: 1354: 1334: 1314: 1293: 1269: 1249: 1229: 1202: 1164: 1144: 1124: 1104: 1084: 1060: 1026: 1012:, i.e., a subgroup of 1006: 986: 963: 928: 751:Linear algebraic group 493: 468: 431: 7555:Seress, Ákos (2003). 7415:J. Comput. Syst. Sci. 7255:10.1007/3-540-54955-2 6621:Gracia–Saz, Alfonso. 6406:| = 1 (mod  6362:) in particular, and 5955:so there exists some 5939: 5896: 5493: 5305: 5222: 4605: 4543: 4495: 4469: 4141:. On the other hand, 4077: 3770: 3768:{\displaystyle \mid } 3709:| = 60 and 3537:. Since the order of 3515: 3281: 3237: 3220: 3153: 3076: 3050: 2994: 2962: 2960:{\displaystyle n_{p}} 2932: 2912: 2910:{\displaystyle S_{4}} 2885: 2848: 2828: 2808: 2772: 2770:{\displaystyle p^{n}} 2745: 2725: 2705: 2685: 2665: 2645: 2625: 2610:, then it is a Sylow 2605: 2603:{\displaystyle p^{n}} 2578: 2576:{\displaystyle p^{n}} 2551: 2531: 2497: 2495:{\displaystyle N_{G}} 2458: 2392: 2325: 2323:{\displaystyle n_{p}} 2287: 2285:{\displaystyle n_{p}} 2252: 2226: 2165: 2123: 2066:Given a finite group 2029:Given a finite group 2013:Augustin-Louis Cauchy 2001: 1999:{\displaystyle p^{n}} 1932:Mathematische Annalen 1917: 1850: 1791: 1765: 1715: 1668: 1631: 1597: 1577: 1557: 1533: 1513: 1493: 1472: 1450: 1448:{\displaystyle p^{n}} 1422: 1402: 1382: 1380:{\displaystyle p^{n}} 1355: 1335: 1315: 1294: 1270: 1255:divides the order of 1250: 1230: 1203: 1170:is sometimes written 1165: 1145: 1125: 1105: 1085: 1066:or equivalently, the 1061: 1027: 1007: 987: 964: 929: 494: 469: 432: 7312:. pp. 161–176. 6385:. It follows that Ω 6256:, the normalizer of 5905: 5867: 5857:| = (mod  5159: 5136:ends with precisely 5126:notation the number 4588: 4522: 4478: 4452: 4418:quasi-dihedral group 4358:of order coprime to 4121: − 1 4026: 3967:= 1. So, as before, 3895:= 1 then, as above, 3759: 3638:Example applications 3451: 3170: 3107: 3059: 3027: 2973: 2944: 2921: 2894: 2861: 2837: 2817: 2784: 2754: 2734: 2714: 2694: 2674: 2654: 2634: 2614: 2587: 2560: 2540: 2520: 2479: 2402: 2352: 2307: 2269: 2235: 2205: 2132: 2106: 1983: 1867: 1816: 1774: 1728: 1685: 1641: 1620: 1586: 1566: 1546: 1522: 1502: 1482: 1461: 1432: 1411: 1391: 1364: 1344: 1324: 1304: 1283: 1259: 1239: 1219: 1174: 1154: 1134: 1114: 1094: 1074: 1047: 1016: 996: 976: 953: 918: 884:are a collection of 481: 456: 419: 7237:Butler, G. (1991). 6950:J. Automat. Reason. 6534:Frattini's argument 6066: —  5720: —  5581: —  5544:gives rise to sets 4686:stabilizer subgroup 4541:{\displaystyle |G|} 4512: —  4412:classifying finite 4190:Frattini's argument 4005:cyclic permutations 3971:can not be simple. 3793:must divide 3, and 3722:Cyclic group orders 3634:) are all abelian. 3089: —  2992:{\displaystyle |G|} 2750:-subgroup of order 2730:is a subgroup of a 2183: —  2070:and a prime number 2064: —  2033:and a prime number 2027: —  1947: —  1804:, then every Sylow 878:finite group theory 125:Group homomorphisms 35:Algebraic structure 7651:Weisstein, Eric W. 7635:"Sylow p-Subgroup" 7632:Weisstein, Eric W. 7406:Kantor, William M. 7191:10.1007/BF01240818 7133:10.1007/BF00327877 6592:10.1007/BF01442913 6508:permutation groups 6343:). By Theorem 2, 6170: 6080:of a finite group 6060: 6009:. Furthermore, if 5934: 5891: 5844:on Ω, we see that 5822: 5714: 5628: 5579: 5488: 4787:, the right coset 4668:. For a given set 4600: 4562: 4538: 4506: 4490: 4464: 4336:semidirect product 4255:contains not only 4072: 3765: 3510: 3504: 3443:One such subgroup 3300:outer automorphism 3291: 3247: 3215: 3148: 3087: 3071: 3045: 2989: 2957: 2927: 2907: 2880: 2843: 2823: 2803: 2767: 2740: 2720: 2700: 2680: 2660: 2640: 2620: 2600: 2573: 2546: 2526: 2492: 2453: 2387: 2320: 2282: 2247: 2221: 2201:can be written as 2177: 2160: 2118: 2058: 2025: 2015:, and is known as 1996: 1941: 1912: 1845: 1786: 1760: 1710: 1663: 1626: 1592: 1572: 1552: 1528: 1508: 1488: 1467: 1445: 1417: 1397: 1377: 1350: 1330: 1310: 1289: 1265: 1245: 1225: 1213:Lagrange's theorem 1198: 1160: 1140: 1120: 1100: 1080: 1059:{\displaystyle p,} 1056: 1022: 1002: 982: 959: 924: 890:Peter Ludwig Sylow 601:Special orthogonal 489: 464: 427: 308:Lagrange's theorem 6887:Gow, Rod (1994). 6351:are conjugate in 6168: 6058: 5901:by definition so 5820: 5712: 5703:and reducing mod 5626: 5616:| (mod  5577: 5486: 5297: 5211: 4560: 4504: 4420:. These rely on 4400:-subgroup of the 4001:alternating group 3583:choices for both 3208: 3191: 3085: 2930:{\displaystyle p} 2846:{\displaystyle G} 2826:{\displaystyle p} 2743:{\displaystyle p} 2723:{\displaystyle H} 2703:{\displaystyle G} 2683:{\displaystyle p} 2663:{\displaystyle H} 2643:{\displaystyle p} 2623:{\displaystyle p} 2549:{\displaystyle p} 2529:{\displaystyle p} 2175: 2056: 2023: 1939: 1873: 1629:{\displaystyle G} 1595:{\displaystyle p} 1575:{\displaystyle p} 1555:{\displaystyle p} 1531:{\displaystyle p} 1511:{\displaystyle p} 1491:{\displaystyle G} 1470:{\displaystyle p} 1420:{\displaystyle G} 1400:{\displaystyle p} 1353:{\displaystyle G} 1333:{\displaystyle p} 1313:{\displaystyle G} 1292:{\displaystyle p} 1268:{\displaystyle G} 1248:{\displaystyle G} 1228:{\displaystyle G} 1181: 1163:{\displaystyle p} 1143:{\displaystyle p} 1123:{\displaystyle G} 1103:{\displaystyle p} 1083:{\displaystyle p} 1025:{\displaystyle G} 1005:{\displaystyle G} 985:{\displaystyle p} 962:{\displaystyle G} 927:{\displaystyle p} 874: 873: 866: 810: 809: 385: 384: 267:Alternating group 224: 223: 16:(Redirected from 7690: 7664: 7663: 7654:"Sylow Theorems" 7645: 7644: 7622: 7615: 7602:"Sylow theorems" 7590: 7551: 7512: 7504: 7465: 7457: 7431: 7416: 7401: 7367: 7352: 7347: 7337: 7307: 7301: 7292: 7226: 7179: 7173:Wielandt, Helmut 7168: 7121: 7110: 7084: 7057: 7031: 7009:Meo, M. (2004). 7005: 7003: 6997:. Archived from 6951: 6946: 6936: 6910: 6895: 6883: 6852: 6830: 6824: 6818: 6812: 6806: 6800: 6794: 6788: 6782: 6776: 6770: 6764: 6758: 6752: 6746: 6740: 6734: 6728: 6722: 6716: 6710: 6704: 6698: 6692: 6686: 6680: 6674: 6673: 6655: 6649: 6648: 6646: 6644: 6638: 6630:math.toronto.edu 6627: 6618: 6612: 6611: 6566: 6544:Maximal subgroup 6411: 6405: 6398: 6327: 6317: 6307: 6286: 6281: 6273: 6255: 6219: 6215: 6190: 6183: 6179: 6163: 6149: 6144: 6136: 6108: 6067: 6064: 6041: 6039: 6033: 6027: 6017:-subgroup, then 5986: 5964: 5954: 5952: 5943: 5941: 5940: 5935: 5933: 5928: 5927: 5918: 5900: 5898: 5897: 5892: 5862: 5856: 5852: 5835: 5804: 5796: 5772: 5753: 5745: 5733: 5721: 5718: 5706: 5702: 5699: 5695: 5693: 5682: 5680: 5674: 5659: 5657: 5648: 5640: 5636: 5621: 5615: 5608: 5602: 5594: 5590: 5586: 5582: 5568:distinct cosets 5550: 5532: 5516: 5501:and no power of 5497: 5495: 5494: 5489: 5487: 5485: 5484: 5483: 5473: 5472: 5458: 5447: 5446: 5436: 5435: 5414: 5413: 5412: 5402: 5401: 5387: 5373: 5372: 5362: 5361: 5340: 5337: 5330: 5329: 5319: 5298: 5296: 5289: 5288: 5278: 5268: 5267: 5257: 5254: 5247: 5246: 5236: 5218: 5217: 5216: 5210: 5209: 5200: 5196: 5195: 5184: 5174: 5166: 5135: 5133: 5120:Kummer's theorem 5113: 5108: 5096: 5093: 5089: 5087: 5076: 5074: 5068: 5062: 5043: 5038: 5025: 5020: 5003: 4999: 4994: 4977: 4972: 4959: 4955: 4946: 4933: 4917: 4884: 4877: 4875: 4869: 4860: 4840: 4835: 4829: 4828: 4815: 4802: 4799:is contained in 4798: 4794: 4790: 4786: 4771: 4767: 4758: 4754: 4750: 4740: 4710: 4674: 4667: 4641: 4634: 4621: 4613: 4609: 4607: 4606: 4601: 4583: 4571: 4547: 4545: 4544: 4539: 4537: 4529: 4513: 4510: 4499: 4497: 4496: 4491: 4473: 4471: 4470: 4465: 4443: 4402:derived subgroup 4378:= {1}, that is, 4299:that normalizes 4208:and two subsets 4180: 4168: 4156: 4140: 4125: 4123: 4122: 4116: 4113: 4085:for every prime 4081: 4079: 4078: 4073: 4071: 4017:Wilson's theorem 4011:Wilson's theorem 3863:is simple, and | 3855: 3774: 3772: 3771: 3766: 3674: <  3658:Groups of order 3601: 3562: 3552: 3519: 3517: 3516: 3511: 3509: 3508: 3501: 3500: 3474: 3473: 3431: 3405: 3391: 3386: + 1)( 3370: − 1)( 3344:, which are all 3343: 3293:By contrast, if 3224: 3222: 3221: 3216: 3206: 3205: 3189: 3182: 3181: 3165: 3161: 3157: 3155: 3154: 3149: 3147: 3127: 3119: 3118: 3102: 3098: 3094: 3090: 3080: 3078: 3077: 3072: 3054: 3052: 3051: 3046: 3022: 3018: 3010: 2998: 2996: 2995: 2990: 2988: 2980: 2966: 2964: 2963: 2958: 2956: 2955: 2936: 2934: 2933: 2928: 2916: 2914: 2913: 2908: 2906: 2905: 2889: 2887: 2886: 2881: 2873: 2872: 2852: 2850: 2849: 2844: 2832: 2830: 2829: 2824: 2812: 2810: 2809: 2804: 2796: 2795: 2776: 2774: 2773: 2768: 2766: 2765: 2749: 2747: 2746: 2741: 2729: 2727: 2726: 2721: 2709: 2707: 2706: 2701: 2689: 2687: 2686: 2681: 2669: 2667: 2666: 2661: 2649: 2647: 2646: 2641: 2629: 2627: 2626: 2621: 2609: 2607: 2606: 2601: 2599: 2598: 2582: 2580: 2579: 2574: 2572: 2571: 2555: 2553: 2552: 2547: 2535: 2533: 2532: 2527: 2501: 2499: 2498: 2493: 2491: 2490: 2474: 2470: 2466: 2462: 2460: 2459: 2454: 2452: 2438: 2437: 2422: 2414: 2413: 2396: 2394: 2393: 2388: 2386: 2364: 2363: 2345: 2341: 2333: 2329: 2327: 2326: 2321: 2319: 2318: 2299: 2295: 2291: 2289: 2288: 2283: 2281: 2280: 2264: 2261:does not divide 2260: 2256: 2254: 2253: 2248: 2230: 2228: 2227: 2222: 2217: 2216: 2200: 2196: 2192: 2188: 2184: 2181: 2169: 2167: 2166: 2161: 2147: 2146: 2127: 2125: 2124: 2119: 2101: 2097: 2093: 2089: 2081: 2077: 2073: 2069: 2065: 2062: 2049: 2044: 2040: 2036: 2032: 2028: 2017:Cauchy's theorem 2005: 2003: 2002: 1997: 1995: 1994: 1977: 1971: 1966: 1962: 1955: 1948: 1945: 1925: 1921: 1919: 1918: 1913: 1896: 1882: 1874: 1871: 1862: 1858: 1854: 1852: 1851: 1846: 1844: 1843: 1831: 1823: 1811: 1807: 1803: 1800:does not divide 1799: 1795: 1793: 1792: 1787: 1769: 1767: 1766: 1761: 1756: 1755: 1743: 1735: 1719: 1717: 1716: 1711: 1697: 1696: 1672: 1670: 1669: 1664: 1656: 1648: 1635: 1633: 1632: 1627: 1601: 1599: 1598: 1593: 1581: 1579: 1578: 1573: 1561: 1559: 1558: 1553: 1537: 1535: 1534: 1529: 1517: 1515: 1514: 1509: 1498:, and the Sylow 1497: 1495: 1494: 1489: 1476: 1474: 1473: 1468: 1454: 1452: 1451: 1446: 1444: 1443: 1426: 1424: 1423: 1418: 1406: 1404: 1403: 1398: 1386: 1384: 1383: 1378: 1376: 1375: 1359: 1357: 1356: 1351: 1339: 1337: 1336: 1331: 1319: 1317: 1316: 1311: 1298: 1296: 1295: 1290: 1274: 1272: 1271: 1266: 1254: 1252: 1251: 1246: 1234: 1232: 1231: 1226: 1207: 1205: 1204: 1199: 1188: 1187: 1182: 1179: 1169: 1167: 1166: 1161: 1149: 1147: 1146: 1141: 1129: 1127: 1126: 1121: 1109: 1107: 1106: 1101: 1089: 1087: 1086: 1081: 1065: 1063: 1062: 1057: 1031: 1029: 1028: 1023: 1011: 1009: 1008: 1003: 991: 989: 988: 983: 968: 966: 965: 960: 933: 931: 930: 925: 869: 862: 858: 855: 849: 844:this article by 835:inline citations 822: 821: 814: 802: 795: 788: 744:Algebraic groups 517:Hyperbolic group 507:Arithmetic group 498: 496: 495: 490: 488: 473: 471: 470: 465: 463: 436: 434: 433: 428: 426: 349:Schur multiplier 303:Cauchy's theorem 291:Quaternion group 239: 238: 65: 64: 54: 41: 30: 29: 21: 7698: 7697: 7693: 7692: 7691: 7689: 7688: 7687: 7668: 7667: 7600: 7597: 7571: 7345: 7265: 7247:Springer-Verlag 7233: 7001: 6944: 6844: 6839: 6834: 6833: 6825: 6821: 6813: 6809: 6801: 6797: 6789: 6785: 6777: 6773: 6765: 6761: 6753: 6749: 6741: 6737: 6729: 6725: 6717: 6713: 6705: 6701: 6693: 6689: 6683:Waterhouse 1980 6681: 6677: 6670: 6656: 6652: 6642: 6640: 6636: 6625: 6619: 6615: 6567: 6563: 6558: 6553: 6529: 6516:polynomial time 6457: 6419: 6414: 6404: 6400: 6399:| ≡ | 6396: 6394: 6388: 6371: 6356: 6337: 6319: 6309: 6306: 6299: 6297: 6280: 6277: 6275: 6270: 6265: 6263: 6249: 6234: 6230: 6226: 6224: 6217: 6212: 6207: 6204: 6185: 6181: 6177: 6166: 6156: 6151: 6143: 6140: 6138: 6134: 6129: 6114: 6105: 6100: 6098: 6089: 6083: 6065: 6062: 6055: 6035: 6034:| = | 6029: 6028:| = | 6020: 6018: 5985: 5981: 5978: 5963: 5956: 5951: 5947: 5945: 5929: 5923: 5919: 5914: 5906: 5903: 5902: 5868: 5865: 5864: 5854: 5853:| ≡ | 5851: 5847: 5845: 5833: 5818: 5802: 5794: 5781:), that is, if 5770: 5751: 5743: 5731: 5719: 5716: 5709: 5704: 5700: 5697: 5692: 5689: 5686: 5684: 5678: 5676: 5672: 5665: 5655: 5650: 5647: 5644: 5642: 5638: 5634: 5631: 5624: 5619: 5614: 5610: 5609:| ≡ | 5606: 5604: 5600: 5598: 5592: 5588: 5584: 5580: 5574: 5559: 5558: 5554: 5548: 5545: 5522: 5514: 5511: 5506: 5468: 5464: 5463: 5459: 5454: 5431: 5427: 5420: 5416: 5415: 5397: 5393: 5392: 5388: 5383: 5357: 5353: 5346: 5342: 5341: 5339: 5325: 5321: 5320: 5309: 5284: 5280: 5279: 5263: 5259: 5258: 5256: 5242: 5238: 5237: 5226: 5212: 5205: 5201: 5191: 5187: 5186: 5180: 5179: 5178: 5170: 5162: 5160: 5157: 5156: 5132: 5129: 5127: 5122:(since in base 5106: 5103: 5098: 5094: 5091: 5086: 5083: 5080: 5078: 5072: 5070: 5061: 5060: 5056: 5053: 5050: 5045: 5037: 5036: 5032: 5029: 5027: 5019: 5016: 5013: 5010: 5005: 5001: 4993: 4990: 4987: 4984: 4979: 4971: 4970: 4966: 4963: 4961: 4957: 4945: 4942: 4939: 4932: 4929: 4926: 4923: 4916: 4915: 4911: 4908: 4905: 4900: 4893: 4882: 4879: 4874: 4871: 4870:| = | 4868: 4865: 4862: 4859: 4858: 4854: 4851: 4849: 4839: 4834: 4831: 4830:| ≤ | 4826: 4825: 4824: 4820: 4817: 4816:| = | 4814: 4813: 4809: 4806: 4804: 4800: 4796: 4795: 4792: 4788: 4785: 4781: 4777: 4774: 4772: 4769: 4765: 4759: 4756: 4752: 4748: 4745: 4738: 4734: 4730: 4726: 4722: 4717: 4714: 4708: 4704: 4700: 4696: 4692: 4688: 4683: 4682: 4678: 4672: 4669: 4665: 4661: 4657: 4654: 4650: 4646: 4643: 4639: 4636: 4633: 4629: 4626: 4619: 4611: 4589: 4586: 4585: 4570: 4567: 4565: 4558: 4533: 4525: 4523: 4520: 4519: 4517: 4514:A finite group 4511: 4508: 4479: 4476: 4475: 4453: 4450: 4449: 4441: 4430: 4328: 4237: 4196:states that if 4187: 4170: 4158: 4150: 4142: 4134: 4131: 4117: 4114: 4111: 4110: 4108: 4105: 4094: 4056: 4027: 4024: 4023: 4013: 3998: 3991: 3984: 3966: 3959: 3952: 3942:Next, suppose | 3930: 3923: 3916: 3894: 3887: 3880: 3873: 3853: 3826: 3799: 3792: 3781: 3760: 3757: 3756: 3755: 3748: 3724: 3649:normal subgroup 3640: 3633: 3624: 3592: 3558: 3547: 3545: 3536: 3503: 3502: 3493: 3489: 3487: 3481: 3480: 3475: 3466: 3462: 3455: 3454: 3452: 3449: 3448: 3422: 3413: 3407: 3406:, the order of 3393: 3390: − 1) 3365: 3363: 3354: 3348:. The order of 3334: 3324: 3315: 3288: 3266: 3244: 3232: 3227: 3195: 3177: 3173: 3171: 3168: 3167: 3163: 3159: 3143: 3123: 3114: 3110: 3108: 3105: 3104: 3100: 3096: 3092: 3088: 3060: 3057: 3056: 3028: 3025: 3024: 3020: 3016: 3008: 3005: 2984: 2976: 2974: 2971: 2970: 2951: 2947: 2945: 2942: 2941: 2922: 2919: 2918: 2901: 2897: 2895: 2892: 2891: 2868: 2864: 2862: 2859: 2858: 2855:normal subgroup 2838: 2835: 2834: 2818: 2815: 2814: 2791: 2787: 2785: 2782: 2781: 2761: 2757: 2755: 2752: 2751: 2735: 2732: 2731: 2715: 2712: 2711: 2695: 2692: 2691: 2675: 2672: 2671: 2655: 2652: 2651: 2635: 2632: 2631: 2615: 2612: 2611: 2594: 2590: 2588: 2585: 2584: 2567: 2563: 2561: 2558: 2557: 2541: 2538: 2537: 2521: 2518: 2517: 2514: 2509: 2486: 2482: 2480: 2477: 2476: 2472: 2468: 2464: 2448: 2433: 2429: 2418: 2409: 2405: 2403: 2400: 2399: 2371: 2359: 2355: 2353: 2350: 2349: 2343: 2339: 2334:, which is the 2331: 2314: 2310: 2308: 2305: 2304: 2297: 2293: 2276: 2272: 2270: 2267: 2266: 2262: 2258: 2236: 2233: 2232: 2212: 2208: 2206: 2203: 2202: 2198: 2194: 2190: 2186: 2182: 2179: 2172: 2139: 2135: 2133: 2130: 2129: 2107: 2104: 2103: 2099: 2095: 2091: 2087: 2079: 2075: 2071: 2067: 2063: 2060: 2053: 2047: 2042: 2038: 2034: 2030: 2026: 2009: 1990: 1986: 1984: 1981: 1980: 1975: 1969: 1964: 1960: 1953: 1946: 1943: 1923: 1892: 1878: 1870: 1868: 1865: 1864: 1860: 1856: 1839: 1835: 1827: 1819: 1817: 1814: 1813: 1809: 1805: 1801: 1797: 1775: 1772: 1771: 1751: 1747: 1739: 1731: 1729: 1726: 1725: 1692: 1688: 1686: 1683: 1682: 1679: 1652: 1644: 1642: 1639: 1638: 1621: 1618: 1617: 1613: 1608: 1587: 1584: 1583: 1567: 1564: 1563: 1547: 1544: 1543: 1523: 1520: 1519: 1503: 1500: 1499: 1483: 1480: 1479: 1462: 1459: 1458: 1439: 1435: 1433: 1430: 1429: 1412: 1409: 1408: 1392: 1389: 1388: 1371: 1367: 1365: 1362: 1361: 1345: 1342: 1341: 1325: 1322: 1321: 1305: 1302: 1301: 1284: 1281: 1280: 1260: 1257: 1256: 1240: 1237: 1236: 1220: 1217: 1216: 1183: 1178: 1177: 1175: 1172: 1171: 1155: 1152: 1151: 1135: 1132: 1131: 1115: 1112: 1111: 1095: 1092: 1091: 1075: 1072: 1071: 1048: 1045: 1044: 1017: 1014: 1013: 997: 994: 993: 977: 974: 973: 954: 951: 950: 947:-Sylow subgroup 919: 916: 915: 870: 859: 853: 850: 840:Please help to 839: 823: 819: 806: 777: 776: 765:Abelian variety 758:Reductive group 746: 736: 735: 734: 733: 684: 676: 668: 660: 652: 625:Special unitary 536: 522: 521: 503: 502: 484: 482: 479: 478: 459: 457: 454: 453: 422: 420: 417: 416: 408: 407: 398:Discrete groups 387: 386: 342:Frobenius group 287: 274: 263: 256:Symmetric group 252: 236: 226: 225: 76:Normal subgroup 62: 42: 33: 28: 23: 22: 15: 12: 11: 5: 7696: 7686: 7685: 7680: 7666: 7665: 7646: 7627: 7616: 7596: 7595:External links 7593: 7592: 7591: 7569: 7552: 7518:(4): 523–563. 7505: 7458: 7422:(3): 359–394. 7402: 7365:10.1.1.74.3690 7358:(4): 478–514. 7338: 7306:SIAM-AMS Proc. 7293: 7263: 7232: 7229: 7228: 7227: 7185:(1): 401–402. 7169: 7127:(3): 279–290. 7111: 7068:Historia Math. 7058: 7022:(2): 196–221. 7016:Historia Math. 7006: 7004:on 2006-01-03. 6957:(3): 235–264. 6937: 6884: 6854:(in Italian). 6843: 6840: 6838: 6835: 6832: 6831: 6819: 6807: 6795: 6783: 6771: 6759: 6747: 6735: 6723: 6711: 6699: 6687: 6675: 6668: 6650: 6613: 6586:(4): 584–594. 6560: 6559: 6557: 6554: 6552: 6551: 6546: 6541: 6536: 6530: 6528: 6525: 6455: 6418: 6415: 6402: 6386: 6369: 6354: 6335: 6304: 6295: 6278: 6268: 6261: 6247: 6232: 6228: 6220: 6210: 6202: 6176:-subgroups of 6167: 6158:≡ 1 (mod  6154: 6141: 6132: 6112: 6103: 6096: 6095:-subgroups of 6087: 6081: 6056: 5998:and therefore 5983: 5979: 5961: 5949: 5932: 5926: 5922: 5917: 5913: 5910: 5890: 5887: 5884: 5881: 5878: 5875: 5872: 5849: 5819: 5793:-subgroups of 5769:-subgroups of 5710: 5690: 5687: 5683:as the sum of 5663: 5653: 5645: 5632: 5625: 5617: 5612: 5596: 5575: 5556: 5555: 5552: 5546: 5520: 5509: 5499: 5498: 5482: 5479: 5476: 5471: 5467: 5462: 5457: 5453: 5450: 5445: 5442: 5439: 5434: 5430: 5426: 5423: 5419: 5411: 5408: 5405: 5400: 5396: 5391: 5386: 5382: 5379: 5376: 5371: 5368: 5365: 5360: 5356: 5352: 5349: 5345: 5336: 5333: 5328: 5324: 5318: 5315: 5312: 5308: 5304: 5301: 5295: 5292: 5287: 5283: 5277: 5274: 5271: 5266: 5262: 5253: 5250: 5245: 5241: 5235: 5232: 5229: 5225: 5221: 5215: 5208: 5204: 5199: 5194: 5190: 5183: 5177: 5173: 5169: 5165: 5130: 5101: 5084: 5081: 5077:is the sum of 5058: 5057: 5054: 5048: 5034: 5033: 5030: 5017: 5014: 5008: 4991: 4988: 4982: 4968: 4967: 4964: 4943: 4937: 4930: 4927: 4921: 4913: 4912: 4909: 4903: 4891: 4880: 4872: 4866: 4863: 4856: 4855: 4852: 4837: 4832: 4822: 4821: 4818: 4811: 4810: 4807: 4791: 4783: 4779: 4775: 4768: 4755: 4746: 4736: 4732: 4728: 4724: 4715: 4712: 4706: 4702: 4698: 4694: 4690: 4680: 4679: 4676: 4670: 4663: 4659: 4655: 4652: 4648: 4644: 4637: 4631: 4627: 4599: 4596: 4593: 4568: 4559: 4536: 4532: 4528: 4515: 4502: 4489: 4486: 4483: 4463: 4460: 4457: 4429: 4426: 4326: 4235: 4216:normalized by 4186: 4185:Fusion results 4183: 4151:≡ 1 (mod  4146: 4129: 4103: 4092: 4083: 4082: 4070: 4067: 4063: 4060: 4055: 4052: 4049: 4046: 4043: 4040: 4037: 4034: 4031: 4012: 4009: 3996: 3989: 3982: 3964: 3957: 3950: 3928: 3921: 3914: 3892: 3885: 3878: 3871: 3825: 3822: 3820:isomorphism). 3797: 3790: 3779: 3764: 3753: 3746: 3723: 3720: 3719: 3718: 3703: 3700: 3682: 3679: 3656: 3639: 3636: 3629: 3622: 3618:-subgroups of 3551: − 1 3541: 3532: 3526:primitive root 3507: 3499: 3496: 3492: 3488: 3486: 3483: 3482: 3479: 3476: 3472: 3469: 3465: 3461: 3460: 3458: 3436:-subgroups is 3418: 3411: 3404: + 1 3359: 3352: 3320: 3313: 3286: 3261: 3251:dihedral group 3242: 3231: 3228: 3214: 3211: 3204: 3201: 3198: 3194: 3188: 3185: 3180: 3176: 3146: 3142: 3139: 3136: 3133: 3130: 3126: 3122: 3117: 3113: 3083: 3070: 3067: 3064: 3044: 3041: 3038: 3035: 3032: 3004: 3001: 2987: 2983: 2979: 2954: 2950: 2926: 2904: 2900: 2879: 2876: 2871: 2867: 2842: 2822: 2802: 2799: 2794: 2790: 2764: 2760: 2739: 2719: 2699: 2679: 2659: 2639: 2619: 2597: 2593: 2570: 2566: 2545: 2525: 2513: 2510: 2508: 2507: 2489: 2485: 2451: 2447: 2444: 2441: 2436: 2432: 2428: 2425: 2421: 2417: 2412: 2408: 2397: 2385: 2382: 2378: 2375: 2370: 2367: 2362: 2358: 2347: 2317: 2313: 2296:-subgroups of 2279: 2275: 2246: 2243: 2240: 2220: 2215: 2211: 2173: 2159: 2156: 2153: 2150: 2145: 2142: 2138: 2117: 2114: 2111: 2098:-subgroups of 2078:-subgroups of 2054: 2021: 1993: 1989: 1937: 1911: 1908: 1905: 1902: 1899: 1895: 1891: 1888: 1885: 1881: 1877: 1842: 1838: 1834: 1830: 1826: 1822: 1785: 1782: 1779: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1709: 1706: 1703: 1700: 1695: 1691: 1678: 1675: 1662: 1659: 1655: 1651: 1647: 1625: 1612: 1609: 1607: 1604: 1591: 1571: 1551: 1527: 1507: 1487: 1466: 1442: 1438: 1416: 1396: 1374: 1370: 1349: 1329: 1309: 1288: 1264: 1244: 1224: 1197: 1194: 1191: 1186: 1159: 1139: 1119: 1099: 1079: 1055: 1052: 1021: 1001: 981: 958: 923: 882:Sylow theorems 872: 871: 826: 824: 817: 808: 807: 805: 804: 797: 790: 782: 779: 778: 775: 774: 772:Elliptic curve 768: 767: 761: 760: 754: 753: 747: 742: 741: 738: 737: 732: 731: 728: 725: 721: 717: 716: 715: 710: 708:Diffeomorphism 704: 703: 698: 693: 687: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 645: 644: 633: 632: 621: 620: 609: 608: 597: 596: 585: 584: 573: 572: 565:Special linear 561: 560: 553:General linear 549: 548: 543: 537: 528: 527: 524: 523: 520: 519: 514: 509: 501: 500: 487: 475: 462: 449: 447:Modular groups 445: 444: 443: 438: 425: 409: 406: 405: 400: 394: 393: 392: 389: 388: 383: 382: 381: 380: 375: 370: 367: 361: 360: 354: 353: 352: 351: 345: 344: 338: 337: 332: 323: 322: 320:Hall's theorem 317: 315:Sylow theorems 311: 310: 305: 297: 296: 295: 294: 288: 283: 280:Dihedral group 276: 275: 270: 264: 259: 253: 248: 237: 232: 231: 228: 227: 222: 221: 220: 219: 214: 206: 205: 204: 203: 198: 193: 188: 183: 178: 173: 171:multiplicative 168: 163: 158: 153: 145: 144: 143: 142: 137: 129: 128: 120: 119: 118: 117: 115:Wreath product 112: 107: 102: 100:direct product 94: 92:Quotient group 86: 85: 84: 83: 78: 73: 63: 60: 59: 56: 55: 47: 46: 26: 18:Sylow subgroup 9: 6: 4: 3: 2: 7695: 7684: 7681: 7679: 7676: 7675: 7673: 7661: 7660: 7655: 7652: 7647: 7642: 7641: 7636: 7633: 7628: 7625: 7621: 7617: 7613: 7609: 7608: 7603: 7599: 7598: 7588: 7584: 7580: 7576: 7572: 7570:9780521661034 7566: 7562: 7558: 7553: 7549: 7545: 7541: 7537: 7533: 7529: 7525: 7521: 7517: 7513: 7511:J. Algorithms 7506: 7502: 7498: 7494: 7490: 7486: 7482: 7478: 7474: 7470: 7466: 7464:J. Algorithms 7459: 7455: 7451: 7447: 7443: 7439: 7435: 7430: 7425: 7421: 7417: 7411: 7407: 7403: 7399: 7395: 7391: 7387: 7383: 7379: 7375: 7371: 7366: 7361: 7357: 7353: 7351:J. Algorithms 7344: 7339: 7335: 7331: 7327: 7323: 7319: 7315: 7311: 7303: 7294: 7290: 7286: 7282: 7278: 7274: 7270: 7266: 7264:9783540549550 7260: 7256: 7252: 7248: 7244: 7240: 7235: 7234: 7224: 7220: 7216: 7212: 7208: 7204: 7200: 7196: 7192: 7188: 7184: 7181:(in German). 7180: 7174: 7170: 7166: 7162: 7158: 7154: 7150: 7146: 7142: 7138: 7134: 7130: 7126: 7122: 7116: 7112: 7108: 7104: 7100: 7096: 7092: 7088: 7083: 7078: 7074: 7071:(in German). 7070: 7069: 7064: 7059: 7055: 7051: 7047: 7043: 7039: 7035: 7030: 7025: 7021: 7018: 7017: 7012: 7007: 7000: 6996: 6992: 6988: 6984: 6980: 6976: 6972: 6968: 6964: 6960: 6956: 6952: 6943: 6938: 6934: 6930: 6926: 6922: 6918: 6914: 6909: 6904: 6901:(33): 55–63. 6900: 6896: 6890: 6885: 6881: 6877: 6873: 6869: 6865: 6861: 6857: 6853: 6846: 6845: 6828: 6823: 6816: 6811: 6804: 6799: 6792: 6787: 6780: 6775: 6768: 6763: 6757:, Chapter 16. 6756: 6751: 6744: 6743:Wielandt 1959 6739: 6732: 6727: 6720: 6715: 6708: 6703: 6696: 6695:Scharlau 1988 6691: 6684: 6679: 6671: 6669:9788178089973 6665: 6661: 6654: 6635: 6631: 6624: 6617: 6609: 6605: 6601: 6597: 6593: 6589: 6585: 6582:(in French). 6581: 6580: 6575: 6571: 6565: 6561: 6550: 6547: 6545: 6542: 6540: 6539:Hall subgroup 6537: 6535: 6532: 6531: 6524: 6522: 6517: 6513: 6509: 6504: 6502: 6498: 6494: 6490: 6486: 6482: 6478: 6474: 6470: 6466: 6462: 6458: 6451: 6447: 6443: 6440:-subgroup of 6439: 6435: 6431: 6426: 6424: 6413: 6409: 6392: 6384: 6380: 6376: 6372: 6366:is normal in 6365: 6361: 6357: 6350: 6346: 6342: 6338: 6331: 6326: 6322: 6316: 6312: 6302: 6293: 6288: 6285: 6271: 6259: 6253: 6246: 6242: 6238: 6223: 6213: 6205: 6198: 6194: 6188: 6175: 6165: 6161: 6157: 6148: 6135: 6127: 6123: 6119: 6115: 6106: 6094: 6090: 6079: 6075: 6071: 6054: 6052: 6048: 6045: 6038: 6032: 6026: 6023: 6016: 6012: 6008: 6004: 6001: 5997: 5993: 5990: 5976: 5972: 5968: 5959: 5924: 5911: 5908: 5885: 5882: 5879: 5873: 5870: 5860: 5843: 5839: 5831: 5827: 5817: 5815: 5811: 5808: 5800: 5792: 5788: 5784: 5780: 5776: 5768: 5764: 5760: 5757: 5749: 5742:-subgroup of 5741: 5737: 5730:-subgroup of 5729: 5725: 5708: 5670: 5666: 5656: 5649:|/| 5637:not fixed by 5623: 5573: 5571: 5567: 5563: 5543: 5539: 5534: 5531: 5527: 5523: 5512: 5504: 5477: 5469: 5465: 5460: 5455: 5451: 5448: 5440: 5432: 5428: 5424: 5421: 5417: 5406: 5398: 5394: 5389: 5384: 5380: 5377: 5374: 5366: 5358: 5354: 5350: 5347: 5343: 5334: 5331: 5326: 5322: 5316: 5313: 5310: 5306: 5302: 5299: 5293: 5290: 5285: 5281: 5275: 5272: 5269: 5264: 5260: 5251: 5248: 5243: 5239: 5233: 5230: 5227: 5223: 5219: 5206: 5202: 5197: 5192: 5188: 5175: 5155: 5154: 5153: 5151: 5147: 5143: 5139: 5125: 5121: 5117: 5112: 5104: 5066: 5063:|) < 5051: 5042: 5028:0 < | 5024: 5021:|) > 5011: 4998: 4985: 4976: 4954: 4950: 4940: 4924: 4906: 4898: 4894: 4888: 4861:| | 4847: 4842: 4803:; therefore, 4763: 4742: 4721: 4687: 4624: 4617: 4597: 4594: 4591: 4582: 4579: 4575: 4557: 4555: 4551: 4530: 4501: 4487: 4484: 4481: 4461: 4458: 4455: 4447: 4439: 4434: 4425: 4423: 4422:J. L. Alperin 4419: 4415: 4414:simple groups 4411: 4407: 4403: 4399: 4395: 4390: 4388: 4386: 4381: 4377: 4373: 4369: 4365: 4361: 4357: 4353: 4349: 4345: 4341: 4337: 4333: 4329: 4322: 4318: 4314: 4310: 4306: 4302: 4298: 4294: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4254: 4250: 4246: 4242: 4238: 4231: 4227: 4223: 4219: 4215: 4211: 4207: 4203: 4199: 4195: 4191: 4182: 4178: 4174: 4166: 4162: 4154: 4149: 4145: 4138: 4132: 4120: 4106: 4099: 4095: 4088: 4065: 4061: 4053: 4050: 4047: 4044: 4038: 4035: 4032: 4022: 4021: 4020: 4018: 4008: 4006: 4002: 3995: 3988: 3981: 3977: 3972: 3970: 3963: 3956: 3949: 3945: 3940: 3938: 3934: 3927: 3920: 3913: 3908: 3906: 3902: 3898: 3891: 3884: 3877: 3870: 3867:| = 30, then 3866: 3862: 3857: 3854:(= 2 · 3 · 5) 3851: 3848:, then it is 3847: 3843: 3841: 3835: 3831: 3821: 3819: 3815: 3811: 3807: 3803: 3796: 3789: 3785: 3778: 3762: 3752: 3745: 3741: 3737: 3733: 3729: 3716: 3712: 3708: 3704: 3701: 3698: 3694: 3690: 3687: 3683: 3680: 3677: 3673: 3669: 3665: 3661: 3657: 3654: 3653: 3652: 3650: 3646: 3635: 3632: 3628: 3621: 3617: 3613: 3609: 3605: 3602:. This means 3600: 3596: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3561: 3556: 3550: 3544: 3540: 3535: 3531: 3527: 3523: 3505: 3497: 3494: 3490: 3484: 3477: 3470: 3467: 3463: 3456: 3446: 3441: 3439: 3435: 3429: 3426: 3421: 3417: 3410: 3403: 3400: 3397: =  3396: 3389: 3385: 3381: 3377: 3374: −  3373: 3369: 3362: 3358: 3351: 3347: 3341: 3337: 3332: 3328: 3323: 3319: 3312: 3307: 3305: 3301: 3296: 3285: 3280: 3276: 3274: 3270: 3265: 3260: 3256: 3252: 3241: 3236: 3226: 3209: 3186: 3183: 3178: 3174: 3137: 3131: 3128: 3120: 3115: 3111: 3099:-subgroup of 3082: 3068: 3065: 3062: 3039: 3033: 3030: 3014: 3000: 2981: 2969: 2952: 2948: 2938: 2924: 2902: 2898: 2877: 2874: 2869: 2865: 2856: 2840: 2833:-subgroup of 2820: 2800: 2797: 2792: 2788: 2778: 2762: 2758: 2737: 2717: 2697: 2690:-subgroup of 2677: 2657: 2637: 2617: 2595: 2591: 2568: 2564: 2543: 2523: 2505: 2487: 2483: 2471:-subgroup of 2467:is any Sylow 2442: 2434: 2430: 2426: 2423: 2415: 2410: 2406: 2398: 2380: 2376: 2368: 2365: 2360: 2356: 2348: 2342:-subgroup in 2338:of the Sylow 2337: 2315: 2311: 2303: 2302: 2301: 2277: 2273: 2244: 2241: 2238: 2218: 2213: 2209: 2171: 2157: 2154: 2151: 2148: 2143: 2140: 2136: 2115: 2112: 2109: 2085: 2052: 2050: 2020: 2018: 2014: 2008: 2006: 1991: 1987: 1973: 1959: 1952: 1936: 1934: 1933: 1927: 1909: 1906: 1900: 1897: 1889: 1886: 1883: 1840: 1836: 1832: 1824: 1783: 1780: 1777: 1757: 1752: 1748: 1744: 1736: 1723: 1704: 1698: 1693: 1689: 1674: 1660: 1657: 1649: 1623: 1603: 1589: 1569: 1549: 1541: 1525: 1505: 1485: 1478:-subgroup of 1477: 1464: 1455: 1440: 1436: 1414: 1394: 1372: 1368: 1347: 1340:-subgroup of 1327: 1307: 1299: 1286: 1278: 1262: 1242: 1222: 1214: 1209: 1192: 1184: 1157: 1137: 1117: 1110:-subgroup of 1097: 1077: 1069: 1053: 1050: 1042: 1038: 1036: 1019: 999: 992:-subgroup of 979: 972: 956: 949:) of a group 948: 946: 941: 939: 921: 914: 909: 907: 903: 900:that a given 899: 895: 891: 887: 883: 879: 868: 865: 857: 854:November 2018 847: 843: 837: 836: 830: 825: 816: 815: 812: 803: 798: 796: 791: 789: 784: 783: 781: 780: 773: 770: 769: 766: 763: 762: 759: 756: 755: 752: 749: 748: 745: 740: 739: 729: 726: 723: 722: 720: 714: 711: 709: 706: 705: 702: 699: 697: 694: 692: 689: 688: 685: 679: 677: 671: 669: 663: 661: 655: 653: 647: 646: 642: 638: 635: 634: 630: 626: 623: 622: 618: 614: 611: 610: 606: 602: 599: 598: 594: 590: 587: 586: 582: 578: 575: 574: 570: 566: 563: 562: 558: 554: 551: 550: 547: 544: 542: 539: 538: 535: 531: 526: 525: 518: 515: 513: 510: 508: 505: 504: 476: 451: 450: 448: 442: 439: 414: 411: 410: 404: 401: 399: 396: 395: 391: 390: 379: 376: 374: 371: 368: 365: 364: 363: 362: 359: 356: 355: 350: 347: 346: 343: 340: 339: 336: 333: 331: 329: 325: 324: 321: 318: 316: 313: 312: 309: 306: 304: 301: 300: 299: 298: 292: 289: 286: 281: 278: 277: 273: 268: 265: 262: 257: 254: 251: 246: 243: 242: 241: 240: 235: 234:Finite groups 230: 229: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 192: 189: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146: 141: 138: 136: 133: 132: 131: 130: 127: 126: 122: 121: 116: 113: 111: 108: 106: 103: 101: 98: 95: 93: 90: 89: 88: 87: 82: 79: 77: 74: 72: 69: 68: 67: 66: 61:Basic notions 58: 57: 53: 49: 48: 45: 40: 36: 32: 31: 19: 7657: 7638: 7626:at Wikibooks 7605: 7556: 7515: 7509: 7468: 7462: 7419: 7413: 7355: 7349: 7297: 7238: 7182: 7176: 7124: 7118: 7075:(1): 40–52. 7072: 7066: 7019: 7014: 6999:the original 6954: 6948: 6898: 6892: 6858:(1): 29–75. 6855: 6849: 6822: 6810: 6798: 6791:Kantor 1985b 6786: 6779:Kantor 1985a 6774: 6762: 6750: 6738: 6726: 6714: 6702: 6690: 6678: 6659: 6653: 6641:. Retrieved 6629: 6616: 6583: 6577: 6564: 6511: 6505: 6496: 6492: 6488: 6484: 6480: 6476: 6472: 6468: 6464: 6460: 6453: 6449: 6445: 6441: 6437: 6433: 6429: 6427: 6420: 6407: 6390: 6382: 6378: 6374: 6367: 6363: 6359: 6352: 6348: 6344: 6340: 6333: 6329: 6324: 6320: 6314: 6310: 6300: 6291: 6289: 6283: 6266: 6257: 6251: 6244: 6240: 6236: 6225:is given by 6221: 6208: 6200: 6196: 6192: 6186: 6173: 6171: 6159: 6152: 6146: 6130: 6125: 6117: 6110: 6101: 6099:. Then (a) 6092: 6085: 6077: 6073: 6069: 6057: 6050: 6046: 6043: 6036: 6030: 6024: 6021: 6014: 6010: 6006: 6002: 5999: 5995: 5991: 5988: 5974: 5970: 5966: 5965:. With this 5957: 5858: 5841: 5837: 5829: 5823: 5813: 5809: 5806: 5798: 5790: 5786: 5782: 5766: 5762: 5758: 5755: 5747: 5739: 5735: 5727: 5723: 5711: 5667:denotes the 5661: 5651: 5630:Any element 5629: 5587:be a finite 5576: 5569: 5565: 5561: 5541: 5537: 5535: 5529: 5525: 5518: 5507: 5502: 5500: 5149: 5145: 5141: 5137: 5123: 5115: 5110: 5099: 5064: 5046: 5040: 5039:| < 5022: 5006: 4996: 4980: 4974: 4952: 4948: 4935: 4919: 4901: 4896: 4889: 4843: 4761: 4743: 4615: 4580: 4577: 4573: 4563: 4553: 4549: 4518:whose order 4503: 4445: 4438:group action 4435: 4431: 4397: 4391: 4384: 4379: 4375: 4371: 4367: 4363: 4359: 4355: 4351: 4347: 4343: 4339: 4331: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4284: 4280: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4248: 4244: 4240: 4233: 4229: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4193: 4188: 4176: 4172: 4164: 4160: 4152: 4147: 4143: 4136: 4127: 4118: 4101: 4097: 4090: 4086: 4084: 4019:states that 4014: 3993: 3986: 3979: 3975: 3973: 3968: 3961: 3954: 3947: 3943: 3941: 3936: 3932: 3925: 3918: 3911: 3909: 3904: 3900: 3896: 3889: 3882: 3875: 3868: 3864: 3860: 3858: 3846:prime powers 3839: 3832:that is not 3830:simple group 3827: 3814:cyclic group 3808:must be the 3805: 3794: 3787: 3776: 3750: 3743: 3739: 3735: 3731: 3727: 3725: 3714: 3710: 3706: 3696: 3692: 3688: 3685: 3675: 3671: 3670:primes with 3667: 3663: 3659: 3641: 3630: 3626: 3619: 3615: 3611: 3607: 3603: 3598: 3594: 3588: 3584: 3580: 3579:. There are 3576: 3572: 3568: 3564: 3559: 3554: 3548: 3542: 3538: 3533: 3529: 3521: 3444: 3442: 3437: 3433: 3427: 3424: 3419: 3415: 3408: 3401: 3398: 3394: 3387: 3383: 3379: 3375: 3371: 3367: 3360: 3356: 3349: 3339: 3335: 3330: 3326: 3321: 3317: 3310: 3308: 3303: 3294: 3292: 3283: 3272: 3268: 3263: 3258: 3254: 3248: 3239: 3084: 3012: 3006: 2939: 2937:-subgroups. 2779: 2536:every Sylow 2515: 2512:Consequences 2502:denotes the 2174: 2074:, all Sylow 2055: 2046: 2022: 2010: 1979: 1958:multiplicity 1951:prime factor 1938: 1930: 1928: 1680: 1614: 1457: 1428: 1279: 1277:prime factor 1210: 1034: 944: 943: 937: 935: 913:prime number 910: 902:finite group 881: 875: 860: 851: 832: 811: 640: 628: 616: 604: 592: 580: 568: 556: 327: 314: 284: 271: 260: 249: 245:Cyclic group 123: 110:Free product 81:Group action 44:Group theory 39:Group theory 38: 7471:(1): 1–17. 7178:Arch. Math. 6827:Seress 2003 6803:Kantor 1990 6767:Cannon 1971 6755:Butler 1991 6495:but not in 6377:), so then 6191:be a Sylow 6013:is a Sylow 5738:is a Sylow 5595:, and let Ω 4303:, and then 4291:normalizes 4096:of Sylow's 3917:= 6, since 3838:Burnside's 3606:is a Sylow 3095:is a Sylow 1978:, of order 1863:-group and 1855:. That is, 1456:is a Sylow 942:(sometimes 846:introducing 530:Topological 369:alternating 7672:Categories 7587:1028.20002 7548:0731.20005 7501:0642.20019 7454:0573.20022 7398:0604.20001 7334:0253.20027 7289:0785.20001 7231:Algorithms 7223:0092.02403 7165:0436.01006 7107:0637.01006 7054:1065.01009 6995:0943.68149 6933:0829.01011 6880:0721.01008 6837:References 6600:04.0056.02 6579:Math. Ann. 6483:-subgroup 6417:Algorithms 6150:, and (c) 6122:normalizer 6076:-subgroup 5969:, we have 5953:| ≠ 0 5789:are Sylow 5779:isomorphic 5754:such that 5669:stabilizer 5551:for which 5517:|) = 5109:|) = 4995:|) = 4947:|) = 4934:|) = 4918:|) + 4899:, one has 4751:for which 4584:such that 4387:-nilpotent 4346:-subgroup 4315:, so that 4204:-subgroup 3717:is simple. 2504:normalizer 2094:are Sylow 1949:For every 1812:has order 1808:-subgroup 1722:isomorphic 1611:Motivation 1032:that is a 829:references 637:Symplectic 577:Orthogonal 534:Lie groups 441:Free group 166:continuous 105:Direct sum 7659:MathWorld 7640:MathWorld 7612:EMS Press 7532:0196-6774 7485:0196-6774 7438:1090-2724 7408:(1985b). 7382:0196-6774 7360:CiteSeerX 7318:0160-7634 7215:119816392 7199:0003-9268 7157:123685226 7141:0003-9519 7091:0315-0860 7038:0315-0860 6971:0168-7433 6917:0791-5578 6864:0392-4432 6608:121928336 6570:Sylow, L. 6199:has size 6120:) is the 5921:Ω 5912:∤ 5874:∤ 5775:conjugate 5540:of order 5466:ν 5449:− 5429:ν 5425:− 5395:ν 5378:− 5355:ν 5351:− 5332:− 5307:∏ 5291:− 5273:− 5249:− 5224:∏ 5168:Ω 4973:| = 4878:for each 4836:| = 4595:∤ 4572:| = 4485:∤ 4459:∣ 4295:for some 4287:. Hence 4259:but also 4157:. Hence, 4051:− 4048:≡ 4036:− 3985:= 10 and 3910:As well, 3763:∣ 3702:Example-3 3681:Example-2 3655:Example-1 3597:| =  3591:, making 3423:) =  3325:), where 3184:≡ 3132:⁡ 3066:⊂ 3034:⁡ 2366:≡ 2141:− 2113:∈ 2084:conjugate 2024:Corollary 1972:-subgroup 1699:⁡ 1677:Statement 1540:conjugate 1360:of order 940:-subgroup 896:of fixed 894:subgroups 701:Conformal 589:Euclidean 196:nilpotent 7683:P-groups 6731:Meo 2004 6719:Gow 1994 6634:Archived 6572:(1872). 6527:See also 6328:so that 6318:for all 6290:Now let 6276:= | 6264:. Thus, 6180:and let 6137:divides 6042:so that 5977:for all 5836:and let 5603:. Then 5069:. Since 5044:implies 5004:one has 4848:we have 4718:for its 4684:for its 4675:, write 4614:of size 4015:Part of 3850:solvable 3392:. Since 3230:Examples 2463:, where 2330:divides 2231:, where 1606:Theorems 886:theorems 696:Poincaré 541:Solenoid 413:Integers 403:Lattices 378:sporadic 373:Lie type 201:solvable 191:dihedral 176:additive 161:infinite 71:Subgroup 7614:, 2001 7579:1970241 7540:1079450 7493:0925595 7446:0805654 7390:0813589 7326:0367027 7273:1225579 7207:0147529 7149:0575718 7099:0931678 7046:2055642 6987:1449341 6979:1721912 6925:1313412 6872:1096350 6549:p-group 6282:|/ 6235:| 6145:|/ 6128:), (b) 6109:(where 6059:Theorem 5863:. Now 5713:Theorem 5660:(where 5513:(| 5105:(| 5052:(| 5012:(| 4986:(| 4941:(| 4925:(| 4907:(| 4844:By the 4731:| 4697:| 4658:| 4505:Theorem 4263:(since 4220:, then 4124:⁠ 4109:⁠ 3842:theorem 3802:coprime 3524:is any 3430:′ 3346:abelian 3253:of the 3086:Theorem 2968:divides 2710:, then 2670:is any 2176:Theorem 2057:Theorem 1940:Theorem 971:maximal 842:improve 691:Lorentz 613:Unitary 512:Lattice 452:PSL(2, 186:abelian 97:(Semi-) 7585:  7577:  7567:  7546:  7538:  7530:  7499:  7491:  7483:  7452:  7444:  7436:  7396:  7388:  7380:  7362:  7332:  7324:  7316:  7287:  7281:395110 7279:  7271:  7261:  7221:  7213:  7205:  7197:  7163:  7155:  7147:  7139:  7105:  7097:  7089:  7052:  7044:  7036:  6993:  6985:  6977:  6969:  6931:  6923:  6915:  6878:  6870:  6862:  6842:Proofs 6666:  6606:  6598:  6395:| 6139:| 6084:. Let 6061:  6040:| 6019:| 5946:| 5846:| 5826:cosets 5715:  5694:| 5685:| 5681:| 5677:| 5658:| 5643:| 5605:| 5134:| 5128:| 5088:| 5079:| 5075:| 5071:| 4962:| 4876:| 4850:| 4805:| 4741:in Ω. 4566:| 4507:  4169:. So, 4133:, ie. 3999:, the 3834:cyclic 3784:normal 3775:5 and 3645:simple 3571:. So, 3267:. For 3257:-gon, 3207:  3190:  3166:, and 3103:, and 2265:. Let 2178:  2059:  1942:  1796:where 1538:) are 1037:-group 936:Sylow 911:For a 880:, the 831:, but 546:Circle 477:SL(2, 366:cyclic 330:-group 181:cyclic 156:finite 151:simple 135:kernel 7346:(PDF) 7277:S2CID 7211:S2CID 7153:S2CID 7002:(PDF) 6983:S2CID 6945:(PDF) 6643:8 May 6637:(PDF) 6626:(PDF) 6604:S2CID 6556:Notes 6463:) of 6436:is a 6243:} = 6169:Proof 5987:, so 5821:Proof 5805:with 5726:is a 5627:Proof 5578:Lemma 4960:with 4720:orbit 4561:Proof 4338:: if 3818:up to 3378:) = ( 3364:) is 2853:is a 2336:index 2128:with 1956:with 1859:is a 1770:with 1068:order 1041:power 969:is a 898:order 730:Sp(∞) 727:SU(∞) 140:image 7565:ISBN 7528:ISSN 7481:ISSN 7434:ISSN 7378:ISSN 7314:ISSN 7259:ISBN 7195:ISSN 7137:ISSN 7087:ISSN 7034:ISSN 6967:ISSN 6913:ISSN 6899:0033 6860:ISSN 6664:ISBN 6645:2021 6347:and 6068:Let 5785:and 5773:are 5734:and 5583:Let 5528:) = 5026:(as 4760:has 4711:and 4651:= { 4635:and 4623:acts 4564:Let 4370:and 4323:are 4319:and 4275:and 4228:are 4224:and 4212:and 3695:and 3666:and 3587:and 3528:of 3329:and 2475:and 2257:and 2242:> 2185:Let 2090:and 2082:are 1781:> 934:, a 724:O(∞) 713:Loop 532:and 7583:Zbl 7544:Zbl 7520:doi 7497:Zbl 7473:doi 7450:Zbl 7424:doi 7394:Zbl 7370:doi 7330:Zbl 7310:AMS 7285:Zbl 7251:doi 7219:Zbl 7187:doi 7161:Zbl 7129:doi 7103:Zbl 7077:doi 7050:Zbl 7024:doi 6991:Zbl 6959:doi 6929:Zbl 6903:doi 6876:Zbl 6596:JFM 6588:doi 6506:In 6467:in 6389:= { 6315:xQx 6303:∈ Ω 6260:in 6237:gPg 6189:∈ Ω 6124:of 6063:(3) 5992:HgP 5971:hgP 5960:∈ Ω 5832:in 5828:of 5801:in 5750:in 5722:If 5717:(2) 5635:∈ Ω 5549:∈ Ω 4883:∈ Ω 4749:∈ Ω 4673:∈ Ω 4640:∈ Ω 4509:(1) 4382:is 4107:is 4062:mod 3859:If 3840:p q 3651:. 3563:or 3546:is 3282:In 3238:In 3091:If 2377:mod 2180:(3) 2061:(2) 2045:in 1974:of 1944:(1) 1872:gcd 1690:Syl 1602:). 1180:Syl 1043:of 639:Sp( 627:SU( 603:SO( 567:SL( 555:GL( 7674:: 7656:. 7637:. 7610:, 7604:, 7581:. 7575:MR 7573:. 7563:. 7542:. 7536:MR 7534:. 7526:. 7516:11 7514:. 7495:. 7489:MR 7487:. 7479:. 7467:. 7448:. 7442:MR 7440:. 7432:. 7420:30 7418:. 7412:. 7392:. 7386:MR 7384:. 7376:. 7368:. 7354:. 7348:. 7328:. 7322:MR 7320:. 7304:. 7283:. 7275:. 7269:MR 7267:. 7257:. 7249:. 7241:. 7217:. 7209:. 7203:MR 7201:. 7193:. 7183:10 7159:. 7151:. 7145:MR 7143:. 7135:. 7125:21 7123:. 7101:. 7095:MR 7093:. 7085:. 7073:15 7065:. 7048:. 7042:MR 7040:. 7032:. 7020:31 7013:. 6989:. 6981:. 6975:MR 6973:. 6965:. 6955:23 6953:. 6947:. 6927:. 6921:MR 6919:. 6911:. 6897:. 6891:. 6874:. 6868:MR 6866:. 6856:10 6632:. 6628:. 6602:. 6594:. 6576:. 6523:. 6503:. 6452:= 6425:. 6412:. 6381:= 6332:≤ 6323:∈ 6313:= 6287:. 6272:= 6239:= 6231:∈ 6214:= 6164:. 6107:= 6053:. 6049:= 6047:Hg 6025:Hg 6005:≤ 6003:Hg 5994:= 5982:∈ 5975:gP 5973:= 5967:gP 5958:gP 5816:. 5812:= 5810:Hg 5761:≤ 5759:Hg 5707:. 5622:. 5572:. 5570:Hg 5560:= 5140:+ 4951:+ 4841:. 4782:⊆ 4778:∈ 4735:∈ 4723:{ 4705:= 4693:∈ 4689:{ 4662:∈ 4642:, 4630:∈ 4618:. 4576:= 4574:pm 4556:. 4389:. 4368:PK 4366:= 4362:, 4311:= 4307:= 4289:gh 4181:. 3856:. 3836:. 3691:, 3662:, 3660:pq 3620:GL 3520:, 3440:. 3409:GL 3382:)( 3350:GL 3311:GL 3287:12 3225:. 3129:Cl 3081:. 3031:Cl 2999:. 2777:. 2170:. 2051:. 2019:. 2007:. 1935:. 1926:. 1673:. 1661:60 1208:. 908:. 615:U( 591:E( 579:O( 37:→ 7662:. 7643:. 7589:. 7550:. 7522:: 7503:. 7475:: 7469:9 7456:. 7426:: 7400:. 7372:: 7356:6 7336:. 7291:. 7253:: 7225:. 7189:: 7167:. 7131:: 7109:. 7079:: 7056:. 7026:: 6961:: 6935:. 6905:: 6882:. 6829:. 6817:. 6805:. 6793:. 6781:. 6769:. 6745:. 6733:. 6721:. 6709:. 6697:. 6685:. 6672:. 6647:. 6610:. 6590:: 6584:5 6512:p 6497:H 6493:H 6489:p 6485:H 6481:p 6477:p 6473:p 6469:G 6465:H 6461:H 6459:( 6456:G 6454:N 6450:N 6446:p 6442:G 6438:p 6434:H 6430:p 6410:) 6408:p 6403:0 6401:Ω 6397:Ω 6391:P 6387:0 6383:Q 6379:P 6375:Q 6373:( 6370:G 6368:N 6364:Q 6360:Q 6358:( 6355:G 6353:N 6349:Q 6345:P 6341:Q 6339:( 6336:G 6334:N 6330:P 6325:P 6321:x 6311:Q 6305:0 6301:Q 6296:0 6292:P 6284:q 6279:G 6269:p 6267:n 6262:G 6258:P 6254:) 6252:P 6250:( 6248:G 6245:N 6241:P 6233:G 6229:g 6227:{ 6222:P 6218:G 6211:p 6209:n 6203:p 6201:n 6197:P 6193:p 6187:P 6182:G 6178:G 6174:p 6162:) 6160:p 6155:p 6153:n 6147:q 6142:G 6133:p 6131:n 6126:P 6118:P 6116:( 6113:G 6111:N 6104:p 6102:n 6097:G 6093:p 6088:p 6086:n 6082:G 6078:P 6074:p 6070:q 6051:P 6044:g 6037:P 6031:H 6022:g 6015:p 6011:H 6007:P 6000:g 5996:P 5989:g 5984:H 5980:h 5962:0 5950:0 5948:Ω 5931:| 5925:0 5916:| 5909:p 5889:] 5886:P 5883:: 5880:G 5877:[ 5871:p 5861:) 5859:p 5855:Ω 5850:0 5848:Ω 5842:H 5838:H 5834:G 5830:P 5814:K 5807:g 5803:G 5799:g 5795:G 5791:p 5787:K 5783:H 5771:G 5767:p 5763:P 5756:g 5752:G 5748:g 5744:G 5740:p 5736:P 5732:G 5728:p 5724:H 5705:p 5701:x 5698:H 5691:x 5688:H 5679:Ω 5673:p 5664:x 5662:H 5654:x 5652:H 5646:H 5639:H 5633:x 5620:) 5618:p 5613:0 5611:Ω 5607:Ω 5601:H 5597:0 5593:H 5589:p 5585:H 5566:m 5562:H 5557:ω 5553:G 5547:ω 5542:p 5538:H 5530:r 5526:m 5524:( 5521:p 5519:ν 5515:Ω 5510:p 5508:ν 5503:p 5481:) 5478:j 5475:( 5470:p 5461:p 5456:/ 5452:j 5444:) 5441:j 5438:( 5433:p 5422:k 5418:p 5410:) 5407:j 5404:( 5399:p 5390:p 5385:/ 5381:j 5375:m 5370:) 5367:j 5364:( 5359:p 5348:k 5344:p 5335:1 5327:k 5323:p 5317:1 5314:= 5311:j 5303:m 5300:= 5294:j 5286:k 5282:p 5276:j 5270:m 5265:k 5261:p 5252:1 5244:k 5240:p 5234:0 5231:= 5228:j 5220:= 5214:) 5207:k 5203:p 5198:m 5193:k 5189:p 5182:( 5176:= 5172:| 5164:| 5150:r 5146:p 5142:r 5138:k 5131:G 5124:p 5116:r 5111:r 5107:Ω 5102:p 5100:ν 5095:ω 5092:G 5085:ω 5082:G 5073:Ω 5067:) 5065:k 5059:ω 5055:G 5049:p 5047:ν 5041:p 5035:ω 5031:G 5023:r 5018:ω 5015:G 5009:p 5007:ν 5002:ω 4997:r 4992:ω 4989:G 4983:p 4981:ν 4975:p 4969:ω 4965:G 4958:ω 4953:r 4949:k 4944:G 4938:p 4936:ν 4931:ω 4928:G 4922:p 4920:ν 4914:ω 4910:G 4904:p 4902:ν 4897:p 4892:p 4890:ν 4881:ω 4873:G 4867:ω 4864:G 4857:ω 4853:G 4838:p 4833:ω 4827:α 4823:ω 4819:G 4812:ω 4808:G 4801:ω 4797:α 4793:ω 4789:G 4784:G 4780:ω 4776:α 4770:ω 4766:G 4762:p 4757:ω 4753:G 4747:ω 4739:} 4737:G 4733:g 4729:ω 4727:⋅ 4725:g 4716:ω 4713:G 4709:} 4707:ω 4703:ω 4701:⋅ 4699:g 4695:G 4691:g 4681:ω 4677:G 4671:ω 4666:} 4664:ω 4660:x 4656:x 4653:g 4649:ω 4647:⋅ 4645:g 4638:ω 4632:G 4628:g 4620:G 4616:p 4612:G 4598:u 4592:p 4581:u 4578:p 4569:G 4554:p 4550:p 4535:| 4531:G 4527:| 4516:G 4488:b 4482:a 4462:b 4456:a 4446:p 4442:G 4398:p 4385:p 4380:G 4376:K 4374:∩ 4372:P 4364:G 4360:P 4356:K 4352:G 4348:P 4344:p 4340:G 4332:P 4330:( 4327:G 4325:N 4321:B 4317:A 4313:B 4309:B 4305:A 4301:B 4297:h 4293:P 4285:B 4281:G 4277:P 4273:P 4269:A 4265:P 4261:P 4257:P 4253:B 4249:A 4247:= 4245:B 4241:P 4239:( 4236:G 4234:N 4230:G 4226:B 4222:A 4218:P 4214:B 4210:A 4206:P 4202:p 4198:G 4179:) 4177:p 4173:p 4171:( 4167:) 4165:p 4161:p 4159:( 4155:) 4153:p 4148:p 4144:n 4137:p 4135:( 4130:p 4128:S 4119:p 4115:/ 4112:1 4104:p 4102:S 4098:p 4093:p 4091:n 4087:p 4069:) 4066:p 4059:( 4054:1 4045:! 4042:) 4039:1 4033:p 4030:( 3997:5 3994:A 3990:5 3987:n 3983:3 3980:n 3976:G 3969:G 3965:7 3962:n 3958:7 3955:n 3951:7 3948:n 3944:G 3937:G 3933:G 3929:5 3926:n 3922:5 3919:n 3915:5 3912:n 3905:G 3901:G 3897:G 3893:3 3890:n 3886:3 3883:n 3879:3 3876:n 3872:3 3869:n 3865:G 3861:G 3806:G 3798:5 3795:n 3791:5 3788:n 3780:3 3777:n 3754:3 3751:n 3747:3 3744:n 3740:G 3736:n 3732:n 3728:n 3715:G 3711:G 3707:G 3697:q 3693:p 3689:q 3686:p 3678:. 3676:q 3672:p 3668:q 3664:p 3631:q 3627:F 3625:( 3623:2 3616:p 3612:p 3608:p 3604:P 3599:p 3595:P 3593:| 3589:b 3585:a 3581:p 3577:p 3573:P 3569:p 3565:x 3560:x 3555:q 3549:q 3543:q 3539:F 3534:q 3530:F 3522:x 3506:] 3498:m 3495:j 3491:x 3485:0 3478:0 3471:m 3468:i 3464:x 3457:[ 3445:P 3438:p 3434:p 3428:m 3425:p 3420:q 3416:F 3414:( 3412:2 3402:m 3399:p 3395:q 3388:q 3384:q 3380:q 3376:q 3372:q 3368:q 3366:( 3361:q 3357:F 3355:( 3353:2 3342:) 3340:q 3336:p 3331:q 3327:p 3322:q 3318:F 3316:( 3314:2 3304:n 3295:n 3284:D 3273:n 3269:n 3264:n 3262:2 3259:D 3255:n 3243:6 3240:D 3213:) 3210:p 3203:d 3200:o 3197:m 3193:( 3187:1 3179:p 3175:n 3164:K 3160:p 3145:| 3141:) 3138:K 3135:( 3125:| 3121:= 3116:p 3112:n 3101:G 3097:p 3093:K 3069:G 3063:K 3043:) 3040:K 3037:( 3021:p 3017:p 3013:p 3009:p 2986:| 2982:G 2978:| 2953:p 2949:n 2925:p 2903:4 2899:S 2878:1 2875:= 2870:p 2866:n 2841:G 2821:p 2801:1 2798:= 2793:p 2789:n 2763:n 2759:p 2738:p 2718:H 2698:G 2678:p 2658:H 2638:p 2618:p 2596:n 2592:p 2569:n 2565:p 2544:p 2524:p 2506:. 2488:G 2484:N 2473:G 2469:p 2465:P 2450:| 2446:) 2443:P 2440:( 2435:G 2431:N 2427:: 2424:G 2420:| 2416:= 2411:p 2407:n 2384:) 2381:p 2374:( 2369:1 2361:p 2357:n 2346:. 2344:G 2340:p 2332:m 2316:p 2312:n 2298:G 2294:p 2278:p 2274:n 2263:m 2259:p 2245:0 2239:n 2219:m 2214:n 2210:p 2199:G 2195:G 2191:n 2187:p 2158:K 2155:= 2152:g 2149:H 2144:1 2137:g 2116:G 2110:g 2100:G 2096:p 2092:K 2088:H 2080:G 2076:p 2072:p 2068:G 2048:G 2043:p 2039:G 2035:p 2031:G 1992:n 1988:p 1976:G 1970:p 1965:G 1961:n 1954:p 1924:G 1910:1 1907:= 1904:) 1901:p 1898:, 1894:| 1890:P 1887:: 1884:G 1880:| 1876:( 1861:p 1857:P 1841:n 1837:p 1833:= 1829:| 1825:P 1821:| 1810:P 1806:p 1802:m 1798:p 1784:0 1778:n 1758:m 1753:n 1749:p 1745:= 1741:| 1737:G 1733:| 1708:) 1705:G 1702:( 1694:p 1658:= 1654:| 1650:G 1646:| 1624:G 1590:p 1570:p 1550:p 1526:p 1506:p 1486:G 1465:p 1441:n 1437:p 1415:G 1395:p 1373:n 1369:p 1348:G 1328:p 1308:G 1287:p 1263:G 1243:G 1223:G 1196:) 1193:G 1190:( 1185:p 1158:p 1138:p 1118:G 1098:p 1078:p 1054:, 1051:p 1035:p 1020:G 1000:G 980:p 957:G 945:p 938:p 922:p 867:) 861:( 856:) 852:( 838:. 801:e 794:t 787:v 683:8 681:E 675:7 673:E 667:6 665:E 659:4 657:F 651:2 649:G 643:) 641:n 631:) 629:n 619:) 617:n 607:) 605:n 595:) 593:n 583:) 581:n 571:) 569:n 559:) 557:n 499:) 486:Z 474:) 461:Z 437:) 424:Z 415:( 328:p 293:Q 285:n 282:D 272:n 269:A 261:n 258:S 250:n 247:Z 20:)

Index

Sylow subgroup
Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
Glossary of group theory
List of group theory topics
Finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.