Knowledge

Symmetric group

Source 📝

83: 50: 27: 6298: 113: 3550: 4224: 2976: 2866:
The representation of a permutation as a product of transpositions is not unique; however, the number of transpositions needed to represent a given permutation is either always even or always odd. There are several short proofs of the invariance of this parity of a permutation.
2619: 3857: 7694: 7505: 2451: 2319: 6229:(1915) proved that each permutation can be written as a product of three squares. (Any squared element must belong to the hypothesized subgroup of index 2, hence so must the product of any number of squares.) However it contains the normal subgroup 4450: 3658: 3424: 3327: 4004: 7906: 7812: 8284:
rather than representations. The representation obtained from an irreducible representation defined over the integers by reducing modulo the characteristic will not in general be irreducible. The modules so constructed are called
1983:
which are not solvable by radicals, that is, the solutions cannot be expressed by performing a finite number of operations of addition, subtraction, multiplication, division and root extraction on the polynomial's coefficients.
3044: 3991: 2880: 7997: 8061: 7950: 4581: 2842:
is a permutation which exchanges two elements and keeps all others fixed; for example (1 3) is a transposition. Every permutation can be written as a product of transpositions; for instance, the permutation
5976: 7110:
are generated by elements like (123)(45) that have one cycle of length 3 and another cycle of length 2. This rules out many groups as possible subgroups of symmetric groups of a given size. For example,
6989: 8218:. Unlike the general situation for finite groups, there is in fact a natural way to parametrize irreducible representation by the same set that parametrizes conjugacy classes, namely by partitions of 8277:
is semisimple. In these cases the irreducible representations defined over the integers give the complete set of irreducible representations (after reduction modulo the characteristic if necessary).
4993:, since these symmetries permute the three vertices of the triangle. Cycles of length two correspond to reflections, and cycles of length three are rotations. In Galois theory, the sign map from S 2478: 3737: 6085: 5862: 4861:, the representation theory of the symmetric group on two points is quite simple and is seen as writing a function of two variables as a sum of its symmetric and anti-symmetric parts: Setting 2780: 7586: 7397: 5608: 8291:, and every irreducible does arise inside some such module. There are now fewer irreducibles, and although they can be classified they are very poorly understood. For example, even their 8233:
Each such irreducible representation can be realized over the integers (every permutation acting by a matrix with integer coefficients); it can be explicitly constructed by computing the
4363: 2325: 4300: 2193: 7041: 1677: 1494: 8298:
The determination of the irreducible modules for the symmetric group over an arbitrary field is widely regarded as one of the most important open problems in representation theory.
4682: 6647: 5799: 3729: 1618: 1412: 1329: 5915: 1558: 1587: 1381: 1059: 932: 7567:
send an involution to 1 (the trivial map) or to −1 (the sign map). One must also show that the sign map is well-defined, but assuming that, this gives the first homology of S
3545:{\displaystyle \sigma {\begin{pmatrix}a&b&c&\ldots \end{pmatrix}}\sigma ^{-1}={\begin{pmatrix}\sigma (a)&\sigma (b)&\sigma (c)&\ldots \end{pmatrix}}} 4219:{\displaystyle \mathrm {sgn} (\rho _{n})=(-1)^{\lfloor n/2\rfloor }=(-1)^{n(n-1)/2}={\begin{cases}+1&n\equiv 0,1{\pmod {4}}\\-1&n\equiv 2,3{\pmod {4}}\end{cases}}} 3581: 558: 533: 496: 3243: 1645: 1439: 8809: 6018: 7119:), because the only group of order 15 is the cyclic group. The largest possible order of a cyclic subgroup (equivalently, the largest possible order of an element in S 7908:
due to the exceptional 3-fold cover) does not change the homology of the symmetric group; the alternating group phenomena do yield symmetric group phenomena – the map
4360:
can be constructed in "two line notation" by placing the "cycle notations" of the two conjugate permutations on top of one another. Continuing the previous example,
3412: 1927: 1891: 7553:
and all involutions are conjugate, hence map to the same element in the abelianization (since conjugation is trivial in abelian groups). Thus the only possible maps
7098:
are those that are generated by a single permutation. When a permutation is represented in cycle notation, the order of the cyclic subgroup that it generates is the
1957: 8280:
However, the irreducible representations of the symmetric group are not known in arbitrary characteristic. In this context it is more usual to use the language of
4776: 1841: 1815: 7817: 7723: 7704: 5297: 1741: 1462: 1082: 1003: 1981: 1789: 1765: 1715: 1514: 1352: 1279: 1252: 1232: 1212: 1184: 1152: 1023: 980: 956: 2137:
The group operation in a symmetric group is function composition, denoted by the symbol ∘ or simply by just a composition of the permutations. The composition
7138: 5275: 4818:. In this case the alternating group agrees with the symmetric group, rather than being an index 2 subgroup, and the sign map is trivial. In the case of S 4787: 2987: 3564:} are of particular interest (these can be generalized to the symmetric group of any finite totally ordered set, but not to that of an unordered set). 9029: 5269:
fixes a point and thus is not transitive) and, while this map does not make the general quintic solvable, it yields the exotic outer automorphism of S
4455: 2870:
The product of two even permutations is even, the product of two odd permutations is even, and all other products are odd. Thus we can define the
6341:
fall into three classes: the intransitive, the imprimitive, and the primitive. The intransitive maximal subgroups are exactly those of the form
3863: 6266: 860: 4452:
which can be written as the product of cycles as (2 4). This permutation then relates (1 2 3)(4 5) and (1 4 3)(2 5) via conjugation, that is,
2971:{\displaystyle \operatorname {sgn} f={\begin{cases}+1,&{\text{if }}f{\mbox{ is even}}\\-1,&{\text{if }}f{\text{ is odd}}.\end{cases}}} 8162: 8156: 2025: 7955: 8543:
Theo Douvropoulos; Joel Brewster Lewis; Alejandro H. Morales (2022), "Hurwitz Numbers for Reflection Groups I: Generatingfunctionology",
8022: 7911: 7083:
is isomorphic to a subgroup of some symmetric group. In particular, one may take a subgroup of the symmetric group on the elements of
3365:
by starting at a different point. The order of a cycle is equal to its length. Cycles of length two are transpositions. Two cycles are
1258:. For finite sets, "permutations" and "bijective functions" refer to the same operation, namely rearrangement. The symmetric group of 7052: 5921: 8895: 6934: 3148:
is an application of this fact. The representation of a permutation as a product of adjacent transpositions is also not unique.
8326: 8166: 6416: 2614:{\displaystyle fg=f\circ g=(1\ 2\ 4)(3\ 5)={\begin{pmatrix}1&2&3&4&5\\2&4&5&1&3\end{pmatrix}}.} 418: 5098:
also yields a 2-dimensional irreducible representation, which is an irreducible representation of a symmetric group of degree
9015: 8993: 8868: 8793: 8764: 8738: 8591: 8492: 8461: 6265:
are the only nontrivial proper normal subgroups of the symmetric group on a countably infinite set. This was first proved by
3852:{\displaystyle (1\,n)(2\,n-1)\cdots ,{\text{ or }}\sum _{k=1}^{n-1}k={\frac {n(n-1)}{2}}{\text{ adjacent transpositions: }}} 2016:, the symmetric group acts on the variables of a multi-variate function, and the functions left invariant are the so-called 368: 2021: 1123: 9027:(1911), "Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen", 7689:{\displaystyle H_{2}(\mathrm {S} _{n},\mathbf {Z} )={\begin{cases}0&n<4\\\mathbf {Z} /2&n\geq 4.\end{cases}}} 7500:{\displaystyle H_{1}(\mathrm {S} _{n},\mathbf {Z} )={\begin{cases}0&n<2\\\mathbf {Z} /2&n\geq 2.\end{cases}}} 3391:
the order of the factors, and the freedom present in representing each individual cycle by choosing its starting point.
6025: 5815: 3668: 2674: 1682:
Symmetric groups on infinite sets behave quite differently from symmetric groups on finite sets, and are discussed in (
853: 363: 9198: 8414: 6090:
where 1 represents the identity permutation. This representation endows the symmetric group with the structure of a
2446:{\displaystyle g=(1\ 2\ 5)(3\ 4)={\begin{pmatrix}1&2&3&4&5\\2&5&4&3&1\end{pmatrix}}.} 2314:{\displaystyle f=(1\ 3)(2)(4\ 5)={\begin{pmatrix}1&2&3&4&5\\3&2&1&5&4\end{pmatrix}}} 2823:
that undoes its action, and thus each element of a symmetric group does have an inverse which is a permutation too.
8169:, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from 6233:
of permutations that fix all but finitely many elements, which is generated by transpositions. Those elements of
4252: 4837:
This group consists of exactly two elements: the identity and the permutation swapping the two points. It is a
6994: 5516:
in either the identity (and thus themselves be the identity or a 2-element group, which is not normal), or in A
779: 4792:
The low-degree symmetric groups have simpler and exceptional structure, and often must be treated separately.
4354:, (1 2 3)(4 5) and (1 4 3)(2 5) are conjugate; (1 2 3)(4 5) and (1 2)(4 5) are not. A conjugating element of S 9119: 1650: 1467: 846: 5039:
is isomorphic to the group of proper rotations about opposite faces, opposite diagonals and opposite edges,
2464:
maps 1 first to 2 and then 2 to itself; 2 to 5 and then to 4; 3 to 4 and then to 5, and so on. So composing
87:
Some matrices are not arranged symmetrically to the main diagonal – thus the symmetric group is not abelian.
9164: 4633: 2098: 8970: 1111:
theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set.
9188: 9114: 8331: 8321: 6602: 6523: 5753: 4350:
if and only if they consist of the same number of disjoint cycles of the same lengths. For instance, in S
3700: 2833: 1592: 1386: 1284: 463: 277: 5879: 5033: 57: 8730: 8207: 6412: 5393:(or rather, a class of such maps up to inner automorphism) corresponding to the outer automorphism of S 5014: 2086: 1519: 195: 6309: 1563: 1357: 1035: 908: 9109: 6815: 6120:, or more generally any set of transpositions that forms a connected graph, and a set containing any 4986: 4445:{\displaystyle k={\begin{pmatrix}1&2&3&4&5\\1&4&3&2&5\end{pmatrix}},} 3653:{\displaystyle {\begin{pmatrix}1&2&\cdots &n\\n&n-1&\cdots &1\end{pmatrix}}.} 2856: 7634: 7445: 7372: 4124: 3322:{\displaystyle h={\begin{pmatrix}1&2&3&4&5\\4&2&1&3&5\end{pmatrix}}} 2901: 8292: 8253: 7287: 7106:, one cyclic subgroup of order 5 is generated by (13254), whereas the largest cyclic subgroups of S 1930: 1096: 661: 395: 272: 160: 8206:. Therefore, according to the representation theory of a finite group, the number of inequivalent 6411:. The primitive maximal subgroups are more difficult to identify, but with the assistance of the 541: 516: 479: 9073: 8312: 6478: 6250: 1623: 1417: 1091:, this article focuses on the finite symmetric groups: their applications, their elements, their 8507:
J. Irving; A. Rattan (2009), "Minimal factorizations of permutations into star transpositions",
5981: 3671:
in the symmetric group with respect to generating set consisting of the adjacent transpositions
2798:, it is necessary to verify the group axioms of closure, associativity, identity, and inverses. 8387: 8317: 5748: 3118: 811: 601: 65: 6423:) gave a fairly satisfactory description of the maximal subgroups of this type, according to ( 76:. Green circle is an odd permutation, white is an even permutation and black is the identity. 35: 8919: 8402: 7283: 7099: 6853: 3397: 2106: 2102: 1906: 1858: 890: 685: 82: 8484: 8453: 8432:
Die Untergruppenverbände der Gruppen der Ordnungen ̤100 mit Ausnahme der Ordnungen 64 und 96
2802:
The operation of function composition is closed in the set of permutations of the given set
1936: 49: 8878: 8840: 8774: 8281: 8261: 7901:{\displaystyle H_{2}(\mathrm {A} _{6})\cong H_{2}(\mathrm {A} _{7})\cong \mathrm {C} _{6},} 7807:{\displaystyle H_{1}(\mathrm {A} _{3})\cong H_{1}(\mathrm {A} _{4})\cong \mathrm {C} _{3},} 7126: 6257:, it is also a normal subgroup of the full symmetric group of the infinite set. The groups 5132: 4990: 4854: 4249:
is the permutation that splits the set into 2 piles and interleaves them. Its sign is also
3370: 2062: 2050: 1718: 1255: 1108: 1029: 902: 625: 613: 231: 165: 69: 45:
of all four set elements, and (blue) a left circular shift of the first three set elements.
9094: 8959: 4761: 8: 9150: 8245: 8178: 7534:
is generated by involutions (2-cycles, which have order 2), so the only non-trivial maps
7076: 5684: 5239: 2795: 1820: 1794: 1131: 886: 200: 95: 8542: 5242:. The resolvent of a quintic is of degree 6—this corresponds to an exotic inclusion map 1723: 1444: 1064: 985: 73: 9065: 9046: 9007: 8936: 8804: 8749: 8723: 8664: 8552: 8170: 7717: 5591: 5581: 5352: 5231: 5177: 5087: 5079: 5040: 5018: 3157: 3104: 3050: 2625: 2094: 2017: 1966: 1774: 1750: 1700: 1499: 1337: 1264: 1237: 1217: 1197: 1169: 1137: 1104: 1008: 965: 941: 185: 157: 26: 9193: 9147: 9128: 9050: 9011: 8989: 8864: 8828: 8789: 8760: 8734: 8683: 8668: 8587: 8488: 8457: 8410: 8234: 8199: 8174: 7528:< 2 the symmetric group is trivial. This homology is easily computed as follows: S 7044: 6883: 6174: 6145: 5459: 5139: 5048: 4850: 4593: 3063: 2855:
can be written as a product of an odd number of transpositions, it is then called an
2090: 2082: 1155: 882: 590: 433: 327: 9131: 9057: 8476: 6270: 6237:
that are products of an even number of transpositions form a subgroup of index 2 in
4335: 756: 9090: 9082: 9038: 8981: 8966: 8955: 8928: 8904: 8856: 8818: 8698: 8654: 8562: 8524: 8516: 7577: 7065: 6891: 6887: 6329: 6219: 6095: 5293: 5165: 5083: 5059: 5006: 5002: 4858: 4313: 3058: 2820: 2013: 1119: 874: 741: 733: 725: 717: 709: 697: 637: 577: 567: 409: 351: 226: 5308:, these do not correspond to exceptional Schur multipliers of the symmetric group. 3039:{\displaystyle \operatorname {sgn} \colon \mathrm {S} _{n}\rightarrow \{+1,-1\}\ } 8874: 8852: 8836: 8781: 8770: 8756: 8336: 8195: 8071: 7510:
The first homology group is the abelianization, and corresponds to the sign map S
7087:, since every group acts on itself faithfully by (left or right) multiplication. 6497: 6226: 6157: 5211:
fixes a point and thus is not transitive. This yields the outer automorphism of S
5063: 4325: 3074: 3054: 1092: 898: 825: 818: 804: 761: 649: 572: 402: 256: 136: 8985: 9061: 8886: 8520: 8287: 8211: 7388: 7378: 7279: 6913: 6546: 6436: 6408: 6274: 6225:
The symmetric group on an infinite set does not have a subgroup of index 2, as
6218:
where there is one additional such normal subgroup, which is isomorphic to the
5660: 5173: 4967: 4823: 3061:
of this homomorphism, that is, the set of all even permutations, is called the
2070: 2066: 1900: 1163: 832: 768: 458: 438: 375: 340: 261: 251: 236: 221: 175: 152: 42: 20: 9042: 8909: 8893:(1988), "On the O'Nan–Scott theorem for finite primitive permutation groups", 8643:"Teoria delle sostituzioni che operano su una infinità numerabile di elementi" 3387:
can be written as a product of disjoint cycles; this representation is unique
9182: 8832: 8621:
Vitali, G. (1915). "Sostituzioni sopra una infinità numerabile di elementi".
8579: 8238: 8223: 6091: 5235: 5075: 4846: 4842: 4811: 2054: 2036: 2029: 2009: 1852: 1848: 1768: 1127: 1115: 751: 673: 507: 380: 246: 9086: 9066:"Über die Automorphismen der Permutationsgruppe der natürlichen Zahlenfolge" 8980:, Graduate Texts in Mathematics, vol. 148, Springer, pp. 154–216, 8566: 9173: 8702: 8144: 7095: 6101:
Other possible generating sets include the set of transpositions that swap
5469: 5161: 5156:
is one of the three non-solvable groups of order 120, up to isomorphism. S
4838: 4245: 3986:{\displaystyle (n\,n-1)(n-1\,n-2)\cdots (2\,1)(n-1\,n-2)(n-2\,n-3)\cdots ,} 3664: 2074: 1997: 1088: 606: 305: 294: 241: 216: 211: 170: 141: 104: 53: 31: 8917:
Nakaoka, Minoru (March 1961), "Homology of the Infinite Symmetric Group",
7351:
of cardinality other than 6, every automorphism of the symmetric group on
4985:
is the first nonabelian symmetric group. This group is isomorphic to the
4312:
elements have the same sign; these are important to the classification of
9024: 8947: 8445: 8307: 3145: 2184: 2122: 2058: 1114:
The symmetric group is important to diverse areas of mathematics such as
959: 8529: 6297: 5215:, discussed below, and corresponds to the resolvent sextic of a quintic. 8940: 8860: 8823: 8659: 8642: 8606:
Bray, J.N.; Conder, M.D.E.; Leedham-Green, C.R.; O'Brien, E.A. (2007),
8265: 8133: 6482: 6173:
has at most 2 elements, and so has no nontrivial proper subgroups. The
5351:, the most notable homomorphisms between symmetric groups, in order of 5082:, which allows the quartic to be solved by radicals, as established by 2046: 2001: 1960: 935: 773: 501: 9155: 9136: 7387:
is quite regular and stabilizes: the first homology (concretely, the
5510:, and has no other proper normal subgroups, as they would intersect A 4807: 3394:
Cycles admit the following conjugation property with any permutation
1844: 1744: 1025: 894: 594: 8932: 7992:{\displaystyle \mathrm {S} _{4}\twoheadrightarrow \mathrm {S} _{3},} 2085:
and are widely studied because of their importance in understanding
8890: 8805:"La structure des p-groupes de Sylow des groupes symétriques finis" 8557: 8056:{\displaystyle \mathrm {S} _{4}\twoheadrightarrow \mathrm {S} _{3}} 7945:{\displaystyle \mathrm {A} _{4}\twoheadrightarrow \mathrm {C} _{3}} 6372:. The imprimitive maximal subgroups are exactly those of the form 6141: 2078: 1159: 1100: 131: 8605: 2827: 6440: 4788:
Representation theory of the symmetric group § Special cases
473: 387: 5491:
which is split by taking a transposition of two elements. Thus S
5176:
translates into the non-existence of a general formula to solve
4576:{\displaystyle (2~4)\circ (1~2~3)(4~5)\circ (2~4)=(1~4~3)(2~5).} 112: 9145: 8248:
the situation can become much more complicated. If the field
8067:, and the triple covers do not correspond to homology either. 5410:
as a transitive subgroup, yielding the outer automorphism of S
3116:
Furthermore, every permutation can be written as a product of
3053:({+1, −1} is a group under multiplication, where +1 is e, the 72:. The black arrows indicate disjoint cycles and correspond to 8139:
The homology of the infinite symmetric group is computed in (
7308:, which is abelian, and hence the center is the whole group. 5971:{\displaystyle \sigma _{i}\sigma _{j}=\sigma _{j}\sigma _{i}} 5600:
of order 2 corresponds to conjugation by an odd element. For
3388: 1214:
is the group whose elements are all bijective functions from
6856:, and mentions that it is even covered in textbook form in ( 6202:
it is in fact the only nontrivial proper normal subgroup of
9170: 8729:, London Mathematical Society Student Texts, vol. 45, 7682: 7493: 6984:{\displaystyle S_{a_{1}}\times \cdots \times S_{a_{\ell }}} 5131:
is the first non-solvable symmetric group. Along with the
5044: 4212: 3369:
if they have disjoint subsets of elements. Disjoint cycles
2964: 8952:
Substitutionentheorie und ihre Anwendungen auf die Algebra
6878:
is a subgroup whose action on {1, 2, ,..., 
6446:. They are more easily described in special cases first: 8851:, Lecture Notes in Mathematics, Vol. 240, vol. 240, 8684:"Über die Permutationsgruppe der natürlichen Zahlenfolge" 6582:, and every element of the Sylow 3-subgroup has the form 9126: 8608:
Short presentations for alternating and symmetric groups
7115:
has no subgroup of order 15 (a divisor of the order of S
4989:, the group of reflection and rotation symmetries of an 2112: 6852:, p. 26) attributes the result to an 1844 work of 6160:
of the finite symmetric groups are well understood. If
3663:
This is the unique maximal element with respect to the
3560:
Certain elements of the symmetric group of {1, 2, ...,
3353:, leaving 2 and 5 untouched. We denote such a cycle by 8327:
Symmetry in quantum mechanics § Exchange symmetry
4636: 4378: 3590: 3486: 3436: 3258: 3113:
and any subgroup generated by a single transposition.
2924: 2547: 2379: 2250: 8025: 7958: 7914: 7820: 7726: 7589: 7400: 7329:, and the automorphism group is a semidirect product 7139:
Automorphisms of the symmetric and alternating groups
6997: 6937: 6605: 6028: 5984: 5924: 5882: 5818: 5756: 5276:
Automorphisms of the symmetric and alternating groups
4764: 4458: 4366: 4255: 4007: 3866: 3740: 3703: 3584: 3427: 3400: 3246: 2990: 2883: 2677: 2481: 2328: 2196: 1969: 1939: 1909: 1861: 1823: 1797: 1777: 1753: 1726: 1703: 1653: 1626: 1595: 1566: 1522: 1502: 1470: 1447: 1420: 1389: 1360: 1340: 1287: 1267: 1240: 1220: 1200: 1172: 1140: 1067: 1038: 1011: 988: 968: 944: 911: 544: 519: 482: 5253:
as a transitive subgroup (the obvious inclusion map
5086:. The Klein group can be understood in terms of the 2039:, the symmetric group is the Coxeter group of type A 8810:
Annales Scientifiques de l'École Normale Supérieure
7720:
low-dimensional homology of the alternating group (
5078:, this map corresponds to the resolving cubic to a 4583:It is clear that such a permutation is not unique. 2812:The trivial bijection that assigns each element of 8884: 8748: 8722: 8506: 8400: 8055: 7991: 7944: 7900: 7806: 7688: 7499: 7035: 6983: 6641: 6439:of the symmetric groups are important examples of 6420: 6079: 6012: 5970: 5909: 5856: 5793: 5446: 4770: 4676: 4575: 4444: 4294: 4218: 3985: 3851: 3723: 3652: 3544: 3406: 3321: 3233:itself would not be moved either. The permutation 3038: 2970: 2774: 2613: 2445: 2313: 1975: 1951: 1921: 1885: 1835: 1809: 1783: 1759: 1735: 1709: 1671: 1639: 1612: 1581: 1552: 1508: 1488: 1456: 1433: 1406: 1375: 1346: 1323: 1273: 1246: 1226: 1206: 1189: 1178: 1146: 1076: 1053: 1017: 997: 974: 950: 926: 552: 527: 490: 7814:corresponding to non-trivial abelianization, and 7051:. These groups may also be characterized as the 6080:{\displaystyle (\sigma _{i}\sigma _{i+1})^{3}=1,} 5857:{\displaystyle \sigma _{1},\ldots ,\sigma _{n-1}} 5369:corresponding to the exceptional normal subgroup 2775:{\displaystyle (1~2~3~4~5~6)^{2}=(1~3~5)(2~4~6).} 9180: 8755:, Graduate Texts in Mathematics, vol. 163, 8132:. This is analogous to the homology of families 7102:of the lengths of its cycles. For example, in S 6927:that is generated by transpositions is called a 5312: 1929:. This is an essential part of the proof of the 9030:Journal für die reine und angewandte Mathematik 8214:, is equal to the number of partitions of  6560:, a Sylow 3-subgroup of Sym(9) is generated by 5721:to all odd permutations, while embedding into A 5192: 5180:by radicals. There is an exotic inclusion map 2828:Transpositions, sign, and the alternating group 2785: 8896:Journal of the Australian Mathematical Society 8358: 8356: 8354: 8352: 6181:is always a normal subgroup, a proper one for 4758:, whose elements are said to be of cycle-type 2816:to itself serves as an identity for the group. 2028:plays a fundamental role through the ideas of 8746: 8475: 7360: 6424: 6282: 5418:There are also a host of other homomorphisms 5300:) and that these extend to triple covers of S 5001:corresponds to the resolving quadratic for a 3415: 2117:The elements of the symmetric group on a set 1687: 905:. In particular, the finite symmetric group 854: 9165:Marcus du Sautoy: Symmetry, reality's riddle 9056: 8681: 8163:representation theory of the symmetric group 8157:Representation theory of the symmetric group 7356: 6709:-subgroups of the symmetric group of degree 6658:-subgroups of the symmetric group of degree 6541:-subgroups of the symmetric group of degree 6453:-subgroups of the symmetric group of degree 5472:, and the induced quotient is the sign map: 4284: 4270: 4066: 4052: 3718: 3704: 3414:, this property is often used to obtain its 3030: 3012: 2065:provide a rich source of problems involving 2026:representation theory of the symmetric group 1547: 1523: 1318: 1294: 1087:Although symmetric groups can be defined on 1032:(number of elements) of the symmetric group 8349: 7318:, it has an outer automorphism of order 2: 6457:are just the cyclic subgroups generated by 5738: 5017:of order 3 in the solution, in the form of 4338:of permutations; that is, two elements of S 4295:{\displaystyle (-1)^{\lfloor n/2\rfloor }.} 2809:Function composition is always associative. 2790:To check that the symmetric group on a set 79:These are the positions of the six matrices 8802: 8545:Enumerative Combinatorics and Applications 8070:The homology "stabilizes" in the sense of 7300:, the automorphism group is trivial, but S 6841: 5238:, this can also be understood in terms of 5068:{(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, 861: 847: 8908: 8822: 8658: 8556: 8528: 8401:Vasishtha, A.R.; Vasishtha, A.K. (2008). 8143:), with the cohomology algebra forming a 7036:{\displaystyle (a_{1},\ldots ,a_{\ell })} 4857:after extracting only a single root. In 3964: 3939: 3920: 3898: 3873: 3760: 3747: 546: 521: 484: 68:. To the left of the matrices, are their 9174:Entries dealing with the Symmetric Group 8849:Representations of permutation groups. I 8780: 8747:Dixon, John D.; Mortimer, Brian (1996), 8429: 8388:"Symmetric Group is not Abelian/Proof 1" 8374: 8362: 8150: 8128:is an isomorphism for sufficiently high 6672:), and using this notation one has that 4849:, this corresponds to the fact that the 2057:, the symmetric groups, their elements ( 48: 25: 8978:An Introduction to the Theory of Groups 8916: 8720: 8409:. Krishna Prakashan Media. p. 49. 8140: 8063:does not change the abelianization of S 7373:Alternating group § Group homology 6863: 5687:, as it lies between the simple group A 5664: 5623:is not the full automorphism group of A 4853:gives a direct solution to the general 4718:of permutations with cycles of lengths 3697:This is an involution, and consists of 3357:, but it could equally well be written 1691: 1672:{\displaystyle \operatorname {Sym} (n)} 1489:{\displaystyle \operatorname {Sym} (X)} 9181: 8965: 8846: 8640: 8620: 8167:representation theory of finite groups 6886:. For example, the Galois group of a ( 6849: 6845: 6840:These calculations are attributed to ( 6417:classification of finite simple groups 4677:{\textstyle n=\sum _{i=1}^{k}\mu _{i}} 3122:, that is, transpositions of the form 1354:is denoted in various ways, including 419:Classification of finite simple groups 9146: 9127: 9023: 9001: 8946: 8788:, vol. 1 (2nd ed.), Dover, 8578: 8444: 8241:of shape given by the Young diagram. 7700: 7576:The second homology (concretely, the 7304:is not trivial: it is isomorphic to C 7132: 6857: 6278: 6135: 5013:kernel corresponds to the use of the 3215:; it conventionally is required that 3142:= (4 5)(3 4)(4 5)(1 2)(2 3)(3 4)(4 5) 2113:Group properties and special elements 1992:The symmetric group on a set of size 1683: 1254:and whose group operation is that of 6848:, p. 176). Note however that ( 6824:{ (1,3)(2,4), (1,2), (3,4), (5,6) } 6292: 6288: 5873:subject to the following relations: 5645:has no outer automorphisms, and for 5226:Unlike all other symmetric groups, S 4781: 4319: 3846: adjacent transpositions:  1560:then the name may be abbreviated to 1194:The symmetric group on a finite set 8237:acting on a space generated by the 7705:double cover of the symmetric group 7090: 7071: 6844:) and described in more detail in ( 6818:, and so a Sylow 2-subgroup of the 6642:{\displaystyle 0\leq i,j,k,l\leq 2} 6151: 6128:-cycle of adjacent elements in the 5794:{\displaystyle \sigma _{i}=(i,i+1)} 5580:. Conjugation by even elements are 5562:is the full automorphism group of A 4201: 4194: 4158: 4151: 3724:{\displaystyle \lfloor n/2\rfloor } 3555: 2022:representation theory of Lie groups 1613:{\displaystyle {\mathfrak {S}}_{n}} 1599: 1407:{\displaystyle {\mathfrak {S}}_{X}} 1393: 1324:{\displaystyle X=\{1,2,\ldots ,n\}} 1124:representation theory of Lie groups 1028:) such permutation operations, the 41:using the generators (red) a right 13: 8074:theory: there is an inclusion map 8043: 8028: 7976: 7961: 7932: 7917: 7885: 7867: 7836: 7791: 7773: 7742: 7605: 7416: 6907: 6477:such subgroups simply by counting 6430: 6241:, called the alternating subgroup 5910:{\displaystyle \sigma _{i}^{2}=1,} 4814:are trivial, which corresponds to 4015: 4012: 4009: 3332:is a cycle of length three, since 3171:for which there exists an element 3137:from above can also be written as 2999: 1628: 1569: 1422: 1363: 1281:is the symmetric group on the set 1041: 914: 897:from the set to itself, and whose 64:. The elements are represented as 14: 9210: 9102: 7355:is inner, a result first due to ( 6144:of a symmetric group is called a 5066:, namely the even transpositions 4308:elements and perfect shuffle on 2 3133:. For instance, the permutation 2187:for an explanation of notation): 2132: 1553:{\displaystyle \{1,2,\ldots ,n\}} 60:omitted, of the symmetric group S 16:Type of group in abstract algebra 8452:(2 ed.), Springer, p.  7656: 7619: 7520:which is the abelianization for 7467: 7430: 7142: 6421:Liebeck, Praeger & Saxl 1988 6296: 5693:and its group of automorphisms. 1791:is less than or equal to 2. For 1697:The symmetric group on a set of 1582:{\displaystyle \mathrm {S} _{n}} 1376:{\displaystyle \mathrm {S} _{X}} 1054:{\displaystyle \mathrm {S} _{n}} 927:{\displaystyle \mathrm {S} _{n}} 111: 81: 8954:(in German), Leipzig. Teubner, 8682:Schreier, J.; Ulam, S. (1933). 8675: 8633: 8614: 8599: 8572: 8481:Combinatorics of Coxeter groups 8403:"2. Groups S3 Group Definition" 5709:by appending the transposition 5447:Relation with alternating group 5090:of the quartic. The map from S 3379:(4 1 3)(2 5 6) = (2 5 6)(4 1 3) 3211:are the only elements moved by 2081:of symmetric groups are called 2008:and plays an important role in 1987: 1190:Definition and first properties 1162:of the symmetric group on (the 8536: 8500: 8469: 8438: 8423: 8394: 8380: 8368: 8256:equal to zero or greater than 8094:, the induced map on homology 8038: 7971: 7927: 7877: 7862: 7846: 7831: 7783: 7768: 7752: 7737: 7623: 7600: 7434: 7411: 7030: 6998: 6549:of two cyclic groups of order 6277:(1934). For more details see ( 6059: 6029: 6000: 5986: 5788: 5770: 5609:exceptional outer automorphism 4567: 4555: 4552: 4534: 4528: 4516: 4510: 4498: 4495: 4477: 4471: 4459: 4266: 4256: 4205: 4195: 4162: 4152: 4103: 4091: 4084: 4074: 4048: 4038: 4032: 4019: 3974: 3952: 3949: 3927: 3924: 3914: 3908: 3886: 3883: 3867: 3835: 3823: 3770: 3754: 3751: 3741: 3731:(non-adjacent) transpositions 3526: 3520: 3512: 3506: 3498: 3492: 3009: 2766: 2748: 2745: 2727: 2715: 2678: 2646:th power, will decompose into 2536: 2524: 2521: 2503: 2368: 2356: 2353: 2335: 2239: 2227: 2224: 2218: 2215: 2203: 1666: 1660: 1483: 1477: 780:Infinite dimensional Lie group 1: 8713: 6894:is a transitive subgroup of S 6770: + ... +  5313:Maps between symmetric groups 2847:from above can be written as 1334:The symmetric group on a set 962:that can be performed on the 8586:, Pearson, Exercise 6.6.16, 8479:; Brenti, Francesco (2005), 8165:is a particular case of the 8007:extend to triple covers of S 6931:. They are all of the form 6822:of degree 7 is generated by 5747:letters is generated by the 5195:; the obvious inclusion map 4966:. This process is known as 4806:The symmetric groups on the 2786:Verification of group axioms 1851:), the symmetric groups are 553:{\displaystyle \mathbb {Z} } 528:{\displaystyle \mathbb {Z} } 491:{\displaystyle \mathbb {Z} } 7: 9115:Encyclopedia of Mathematics 8986:10.1007/978-1-4612-4176-8_7 8971:"Extensions and Cohomology" 8332:Symmetric inverse semigroup 8322:Generalized symmetric group 8301: 8208:irreducible representations 7366: 6524:affine general linear group 5317:Other than the trivial map 3571:order reversing permutation 2834:Transposition (mathematics) 1640:{\displaystyle \Sigma _{n}} 1434:{\displaystyle \Sigma _{X}} 278:List of group theory topics 10: 9215: 8731:Cambridge University Press 8721:Cameron, Peter J. (1999), 8521:10.1016/j.disc.2008.02.018 8295:are not known in general. 8154: 7999:and the triple covers of A 7703:), and corresponds to the 7370: 7136: 6911: 6686:is the wreath product of W 6013:{\displaystyle |i-j|>1} 5497:is the semidirect product 5015:discrete Fourier transform 4785: 2831: 1933:that shows that for every 18: 9043:10.1515/crll.1911.139.155 8910:10.1017/S144678870003216X 8847:Kerber, Adalbert (1971), 8610:, Transactions of the AMS 7361:Dixon & Mortimer 1996 6816:dihedral group of order 8 6425:Dixon & Mortimer 1996 6283:Dixon & Mortimer 1996 6269:(1929) and independently 5652:it has no center, so for 5522:(and thus themselves be A 5234:. Using the language of 4987:dihedral group of order 6 4822:, its only member is the 4752:is a conjugacy class of S 4304:Note that the reverse on 3151: 2851:= (1 2)(2 5)(3 4). Since 2183:)). Concretely, let (see 1688:Dixon & Mortimer 1996 982:symbols. Since there are 9199:Finite reflection groups 8803:Kaloujnine, Léo (1948), 8434:(PhD). Universität Kiel. 8377:, p. 32 Theorem 1.1 8342: 7357:Schreier & Ulam 1936 7288:outer automorphism group 7079:states that every group 6713:are a direct product of 5739:Generators and relations 5549:by conjugation, and for 5109:, which only occurs for 4709:, is associated the set 4316:, which are 8-periodic. 3416:generators and relations 3144:. The sorting algorithm 2863:is an even permutation. 1134:states that every group 958:symbols consists of the 903:composition of functions 396:Elementary abelian group 273:Glossary of group theory 19:Not to be confused with 9151:"Symmetric group graph" 9087:10.4064/fm-28-1-258-260 9074:Fundamenta Mathematicae 8567:10.54550/ECA2022V2S3R20 8313:History of group theory 7064:when it is viewed as a 6662:are sometimes denoted W 6565:= (1 4 7)(2 5 8)(3 6 9) 6403:is a proper divisor of 6251:characteristic subgroup 5749:adjacent transpositions 5743:The symmetric group on 4229:which is 4-periodic in 3407:{\displaystyle \sigma } 3119:adjacent transpositions 2819:Every bijection has an 1922:{\displaystyle n\leq 4} 1886:{\displaystyle 0!=1!=1} 34:of the symmetric group 8703:10.4064/sm-4-1-134-141 8551:(3), Proposition 2.1, 8318:Signed symmetric group 8173:theory to problems of 8057: 7993: 7946: 7902: 7808: 7699:This was computed in ( 7690: 7501: 7037: 6985: 6705:In general, the Sylow 6643: 6553:. For instance, when 6081: 6014: 5972: 5911: 5858: 5795: 5702:can be embedded into A 5543:acts on its subgroup A 4772: 4678: 4663: 4586:Conjugacy classes of S 4577: 4446: 4296: 4220: 3987: 3853: 3810: 3725: 3654: 3546: 3408: 3377:there is the equality 3323: 3040: 2981:With this definition, 2972: 2776: 2615: 2447: 2315: 1977: 1953: 1952:{\displaystyle n>4} 1923: 1887: 1837: 1811: 1785: 1761: 1737: 1711: 1673: 1641: 1614: 1583: 1554: 1510: 1490: 1458: 1435: 1408: 1377: 1348: 1325: 1275: 1248: 1228: 1208: 1180: 1148: 1078: 1055: 1019: 999: 976: 952: 928: 812:Linear algebraic group 554: 529: 492: 88: 46: 8920:Annals of Mathematics 8430:Neubüser, J. (1967). 8184:The symmetric group S 8151:Representation theory 8058: 7994: 7947: 7903: 7809: 7691: 7502: 7347:In fact, for any set 7137:Further information: 7100:least common multiple 7038: 6986: 6826:and is isomorphic to 6644: 6407:and "wr" denotes the 6082: 6015: 5973: 5912: 5859: 5796: 5168:, and the fact that S 5043:permutations, of the 4773: 4679: 4643: 4578: 4447: 4297: 4221: 3998:so it thus has sign: 3988: 3854: 3784: 3726: 3655: 3575:is the one given by: 3547: 3409: 3324: 3097:elements. The group S 3041: 2973: 2777: 2616: 2448: 2316: 1978: 1954: 1924: 1888: 1838: 1812: 1786: 1762: 1738: 1712: 1674: 1642: 1615: 1584: 1555: 1511: 1491: 1459: 1436: 1409: 1378: 1349: 1326: 1276: 1249: 1229: 1209: 1181: 1149: 1079: 1056: 1020: 1000: 977: 953: 929: 555: 530: 493: 52: 29: 9002:Scott, W.R. (1987), 8647:Annali di Matematica 8483:, Springer, p.  8023: 8015:– but these are not 7956: 7912: 7818: 7724: 7587: 7398: 6995: 6935: 6864:Transitive subgroups 6603: 6485:therefore has order 6461:-cycles. There are 6026: 5982: 5922: 5880: 5816: 5754: 5292:have an exceptional 5133:special linear group 4991:equilateral triangle 4855:quadratic polynomial 4771:{\displaystyle \mu } 4762: 4634: 4456: 4364: 4253: 4005: 3864: 3738: 3701: 3582: 3425: 3398: 3381:. Every element of S 3244: 2988: 2881: 2675: 2479: 2326: 2194: 2163:", maps any element 2051:general linear group 1967: 1937: 1931:Abel–Ruffini theorem 1907: 1859: 1821: 1795: 1775: 1751: 1724: 1701: 1651: 1624: 1593: 1564: 1520: 1500: 1468: 1445: 1418: 1387: 1358: 1338: 1285: 1265: 1256:function composition 1238: 1218: 1198: 1170: 1138: 1065: 1036: 1009: 986: 966: 942: 909: 542: 517: 480: 8641:Onofri, L. (1929). 8623:Bollettino Mathesis 8450:The Symmetric Group 8179:identical particles 7053:parabolic subgroups 6870:transitive subgroup 6413:O'Nan–Scott theorem 6188:and nontrivial for 5897: 5685:almost simple group 5582:inner automorphisms 5414:as discussed above. 5240:Lagrange resolvents 5193:transitive subgroup 5178:quintic polynomials 5102:of dimension below 5088:Lagrange resolvents 5047:. Beyond the group 5019:Lagrange resolvents 5005:, as discovered by 4600:: to the partition 3373:: for example, in S 2095:automorphism groups 2018:symmetric functions 1836:{\displaystyle n=1} 1810:{\displaystyle n=0} 1105:automorphism groups 1097:finite presentation 186:Group homomorphisms 96:Algebraic structure 9189:Permutation groups 9148:Weisstein, Eric W. 9129:Weisstein, Eric W. 9010:, pp. 45–46, 9008:Dover Publications 8861:10.1007/BFb0067943 8824:10.24033/asens.961 8751:Permutation groups 8725:Permutation Groups 8660:10.1007/BF02409971 8235:Young symmetrizers 8171:symmetric function 8053: 7989: 7942: 7898: 7804: 7686: 7681: 7497: 7492: 7290:are both trivial. 7133:Automorphism group 7033: 6981: 6639: 6496:and is known as a 6308:. You can help by 6136:Subgroup structure 6077: 6010: 5968: 5907: 5883: 5854: 5812:. The collection 5791: 5728:is impossible for 5665:automorphism group 5663:, as discussed in 5592:outer automorphism 5353:relative dimension 5232:outer automorphism 5080:quartic polynomial 4768: 4674: 4594:integer partitions 4573: 4442: 4433: 4344:are conjugate in S 4334:correspond to the 4292: 4216: 4211: 3983: 3849: 3721: 3650: 3641: 3542: 3536: 3459: 3404: 3319: 3313: 3105:semidirect product 3051:group homomorphism 3036: 2968: 2963: 2928: 2874:of a permutation: 2772: 2611: 2602: 2443: 2434: 2311: 2305: 2091:homogeneous spaces 2083:permutation groups 2045:and occurs as the 1973: 1949: 1919: 1883: 1833: 1807: 1781: 1757: 1736:{\displaystyle n!} 1733: 1707: 1669: 1637: 1610: 1579: 1550: 1506: 1486: 1457:{\displaystyle X!} 1454: 1431: 1404: 1373: 1344: 1321: 1271: 1244: 1224: 1204: 1176: 1144: 1077:{\displaystyle n!} 1074: 1051: 1015: 998:{\displaystyle n!} 995: 972: 948: 924: 662:Special orthogonal 550: 525: 488: 369:Lagrange's theorem 89: 47: 9167:(video of a talk) 9132:"Symmetric group" 9110:"Symmetric group" 9017:978-0-486-65377-8 8995:978-1-4612-8686-8 8967:Rotman, Joseph J. 8870:978-3-540-05693-5 8795:978-0-486-47189-1 8766:978-0-387-94599-6 8740:978-0-521-65378-7 8593:978-0-13-004763-2 8494:978-3-540-27596-1 8463:978-0-387-95067-9 8262:Maschke's theorem 8196:conjugacy classes 8175:quantum mechanics 7263: 7262: 7127:Landau's function 7045:integer partition 6567:and the elements 6330:maximal subgroups 6326: 6325: 6289:Maximal subgroups 6175:alternating group 6146:permutation group 5460:alternating group 5338:and the sign map 5284:Note that while A 5140:icosahedral group 4851:quadratic formula 4782:Low degree groups 4563: 4548: 4542: 4524: 4506: 4491: 4485: 4467: 4326:conjugacy classes 4320:Conjugacy classes 4314:Clifford algebras 3847: 3842: 3782: 3167:is a permutation 3064:alternating group 3035: 2956: 2948: 2927: 2918: 2762: 2756: 2741: 2735: 2710: 2704: 2698: 2692: 2686: 2650:cycles of length 2532: 2517: 2511: 2364: 2349: 2343: 2235: 2211: 2107:Higman–Sims graph 2103:Higman–Sims group 2035:In the theory of 1976:{\displaystyle n} 1855:(they have order 1784:{\displaystyle n} 1760:{\displaystyle n} 1710:{\displaystyle n} 1509:{\displaystyle X} 1347:{\displaystyle X} 1274:{\displaystyle n} 1247:{\displaystyle X} 1227:{\displaystyle X} 1207:{\displaystyle X} 1179:{\displaystyle G} 1147:{\displaystyle G} 1093:conjugacy classes 1018:{\displaystyle n} 975:{\displaystyle n} 951:{\displaystyle n} 881:defined over any 871: 870: 446: 445: 328:Alternating group 285: 284: 9206: 9161: 9160: 9142: 9141: 9123: 9097: 9070: 9053: 9037:(139): 155–250, 9020: 8998: 8975: 8962: 8943: 8913: 8912: 8881: 8843: 8826: 8798: 8782:Jacobson, Nathan 8777: 8754: 8743: 8728: 8707: 8706: 8688: 8679: 8673: 8672: 8662: 8637: 8631: 8630: 8618: 8612: 8611: 8603: 8597: 8596: 8576: 8570: 8569: 8560: 8540: 8534: 8533: 8532: 8504: 8498: 8497: 8485:4. Example 1.2.3 8473: 8467: 8466: 8442: 8436: 8435: 8427: 8421: 8420: 8398: 8392: 8391: 8384: 8378: 8372: 8366: 8360: 8222:or equivalently 8177:for a number of 8127: 8090:, and for fixed 8089: 8062: 8060: 8059: 8054: 8052: 8051: 8046: 8037: 8036: 8031: 7998: 7996: 7995: 7990: 7985: 7984: 7979: 7970: 7969: 7964: 7951: 7949: 7948: 7943: 7941: 7940: 7935: 7926: 7925: 7920: 7907: 7905: 7904: 7899: 7894: 7893: 7888: 7876: 7875: 7870: 7861: 7860: 7845: 7844: 7839: 7830: 7829: 7813: 7811: 7810: 7805: 7800: 7799: 7794: 7782: 7781: 7776: 7767: 7766: 7751: 7750: 7745: 7736: 7735: 7695: 7693: 7692: 7687: 7685: 7684: 7664: 7659: 7622: 7614: 7613: 7608: 7599: 7598: 7578:Schur multiplier 7566: 7548: 7506: 7504: 7503: 7498: 7496: 7495: 7475: 7470: 7433: 7425: 7424: 7419: 7410: 7409: 7363:, p. 259). 7359:) according to ( 7343: 7328: 7317: 7299: 7271: 7143: 7091:Cyclic subgroups 7077:Cayley's theorem 7072:Cayley's theorem 7066:reflection group 7063: 7050: 7042: 7040: 7039: 7034: 7029: 7028: 7010: 7009: 6990: 6988: 6987: 6982: 6980: 6979: 6978: 6977: 6954: 6953: 6952: 6951: 6926: 6892:Galois extension 6836: 6825: 6813: 6783: 6746: 6685: 6650: 6648: 6646: 6645: 6640: 6596: 6581: 6566: 6559: 6533: 6521: 6515:(especially for 6514: 6495: 6476: 6427:, p. 268). 6402: 6390: 6371: 6359: 6340: 6321: 6318: 6300: 6293: 6281:, Ch. 11.3) or ( 6220:Klein four group 6217: 6210: 6201: 6194: 6187: 6166: 6158:normal subgroups 6152:Normal subgroups 6131: 6127: 6123: 6119: 6108: 6104: 6096:reflection group 6086: 6084: 6083: 6078: 6067: 6066: 6057: 6056: 6041: 6040: 6019: 6017: 6016: 6011: 6003: 5989: 5977: 5975: 5974: 5969: 5967: 5966: 5957: 5956: 5944: 5943: 5934: 5933: 5916: 5914: 5913: 5908: 5896: 5891: 5872: 5863: 5861: 5860: 5855: 5853: 5852: 5828: 5827: 5811: 5804: 5800: 5798: 5797: 5792: 5766: 5765: 5746: 5734: 5720: 5676: 5658: 5651: 5638: 5632:Conversely, for 5606: 5555: 5509: 5490: 5457: 5442: 5432: 5409: 5392: 5379: 5368: 5350: 5337: 5294:Schur multiplier 5268: 5252: 5210: 5190: 5166:quintic equation 5151: 5137: 5115: 5108: 5084:Lodovico Ferrari 5069: 5060:Klein four-group 5007:Gerolamo Cardano 5003:cubic polynomial 4965: 4945:, one gets that 4944: 4902: 4859:invariant theory 4817: 4777: 4775: 4774: 4769: 4742: 4708: 4683: 4681: 4680: 4675: 4673: 4672: 4662: 4657: 4629: 4582: 4580: 4579: 4574: 4561: 4546: 4540: 4522: 4504: 4489: 4483: 4465: 4451: 4449: 4448: 4443: 4438: 4437: 4301: 4299: 4298: 4293: 4288: 4287: 4280: 4225: 4223: 4222: 4217: 4215: 4214: 4208: 4165: 4115: 4114: 4110: 4070: 4069: 4062: 4031: 4030: 4018: 3992: 3990: 3989: 3984: 3858: 3856: 3855: 3850: 3848: 3845: 3843: 3838: 3818: 3809: 3798: 3783: 3780: 3730: 3728: 3727: 3722: 3714: 3693: 3681: 3659: 3657: 3656: 3651: 3646: 3645: 3573: 3572: 3556:Special elements 3551: 3549: 3548: 3543: 3541: 3540: 3477: 3476: 3464: 3463: 3413: 3411: 3410: 3405: 3380: 3364: 3360: 3356: 3352: 3345: 3338: 3328: 3326: 3325: 3320: 3318: 3317: 3228: 3221: 3143: 3132: 3096: 3089: 3045: 3043: 3042: 3037: 3033: 3008: 3007: 3002: 2977: 2975: 2974: 2969: 2967: 2966: 2957: 2954: 2949: 2946: 2929: 2925: 2919: 2916: 2821:inverse function 2781: 2779: 2778: 2773: 2760: 2754: 2739: 2733: 2723: 2722: 2708: 2702: 2696: 2690: 2684: 2667: 2660: 2654:: For example, ( 2641: 2620: 2618: 2617: 2612: 2607: 2606: 2530: 2515: 2509: 2452: 2450: 2449: 2444: 2439: 2438: 2362: 2347: 2341: 2320: 2318: 2317: 2312: 2310: 2309: 2233: 2209: 2147:of permutations 2146: 2014:invariant theory 1982: 1980: 1979: 1974: 1958: 1956: 1955: 1950: 1928: 1926: 1925: 1920: 1892: 1890: 1889: 1884: 1842: 1840: 1839: 1834: 1816: 1814: 1813: 1808: 1790: 1788: 1787: 1782: 1766: 1764: 1763: 1758: 1742: 1740: 1739: 1734: 1716: 1714: 1713: 1708: 1678: 1676: 1675: 1670: 1646: 1644: 1643: 1638: 1636: 1635: 1619: 1617: 1616: 1611: 1609: 1608: 1603: 1602: 1588: 1586: 1585: 1580: 1578: 1577: 1572: 1559: 1557: 1556: 1551: 1515: 1513: 1512: 1507: 1495: 1493: 1492: 1487: 1463: 1461: 1460: 1455: 1440: 1438: 1437: 1432: 1430: 1429: 1413: 1411: 1410: 1405: 1403: 1402: 1397: 1396: 1382: 1380: 1379: 1374: 1372: 1371: 1366: 1353: 1351: 1350: 1345: 1330: 1328: 1327: 1322: 1280: 1278: 1277: 1272: 1253: 1251: 1250: 1245: 1233: 1231: 1230: 1225: 1213: 1211: 1210: 1205: 1185: 1183: 1182: 1177: 1153: 1151: 1150: 1145: 1132:Cayley's theorem 1120:invariant theory 1083: 1081: 1080: 1075: 1060: 1058: 1057: 1052: 1050: 1049: 1044: 1024: 1022: 1021: 1016: 1004: 1002: 1001: 996: 981: 979: 978: 973: 957: 955: 954: 949: 933: 931: 930: 925: 923: 922: 917: 875:abstract algebra 863: 856: 849: 805:Algebraic groups 578:Hyperbolic group 568:Arithmetic group 559: 557: 556: 551: 549: 534: 532: 531: 526: 524: 497: 495: 494: 489: 487: 410:Schur multiplier 364:Cauchy's theorem 352:Quaternion group 300: 299: 126: 125: 115: 102: 91: 90: 85: 9214: 9213: 9209: 9208: 9207: 9205: 9204: 9203: 9179: 9178: 9108: 9105: 9100: 9068: 9062:Ulam, Stanislaw 9058:Schreier, Józef 9018: 8996: 8973: 8933:10.2307/1970333 8885:Liebeck, M.W.; 8871: 8853:Springer-Verlag 8796: 8767: 8757:Springer-Verlag 8741: 8716: 8711: 8710: 8686: 8680: 8676: 8639:§141, p.124 in 8638: 8634: 8619: 8615: 8604: 8600: 8594: 8577: 8573: 8541: 8537: 8505: 8501: 8495: 8477:Björner, Anders 8474: 8470: 8464: 8446:Sagan, Bruce E. 8443: 8439: 8428: 8424: 8417: 8399: 8395: 8386: 8385: 8381: 8373: 8369: 8361: 8350: 8345: 8337:Symmetric power 8304: 8276: 8212:complex numbers 8198:are labeled by 8189: 8159: 8153: 8125: 8118: 8109: 8103: 8095: 8088: 8081: 8075: 8072:stable homotopy 8066: 8047: 8042: 8041: 8032: 8027: 8026: 8024: 8021: 8020: 8014: 8010: 8006: 8002: 7980: 7975: 7974: 7965: 7960: 7959: 7957: 7954: 7953: 7936: 7931: 7930: 7921: 7916: 7915: 7913: 7910: 7909: 7889: 7884: 7883: 7871: 7866: 7865: 7856: 7852: 7840: 7835: 7834: 7825: 7821: 7819: 7816: 7815: 7795: 7790: 7789: 7777: 7772: 7771: 7762: 7758: 7746: 7741: 7740: 7731: 7727: 7725: 7722: 7721: 7712: 7680: 7679: 7668: 7660: 7655: 7652: 7651: 7640: 7630: 7629: 7618: 7609: 7604: 7603: 7594: 7590: 7588: 7585: 7584: 7572: 7564: 7560: 7554: 7552: 7547: 7541: 7535: 7533: 7519: 7515: 7491: 7490: 7479: 7471: 7466: 7463: 7462: 7451: 7441: 7440: 7429: 7420: 7415: 7414: 7405: 7401: 7399: 7396: 7395: 7386: 7375: 7369: 7342: 7338: 7334: 7330: 7327: 7323: 7319: 7312: 7307: 7303: 7294: 7277: 7266: 7259: 7253: 7247: 7243: 7229: 7223: 7217: 7203: 7197: 7191: 7174: 7165: 7156: 7141: 7135: 7124: 7118: 7114: 7109: 7105: 7093: 7074: 7062: 7056: 7048: 7024: 7020: 7005: 7001: 6996: 6993: 6992: 6973: 6969: 6968: 6964: 6947: 6943: 6942: 6938: 6936: 6933: 6932: 6925: 6919: 6916: 6910: 6908:Young subgroups 6899: 6877: 6866: 6842:Kaloujnine 1948 6835: 6831: 6827: 6823: 6820:symmetric group 6812: 6808: 6804: 6800: 6796: 6782: 6769: 6758: 6748: 6739: 6733: 6727: 6721: 6701: 6691: 6679: 6673: 6667: 6604: 6601: 6600: 6598: 6583: 6568: 6561: 6554: 6527: 6516: 6513: 6500: 6498:Frobenius group 6486: 6462: 6437:Sylow subgroups 6433: 6431:Sylow subgroups 6392: 6389: 6379: 6373: 6361: 6358: 6348: 6342: 6339: 6333: 6322: 6316: 6313: 6306:needs expansion 6291: 6212: 6209: 6203: 6196: 6189: 6182: 6172: 6161: 6154: 6138: 6129: 6125: 6121: 6110: 6106: 6102: 6094:(and so also a 6062: 6058: 6046: 6042: 6036: 6032: 6027: 6024: 6023: 5999: 5985: 5983: 5980: 5979: 5962: 5958: 5952: 5948: 5939: 5935: 5929: 5925: 5923: 5920: 5919: 5892: 5887: 5881: 5878: 5877: 5871: 5865: 5842: 5838: 5823: 5819: 5817: 5814: 5813: 5806: 5802: 5761: 5757: 5755: 5752: 5751: 5744: 5741: 5729: 5727: 5710: 5708: 5701: 5692: 5682: 5671: 5653: 5646: 5644: 5633: 5628: 5622: 5616: 5601: 5599: 5589: 5579: 5573: 5567: 5561: 5550: 5548: 5542: 5533: 5527: 5521: 5515: 5508: 5504: 5498: 5496: 5489: 5485: 5479: 5473: 5467: 5452: 5449: 5434: 5431: 5425: 5419: 5413: 5408: 5404: 5400: 5396: 5391: 5387: 5383: 5378: 5374: 5370: 5367: 5363: 5359: 5349: 5345: 5339: 5336: 5332: 5328: 5324: 5318: 5315: 5307: 5303: 5291: 5287: 5272: 5267: 5260: 5254: 5251: 5247: 5243: 5229: 5223: 5214: 5209: 5202: 5196: 5189: 5185: 5181: 5171: 5164:of the general 5159: 5155: 5150: 5146: 5142: 5135: 5130: 5124: 5110: 5103: 5097: 5093: 5073: 5070:with quotient S 5067: 5064:normal subgroup 5057: 5052: 5037: 5029: 5012: 5000: 4996: 4984: 4978: 4964: 4957: 4946: 4910: 4904: 4868: 4862: 4834: 4821: 4815: 4803: 4799: 4790: 4784: 4763: 4760: 4759: 4757: 4751: 4741: 4732: 4725: 4719: 4717: 4707: 4698: 4691: 4685: 4668: 4664: 4658: 4647: 4635: 4632: 4631: 4627: 4618: 4611: 4601: 4591: 4457: 4454: 4453: 4432: 4431: 4426: 4421: 4416: 4411: 4405: 4404: 4399: 4394: 4389: 4384: 4374: 4373: 4365: 4362: 4361: 4359: 4353: 4349: 4343: 4333: 4322: 4276: 4269: 4265: 4254: 4251: 4250: 4246:perfect shuffle 4242: 4210: 4209: 4193: 4176: 4167: 4166: 4150: 4133: 4120: 4119: 4106: 4087: 4083: 4058: 4051: 4047: 4026: 4022: 4008: 4006: 4003: 4002: 3865: 3862: 3861: 3844: 3819: 3817: 3799: 3788: 3779: 3739: 3736: 3735: 3710: 3702: 3699: 3698: 3683: 3672: 3669:longest element 3640: 3639: 3634: 3629: 3618: 3612: 3611: 3606: 3601: 3596: 3586: 3585: 3583: 3580: 3579: 3570: 3569: 3558: 3535: 3534: 3529: 3515: 3501: 3482: 3481: 3469: 3465: 3458: 3457: 3452: 3447: 3442: 3432: 3431: 3426: 3423: 3422: 3399: 3396: 3395: 3386: 3378: 3376: 3362: 3358: 3354: 3347: 3340: 3333: 3312: 3311: 3306: 3301: 3296: 3291: 3285: 3284: 3279: 3274: 3269: 3264: 3254: 3253: 3245: 3242: 3241: 3223: 3216: 3154: 3138: 3123: 3112: 3102: 3091: 3084: 3082: 3075:normal subgroup 3072: 3055:neutral element 3003: 2998: 2997: 2989: 2986: 2985: 2962: 2961: 2953: 2945: 2943: 2931: 2930: 2923: 2915: 2913: 2897: 2896: 2882: 2879: 2878: 2857:odd permutation 2836: 2830: 2788: 2718: 2714: 2676: 2673: 2672: 2662: 2655: 2642:, taken to the 2629: 2601: 2600: 2595: 2590: 2585: 2580: 2574: 2573: 2568: 2563: 2558: 2553: 2543: 2542: 2480: 2477: 2476: 2433: 2432: 2427: 2422: 2417: 2412: 2406: 2405: 2400: 2395: 2390: 2385: 2375: 2374: 2327: 2324: 2323: 2304: 2303: 2298: 2293: 2288: 2283: 2277: 2276: 2271: 2266: 2261: 2256: 2246: 2245: 2195: 2192: 2191: 2138: 2135: 2115: 2071:plactic monoids 2063:representations 2044: 2000:of the general 1990: 1968: 1965: 1964: 1938: 1935: 1934: 1908: 1905: 1904: 1903:if and only if 1898: 1860: 1857: 1856: 1822: 1819: 1818: 1796: 1793: 1792: 1776: 1773: 1772: 1771:if and only if 1752: 1749: 1748: 1725: 1722: 1721: 1702: 1699: 1698: 1690:, Ch. 8), and ( 1652: 1649: 1648: 1631: 1627: 1625: 1622: 1621: 1604: 1598: 1597: 1596: 1594: 1591: 1590: 1573: 1568: 1567: 1565: 1562: 1561: 1521: 1518: 1517: 1501: 1498: 1497: 1469: 1466: 1465: 1446: 1443: 1442: 1425: 1421: 1419: 1416: 1415: 1398: 1392: 1391: 1390: 1388: 1385: 1384: 1367: 1362: 1361: 1359: 1356: 1355: 1339: 1336: 1335: 1286: 1283: 1282: 1266: 1263: 1262: 1239: 1236: 1235: 1219: 1216: 1215: 1199: 1196: 1195: 1192: 1171: 1168: 1167: 1139: 1136: 1135: 1066: 1063: 1062: 1045: 1040: 1039: 1037: 1034: 1033: 1010: 1007: 1006: 987: 984: 983: 967: 964: 963: 943: 940: 939: 934:defined over a 918: 913: 912: 910: 907: 906: 899:group operation 879:symmetric group 867: 838: 837: 826:Abelian variety 819:Reductive group 807: 797: 796: 795: 794: 745: 737: 729: 721: 713: 686:Special unitary 597: 583: 582: 564: 563: 545: 543: 540: 539: 520: 518: 515: 514: 483: 481: 478: 477: 469: 468: 459:Discrete groups 448: 447: 403:Frobenius group 348: 335: 324: 317:Symmetric group 313: 297: 287: 286: 137:Normal subgroup 123: 103: 94: 86: 80: 78: 77: 63: 39: 24: 17: 12: 11: 5: 9212: 9202: 9201: 9196: 9191: 9177: 9176: 9168: 9162: 9143: 9124: 9104: 9103:External links 9101: 9099: 9098: 9054: 9021: 9016: 8999: 8994: 8963: 8944: 8927:(2): 229–257, 8914: 8903:(3): 389–396, 8882: 8869: 8844: 8800: 8794: 8778: 8765: 8744: 8739: 8717: 8715: 8712: 8709: 8708: 8697:(1): 134–141. 8674: 8653:(1): 103–130. 8632: 8613: 8598: 8592: 8580:Artin, Michael 8571: 8535: 8509:Discrete Math. 8499: 8493: 8468: 8462: 8437: 8422: 8415: 8407:Modern Algebra 8393: 8379: 8367: 8347: 8346: 8344: 8341: 8340: 8339: 8334: 8329: 8324: 8315: 8310: 8303: 8300: 8288:Specht modules 8272: 8254:characteristic 8239:Young tableaux 8224:Young diagrams 8185: 8155:Main article: 8152: 8149: 8120: 8114: 8105: 8099: 8083: 8077: 8064: 8050: 8045: 8040: 8035: 8030: 8012: 8008: 8004: 8000: 7988: 7983: 7978: 7973: 7968: 7963: 7939: 7934: 7929: 7924: 7919: 7897: 7892: 7887: 7882: 7879: 7874: 7869: 7864: 7859: 7855: 7851: 7848: 7843: 7838: 7833: 7828: 7824: 7803: 7798: 7793: 7788: 7785: 7780: 7775: 7770: 7765: 7761: 7757: 7754: 7749: 7744: 7739: 7734: 7730: 7716:Note that the 7708: 7697: 7696: 7683: 7678: 7675: 7672: 7669: 7667: 7663: 7658: 7654: 7653: 7650: 7647: 7644: 7641: 7639: 7636: 7635: 7633: 7628: 7625: 7621: 7617: 7612: 7607: 7602: 7597: 7593: 7568: 7562: 7556: 7550: 7543: 7537: 7529: 7517: 7511: 7508: 7507: 7494: 7489: 7486: 7483: 7480: 7478: 7474: 7469: 7465: 7464: 7461: 7458: 7455: 7452: 7450: 7447: 7446: 7444: 7439: 7436: 7432: 7428: 7423: 7418: 7413: 7408: 7404: 7389:abelianization 7382: 7379:group homology 7368: 7365: 7340: 7336: 7332: 7325: 7321: 7305: 7301: 7280:complete group 7273: 7261: 7260: 7257: 7254: 7251: 7248: 7245: 7241: 7238: 7231: 7230: 7227: 7224: 7221: 7218: 7215: 7212: 7205: 7204: 7201: 7198: 7195: 7192: 7187: 7184: 7177: 7176: 7170: 7167: 7161: 7158: 7152: 7149: 7134: 7131: 7125:) is given by 7120: 7116: 7112: 7107: 7103: 7092: 7089: 7073: 7070: 7058: 7032: 7027: 7023: 7019: 7016: 7013: 7008: 7004: 7000: 6976: 6972: 6967: 6963: 6960: 6957: 6950: 6946: 6941: 6929:Young subgroup 6921: 6918:A subgroup of 6914:Young subgroup 6912:Main article: 6909: 6906: 6895: 6873: 6865: 6862: 6833: 6829: 6810: 6806: 6802: 6798: 6795:For instance, 6778: 6767: 6756: 6737: 6723: 6717: 6697: 6687: 6675: 6663: 6638: 6635: 6632: 6629: 6626: 6623: 6620: 6617: 6614: 6611: 6608: 6547:wreath product 6522:), and is the 6504: 6432: 6429: 6409:wreath product 6381: 6375: 6350: 6344: 6335: 6324: 6323: 6317:September 2009 6303: 6301: 6290: 6287: 6211:, except when 6205: 6168: 6153: 6150: 6137: 6134: 6088: 6087: 6076: 6073: 6070: 6065: 6061: 6055: 6052: 6049: 6045: 6039: 6035: 6031: 6021: 6009: 6006: 6002: 5998: 5995: 5992: 5988: 5965: 5961: 5955: 5951: 5947: 5942: 5938: 5932: 5928: 5917: 5906: 5903: 5900: 5895: 5890: 5886: 5867: 5851: 5848: 5845: 5841: 5837: 5834: 5831: 5826: 5822: 5790: 5787: 5784: 5781: 5778: 5775: 5772: 5769: 5764: 5760: 5740: 5737: 5722: 5703: 5697: 5688: 5678: 5661:complete group 5640: 5624: 5618: 5612: 5607:, there is an 5595: 5585: 5575: 5569: 5563: 5557: 5544: 5538: 5529: 5523: 5517: 5511: 5506: 5500: 5492: 5487: 5481: 5475: 5463: 5448: 5445: 5427: 5421: 5416: 5415: 5411: 5406: 5402: 5398: 5394: 5389: 5385: 5381: 5376: 5372: 5365: 5361: 5347: 5341: 5334: 5330: 5326: 5320: 5314: 5311: 5310: 5309: 5305: 5301: 5289: 5285: 5281: 5280: 5270: 5262: 5256: 5249: 5245: 5227: 5224: 5221: 5217: 5216: 5212: 5204: 5198: 5187: 5183: 5174:solvable group 5169: 5157: 5153: 5148: 5144: 5128: 5125: 5122: 5118: 5117: 5095: 5091: 5071: 5062:V as a proper 5055: 5050: 5035: 5030: 5027: 5023: 5022: 5010: 4998: 4994: 4982: 4979: 4976: 4972: 4971: 4968:symmetrization 4962: 4955: 4908: 4866: 4835: 4832: 4828: 4827: 4824:empty function 4819: 4804: 4801: 4797: 4783: 4780: 4767: 4753: 4747: 4737: 4730: 4723: 4713: 4703: 4696: 4689: 4671: 4667: 4661: 4656: 4653: 4650: 4646: 4642: 4639: 4623: 4616: 4609: 4592:correspond to 4587: 4572: 4569: 4566: 4560: 4557: 4554: 4551: 4545: 4539: 4536: 4533: 4530: 4527: 4521: 4518: 4515: 4512: 4509: 4503: 4500: 4497: 4494: 4488: 4482: 4479: 4476: 4473: 4470: 4464: 4461: 4441: 4436: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4410: 4407: 4406: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4379: 4377: 4372: 4369: 4355: 4351: 4345: 4339: 4329: 4321: 4318: 4291: 4286: 4283: 4279: 4275: 4272: 4268: 4264: 4261: 4258: 4237: 4227: 4226: 4213: 4207: 4204: 4200: 4197: 4192: 4189: 4186: 4183: 4180: 4177: 4175: 4172: 4169: 4168: 4164: 4161: 4157: 4154: 4149: 4146: 4143: 4140: 4137: 4134: 4132: 4129: 4126: 4125: 4123: 4118: 4113: 4109: 4105: 4102: 4099: 4096: 4093: 4090: 4086: 4082: 4079: 4076: 4073: 4068: 4065: 4061: 4057: 4054: 4050: 4046: 4043: 4040: 4037: 4034: 4029: 4025: 4021: 4017: 4014: 4011: 3996: 3995: 3994: 3993: 3982: 3979: 3976: 3973: 3970: 3967: 3963: 3960: 3957: 3954: 3951: 3948: 3945: 3942: 3938: 3935: 3932: 3929: 3926: 3923: 3919: 3916: 3913: 3910: 3907: 3904: 3901: 3897: 3894: 3891: 3888: 3885: 3882: 3879: 3876: 3872: 3869: 3841: 3837: 3834: 3831: 3828: 3825: 3822: 3816: 3813: 3808: 3805: 3802: 3797: 3794: 3791: 3787: 3781: or  3778: 3775: 3772: 3769: 3766: 3763: 3759: 3756: 3753: 3750: 3746: 3743: 3720: 3717: 3713: 3709: 3706: 3661: 3660: 3649: 3644: 3638: 3635: 3633: 3630: 3628: 3625: 3622: 3619: 3617: 3614: 3613: 3610: 3607: 3605: 3602: 3600: 3597: 3595: 3592: 3591: 3589: 3557: 3554: 3553: 3552: 3539: 3533: 3530: 3528: 3525: 3522: 3519: 3516: 3514: 3511: 3508: 3505: 3502: 3500: 3497: 3494: 3491: 3488: 3487: 3485: 3480: 3475: 3472: 3468: 3462: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3437: 3435: 3430: 3403: 3382: 3374: 3330: 3329: 3316: 3310: 3307: 3305: 3302: 3300: 3297: 3295: 3292: 3290: 3287: 3286: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3259: 3257: 3252: 3249: 3153: 3150: 3108: 3098: 3078: 3068: 3047: 3046: 3032: 3029: 3026: 3023: 3020: 3017: 3014: 3011: 3006: 3001: 2996: 2993: 2979: 2978: 2965: 2960: 2952: 2944: 2942: 2939: 2936: 2933: 2932: 2922: 2914: 2912: 2909: 2906: 2903: 2902: 2900: 2895: 2892: 2889: 2886: 2832:Main article: 2829: 2826: 2825: 2824: 2817: 2810: 2807: 2787: 2784: 2783: 2782: 2771: 2768: 2765: 2759: 2753: 2750: 2747: 2744: 2738: 2732: 2729: 2726: 2721: 2717: 2713: 2707: 2701: 2695: 2689: 2683: 2680: 2622: 2621: 2610: 2605: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2575: 2572: 2569: 2567: 2564: 2562: 2559: 2557: 2554: 2552: 2549: 2548: 2546: 2541: 2538: 2535: 2529: 2526: 2523: 2520: 2514: 2508: 2505: 2502: 2499: 2496: 2493: 2490: 2487: 2484: 2454: 2453: 2442: 2437: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2407: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2380: 2378: 2373: 2370: 2367: 2361: 2358: 2355: 2352: 2346: 2340: 2337: 2334: 2331: 2321: 2308: 2302: 2299: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2278: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2251: 2249: 2244: 2241: 2238: 2232: 2229: 2226: 2223: 2220: 2217: 2214: 2208: 2205: 2202: 2199: 2155:, pronounced " 2134: 2133:Multiplication 2131: 2114: 2111: 2101:, such as the 2067:Young tableaux 2040: 2037:Coxeter groups 2030:Schur functors 1989: 1986: 1972: 1948: 1945: 1942: 1918: 1915: 1912: 1894: 1893:). The group S 1882: 1879: 1876: 1873: 1870: 1867: 1864: 1832: 1829: 1826: 1806: 1803: 1800: 1780: 1756: 1732: 1729: 1706: 1668: 1665: 1662: 1659: 1656: 1634: 1630: 1607: 1601: 1576: 1571: 1549: 1546: 1543: 1540: 1537: 1534: 1531: 1528: 1525: 1505: 1485: 1482: 1479: 1476: 1473: 1453: 1450: 1428: 1424: 1401: 1395: 1370: 1365: 1343: 1320: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1270: 1243: 1223: 1203: 1191: 1188: 1175: 1164:underlying set 1143: 1109:representation 1073: 1070: 1048: 1043: 1014: 994: 991: 971: 947: 921: 916: 869: 868: 866: 865: 858: 851: 843: 840: 839: 836: 835: 833:Elliptic curve 829: 828: 822: 821: 815: 814: 808: 803: 802: 799: 798: 793: 792: 789: 786: 782: 778: 777: 776: 771: 769:Diffeomorphism 765: 764: 759: 754: 748: 747: 743: 739: 735: 731: 727: 723: 719: 715: 711: 706: 705: 694: 693: 682: 681: 670: 669: 658: 657: 646: 645: 634: 633: 626:Special linear 622: 621: 614:General linear 610: 609: 604: 598: 589: 588: 585: 584: 581: 580: 575: 570: 562: 561: 548: 536: 523: 510: 508:Modular groups 506: 505: 504: 499: 486: 470: 467: 466: 461: 455: 454: 453: 450: 449: 444: 443: 442: 441: 436: 431: 428: 422: 421: 415: 414: 413: 412: 406: 405: 399: 398: 393: 384: 383: 381:Hall's theorem 378: 376:Sylow theorems 372: 371: 366: 358: 357: 356: 355: 349: 344: 341:Dihedral group 337: 336: 331: 325: 320: 314: 309: 298: 293: 292: 289: 288: 283: 282: 281: 280: 275: 267: 266: 265: 264: 259: 254: 249: 244: 239: 234: 232:multiplicative 229: 224: 219: 214: 206: 205: 204: 203: 198: 190: 189: 181: 180: 179: 178: 176:Wreath product 173: 168: 163: 161:direct product 155: 153:Quotient group 147: 146: 145: 144: 139: 134: 124: 121: 120: 117: 116: 108: 107: 74:cycle notation 61: 43:circular shift 37: 21:Symmetry group 15: 9: 6: 4: 3: 2: 9211: 9200: 9197: 9195: 9192: 9190: 9187: 9186: 9184: 9175: 9172: 9169: 9166: 9163: 9158: 9157: 9152: 9149: 9144: 9139: 9138: 9133: 9130: 9125: 9121: 9117: 9116: 9111: 9107: 9106: 9096: 9092: 9088: 9084: 9080: 9077:(in German), 9076: 9075: 9067: 9063: 9059: 9055: 9052: 9048: 9044: 9040: 9036: 9032: 9031: 9026: 9022: 9019: 9013: 9009: 9005: 9000: 8997: 8991: 8987: 8983: 8979: 8972: 8968: 8964: 8961: 8957: 8953: 8949: 8945: 8942: 8938: 8934: 8930: 8926: 8922: 8921: 8915: 8911: 8906: 8902: 8898: 8897: 8892: 8888: 8887:Praeger, C.E. 8883: 8880: 8876: 8872: 8866: 8862: 8858: 8854: 8850: 8845: 8842: 8838: 8834: 8830: 8825: 8820: 8816: 8812: 8811: 8806: 8801: 8797: 8791: 8787: 8786:Basic algebra 8783: 8779: 8776: 8772: 8768: 8762: 8758: 8753: 8752: 8745: 8742: 8736: 8732: 8727: 8726: 8719: 8718: 8704: 8700: 8696: 8692: 8685: 8678: 8670: 8666: 8661: 8656: 8652: 8648: 8644: 8636: 8628: 8624: 8617: 8609: 8602: 8595: 8589: 8585: 8581: 8575: 8568: 8564: 8559: 8554: 8550: 8546: 8539: 8531: 8526: 8522: 8518: 8515:: 1435–1442, 8514: 8510: 8503: 8496: 8490: 8486: 8482: 8478: 8472: 8465: 8459: 8455: 8451: 8447: 8441: 8433: 8426: 8418: 8416:9788182830561 8412: 8408: 8404: 8397: 8389: 8383: 8376: 8375:Jacobson 2009 8371: 8364: 8363:Jacobson 2009 8359: 8357: 8355: 8353: 8348: 8338: 8335: 8333: 8330: 8328: 8325: 8323: 8319: 8316: 8314: 8311: 8309: 8306: 8305: 8299: 8296: 8294: 8290: 8289: 8283: 8278: 8275: 8270: 8267: 8266:group algebra 8263: 8259: 8255: 8251: 8247: 8242: 8240: 8236: 8231: 8229: 8226:of size  8225: 8221: 8217: 8213: 8209: 8205: 8201: 8197: 8193: 8188: 8182: 8180: 8176: 8172: 8168: 8164: 8158: 8148: 8146: 8142: 8137: 8136:stabilizing. 8135: 8131: 8123: 8117: 8113: 8108: 8102: 8098: 8093: 8086: 8080: 8073: 8068: 8048: 8033: 8018: 7986: 7981: 7966: 7937: 7922: 7895: 7890: 7880: 7872: 7857: 7853: 7849: 7841: 7826: 7822: 7801: 7796: 7786: 7778: 7763: 7759: 7755: 7747: 7732: 7728: 7719: 7714: 7711: 7706: 7702: 7676: 7673: 7670: 7665: 7661: 7648: 7645: 7642: 7637: 7631: 7626: 7615: 7610: 7595: 7591: 7583: 7582: 7581: 7579: 7574: 7571: 7559: 7546: 7540: 7532: 7527: 7523: 7514: 7487: 7484: 7481: 7476: 7472: 7459: 7456: 7453: 7448: 7442: 7437: 7426: 7421: 7406: 7402: 7394: 7393: 7392: 7390: 7385: 7380: 7374: 7364: 7362: 7358: 7354: 7350: 7345: 7315: 7309: 7297: 7291: 7289: 7285: 7281: 7276: 7269: 7255: 7249: 7239: 7236: 7233: 7232: 7225: 7219: 7213: 7210: 7207: 7206: 7199: 7193: 7190: 7185: 7182: 7179: 7178: 7173: 7168: 7164: 7159: 7155: 7150: 7148: 7145: 7144: 7140: 7130: 7128: 7123: 7101: 7097: 7096:Cyclic groups 7088: 7086: 7082: 7078: 7069: 7067: 7061: 7054: 7046: 7025: 7021: 7017: 7014: 7011: 7006: 7002: 6974: 6970: 6965: 6961: 6958: 6955: 6948: 6944: 6939: 6930: 6924: 6915: 6905: 6903: 6898: 6893: 6889: 6885: 6881: 6876: 6871: 6861: 6859: 6855: 6851: 6847: 6843: 6838: 6821: 6817: 6793: 6791: 6788:expansion of 6787: 6781: 6777: 6773: 6766: 6762: 6759: +  6755: 6751: 6744: 6740: 6731: 6726: 6720: 6716: 6712: 6708: 6703: 6700: 6695: 6690: 6683: 6678: 6671: 6666: 6661: 6657: 6652: 6636: 6633: 6630: 6627: 6624: 6621: 6618: 6615: 6612: 6609: 6606: 6595: 6592: 6589: 6586: 6579: 6575: 6571: 6564: 6557: 6552: 6548: 6544: 6540: 6535: 6531: 6525: 6519: 6511: 6507: 6503: 6499: 6493: 6489: 6484: 6480: 6474: 6470: 6466: 6460: 6456: 6452: 6447: 6445: 6443: 6438: 6428: 6426: 6422: 6418: 6414: 6410: 6406: 6400: 6396: 6388: 6384: 6378: 6369: 6365: 6357: 6353: 6347: 6338: 6331: 6320: 6311: 6307: 6304:This section 6302: 6299: 6295: 6294: 6286: 6284: 6280: 6276: 6272: 6268: 6264: 6260: 6256: 6252: 6248: 6244: 6240: 6236: 6232: 6228: 6223: 6221: 6215: 6208: 6199: 6192: 6185: 6180: 6176: 6171: 6164: 6159: 6149: 6147: 6143: 6133: 6124:-cycle and a 6118: 6114: 6099: 6097: 6093: 6092:Coxeter group 6074: 6071: 6068: 6063: 6053: 6050: 6047: 6043: 6037: 6033: 6022: 6007: 6004: 5996: 5993: 5990: 5963: 5959: 5953: 5949: 5945: 5940: 5936: 5930: 5926: 5918: 5904: 5901: 5898: 5893: 5888: 5884: 5876: 5875: 5874: 5870: 5849: 5846: 5843: 5839: 5835: 5832: 5829: 5824: 5820: 5809: 5785: 5782: 5779: 5776: 5773: 5767: 5762: 5758: 5750: 5736: 5732: 5725: 5718: 5714: 5706: 5700: 5694: 5691: 5686: 5681: 5674: 5668: 5666: 5662: 5656: 5649: 5643: 5636: 5630: 5627: 5621: 5615: 5610: 5604: 5598: 5593: 5588: 5583: 5578: 5572: 5566: 5560: 5553: 5547: 5541: 5535: 5532: 5526: 5520: 5514: 5503: 5495: 5484: 5478: 5471: 5466: 5461: 5455: 5444: 5441: 5437: 5430: 5424: 5399: 5382: 5358: 5357: 5356: 5354: 5344: 5323: 5299: 5295: 5283: 5282: 5278: 5277: 5265: 5259: 5241: 5237: 5236:Galois theory 5233: 5225: 5219: 5218: 5207: 5201: 5194: 5179: 5175: 5167: 5163: 5141: 5134: 5126: 5120: 5119: 5113: 5106: 5101: 5089: 5085: 5081: 5077: 5076:Galois theory 5065: 5061: 5053: 5046: 5042: 5038: 5031: 5025: 5024: 5020: 5016: 5009:, while the A 5008: 5004: 4992: 4988: 4980: 4974: 4973: 4969: 4961: 4954: 4950: 4942: 4938: 4934: 4930: 4926: 4922: 4918: 4914: 4907: 4900: 4896: 4892: 4888: 4884: 4880: 4876: 4872: 4865: 4860: 4856: 4852: 4848: 4847:Galois theory 4844: 4840: 4836: 4830: 4829: 4825: 4813: 4812:singleton set 4809: 4805: 4795: 4794: 4793: 4789: 4779: 4765: 4756: 4750: 4746: 4740: 4736: 4729: 4722: 4716: 4712: 4706: 4702: 4695: 4688: 4669: 4665: 4659: 4654: 4651: 4648: 4644: 4640: 4637: 4626: 4622: 4615: 4608: 4604: 4599: 4595: 4590: 4584: 4570: 4564: 4558: 4549: 4543: 4537: 4531: 4525: 4519: 4513: 4507: 4501: 4492: 4486: 4480: 4474: 4468: 4462: 4439: 4434: 4428: 4423: 4418: 4413: 4408: 4401: 4396: 4391: 4386: 4381: 4375: 4370: 4367: 4358: 4348: 4342: 4337: 4332: 4327: 4317: 4315: 4311: 4307: 4302: 4289: 4281: 4277: 4273: 4262: 4259: 4248: 4247: 4241: 4234: 4232: 4202: 4198: 4190: 4187: 4184: 4181: 4178: 4173: 4170: 4159: 4155: 4147: 4144: 4141: 4138: 4135: 4130: 4127: 4121: 4116: 4111: 4107: 4100: 4097: 4094: 4088: 4080: 4077: 4071: 4063: 4059: 4055: 4044: 4041: 4035: 4027: 4023: 4001: 4000: 3999: 3980: 3977: 3971: 3968: 3965: 3961: 3958: 3955: 3946: 3943: 3940: 3936: 3933: 3930: 3921: 3917: 3911: 3905: 3902: 3899: 3895: 3892: 3889: 3880: 3877: 3874: 3870: 3860: 3859: 3839: 3832: 3829: 3826: 3820: 3814: 3811: 3806: 3803: 3800: 3795: 3792: 3789: 3785: 3776: 3773: 3767: 3764: 3761: 3757: 3748: 3744: 3734: 3733: 3732: 3715: 3711: 3707: 3695: 3691: 3687: 3679: 3676: 3670: 3666: 3647: 3642: 3636: 3631: 3626: 3623: 3620: 3615: 3608: 3603: 3598: 3593: 3587: 3578: 3577: 3576: 3574: 3565: 3563: 3537: 3531: 3523: 3517: 3509: 3503: 3495: 3489: 3483: 3478: 3473: 3470: 3466: 3460: 3454: 3449: 3444: 3439: 3433: 3428: 3421: 3420: 3419: 3417: 3401: 3392: 3390: 3385: 3372: 3368: 3350: 3343: 3336: 3314: 3308: 3303: 3298: 3293: 3288: 3281: 3276: 3271: 3266: 3261: 3255: 3250: 3247: 3240: 3239: 3238: 3236: 3232: 3226: 3219: 3214: 3210: 3206: 3202: 3198: 3194: 3190: 3186: 3182: 3178: 3174: 3170: 3166: 3163: 3159: 3149: 3147: 3141: 3136: 3130: 3127: 3121: 3120: 3114: 3111: 3106: 3101: 3094: 3087: 3081: 3076: 3071: 3066: 3065: 3060: 3056: 3052: 3027: 3024: 3021: 3018: 3015: 3004: 2994: 2991: 2984: 2983: 2982: 2958: 2950: 2940: 2937: 2934: 2926: is even 2920: 2910: 2907: 2904: 2898: 2893: 2890: 2887: 2884: 2877: 2876: 2875: 2873: 2868: 2864: 2862: 2858: 2854: 2850: 2846: 2841: 2840:transposition 2835: 2822: 2818: 2815: 2811: 2808: 2805: 2801: 2800: 2799: 2797: 2793: 2769: 2763: 2757: 2751: 2742: 2736: 2730: 2724: 2719: 2711: 2705: 2699: 2693: 2687: 2681: 2671: 2670: 2669: 2665: 2658: 2653: 2649: 2645: 2640: 2636: 2632: 2627: 2608: 2603: 2597: 2592: 2587: 2582: 2577: 2570: 2565: 2560: 2555: 2550: 2544: 2539: 2533: 2527: 2518: 2512: 2506: 2500: 2497: 2494: 2491: 2488: 2485: 2482: 2475: 2474: 2473: 2471: 2467: 2463: 2459: 2440: 2435: 2429: 2424: 2419: 2414: 2409: 2402: 2397: 2392: 2387: 2382: 2376: 2371: 2365: 2359: 2350: 2344: 2338: 2332: 2329: 2322: 2306: 2300: 2295: 2290: 2285: 2280: 2273: 2268: 2263: 2258: 2253: 2247: 2242: 2236: 2230: 2221: 2212: 2206: 2200: 2197: 2190: 2189: 2188: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2145: 2141: 2130: 2128: 2124: 2120: 2110: 2108: 2104: 2100: 2096: 2092: 2088: 2087:group actions 2084: 2080: 2076: 2072: 2068: 2064: 2061:), and their 2060: 2056: 2055:combinatorics 2052: 2048: 2043: 2038: 2033: 2031: 2027: 2023: 2019: 2015: 2011: 2010:Galois theory 2007: 2003: 1999: 1995: 1985: 1970: 1962: 1946: 1943: 1940: 1932: 1916: 1913: 1910: 1902: 1897: 1880: 1877: 1874: 1871: 1868: 1865: 1862: 1854: 1850: 1849:singleton set 1846: 1830: 1827: 1824: 1804: 1801: 1798: 1778: 1770: 1754: 1746: 1730: 1727: 1720: 1717:elements has 1704: 1695: 1693: 1689: 1685: 1680: 1663: 1657: 1654: 1632: 1605: 1574: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1503: 1480: 1474: 1471: 1451: 1448: 1426: 1399: 1368: 1341: 1332: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1291: 1288: 1268: 1261: 1257: 1241: 1221: 1201: 1187: 1173: 1165: 1161: 1157: 1141: 1133: 1129: 1128:combinatorics 1125: 1121: 1117: 1116:Galois theory 1112: 1110: 1106: 1102: 1098: 1094: 1090: 1089:infinite sets 1085: 1071: 1068: 1046: 1031: 1027: 1012: 992: 989: 969: 961: 945: 937: 919: 904: 900: 896: 892: 888: 884: 880: 876: 864: 859: 857: 852: 850: 845: 844: 842: 841: 834: 831: 830: 827: 824: 823: 820: 817: 816: 813: 810: 809: 806: 801: 800: 790: 787: 784: 783: 781: 775: 772: 770: 767: 766: 763: 760: 758: 755: 753: 750: 749: 746: 740: 738: 732: 730: 724: 722: 716: 714: 708: 707: 703: 699: 696: 695: 691: 687: 684: 683: 679: 675: 672: 671: 667: 663: 660: 659: 655: 651: 648: 647: 643: 639: 636: 635: 631: 627: 624: 623: 619: 615: 612: 611: 608: 605: 603: 600: 599: 596: 592: 587: 586: 579: 576: 574: 571: 569: 566: 565: 537: 512: 511: 509: 503: 500: 475: 472: 471: 465: 462: 460: 457: 456: 452: 451: 440: 437: 435: 432: 429: 426: 425: 424: 423: 420: 417: 416: 411: 408: 407: 404: 401: 400: 397: 394: 392: 390: 386: 385: 382: 379: 377: 374: 373: 370: 367: 365: 362: 361: 360: 359: 353: 350: 347: 342: 339: 338: 334: 329: 326: 323: 318: 315: 312: 307: 304: 303: 302: 301: 296: 295:Finite groups 291: 290: 279: 276: 274: 271: 270: 269: 268: 263: 260: 258: 255: 253: 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 209: 208: 207: 202: 199: 197: 194: 193: 192: 191: 188: 187: 183: 182: 177: 174: 172: 169: 167: 164: 162: 159: 156: 154: 151: 150: 149: 148: 143: 140: 138: 135: 133: 130: 129: 128: 127: 122:Basic notions 119: 118: 114: 110: 109: 106: 101: 97: 93: 92: 84: 75: 71: 70:two-line form 67: 59: 55: 51: 44: 40: 33: 28: 22: 9154: 9135: 9113: 9078: 9072: 9034: 9028: 9025:Schur, Issai 9004:Group Theory 9003: 8977: 8951: 8948:Netto, Eugen 8924: 8918: 8900: 8894: 8848: 8814: 8808: 8785: 8750: 8724: 8694: 8690: 8677: 8650: 8646: 8635: 8626: 8622: 8616: 8607: 8601: 8583: 8574: 8548: 8544: 8538: 8530:1721.1/96203 8512: 8508: 8502: 8480: 8471: 8449: 8440: 8431: 8425: 8406: 8396: 8382: 8370: 8365:, p. 31 8297: 8286: 8279: 8273: 8268: 8257: 8249: 8243: 8232: 8227: 8219: 8215: 8203: 8191: 8186: 8183: 8160: 8145:Hopf algebra 8141:Nakaoka 1961 8138: 8129: 8121: 8115: 8111: 8106: 8100: 8096: 8091: 8084: 8078: 8069: 8016: 7715: 7709: 7698: 7575: 7569: 7557: 7544: 7538: 7530: 7525: 7521: 7512: 7509: 7383: 7376: 7352: 7348: 7346: 7313: 7310: 7295: 7292: 7274: 7267: 7264: 7234: 7208: 7188: 7180: 7171: 7162: 7153: 7146: 7121: 7094: 7084: 7080: 7075: 7059: 6928: 6922: 6917: 6901: 6896: 6879: 6874: 6869: 6867: 6839: 6819: 6809:(2) = D 6801:(1) = C 6794: 6789: 6785: 6779: 6775: 6771: 6764: 6760: 6753: 6749: 6742: 6735: 6729: 6724: 6718: 6714: 6710: 6706: 6704: 6698: 6693: 6688: 6681: 6676: 6669: 6664: 6659: 6655: 6653: 6593: 6590: 6587: 6584: 6577: 6573: 6569: 6562: 6555: 6550: 6542: 6538: 6536: 6529: 6517: 6509: 6505: 6501: 6491: 6487: 6472: 6468: 6464: 6458: 6454: 6450: 6448: 6441: 6434: 6404: 6398: 6394: 6386: 6382: 6376: 6367: 6363: 6355: 6351: 6345: 6336: 6327: 6314: 6310:adding to it 6305: 6285:, Ch. 8.1). 6262: 6258: 6254: 6246: 6242: 6238: 6234: 6230: 6224: 6213: 6206: 6197: 6190: 6183: 6178: 6169: 6162: 6155: 6139: 6116: 6112: 6100: 6089: 5868: 5807: 5742: 5730: 5723: 5716: 5712: 5704: 5698: 5695: 5689: 5679: 5672: 5669: 5654: 5647: 5641: 5634: 5631: 5625: 5619: 5613: 5602: 5596: 5586: 5576: 5570: 5564: 5558: 5551: 5545: 5539: 5536: 5530: 5524: 5518: 5512: 5501: 5493: 5482: 5476: 5464: 5453: 5450: 5439: 5435: 5428: 5422: 5417: 5342: 5321: 5316: 5298:triple cover 5279:for details. 5274: 5263: 5257: 5205: 5199: 5162:Galois group 5111: 5104: 5099: 4959: 4952: 4948: 4940: 4936: 4932: 4928: 4924: 4920: 4916: 4912: 4905: 4898: 4894: 4890: 4886: 4882: 4878: 4874: 4870: 4863: 4841:and is thus 4839:cyclic group 4791: 4754: 4748: 4744: 4738: 4734: 4727: 4720: 4714: 4710: 4704: 4700: 4693: 4686: 4624: 4620: 4613: 4606: 4602: 4597: 4588: 4585: 4356: 4346: 4340: 4330: 4323: 4309: 4305: 4303: 4244: 4239: 4235: 4230: 4228: 3997: 3696: 3689: 3685: 3677: 3674: 3665:Bruhat order 3662: 3568: 3566: 3561: 3559: 3393: 3383: 3366: 3348: 3341: 3334: 3331: 3234: 3230: 3229:the element 3224: 3217: 3212: 3208: 3204: 3200: 3196: 3192: 3188: 3184: 3180: 3179:} such that 3176: 3175:in {1, ..., 3172: 3168: 3164: 3161: 3155: 3139: 3134: 3128: 3125: 3117: 3115: 3109: 3099: 3092: 3085: 3079: 3069: 3062: 3048: 2980: 2955: is odd 2871: 2869: 2865: 2860: 2852: 2848: 2844: 2839: 2837: 2813: 2803: 2794:is indeed a 2791: 2789: 2663: 2656: 2651: 2647: 2643: 2638: 2634: 2630: 2623: 2469: 2465: 2461: 2457: 2455: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2143: 2139: 2136: 2126: 2123:permutations 2118: 2116: 2075:Bruhat order 2059:permutations 2041: 2034: 2005: 1998:Galois group 1993: 1991: 1988:Applications 1895: 1696: 1692:Cameron 1999 1686:, Ch. 11), ( 1681: 1333: 1259: 1193: 1113: 1107:, and their 1086: 960:permutations 893:are all the 878: 872: 701: 689: 677: 665: 653: 641: 629: 617: 388: 345: 332: 321: 316: 310: 306:Cyclic group 184: 171:Free product 142:Group action 105:Group theory 100:Group theory 99: 54:Cayley table 32:Cayley graph 9081:: 258–260, 8817:: 239–276, 8813:, Série 3, 8691:Studia Math 8308:Braid group 8244:Over other 8210:, over the 8017:homological 7952:extends to 7718:exceptional 6900:, for some 6860:, §39–40). 6850:Kerber 1971 6846:Rotman 1995 6722:copies of W 6576:= (4 5 6), 6572:= (1 2 3), 4816:0! = 1! = 1 4336:cycle types 3237:defined by 3222:since with 3146:bubble sort 2185:permutation 1961:polynomials 1516:is the set 591:Topological 430:alternating 9183:Categories 9095:0016.20301 8960:14.0090.01 8714:References 8558:2112.03427 8293:dimensions 8200:partitions 8190:has order 8134:Lie groups 8019:– the map 7701:Schur 1911 7371:See also: 6884:transitive 6858:Netto 1882 6784:(the base 6654:The Sylow 6537:The Sylow 6483:normalizer 6479:generators 6449:The Sylow 6279:Scott 1987 6249:is even a 6177:of degree 5864:generates 5801:that swap 5590:while the 5041:9, 8 and 6 5032:The group 4786:See also: 3083:, and for 3073:. It is a 2859:, whereas 2628:of length 2073:, and the 2047:Weyl group 2020:. In the 2004:of degree 2002:polynomial 1963:of degree 1959:there are 1684:Scott 1987 1156:isomorphic 936:finite set 895:bijections 698:Symplectic 638:Orthogonal 595:Lie groups 502:Free group 227:continuous 166:Direct sum 9156:MathWorld 9137:MathWorld 9120:EMS Press 9051:122809608 8833:0012-9593 8669:186219904 8039:↠ 7972:↠ 7928:↠ 7881:≅ 7850:≅ 7787:≅ 7756:≅ 7674:≥ 7524:≥ 2; for 7485:≥ 7026:ℓ 7015:… 6975:ℓ 6962:× 6959:⋯ 6956:× 6732:), where 6634:≤ 6610:≤ 6580:= (7 8 9) 6044:σ 6034:σ 5994:− 5960:σ 5950:σ 5937:σ 5927:σ 5885:σ 5847:− 5840:σ 5833:… 5821:σ 5759:σ 5667:, below. 5230:, has an 5172:is not a 4808:empty set 4766:μ 4666:μ 4645:∑ 4514:∘ 4475:∘ 4285:⌋ 4271:⌊ 4260:− 4182:≡ 4171:− 4139:≡ 4098:− 4078:− 4067:⌋ 4053:⌊ 4042:− 4024:ρ 3978:⋯ 3969:− 3959:− 3944:− 3934:− 3912:⋯ 3903:− 3893:− 3878:− 3830:− 3804:− 3786:∑ 3774:⋯ 3765:− 3719:⌋ 3705:⌊ 3632:⋯ 3624:− 3604:⋯ 3532:… 3518:σ 3504:σ 3490:σ 3471:− 3467:σ 3455:… 3429:σ 3402:σ 3025:− 3010:→ 2995:: 2935:− 2888:⁡ 2495:∘ 2456:Applying 2079:Subgroups 1914:≤ 1845:empty set 1767:). It is 1745:factorial 1658:⁡ 1629:Σ 1539:… 1475:⁡ 1423:Σ 1310:… 1101:subgroups 1026:factorial 762:Conformal 650:Euclidean 257:nilpotent 9194:Symmetry 9064:(1936), 8969:(1995), 8950:(1882), 8891:Saxl, J. 8784:(2009), 8629:: 29–31. 8582:(1991), 8448:(2001), 8302:See also 8260:then by 8202:of  7549:are to S 7367:Homology 6545:are the 6471:− 1) = ( 6415:and the 6391:, where 6271:Schreier 6245:. Since 6142:subgroup 6132:-cycle. 5659:it is a 5371:V < A 5138:and the 5136:SL(2, 5) 4810:and the 4699:≥ ... ≥ 3667:and the 3367:disjoint 3199:), ..., 2947:if  2917:if  2121:are the 2105:and the 1901:solvable 1847:and the 1160:subgroup 1103:, their 1099:, their 891:elements 757:Poincaré 602:Solenoid 474:Integers 464:Lattices 439:sporadic 434:Lie type 262:solvable 252:dihedral 237:additive 222:infinite 132:Subgroup 66:matrices 9122:, 2001 8941:1970333 8879:0325752 8841:0028834 8775:1409812 8584:Algebra 8282:modules 8194:!. Its 7707:, 2 · S 7565:≅ {±1} 7183:≠ 2, 6 6696:) and W 6649:⁠ 6599:⁠ 6528:AGL(1, 6481:. The 6467:− 1)!/( 6444:-groups 5568:: Aut(A 5355:, are: 5160:is the 4843:abelian 4743:. Then 4733:, ..., 4619:, ..., 3371:commute 3363:(3 1 4) 3359:(4 3 1) 3355:(1 4 3) 3351:(3) = 1 3344:(4) = 3 3337:(1) = 4 3103:is the 3090:it has 3057:). The 2049:of the 1996:is the 1853:trivial 1769:abelian 901:is the 885:is the 752:Lorentz 674:Unitary 573:Lattice 513:PSL(2, 247:abelian 158:(Semi-) 56:, with 9093:  9049:  9014:  8992:  8958:  8939:  8877:  8867:  8839:  8831:  8792:  8773:  8763:  8737:  8667:  8590:  8491:  8460:  8413:  8246:fields 7580:) is: 7391:) is: 7284:center 7282:: its 7270:≠ 2, 6 7043:is an 6991:where 6888:finite 6854:Cauchy 6814:, the 6267:Onofri 6227:Vitali 6195:; for 5733:> 1 5683:is an 5657:≠ 2, 6 5470:simple 5458:, the 5433:where 5375:< S 5058:has a 4903:, and 4845:. In 4562:  4547:  4541:  4523:  4505:  4490:  4484:  4466:  4243:, the 3162:length 3152:Cycles 3059:kernel 3034:  2761:  2755:  2740:  2734:  2709:  2703:  2697:  2691:  2685:  2531:  2516:  2510:  2472:gives 2460:after 2363:  2348:  2342:  2234:  2210:  2099:graphs 2093:, and 2053:. In 2024:, the 2012:. In 1496:. If 1464:, and 1260:degree 1126:, and 1122:, the 889:whose 877:, the 607:Circle 538:SL(2, 427:cyclic 391:-group 242:cyclic 217:finite 212:simple 196:kernel 58:header 9069:(PDF) 9047:S2CID 8974:(PDF) 8937:JSTOR 8923:, 2, 8687:(PDF) 8665:S2CID 8553:arXiv 8343:Notes 8011:and S 8003:and A 7335:) = S 7331:Aut(S 7324:) = C 7320:Out(S 7278:is a 7160:Out(S 7151:Aut(S 6882:} is 6805:and W 6702:(1). 6475:− 2)! 6366:< 6020:, and 5715:+ 1, 5574:) ≅ S 5438:< 5304:and S 5288:and A 5273:—see 5191:as a 5074:. In 4800:and S 4630:with 3389:up to 3158:cycle 3049:is a 2796:group 2626:cycle 1843:(the 1743:(the 1719:order 1647:, or 1158:to a 1030:order 887:group 791:Sp(∞) 788:SU(∞) 201:image 9171:OEIS 9035:1911 9012:ISBN 8990:ISBN 8865:ISBN 8829:ISSN 8790:ISBN 8761:ISBN 8735:ISBN 8588:ISBN 8489:ISBN 8458:ISBN 8411:ISBN 8320:and 8264:the 8252:has 8161:The 8110:) → 7646:< 7457:< 7381:of S 7377:The 7311:For 7293:For 7286:and 7265:For 7237:= 6 7211:= 2 6872:of S 6747:and 6734:0 ≤ 6684:+ 1) 6597:for 6494:− 1) 6435:The 6393:2 ≤ 6380:wr S 6362:1 ≤ 6360:for 6328:The 6275:Ulam 6261:and 6156:The 6111:2 ≤ 6109:for 6105:and 6005:> 5978:for 5805:and 5719:+ 2) 5670:For 5617:so S 5611:of A 5594:of A 5584:of A 5528:or S 5451:For 5094:to S 5045:cube 4997:to S 4931:) − 4919:) = 4889:) + 4877:) = 4684:and 4328:of S 4324:The 4236:In S 3684:1 ≤ 3567:The 3346:and 3207:) = 3107:of A 3077:of S 2872:sign 2468:and 2151:and 2032:. 1944:> 1817:and 1166:of) 1095:, a 785:O(∞) 774:Loop 593:and 9091:Zbl 9083:doi 9039:doi 8982:doi 8956:JFM 8929:doi 8905:doi 8857:doi 8819:doi 8699:doi 8655:doi 8563:doi 8525:hdl 8517:doi 8513:309 8082:→ S 7561:→ S 7542:→ C 7516:→ S 7339:⋊ C 7316:= 6 7298:= 2 7272:, S 7244:⋊ C 7169:Z(S 7055:of 7047:of 6832:× C 6792:). 6745:− 1 6558:= 3 6520:= 5 6512:−1) 6419:, ( 6349:× S 6332:of 6312:. 6253:of 6216:= 4 6200:≥ 3 6193:≥ 3 6186:≥ 2 6167:, S 6165:≤ 2 6098:). 5810:+ 1 5677:, S 5675:≥ 5 5650:≠ 2 5639:, S 5637:≠ 6 5605:= 6 5556:, S 5554:≠ 6 5534:). 5505:⋊ S 5486:→ S 5480:→ S 5468:is 5456:≥ 5 5426:→ S 5405:→ S 5388:→ S 5364:→ S 5346:→ S 5333:≅ S 5329:≅ S 5325:→ C 5296:(a 5261:→ S 5248:→ S 5203:→ S 5186:→ S 5152:, S 5147:× S 5114:= 4 5107:− 1 5054:, S 4605:= ( 4596:of 4199:mod 4156:mod 3692:− 1 3680:+1) 3361:or 3227:= 1 3220:≥ 2 3191:), 3160:of 3131:+1) 3095:!/2 3088:≥ 2 2992:sgn 2885:sgn 2668:), 2666:= 3 2659:= 2 2171:to 2167:of 2159:of 2125:of 2097:of 2077:. 1899:is 1747:of 1694:). 1655:Sym 1472:Sym 1234:to 1154:is 1061:is 938:of 883:set 873:In 700:Sp( 688:SU( 664:SO( 628:SL( 616:GL( 9185:: 9153:. 9134:. 9118:, 9112:, 9089:, 9079:28 9071:, 9060:; 9045:, 9033:, 9006:, 8988:, 8976:, 8935:, 8925:73 8901:44 8899:, 8889:; 8875:MR 8873:, 8863:, 8855:, 8837:MR 8835:, 8827:, 8815:65 8807:, 8771:MR 8769:, 8759:, 8733:, 8693:. 8689:. 8663:. 8649:. 8645:. 8625:. 8561:, 8547:, 8523:, 8511:, 8487:, 8456:, 8405:. 8351:^ 8230:. 8181:. 8147:. 8124:+1 8119:(S 8104:(S 8087:+1 7713:. 7677:4. 7573:. 7488:2. 7344:. 7175:) 7166:) 7157:) 7129:. 7068:. 6904:. 6890:) 6868:A 6837:. 6752:= 6741:≤ 6651:. 6534:. 6526:, 6490:⋅( 6401:/2 6397:≤ 6370:/2 6222:. 6148:. 6140:A 6115:≤ 5735:. 5726:+1 5707:+2 5629:. 5443:. 5266:+1 5208:+1 4958:+ 4951:= 4947:2⋅ 4939:, 4927:, 4915:, 4897:, 4885:, 4873:, 4778:. 4726:, 4692:≥ 4612:, 4233:. 3694:. 3688:≤ 3682:, 3418:. 3339:, 3183:, 3156:A 2838:A 2661:, 2637:· 2633:= 2624:A 2142:∘ 2129:. 2109:. 2089:, 2069:, 1679:. 1620:, 1589:, 1441:, 1414:, 1383:, 1331:. 1186:. 1130:. 1118:, 1084:. 676:U( 652:E( 640:O( 98:→ 30:A 9159:. 9140:. 9085:: 9041:: 8984:: 8931:: 8907:: 8859:: 8821:: 8799:. 8705:. 8701:: 8695:4 8671:. 8657:: 8651:7 8627:7 8565:: 8555:: 8549:2 8527:: 8519:: 8454:4 8419:. 8390:. 8274:n 8271:S 8269:K 8258:n 8250:K 8228:n 8220:n 8216:n 8204:n 8192:n 8187:n 8130:n 8126:) 8122:n 8116:k 8112:H 8107:n 8101:k 8097:H 8092:k 8085:n 8079:n 8076:S 8065:4 8049:3 8044:S 8034:4 8029:S 8013:7 8009:6 8005:7 8001:6 7987:, 7982:3 7977:S 7967:4 7962:S 7938:3 7933:C 7923:4 7918:A 7896:, 7891:6 7886:C 7878:) 7873:7 7868:A 7863:( 7858:2 7854:H 7847:) 7842:6 7837:A 7832:( 7827:2 7823:H 7802:, 7797:3 7792:C 7784:) 7779:4 7774:A 7769:( 7764:1 7760:H 7753:) 7748:3 7743:A 7738:( 7733:1 7729:H 7710:n 7671:n 7666:2 7662:/ 7657:Z 7649:4 7643:n 7638:0 7632:{ 7627:= 7624:) 7620:Z 7616:, 7611:n 7606:S 7601:( 7596:2 7592:H 7570:n 7563:2 7558:n 7555:S 7551:2 7545:p 7539:n 7536:S 7531:n 7526:n 7522:n 7518:2 7513:n 7482:n 7477:2 7473:/ 7468:Z 7460:2 7454:n 7449:0 7443:{ 7438:= 7435:) 7431:Z 7427:, 7422:n 7417:S 7412:( 7407:1 7403:H 7384:n 7353:X 7349:X 7341:2 7337:6 7333:6 7326:2 7322:6 7314:n 7306:2 7302:2 7296:n 7275:n 7268:n 7258:1 7256:C 7252:2 7250:C 7246:2 7242:6 7240:S 7235:n 7228:2 7226:S 7222:1 7220:C 7216:1 7214:C 7209:n 7202:1 7200:C 7196:1 7194:C 7189:n 7186:S 7181:n 7172:n 7163:n 7154:n 7147:n 7122:n 7117:5 7113:5 7111:S 7108:5 7104:5 7085:G 7081:G 7060:n 7057:S 7049:n 7031:) 7022:a 7018:, 7012:, 7007:1 7003:a 6999:( 6971:a 6966:S 6949:1 6945:a 6940:S 6923:n 6920:S 6902:n 6897:n 6880:n 6875:n 6834:2 6830:8 6828:D 6811:8 6807:2 6803:2 6799:2 6797:W 6790:n 6786:p 6780:k 6776:a 6774:⋅ 6772:p 6768:1 6765:a 6763:⋅ 6761:p 6757:0 6754:a 6750:n 6743:p 6738:i 6736:a 6730:i 6728:( 6725:p 6719:i 6715:a 6711:n 6707:p 6699:p 6694:n 6692:( 6689:p 6682:n 6680:( 6677:p 6674:W 6670:n 6668:( 6665:p 6660:p 6656:p 6637:2 6631:l 6628:, 6625:k 6622:, 6619:j 6616:, 6613:i 6607:0 6594:z 6591:y 6588:x 6585:a 6578:z 6574:y 6570:x 6563:a 6556:p 6551:p 6543:p 6539:p 6532:) 6530:p 6518:p 6510:p 6508:( 6506:p 6502:F 6492:p 6488:p 6473:p 6469:p 6465:p 6463:( 6459:p 6455:p 6451:p 6442:p 6405:n 6399:n 6395:k 6387:k 6385:/ 6383:n 6377:k 6374:S 6368:n 6364:k 6356:k 6354:– 6352:n 6346:k 6343:S 6337:n 6334:S 6319:) 6315:( 6273:– 6263:S 6259:A 6255:S 6247:A 6243:A 6239:S 6235:S 6231:S 6214:n 6207:n 6204:S 6198:n 6191:n 6184:n 6179:n 6170:n 6163:n 6130:n 6126:2 6122:n 6117:n 6113:i 6107:i 6103:1 6075:, 6072:1 6069:= 6064:3 6060:) 6054:1 6051:+ 6048:i 6038:i 6030:( 6008:1 6001:| 5997:j 5991:i 5987:| 5964:i 5954:j 5946:= 5941:j 5931:i 5905:, 5902:1 5899:= 5894:2 5889:i 5869:n 5866:S 5850:1 5844:n 5836:, 5830:, 5825:1 5808:i 5803:i 5789:) 5786:1 5783:+ 5780:i 5777:, 5774:i 5771:( 5768:= 5763:i 5745:n 5731:n 5724:n 5717:n 5713:n 5711:( 5705:n 5699:n 5696:S 5690:n 5680:n 5673:n 5655:n 5648:n 5642:n 5635:n 5626:n 5620:n 5614:n 5603:n 5597:n 5587:n 5577:n 5571:n 5565:n 5559:n 5552:n 5546:n 5540:n 5537:S 5531:n 5525:n 5519:n 5513:n 5507:2 5502:n 5499:A 5494:n 5488:2 5483:n 5477:n 5474:A 5465:n 5462:A 5454:n 5440:n 5436:m 5429:n 5423:m 5420:S 5412:6 5407:6 5403:5 5401:S 5397:. 5395:6 5390:6 5386:6 5384:S 5380:; 5377:4 5373:4 5366:3 5362:4 5360:S 5348:2 5343:n 5340:S 5335:1 5331:0 5327:1 5322:n 5319:S 5306:7 5302:6 5290:7 5286:6 5271:6 5264:n 5258:n 5255:S 5250:6 5246:5 5244:S 5228:6 5222:6 5220:S 5213:6 5206:n 5200:n 5197:S 5188:6 5184:5 5182:S 5170:5 5158:5 5154:5 5149:2 5145:5 5143:A 5129:5 5127:S 5123:5 5121:S 5116:. 5112:n 5105:n 5100:n 5096:3 5092:4 5072:3 5056:4 5051:4 5049:A 5036:4 5034:S 5028:4 5026:S 5021:. 5011:3 4999:2 4995:3 4983:3 4981:S 4977:3 4975:S 4970:. 4963:a 4960:f 4956:s 4953:f 4949:f 4943:) 4941:x 4937:y 4935:( 4933:f 4929:y 4925:x 4923:( 4921:f 4917:y 4913:x 4911:( 4909:a 4906:f 4901:) 4899:x 4895:y 4893:( 4891:f 4887:y 4883:x 4881:( 4879:f 4875:y 4871:x 4869:( 4867:s 4864:f 4833:2 4831:S 4826:. 4820:0 4802:1 4798:0 4796:S 4755:n 4749:μ 4745:C 4739:k 4735:μ 4731:2 4728:μ 4724:1 4721:μ 4715:μ 4711:C 4705:k 4701:μ 4697:2 4694:μ 4690:1 4687:μ 4670:i 4660:k 4655:1 4652:= 4649:i 4641:= 4638:n 4628:) 4625:k 4621:μ 4617:2 4614:μ 4610:1 4607:μ 4603:μ 4598:n 4589:n 4571:. 4568:) 4565:5 4559:2 4556:( 4553:) 4550:3 4544:4 4538:1 4535:( 4532:= 4529:) 4526:4 4520:2 4517:( 4511:) 4508:5 4502:4 4499:( 4496:) 4493:3 4487:2 4481:1 4478:( 4472:) 4469:4 4463:2 4460:( 4440:, 4435:) 4429:5 4424:2 4419:3 4414:4 4409:1 4402:5 4397:4 4392:3 4387:2 4382:1 4376:( 4371:= 4368:k 4357:n 4352:5 4347:n 4341:n 4331:n 4310:n 4306:n 4290:. 4282:2 4278:/ 4274:n 4267:) 4263:1 4257:( 4240:n 4238:2 4231:n 4206:) 4203:4 4196:( 4191:3 4188:, 4185:2 4179:n 4174:1 4163:) 4160:4 4153:( 4148:1 4145:, 4142:0 4136:n 4131:1 4128:+ 4122:{ 4117:= 4112:2 4108:/ 4104:) 4101:1 4095:n 4092:( 4089:n 4085:) 4081:1 4075:( 4072:= 4064:2 4060:/ 4056:n 4049:) 4045:1 4039:( 4036:= 4033:) 4028:n 4020:( 4016:n 4013:g 4010:s 3981:, 3975:) 3972:3 3966:n 3962:2 3956:n 3953:( 3950:) 3947:2 3941:n 3937:1 3931:n 3928:( 3925:) 3922:1 3918:2 3915:( 3909:) 3906:2 3900:n 3896:1 3890:n 3887:( 3884:) 3881:1 3875:n 3871:n 3868:( 3840:2 3836:) 3833:1 3827:n 3824:( 3821:n 3815:= 3812:k 3807:1 3801:n 3796:1 3793:= 3790:k 3777:, 3771:) 3768:1 3762:n 3758:2 3755:( 3752:) 3749:n 3745:1 3742:( 3716:2 3712:/ 3708:n 3690:n 3686:i 3678:i 3675:i 3673:( 3648:. 3643:) 3637:1 3627:1 3621:n 3616:n 3609:n 3599:2 3594:1 3588:( 3562:n 3538:) 3527:) 3524:c 3521:( 3513:) 3510:b 3507:( 3499:) 3496:a 3493:( 3484:( 3479:= 3474:1 3461:) 3450:c 3445:b 3440:a 3434:( 3384:n 3375:6 3349:h 3342:h 3335:h 3315:) 3309:5 3304:3 3299:1 3294:2 3289:4 3282:5 3277:4 3272:3 3267:2 3262:1 3256:( 3251:= 3248:h 3235:h 3231:x 3225:k 3218:k 3213:f 3209:x 3205:x 3203:( 3201:f 3197:x 3195:( 3193:f 3189:x 3187:( 3185:f 3181:x 3177:n 3173:x 3169:f 3165:k 3140:g 3135:g 3129:a 3126:a 3124:( 3110:n 3100:n 3093:n 3086:n 3080:n 3070:n 3067:A 3031:} 3028:1 3022:, 3019:1 3016:+ 3013:{ 3005:n 3000:S 2959:. 2951:f 2941:, 2938:1 2921:f 2911:, 2908:1 2905:+ 2899:{ 2894:= 2891:f 2861:f 2853:g 2849:g 2845:g 2814:X 2806:. 2804:X 2792:X 2770:. 2767:) 2764:6 2758:4 2752:2 2749:( 2746:) 2743:5 2737:3 2731:1 2728:( 2725:= 2720:2 2716:) 2712:6 2706:5 2700:4 2694:3 2688:2 2682:1 2679:( 2664:m 2657:k 2652:m 2648:k 2644:k 2639:m 2635:k 2631:L 2609:. 2604:) 2598:3 2593:1 2588:5 2583:4 2578:2 2571:5 2566:4 2561:3 2556:2 2551:1 2545:( 2540:= 2537:) 2534:5 2528:3 2525:( 2522:) 2519:4 2513:2 2507:1 2504:( 2501:= 2498:g 2492:f 2489:= 2486:g 2483:f 2470:g 2466:f 2462:g 2458:f 2441:. 2436:) 2430:1 2425:3 2420:4 2415:5 2410:2 2403:5 2398:4 2393:3 2388:2 2383:1 2377:( 2372:= 2369:) 2366:4 2360:3 2357:( 2354:) 2351:5 2345:2 2339:1 2336:( 2333:= 2330:g 2307:) 2301:4 2296:5 2291:1 2286:2 2281:3 2274:5 2269:4 2264:3 2259:2 2254:1 2248:( 2243:= 2240:) 2237:5 2231:4 2228:( 2225:) 2222:2 2219:( 2216:) 2213:3 2207:1 2204:( 2201:= 2198:f 2181:x 2179:( 2177:g 2175:( 2173:f 2169:X 2165:x 2161:g 2157:f 2153:g 2149:f 2144:g 2140:f 2127:X 2119:X 2042:n 2006:n 1994:n 1971:n 1947:4 1941:n 1917:4 1911:n 1896:n 1881:1 1878:= 1875:! 1872:1 1869:= 1866:! 1863:0 1831:1 1828:= 1825:n 1805:0 1802:= 1799:n 1779:n 1755:n 1731:! 1728:n 1705:n 1667:) 1664:n 1661:( 1633:n 1606:n 1600:S 1575:n 1570:S 1548:} 1545:n 1542:, 1536:, 1533:2 1530:, 1527:1 1524:{ 1504:X 1484:) 1481:X 1478:( 1452:! 1449:X 1427:X 1400:X 1394:S 1369:X 1364:S 1342:X 1319:} 1316:n 1313:, 1307:, 1304:2 1301:, 1298:1 1295:{ 1292:= 1289:X 1269:n 1242:X 1222:X 1202:X 1174:G 1142:G 1072:! 1069:n 1047:n 1042:S 1013:n 1005:( 993:! 990:n 970:n 946:n 920:n 915:S 862:e 855:t 848:v 744:8 742:E 736:7 734:E 728:6 726:E 720:4 718:F 712:2 710:G 704:) 702:n 692:) 690:n 680:) 678:n 668:) 666:n 656:) 654:n 644:) 642:n 632:) 630:n 620:) 618:n 560:) 547:Z 535:) 522:Z 498:) 485:Z 476:( 389:p 354:Q 346:n 343:D 333:n 330:A 322:n 319:S 311:n 308:Z 62:3 38:4 36:S 23:.

Index

Symmetry group

Cayley graph
S4
circular shift

Cayley table
header
matrices
two-line form
cycle notation

Algebraic structure
Group theory

Subgroup
Normal subgroup
Group action
Quotient group
(Semi-)
direct product
Direct sum
Free product
Wreath product
Group homomorphisms
kernel
image
simple
finite
infinite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.