Knowledge

Synthetic biological circuit

Source 📝

674: 686:
gene interactions and mathematical models. This issue is being addressed by applying computer-aided design (CAD) software to provide multimedia representations of circuits through images, text and programming language applied to biological circuits. Some of the more well known CAD programs include GenoCAD, Clotho framework and j5. GenoCAD uses grammars, which are either opensource or user generated "rules" which include the available genes and known gene interactions for cloning organisms. Clotho framework uses the
221: 496:. Those demonstrated successfully include pharmaceutical production, and fuel production. However, methods involving direct genetic introduction are not inherently effective without invoking the basic principles of synthetic cellular circuits. For example, each of these successful systems employs a method to introduce all-or-none induction or expression. This is a biological circuit where a simple 685:
and the corresponding increase in competition within the industry have led to a significant drop in price and wait time of gene synthesis and helped improve methods used in circuit design. At the moment, circuit design is improving at a slow pace because of insufficient organization of known multiple
638:
result. All promoters shown are inducible. The activating promoter for the output gene is constitutive, and thus not shown. The constitutive promoter for the output gene keeps it "on" and is only deactivated when (similar to the AND gate) a complex as a result of two input signal gene products blocks
517:
cell, one can add pieces from the toolbox to create a well defined pathway with appropriate synthetic circuitry for an effective feedback system. Because of the basic ground up construction method, and the proposed database of mapped circuitry pieces, techniques mirroring those used to model computer
508:
Development in understanding cellular circuitry can lead to exciting new modifications, such as cells which can respond to environmental stimuli. For example, cells could be developed that signal toxic surroundings and react by activating pathways used to degrade the perceived toxin. To develop such
504:
is introduced to facilitate creation of the product, or inhibition of a competing pathway. However, with the limited understanding of cellular networks and natural circuitry, implementation of more robust schemes with more precise control and feedback is hindered. Therein lies the immediate interest
613:
Signal B are present, then the desired gene product will result. All promoters shown are inducible. Either signal is capable of activating the expression of the output gene product, and only the action of a single promoter is required for gene expression. Post-transcriptional regulation mechanisms
571:
Toggle switch which operates using two mutually inhibitory genes, each promoter is inhibited by the repressor that is transcribed by the opposing promoter. Toggle switch design: Inducer 1 inactivates repressor 1, which means repressor 2 is produced. Repressor 2, in turn, stops transcription of the
512:
Given synthetic cellular circuits represent a form of control for cellular activities, it can be reasoned that with complete understanding of cellular pathways, "plug and play" cells with well defined genetic circuitry can be engineered. It is widely believed that if a proper toolbox of parts is
664:
Engineered systems are the result of implementation of combinations of different control mechanisms. A limited counting mechanism was implemented by a pulse-controlled gene cascade and application of logic elements enables genetic "programming" of cells as in the research of Tabor et al., which
567:
Gene regulation is an essential part of developmental processes. During development, genes are turned on and off in different tissues, changes in regulatory mechanisms may result in genetic switching in a bistable system, the gene switches serve as regulatory molecule binding sites. These are
337:
The goal of synthetic biology is to generate an array of tunable and characterized parts, or modules, with which any desirable synthetic biological circuit can be easily designed and implemented. These circuits can serve as a method to modify cellular functions, create cellular responses to
592:
Signal B are present, then the desired gene product will result. All promoters shown are inducible, activated by the displayed gene product. Each signal activates expression of a separate gene (shown in light blue). The expressed proteins then can either form a complete complex in
475:
with more publications detailing synthetic biological circuits published every year. There has been significant interest in encouraging education and outreach as well: the International Genetically Engineered Machines Competition manages the creation and standardization of
421:
under the control of the lac promoter. Initially the cells are grown in a medium that does not contain lactose or other sugars, so the new genes are not expressed. Once the cells reach a certain point in their growth,
563:
Gardner et al. used mutual repression between two control units to create an implementation of a toggle switch capable of controlling cells in a bistable manner: transient stimuli resulting in persistent responses.
597:, that is capable of activating expression of the output (shown), or can act separately to induce expression, such as separately removing an inhibiting protein and inducing activation of the uninhibited promoter. 568:
proteins that activate transcription when they land on a gene switch and thereby express the gene that was expected to operate as a memory device, allowing cell fate decisions to be chosen and maintained.
623: 581: 602: 384:
metabolism. They discovered that the mechanism that controlled the metabolic "switching" function was a two-part control mechanism on the lac operon. When lactose is present in the cell the
338:
environmental conditions, or influence cellular development. By implementing rational, controllable logic elements in cellular systems, researchers can use living systems as engineered "
322: 449:. The switch is turned on by heating the culture of bacteria and turned off by addition of IPTG. They used green fluorescent protein as a reporter for their system. The second, by 200: 648:
Using negative feedback and identical promoters, linearizer gene circuits can impose uniform gene expression that depends linearly on extracellular chemical inducer concentration.
961:
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, et al. (April 2006). "Production of the antimalarial drug precursor artemisinic acid in engineered yeast".
550:
Elowitz et al. and Fung et al. created oscillatory circuits that use multiple self-regulating mechanisms to create a time-dependent oscillation of gene product expression.
310:
that interact to create the circuit's behavior. The applications of all three types of circuit range from simply inducing production to adding a measurable element, like
513:
generated, synthetic cells can be developed implementing only the pathways necessary for cell survival and reproduction. From this cell, to be thought of as a minimal
399:. When lactose is absent in the cell the lac repressor inhibits the production of the enzyme β-galactosidase to prevent any inefficient processes within the cell. 1852: 430:" the production of the new protein. Once the cells are induced, it is difficult to remove IPTG from the cells and therefore it is difficult to stop expression. 426:
is added. IPTG, a molecule similar to lactose, but with a sulfur bond that is not hydrolyzable so that E. coli does not digest it, is used to activate or "
427: 207: 1098:
Lucks JB, Qi L, Whitaker WR, Arkin AP (December 2008). "Toward scalable parts families for predictable design of biological circuits".
673: 488:
Both immediate and long term applications exist for the use of synthetic biological circuits, including different applications for
518:
or electronic circuits can be used to redesign cells and model cells for easy troubleshooting and predictive behavior and yields.
656:
Synthetic gene circuits can control gene expression heterogeneity can be controlled independently of the gene expression mean.
687: 54: 509:
a cell, it is necessary to create a complex synthetic cellular circuit which can respond appropriately to a given stimulus.
614:
can prevent the presence of both inputs producing a compounded high output, such as implementing a low binding affinity
480:
parts as a means to allow undergraduate and high school students to design their own synthetic biological circuits.
1348:
Silva-Rocha R, de Lorenzo V (April 2008). "Mining logic gates in prokaryotic transcriptional regulation networks".
228:
operon is a natural biological circuit on which many synthetic circuits are based. Top: Repressed, Bottom: Active.
771: 1292:
Gardner TS, Cantor CR, Collins JJ (January 2000). "Construction of a genetic toggle switch in Escherichia coli".
804:
Gardner TS, Cantor CR, Collins JJ (January 2000). "Construction of a genetic toggle switch in Escherichia coli".
1791: 171: 1457:"Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression" 1184:
Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC (May 2005). "A synthetic gene-metabolic oscillator".
438: 1867: 1133:
Elowitz MB, Leibler S (January 2000). "A synthetic oscillatory network of transcriptional regulators".
855:
Elowitz MB, Leibler S (January 2000). "A synthetic oscillatory network of transcriptional regulators".
193: 1847: 1762: 682: 311: 100: 906:
Purnick PE, Weiss R (June 2009). "The second wave of synthetic biology: from modules to systems".
315: 111: 44: 1612:
Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A, Marcotte EM, et al. (June 2009).
181: 176: 1514:
Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y, et al. (December 2006).
615: 489: 150: 135: 1013: 1568: 1468: 1409: 1301: 1248: 1193: 1142: 970: 864: 813: 725: 82: 8: 1679: 1662: 1060: 1012:
Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (July 2008).
501: 145: 1572: 1472: 1413: 1305: 1252: 1197: 1146: 974: 868: 817: 729: 1739: 1714: 1692: 1638: 1613: 1589: 1556: 1491: 1456: 1373: 1325: 1269: 1236: 1217: 1166: 1041: 994: 931: 888: 837: 712:
Kobayashi H, Kaern M, Araki M, Chung K, Gardner TS, Cantor CR, Collins JJ (June 2004).
339: 330: 291: 105: 1432: 1397: 1237:"Balancing a genetic toggle switch by real-time feedback control and periodic forcing" 748: 713: 388: 1744: 1684: 1643: 1594: 1537: 1496: 1437: 1365: 1317: 1274: 1209: 1158: 1115: 1080: 1045: 1033: 986: 923: 880: 829: 753: 493: 458: 454: 442: 283: 140: 28: 1377: 1170: 892: 1734: 1726: 1696: 1674: 1633: 1625: 1584: 1576: 1527: 1486: 1476: 1427: 1417: 1357: 1309: 1264: 1256: 1201: 1150: 1107: 1072: 1025: 998: 978: 915: 872: 821: 743: 733: 627: 434: 1730: 1361: 1329: 1235:
Lugagne JB, Sosa Carrillo S, Kirch M, Köhler A, Batt G, Hersen P (November 2017).
1221: 1029: 935: 841: 677:
Computational design and evaluation of DNA circuits to achieve optimal performance
1532: 1515: 472: 450: 407: 91: 1629: 1461:
Proceedings of the National Academy of Sciences of the United States of America
1402:
Proceedings of the National Academy of Sciences of the United States of America
1260: 718:
Proceedings of the National Academy of Sciences of the United States of America
369: 287: 63: 1111: 1861: 532: 462: 403: 365: 1580: 1481: 1422: 738: 1748: 1688: 1647: 1598: 1541: 1500: 1441: 1369: 1321: 1278: 1213: 1162: 1119: 1084: 1037: 990: 927: 884: 833: 757: 622: 77: 580: 601: 307: 155: 126: 1205: 982: 779: 351: 1076: 714:"Programmable cells: interfacing natural and engineered gene networks" 433:
Two early examples of synthetic biological circuits were published in
321: 290:
are designed to perform logical functions mimicking those observed in
1555:
Friedland AE, Lu TK, Wang X, Shi D, Church G, Collins JJ (May 2009).
1313: 1154: 876: 825: 497: 414: 396: 117: 1715:"Mining high-throughput experimental data to link gene and function" 1516:"Phenotypic consequences of promoter-mediated transcriptional noise" 919: 585: 477: 471:
Currently, synthetic circuits are a burgeoning area of research in
410: 326: 49: 1455:
Nevozhay D, Adams RM, Murphy KF, Josic K, Balázsi G (March 2009).
606: 594: 457:, showed that three repressor genes could be connected to form a 418: 392: 381: 377: 360: 355: 1799: 465:
that produces self-sustaining oscillations of protein levels in
1234: 665:
synthesized a photosensitive bacterial edge detection program.
651: 514: 385: 72: 1011: 1014:"Biofuel alternatives to ethanol: pumping the microbial well" 220: 949: 423: 1770: 1611: 1513: 1848:
Gene regulation: Towards a circuit engineering discipline
1712: 634:
Signal B are present, then the desired gene product will
413:
for therapeutic use. The gene or genes for producing an
350:
The first natural gene circuit studied in detail was the
1454: 711: 318:, to implementing completely new systems of many parts. 1663:"Synthetic biology: an emerging engineering discipline" 960: 1820: 294:. Typically, these circuits are categorized as either 1347: 948:
International Genetically Engineered Machines (iGem)
1291: 1097: 803: 1708: 1706: 1554: 1183: 437:in 2000. One, by Tim Gardner, Charles Cantor, and 376:preferentially consumes the more easily processed 1398:"On schemes of combinatorial transcription logic" 1395: 1859: 1713:Blaby-Haas CE, de Crécy-Lagard V (April 2011). 1703: 342:" to perform a vast range of useful functions. 1132: 854: 1763:"GenoCAD: CAD Software for Synthetic Biology" 201: 1614:"A synthetic genetic edge detection program" 1507: 1448: 905: 652:Controllers of gene expression heterogeneity 424:isopropyl β-D-1-thiogalactopyranoside (IPTG) 1396:Buchler NE, Gerland U, Hwa T (April 2003). 1061:"Synthetic biology for synthetic chemistry" 707: 705: 703: 659: 1391: 1389: 1387: 208: 194: 1738: 1678: 1637: 1588: 1531: 1490: 1480: 1431: 1421: 1268: 799: 797: 747: 737: 1343: 1341: 1339: 1058: 764: 700: 672: 621: 600: 579: 572:repressor 1 gene and the reporter gene. 320: 219: 1667:Annual Review of Biomedical Engineering 1660: 1384: 1860: 908:Nature Reviews. Molecular Cell Biology 794: 540:Bacterial tunable synthetic oscillator 537:Mammalian tunable synthetic oscillator 445:, demonstrated a "bistable" switch in 1336: 546:Globally coupled bacterial oscillator 483: 55:Registry of Standard Biological Parts 1680:10.1146/annurev-bioeng-071811-150118 1557:"Synthetic gene networks that count" 575: 553: 391:is produced to convert lactose into 521: 13: 639:the expression of the output gene. 14: 1879: 1841: 668: 643: 505:in synthetic cellular circuits. 286:where biological parts inside a 1813: 1784: 1755: 1654: 1605: 1548: 1285: 1228: 1177: 1126: 1100:Current Opinion in Microbiology 1091: 21:Part of a series of articles on 1661:Cheng AA, Lu TK (2012-01-01). 1052: 1005: 954: 942: 899: 848: 526: 402:The lac operon is used in the 1: 1853:Synthetic Genetic Oscillators 1731:10.1016/j.tibtech.2011.01.001 1362:10.1016/j.febslet.2008.01.060 1030:10.1016/j.tibtech.2008.03.008 693: 280:Synthetic biological circuits 36:Synthetic biological circuits 1533:10.1016/j.molcel.2006.11.003 1059:Keasling JD (January 2008). 543:Coupled bacterial oscillator 306:, depending on the types of 7: 1821:"j5 automated DNA assembly" 406:industry for production of 10: 1884: 1630:10.1016/j.cell.2009.04.048 1261:10.1038/s41467-017-01498-0 345: 316:natural biological circuit 1112:10.1016/j.mib.2008.10.002 950:http://igem.org/Main_Page 683:artificial gene synthesis 312:green fluorescent protein 101:Artificial gene synthesis 772:"Synthetic Biology: FAQ" 660:Other engineered systems 417:protein are placed on a 1719:Trends in Biotechnology 1581:10.1126/science.1172005 1482:10.1073/pnas.0809901106 1423:10.1073/pnas.0930314100 1018:Trends in Biotechnology 739:10.1073/pnas.0402940101 681:Recent developments in 112:Mycoplasma laboratorium 45:Synthetic gene database 678: 640: 619: 598: 334: 282:are an application of 276: 182:Do-it-yourself biology 177:Open synthetic biology 1241:Nature Communications 676: 625: 616:ribosome binding site 604: 583: 490:metabolic engineering 324: 223: 151:Expanded genetic code 136:Nucleic acid analogue 1065:ACS Chemical Biology 776:SyntheticBiology.org 380:before switching to 364:on two-sugar media, 83:Synthetic immunology 1802:on 26 December 2014 1573:2009Sci...324.1199F 1567:(5931): 1199–1202. 1473:2009PNAS..106.5123N 1414:2003PNAS..100.5136B 1306:2000Natur.403..339G 1253:2017NatCo...8.1671L 1206:10.1038/nature03508 1198:2005Natur.435..118F 1147:2000Natur.403..335E 983:10.1038/nature04640 975:2006Natur.440..940R 869:2000Natur.403..335E 818:2000Natur.403..339G 782:on 12 December 2002 730:2004PNAS..101.8414K 340:biological machines 292:electronic circuits 146:Unnatural base pair 1773:on 5 February 2016 679: 641: 620: 599: 484:Interest and goals 335: 331:biological machine 277: 234:: RNA polymerase, 106:Synthetic genomics 1868:Synthetic biology 1796:www.clothocad.org 1467:(13): 5123–5128. 1300:(6767): 339–342. 1192:(7038): 118–122. 1141:(6767): 335–338. 1077:10.1021/cb7002434 969:(7086): 940–943. 863:(6767): 335–338. 724:(22): 8414–8419. 688:Biobrick standard 576:Logical operators 554:Bistable switches 494:synthetic biology 459:negative feedback 455:Stanislas Leibler 443:Boston University 314:, to an existing 284:synthetic biology 218: 217: 141:Xeno nucleic acid 29:Synthetic biology 23: 1875: 1835: 1834: 1832: 1831: 1817: 1811: 1810: 1808: 1807: 1798:. Archived from 1788: 1782: 1781: 1779: 1778: 1769:. Archived from 1759: 1753: 1752: 1742: 1710: 1701: 1700: 1682: 1658: 1652: 1651: 1641: 1624:(7): 1272–1281. 1609: 1603: 1602: 1592: 1552: 1546: 1545: 1535: 1511: 1505: 1504: 1494: 1484: 1452: 1446: 1445: 1435: 1425: 1408:(9): 5136–5141. 1393: 1382: 1381: 1356:(8): 1237–1244. 1345: 1334: 1333: 1314:10.1038/35002131 1289: 1283: 1282: 1272: 1232: 1226: 1225: 1181: 1175: 1174: 1155:10.1038/35002125 1130: 1124: 1123: 1095: 1089: 1088: 1056: 1050: 1049: 1009: 1003: 1002: 958: 952: 946: 940: 939: 903: 897: 896: 877:10.1038/35002125 852: 846: 845: 826:10.1038/35002131 812:(6767): 339–42. 801: 792: 791: 789: 787: 778:. Archived from 768: 762: 761: 751: 741: 709: 628:Negated AND gate 522:Example circuits 461:loop termed the 372:discovered that 354:. In studies of 304:protein circuits 296:genetic circuits 210: 203: 196: 92:Artificial cells 19: 16: 15: 1883: 1882: 1878: 1877: 1876: 1874: 1873: 1872: 1858: 1857: 1844: 1839: 1838: 1829: 1827: 1819: 1818: 1814: 1805: 1803: 1790: 1789: 1785: 1776: 1774: 1767:www.genocad.com 1761: 1760: 1756: 1711: 1704: 1659: 1655: 1610: 1606: 1553: 1549: 1512: 1508: 1453: 1449: 1394: 1385: 1346: 1337: 1290: 1286: 1233: 1229: 1182: 1178: 1131: 1127: 1096: 1092: 1057: 1053: 1010: 1006: 959: 955: 947: 943: 920:10.1038/nrm2698 904: 900: 853: 849: 802: 795: 785: 783: 770: 769: 765: 710: 701: 696: 671: 662: 654: 646: 630:. If Signal A 578: 556: 529: 524: 486: 473:systems biology 451:Michael Elowitz 389:β-galactosidase 348: 229: 214: 12: 11: 5: 1881: 1871: 1870: 1856: 1855: 1850: 1843: 1842:External links 1840: 1837: 1836: 1812: 1783: 1754: 1725:(4): 174–182. 1702: 1673:(1): 155–178. 1653: 1604: 1547: 1526:(6): 853–865. 1520:Molecular Cell 1506: 1447: 1383: 1335: 1284: 1227: 1176: 1125: 1106:(6): 567–573. 1090: 1051: 1024:(7): 375–381. 1004: 953: 941: 914:(6): 410–422. 898: 847: 793: 763: 698: 697: 695: 692: 670: 669:Circuit design 667: 661: 658: 653: 650: 645: 642: 609:. If Signal A 588:. If Signal A 577: 574: 561: 560: 555: 552: 548: 547: 544: 541: 538: 535: 528: 525: 523: 520: 485: 482: 370:Francois Jacob 356:diauxic growth 347: 344: 216: 215: 213: 212: 205: 198: 190: 187: 186: 185: 184: 179: 174: 166: 165: 161: 160: 159: 158: 153: 148: 143: 138: 130: 129: 123: 122: 121: 120: 115: 108: 103: 95: 94: 88: 87: 86: 85: 80: 75: 67: 66: 64:Genome editing 60: 59: 58: 57: 52: 47: 39: 38: 32: 31: 25: 24: 9: 6: 4: 3: 2: 1880: 1869: 1866: 1865: 1863: 1854: 1851: 1849: 1846: 1845: 1826: 1822: 1816: 1801: 1797: 1793: 1787: 1772: 1768: 1764: 1758: 1750: 1746: 1741: 1736: 1732: 1728: 1724: 1720: 1716: 1709: 1707: 1698: 1694: 1690: 1686: 1681: 1676: 1672: 1668: 1664: 1657: 1649: 1645: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1600: 1596: 1591: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1551: 1543: 1539: 1534: 1529: 1525: 1521: 1517: 1510: 1502: 1498: 1493: 1488: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1443: 1439: 1434: 1429: 1424: 1419: 1415: 1411: 1407: 1403: 1399: 1392: 1390: 1388: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1351: 1344: 1342: 1340: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1288: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1231: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1180: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1008: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 957: 951: 945: 937: 933: 929: 925: 921: 917: 913: 909: 902: 894: 890: 886: 882: 878: 874: 870: 866: 862: 858: 851: 843: 839: 835: 831: 827: 823: 819: 815: 811: 807: 800: 798: 781: 777: 773: 767: 759: 755: 750: 745: 740: 735: 731: 727: 723: 719: 715: 708: 706: 704: 699: 691: 689: 684: 675: 666: 657: 649: 644:Analog tuners 637: 633: 629: 624: 617: 612: 608: 603: 596: 591: 587: 582: 573: 569: 565: 559:Toggle-switch 558: 557: 551: 545: 542: 539: 536: 534: 533:Repressilator 531: 530: 519: 516: 510: 506: 503: 499: 495: 491: 481: 479: 474: 469: 468: 464: 463:Repressilator 460: 456: 452: 448: 444: 440: 436: 431: 429: 425: 420: 416: 412: 409: 405: 404:biotechnology 400: 398: 394: 390: 387: 383: 379: 375: 371: 367: 366:Jacques Monod 363: 362: 357: 353: 343: 341: 332: 328: 323: 319: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 274: 273: 269: 265: 261: 257: 253: 249: 245: 241: 238:: Repressor, 237: 233: 227: 222: 211: 206: 204: 199: 197: 192: 191: 189: 188: 183: 180: 178: 175: 173: 170: 169: 168: 167: 163: 162: 157: 154: 152: 149: 147: 144: 142: 139: 137: 134: 133: 132: 131: 128: 125: 124: 119: 116: 114: 113: 109: 107: 104: 102: 99: 98: 97: 96: 93: 90: 89: 84: 81: 79: 76: 74: 71: 70: 69: 68: 65: 62: 61: 56: 53: 51: 48: 46: 43: 42: 41: 40: 37: 34: 33: 30: 27: 26: 22: 18: 17: 1828:. Retrieved 1824: 1815: 1804:. Retrieved 1800:the original 1795: 1786: 1775:. Retrieved 1771:the original 1766: 1757: 1722: 1718: 1670: 1666: 1656: 1621: 1617: 1607: 1564: 1560: 1550: 1523: 1519: 1509: 1464: 1460: 1450: 1405: 1401: 1353: 1350:FEBS Letters 1349: 1297: 1293: 1287: 1244: 1240: 1230: 1189: 1185: 1179: 1138: 1134: 1128: 1103: 1099: 1093: 1071:(1): 64–76. 1068: 1064: 1054: 1021: 1017: 1007: 966: 962: 956: 944: 911: 907: 901: 860: 856: 850: 809: 805: 784:. Retrieved 780:the original 775: 766: 721: 717: 680: 663: 655: 647: 635: 631: 626:The logical 610: 605:The logical 589: 584:The logical 570: 566: 562: 549: 511: 507: 487: 470: 466: 446: 432: 401: 373: 359: 349: 336: 303: 300:RNA circuits 299: 295: 279: 278: 271: 267: 263: 259: 255: 251: 247: 246:: Operator, 243: 242:: Promoter, 239: 235: 231: 230: 225: 164:Other topics 110: 78:Gene therapy 35: 20: 1825:j5.jbei.org 1247:(1): 1671. 786:21 December 527:Oscillators 441:working at 439:Jim Collins 408:recombinant 308:biomolecule 250:: Lactose, 156:Mirror life 127:Xenobiology 1830:2015-10-21 1806:2015-10-21 1777:2015-10-21 694:References 352:lac operon 1046:205388761 498:repressor 415:exogenous 397:galactose 118:Protocell 1862:Category 1792:"Clotho" 1749:21310501 1689:22577777 1648:19563759 1599:19478183 1542:17189188 1501:19279212 1442:12702751 1378:45553956 1370:18275855 1322:10659857 1279:29150615 1214:15875027 1171:41632754 1163:10659856 1120:18983935 1085:18205292 1038:18471913 991:16612385 928:19461664 893:41632754 885:10659856 834:10659857 758:15159530 586:AND gate 502:promoter 478:BioBrick 467:E. coli. 411:proteins 327:ribosome 50:BioBrick 1740:3073767 1697:7319630 1639:2775486 1590:2690711 1569:Bibcode 1561:Science 1492:2654390 1469:Bibcode 1410:Bibcode 1302:Bibcode 1270:5693866 1249:Bibcode 1194:Bibcode 1143:Bibcode 999:3199654 971:Bibcode 865:Bibcode 814:Bibcode 726:Bibcode 690:rules. 607:OR gate 595:cytosol 447:E. coli 419:plasmid 393:glucose 382:lactose 378:glucose 361:E. coli 346:History 172:Hazards 1747:  1737:  1695:  1687:  1646:  1636:  1597:  1587:  1540:  1499:  1489:  1440:  1433:404558 1430:  1376:  1368:  1330:345059 1328:  1320:  1294:Nature 1277:  1267:  1222:414371 1220:  1212:  1186:Nature 1169:  1161:  1135:Nature 1118:  1083:  1044:  1036:  997:  989:  963:Nature 936:200495 934:  926:  891:  883:  857:Nature 842:345059 840:  832:  806:Nature 756:  749:420408 746:  515:genome 492:, and 435:Nature 428:induce 386:enzyme 374:E.coli 73:CRISPR 1693:S2CID 1374:S2CID 1326:S2CID 1218:S2CID 1167:S2CID 1042:S2CID 995:S2CID 932:S2CID 889:S2CID 838:S2CID 329:is a 302:, or 1745:PMID 1685:PMID 1644:PMID 1618:Cell 1595:PMID 1538:PMID 1497:PMID 1438:PMID 1366:PMID 1318:PMID 1275:PMID 1210:PMID 1159:PMID 1116:PMID 1081:PMID 1034:PMID 987:PMID 924:PMID 881:PMID 830:PMID 788:2011 754:PMID 453:and 368:and 288:cell 272:lacA 264:lacY 256:lacZ 224:The 1735:PMC 1727:doi 1675:doi 1634:PMC 1626:doi 1622:137 1585:PMC 1577:doi 1565:324 1528:doi 1487:PMC 1477:doi 1465:106 1428:PMC 1418:doi 1406:100 1358:doi 1354:582 1310:doi 1298:403 1265:PMC 1257:doi 1202:doi 1190:435 1151:doi 1139:403 1108:doi 1073:doi 1026:doi 979:doi 967:440 916:doi 873:doi 861:403 822:doi 810:403 744:PMC 734:doi 722:101 636:NOT 632:AND 590:AND 500:or 395:or 358:of 226:lac 1864:: 1823:. 1794:. 1765:. 1743:. 1733:. 1723:29 1721:. 1717:. 1705:^ 1691:. 1683:. 1671:14 1669:. 1665:. 1642:. 1632:. 1620:. 1616:. 1593:. 1583:. 1575:. 1563:. 1559:. 1536:. 1524:24 1522:. 1518:. 1495:. 1485:. 1475:. 1463:. 1459:. 1436:. 1426:. 1416:. 1404:. 1400:. 1386:^ 1372:. 1364:. 1352:. 1338:^ 1324:. 1316:. 1308:. 1296:. 1273:. 1263:. 1255:. 1243:. 1239:. 1216:. 1208:. 1200:. 1188:. 1165:. 1157:. 1149:. 1137:. 1114:. 1104:11 1102:. 1079:. 1067:. 1063:. 1040:. 1032:. 1022:26 1020:. 1016:. 993:. 985:. 977:. 965:. 930:. 922:. 912:10 910:. 887:. 879:. 871:. 859:. 836:. 828:. 820:. 808:. 796:^ 774:. 752:. 742:. 732:. 720:. 716:. 702:^ 611:OR 325:A 298:, 270:: 266:, 262:: 258:, 254:: 1833:. 1809:. 1780:. 1751:. 1729:: 1699:. 1677:: 1650:. 1628:: 1601:. 1579:: 1571:: 1544:. 1530:: 1503:. 1479:: 1471:: 1444:. 1420:: 1412:: 1380:. 1360:: 1332:. 1312:: 1304:: 1281:. 1259:: 1251:: 1245:8 1224:. 1204:: 1196:: 1173:. 1153:: 1145:: 1122:. 1110:: 1087:. 1075:: 1069:3 1048:. 1028:: 1001:. 981:: 973:: 938:. 918:: 895:. 875:: 867:: 844:. 824:: 816:: 790:. 760:. 736:: 728:: 618:. 333:. 275:. 268:8 260:7 252:6 248:5 244:4 240:3 236:2 232:1 209:e 202:t 195:v

Index

Synthetic biology
Synthetic biological circuits
Synthetic gene database
BioBrick
Registry of Standard Biological Parts
Genome editing
CRISPR
Gene therapy
Synthetic immunology
Artificial cells
Artificial gene synthesis
Synthetic genomics
Mycoplasma laboratorium
Protocell
Xenobiology
Nucleic acid analogue
Xeno nucleic acid
Unnatural base pair
Expanded genetic code
Mirror life
Hazards
Open synthetic biology
Do-it-yourself biology
v
t
e

synthetic biology
cell
electronic circuits

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.