Knowledge

Hilbert's syzygy theorem

Source 📝

2566: 140:
The syzygy theorem first appeared in Hilbert's seminal paper "Über die Theorie der algebraischen Formen" (1890). The paper is split into five parts: part I proves Hilbert's basis theorem over a field, while part II proves it over the integers. Part III contains the syzygy theorem (Theorem III), which
1168: 1470: 2364: 3560:
degree necessarily occurs. However such examples are extremely rare, and this sets the question of an algorithm that is efficient when the output is not too large. At the present time, the best algorithms for computing syzygies are
2676: 1087: 1392: 2033: 2894: 2132: 968: 3218: 3322: 2197: 105:. As the relations form a module, one may consider the relations between the relations; the theorem asserts that, if one continues in this way, starting with a module over a polynomial ring in 3015: 3121: 392: 788: 612: 481: 2561:{\displaystyle G_{i_{1}}\wedge \cdots \wedge G_{i_{t}}\mapsto \sum _{j=1}^{t}(-1)^{j+1}g_{i_{j}}G_{i_{1}}\wedge \cdots \wedge {\widehat {G}}_{i_{j}}\wedge \cdots \wedge G_{i_{t}},} 540: 311: 3381:
whose unknowns are the coefficients of these monomials. Therefore, any algorithm for linear systems implies an algorithm for syzygies, as soon as a bound of the degrees is known.
3373:
of the generators of the module of syzygies. In fact, the coefficients of the syzygies are unknown polynomials. If the degree of these polynomials is bounded, the number of their
1923: 2810: 1776: 724: 233: 2356: 3539: 681: 2571:
where the hat means that the factor is omitted. A straightforward computation shows that the composition of two consecutive such maps is zero, and thus that one has a
1589: 2294: 2230: 991: 3355: 3148: 3046: 2927: 2261: 2063: 1954: 1870: 1252: 1225: 1198: 899: 872: 845: 818: 645: 422: 3632: 2751: 1843: 3466: 3754: 3734: 3710: 3690: 3666: 1687: 1553: 1328: 2826: 2580: 1163:{\displaystyle 0\longrightarrow R_{n}\longrightarrow L_{n-1}\longrightarrow \cdots \longrightarrow L_{0}\longrightarrow M\longrightarrow 0,} 1465:{\displaystyle 0\longrightarrow L_{k}\longrightarrow L_{k-1}\longrightarrow \cdots \longrightarrow L_{0}\longrightarrow M\longrightarrow 0} 1004:
module is the module of the relations between generators of the first syzygy module. By continuing in this way, one may define the
1965: 3565:
algorithms. They allow the computation of the first syzygy module, and also, with almost no extra cost, all syzygies modules.
2830: 2074: 907: 3774: 3157: 3821:
Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Unter Benutzung nachgelassener SĂ€tze von K. Hentzelt
3232: 2140: 2946: 3051: 325: 3885: 3877: 1713:
In the case of a single indeterminate, Hilbert's syzygy theorem is an instance of the theorem asserting that over a
1632:
of a ring is the supremum of the projective dimensions of all modules, Hilbert's syzygy theorem may be restated as:
735: 548: 3939: 1729:, also called "complex of exterior algebra", allows, in some cases, an explicit description of all syzygy modules. 1488:
This upper bound on the projective dimension is sharp, that is, there are modules of projective dimension exactly
3757: 17: 3907: 431: 3929: 3924: 493: 264: 71: 1879: 3902: 3557: 2769: 1735: 686: 192: 3769: 3378: 1032:, then by taking a basis as a generating set, the next syzygy module (and every subsequent one) is the 187: 94: 59: 2315: 3934: 3897: 3807: 3645: 150: 3495: 3385: 3365:
At Hilbert's time, there was no method available for computing syzygies. It was only known that an
1336: 75: 67: 1036:. If one does not take a basis as a generating set, then all subsequent syzygy modules are free. 618: 653: 2759: 1707: 1558: 3794: 3492:
such that the degrees occurring in a generating system of the first syzygy module is at most
2266: 2202: 1957: 994: 976: 3891: 3333: 3126: 3024: 2905: 2239: 2041: 1932: 1848: 1714: 1702:
In the case of zero indeterminates, Hilbert's syzygy theorem is simply the fact that every
1368: 1230: 1203: 1176: 1068: 877: 850: 823: 796: 623: 400: 176: 162: 102: 90: 8: 3576: 2695: 1787: 1340: 1061:. The above property of invariance, up to the sum direct with free modules, implies that 847:
is the module that is obtained with another generating set, there exist two free modules
168: 129: 125: 98: 43: 3413: 3739: 3719: 3695: 3675: 3651: 1637: 1503: 1278: 180: 142: 55: 2815: 3881: 3873: 3018: 1058: 3872:. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995. xvi+785 pp. 3824: 2755: 2066: 1926: 1629: 146: 51: 3562: 1227:
is projective. It can be shown that one may always choose the generating sets for
3888: 3713: 3669: 1384: 1273: 1255: 172: 63: 39: 3865: 2686: 1726: 727: 3918: 3389: 2572: 2233: 1628:
The theorem is also true for modules that are not finitely generated. As the
47: 3839: 3635: 3370: 2902:
th syzygy module is free of dimension one (generated by the product of all
1703: 2671:{\displaystyle 0\to L_{t}\to L_{t-1}\to \cdots \to L_{1}\to L_{0}\to R/I.} 27:
Theorem about linear relations in ideals and modules over polynomial rings
1873: 1361: 1033: 425: 112: 79: 31: 3832: 3828: 648: 3634:
causes the Hilbert syzygy theorem to hold. It turns out that this is
2812:
is regular, and the Koszul complex is thus a projective resolution of
50:
in 1890, that were introduced for solving important open questions in
3366: 3229:
The same proof applies for proving that the projective dimension of
2937:
th syzygy module is thus the quotient of a free module of dimension
124:
Hilbert's syzygy theorem is now considered to be an early result of
3374: 1081:
if not. This is equivalent with the existence of an exact sequence
3756:
is equal to the Krull dimension. This result may be proven using
128:. It is the starting point of the use of homological methods in 3837:
The question of finitely many steps in polynomial ideal theory
3377:
is also bounded. Expressing that one has a syzygy provides a
488: 145:. The last part, part V, proves finite generation of certain 3638:, which is an algebraic formulation of the fact that affine 149:. Incidentally part III also contains a special case of the 2691:
it is an exact sequence if one works with a polynomial ring
3870:
Commutative algebra. With a view toward algebraic geometry
2028:{\displaystyle \Lambda (L_{1})=\bigoplus _{t=0}^{k}L_{t},} 1254:
being free, that is for the above exact sequence to be a
2889:{\displaystyle k=R/\langle x_{1},\ldots ,x_{n}\rangle .} 2127:{\displaystyle G_{i_{1}}\wedge \cdots \wedge G_{i_{t}},} 963:{\displaystyle R_{1}\oplus F_{1}\cong S_{1}\oplus F_{2}} 3823:, Mathematische Annalen, Volume 95, Number 1, 736-788, 3793:
D. Hilbert, Über die Theorie der algebraischen Formen,
3213:{\displaystyle k=R/\langle x_{1},\ldots ,x_{n}\rangle } 2818: 74:, which establishes a bijective correspondence between 1067:
does not depend on the choice of generating sets. The
3742: 3722: 3698: 3678: 3654: 3579: 3541:
The same bound applies for testing the membership to
3498: 3416: 3336: 3317:{\displaystyle k/\langle g_{1},\ldots ,g_{t}\rangle } 3235: 3160: 3129: 3054: 3027: 2949: 2908: 2833: 2772: 2698: 2583: 2367: 2318: 2269: 2242: 2205: 2143: 2077: 2044: 1968: 1935: 1882: 1851: 1790: 1738: 1640: 1561: 1506: 1395: 1281: 1233: 1206: 1179: 1090: 979: 910: 880: 853: 826: 799: 738: 689: 656: 626: 551: 496: 434: 403: 328: 267: 195: 3357:
form a regular sequence of homogeneous polynomials.
111:
indeterminates over a field, one eventually finds a
2192:{\displaystyle i_{1}<i_{2}<\cdots <i_{t}.} 1717:, every submodule of a free module is itself free. 820:depends on the choice of a generating set, but, if 3748: 3728: 3704: 3684: 3660: 3648:. In fact the following generalization holds: Let 3626: 3573:One might wonder which ring-theoretic property of 3533: 3460: 3349: 3316: 3212: 3142: 3115: 3040: 3009: 2921: 2888: 2820: 2804: 2745: 2670: 2560: 2350: 2288: 2255: 2224: 2191: 2126: 2057: 2027: 1948: 1917: 1864: 1837: 1770: 1681: 1583: 1547: 1464: 1322: 1246: 1219: 1192: 1162: 985: 962: 893: 866: 839: 812: 782: 718: 675: 639: 606: 534: 475: 416: 386: 305: 227: 175:, but the concept generalizes trivially to (left) 3384:The first bound for syzygies (as well as for the 3010:{\displaystyle (x_{1},-x_{2},\ldots ,\pm x_{n}).} 3916: 3736:is finite; in that case the global dimension of 3154:). This proves that the projective dimension of 3116:{\displaystyle p_{1}x_{1}+\cdots +p_{n}x_{n}=1,} 387:{\displaystyle a_{1}g_{1}+\cdots +a_{k}g_{k}=0.} 2065:is the free module, which has, as a basis, the 1045:be the smallest integer, if any, such that the 38:is one of the three fundamental theorems about 3556:On the other hand, there are examples where a 3021:, as otherwise, there would exist polynomials 783:{\displaystyle 0\to R_{1}\to L_{0}\to M\to 0.} 607:{\displaystyle a_{1}G_{1}+\cdots +a_{k}G_{k},} 3123:which is impossible (substituting 0 for the 3311: 3279: 3207: 3175: 2880: 2848: 3692:has finite global dimension if and only if 3369:may be deduced from any upper bound of the 3810:, but extends easily to arbitrary modules. 3568: 2685:. In general the Koszul complex is not an 1367:In modern language, this implies that the 3840:(review and English-language translation) 1266:Hilbert's syzygy theorem states that, if 167:Originally, Hilbert defined syzygies for 156: 14: 3917: 3758:Serre's theorem on regular local rings 1613:th syzygy module is free, but not the 1272:is a finitely generated module over a 476:{\displaystyle (G_{1},\ldots ,G_{k}).} 93:in Hilbert's terminology, between the 85:Hilbert's syzygy theorem concerns the 3775:Hilbert series and Hilbert polynomial 535:{\displaystyle (a_{1},\ldots ,a_{k})} 306:{\displaystyle (a_{1},\ldots ,a_{k})} 66:of polynomial rings over a field are 3468:if the coefficients over a basis of 1918:{\displaystyle G_{1},\ldots ,G_{k}.} 1494:. The standard example is the field 542:may be identified with the element 2805:{\displaystyle x_{1},\ldots ,x_{n}} 1778:be a generating system of an ideal 1771:{\displaystyle g_{1},\ldots ,g_{k}} 1622: 719:{\displaystyle G_{i}\mapsto g_{i}.} 228:{\displaystyle g_{1},\ldots ,g_{k}} 24: 2232:(because of the definition of the 1969: 1077:is this integer, if it exists, or 1026:th syzygy module is free for some 141:is used in part IV to discuss the 25: 3951: 1720: 54:, and are at the basis of modern 3150:in the latter equality provides 2351:{\displaystyle L_{t}\to L_{t-1}} 1697: 1500:, which may be considered as a 1383:, and thus that there exists a 3844: 3813: 3800: 3787: 3621: 3589: 3534:{\displaystyle (td)^{2^{cn}}.} 3509: 3499: 3452: 3420: 3360: 3271: 3239: 3001: 2950: 2943:by the submodule generated by 2740: 2708: 2651: 2638: 2625: 2619: 2600: 2587: 2445: 2435: 2411: 2329: 2312:, one may define a linear map 1985: 1972: 1832: 1800: 1676: 1644: 1542: 1510: 1456: 1450: 1437: 1431: 1412: 1399: 1317: 1285: 1151: 1145: 1132: 1126: 1107: 1094: 774: 768: 755: 742: 700: 667: 529: 497: 467: 435: 300: 268: 13: 1: 3780: 3398:a submodule of a free module 1051:th syzygy module of a module 58:. The two other theorems are 3806:The theory is presented for 3644:-space is a variety without 3480:have a total degree at most 2766:In particular, the sequence 2754:and an ideal generated by a 1261: 255:between the generators is a 115:of relations, after at most 7: 3903:Encyclopedia of Mathematics 3763: 3486:, then there is a constant 3017:This quotient may not be a 1011:for every positive integer 726:In other words, one has an 617:and the relations form the 10: 3956: 3808:finitely generated modules 3474:of a generating system of 3379:system of linear equations 2236:), the two definitions of 676:{\displaystyle L_{0}\to M} 160: 135: 76:affine algebraic varieties 3857:, but did not prove this. 1621:th one (for a proof, see 793:This first syzygy module 72:Hilbert's Nullstellensatz 62:, which asserts that all 3386:ideal membership problem 1634:the global dimension of 1584:{\displaystyle x_{i}c=0} 132:and algebraic geometry. 101:, or, more generally, a 36:Hilbert's syzygy theorem 3940:Theorems in ring theory 3569:Syzygies and regularity 3388:) was given in 1926 by 2760:homogeneous polynomials 2289:{\displaystyle L_{t}=0} 2225:{\displaystyle L_{0}=R} 2199:In particular, one has 1607:. For this module, the 986:{\displaystyle \oplus } 60:Hilbert's basis theorem 3835:in German language) — 3770:Quillen–Suslin theorem 3750: 3730: 3706: 3686: 3662: 3628: 3535: 3462: 3351: 3318: 3214: 3144: 3117: 3042: 3011: 2923: 2890: 2822: 2806: 2747: 2672: 2562: 2434: 2352: 2290: 2257: 2226: 2193: 2128: 2059: 2029: 2011: 1950: 1919: 1866: 1839: 1772: 1683: 1585: 1549: 1466: 1324: 1248: 1221: 1194: 1164: 987: 964: 895: 868: 841: 814: 784: 720: 677: 641: 608: 536: 477: 418: 388: 307: 229: 3795:Mathematische Annalen 3751: 3731: 3707: 3687: 3663: 3629: 3536: 3463: 3352: 3350:{\displaystyle g_{i}} 3319: 3215: 3145: 3143:{\displaystyle x_{i}} 3118: 3043: 3041:{\displaystyle p_{i}} 3012: 2924: 2922:{\displaystyle G_{i}} 2891: 2823: 2807: 2748: 2673: 2563: 2414: 2353: 2306:. For every positive 2291: 2258: 2256:{\displaystyle L_{1}} 2227: 2194: 2129: 2060: 2058:{\displaystyle L_{t}} 2030: 1991: 1951: 1949:{\displaystyle L_{1}} 1920: 1867: 1865:{\displaystyle L_{1}} 1840: 1784:in a polynomial ring 1773: 1684: 1623:§ Koszul complex 1586: 1550: 1467: 1325: 1249: 1247:{\displaystyle R_{n}} 1222: 1220:{\displaystyle R_{n}} 1195: 1193:{\displaystyle L_{i}} 1165: 995:direct sum of modules 988: 965: 896: 894:{\displaystyle F_{2}} 869: 867:{\displaystyle F_{1}} 842: 840:{\displaystyle S_{1}} 815: 813:{\displaystyle R_{1}} 785: 721: 678: 642: 640:{\displaystyle R_{1}} 609: 537: 478: 419: 417:{\displaystyle L_{0}} 389: 308: 230: 151:Hilbert–Burch theorem 82:of polynomial rings. 3740: 3720: 3696: 3676: 3652: 3577: 3496: 3414: 3334: 3233: 3158: 3127: 3052: 3025: 2947: 2906: 2831: 2816: 2770: 2696: 2581: 2365: 2316: 2267: 2240: 2203: 2141: 2075: 2042: 1966: 1933: 1880: 1849: 1788: 1736: 1715:principal ideal ring 1638: 1559: 1504: 1393: 1369:projective dimension 1354:th syzygy module of 1279: 1231: 1204: 1177: 1088: 1069:projective dimension 977: 908: 878: 851: 824: 797: 736: 687: 654: 624: 549: 494: 432: 401: 326: 265: 193: 163:syzygy (mathematics) 157:Syzygies (relations) 3930:Homological algebra 3925:Commutative algebra 3850:G. Hermann claimed 3712:is regular and the 3627:{\displaystyle A=k} 2746:{\displaystyle R=k} 1838:{\displaystyle R=k} 1555:-module by setting 147:rings of invariants 130:commutative algebra 126:homological algebra 3829:10.1007/BF01206635 3746: 3726: 3702: 3682: 3658: 3624: 3558:double exponential 3531: 3461:{\displaystyle k;} 3458: 3347: 3314: 3210: 3140: 3113: 3038: 3007: 2919: 2896:In this case, the 2886: 2802: 2743: 2668: 2558: 2348: 2286: 2253: 2222: 2189: 2124: 2055: 2025: 1946: 1915: 1862: 1835: 1768: 1679: 1581: 1545: 1462: 1320: 1244: 1217: 1190: 1173:where the modules 1160: 983: 960: 891: 864: 837: 810: 780: 716: 673: 637: 604: 532: 473: 414: 384: 303: 225: 143:Hilbert polynomial 68:finitely generated 56:algebraic geometry 46:, first proved by 3898:"Hilbert theorem" 3749:{\displaystyle A} 3729:{\displaystyle A} 3705:{\displaystyle A} 3685:{\displaystyle A} 3661:{\displaystyle A} 3547:of an element of 3019:projective module 2513: 2067:exterior products 1682:{\displaystyle k} 1548:{\displaystyle k} 1323:{\displaystyle k} 16:(Redirected from 3947: 3935:Invariant theory 3911: 3858: 3856: 3848: 3842: 3817: 3811: 3804: 3798: 3791: 3755: 3753: 3752: 3747: 3735: 3733: 3732: 3727: 3711: 3709: 3708: 3703: 3691: 3689: 3688: 3683: 3667: 3665: 3664: 3659: 3643: 3633: 3631: 3630: 3625: 3620: 3619: 3601: 3600: 3552: 3546: 3540: 3538: 3537: 3532: 3527: 3526: 3525: 3524: 3491: 3485: 3479: 3473: 3467: 3465: 3464: 3459: 3451: 3450: 3432: 3431: 3409: 3403: 3397: 3356: 3354: 3353: 3348: 3346: 3345: 3329: 3323: 3321: 3320: 3315: 3310: 3309: 3291: 3290: 3278: 3270: 3269: 3251: 3250: 3225: 3219: 3217: 3216: 3211: 3206: 3205: 3187: 3186: 3174: 3153: 3149: 3147: 3146: 3141: 3139: 3138: 3122: 3120: 3119: 3114: 3103: 3102: 3093: 3092: 3074: 3073: 3064: 3063: 3047: 3045: 3044: 3039: 3037: 3036: 3016: 3014: 3013: 3008: 3000: 2999: 2978: 2977: 2962: 2961: 2942: 2936: 2928: 2926: 2925: 2920: 2918: 2917: 2901: 2895: 2893: 2892: 2887: 2879: 2878: 2860: 2859: 2847: 2827: 2825: 2824: 2821:{\displaystyle } 2819: 2811: 2809: 2808: 2803: 2801: 2800: 2782: 2781: 2756:regular sequence 2752: 2750: 2749: 2744: 2739: 2738: 2720: 2719: 2677: 2675: 2674: 2669: 2661: 2650: 2649: 2637: 2636: 2618: 2617: 2599: 2598: 2567: 2565: 2564: 2559: 2554: 2553: 2552: 2551: 2528: 2527: 2526: 2525: 2515: 2514: 2506: 2493: 2492: 2491: 2490: 2476: 2475: 2474: 2473: 2459: 2458: 2433: 2428: 2410: 2409: 2408: 2407: 2384: 2383: 2382: 2381: 2357: 2355: 2354: 2349: 2347: 2346: 2328: 2327: 2311: 2305: 2295: 2293: 2292: 2287: 2279: 2278: 2262: 2260: 2259: 2254: 2252: 2251: 2231: 2229: 2228: 2223: 2215: 2214: 2198: 2196: 2195: 2190: 2185: 2184: 2166: 2165: 2153: 2152: 2133: 2131: 2130: 2125: 2120: 2119: 2118: 2117: 2094: 2093: 2092: 2091: 2064: 2062: 2061: 2056: 2054: 2053: 2034: 2032: 2031: 2026: 2021: 2020: 2010: 2005: 1984: 1983: 1955: 1953: 1952: 1947: 1945: 1944: 1927:exterior algebra 1924: 1922: 1921: 1916: 1911: 1910: 1892: 1891: 1871: 1869: 1868: 1863: 1861: 1860: 1844: 1842: 1841: 1836: 1831: 1830: 1812: 1811: 1783: 1777: 1775: 1774: 1769: 1767: 1766: 1748: 1747: 1692: 1688: 1686: 1685: 1680: 1675: 1674: 1656: 1655: 1630:global dimension 1620: 1612: 1606: 1596: 1590: 1588: 1587: 1582: 1571: 1570: 1554: 1552: 1551: 1546: 1541: 1540: 1522: 1521: 1499: 1493: 1484: 1471: 1469: 1468: 1463: 1449: 1448: 1430: 1429: 1411: 1410: 1382: 1376: 1359: 1353: 1347: 1335: 1329: 1327: 1326: 1321: 1316: 1315: 1297: 1296: 1271: 1253: 1251: 1250: 1245: 1243: 1242: 1226: 1224: 1223: 1218: 1216: 1215: 1199: 1197: 1196: 1191: 1189: 1188: 1169: 1167: 1166: 1161: 1144: 1143: 1125: 1124: 1106: 1105: 1080: 1076: 1066: 1056: 1050: 1044: 1031: 1025: 1016: 1009:th syzygy module 1008: 992: 990: 989: 984: 969: 967: 966: 961: 959: 958: 946: 945: 933: 932: 920: 919: 900: 898: 897: 892: 890: 889: 873: 871: 870: 865: 863: 862: 846: 844: 843: 838: 836: 835: 819: 817: 816: 811: 809: 808: 789: 787: 786: 781: 767: 766: 754: 753: 725: 723: 722: 717: 712: 711: 699: 698: 682: 680: 679: 674: 666: 665: 646: 644: 643: 638: 636: 635: 613: 611: 610: 605: 600: 599: 590: 589: 571: 570: 561: 560: 541: 539: 538: 533: 528: 527: 509: 508: 486: 482: 480: 479: 474: 466: 465: 447: 446: 423: 421: 420: 415: 413: 412: 393: 391: 390: 385: 377: 376: 367: 366: 348: 347: 338: 337: 318: 312: 310: 309: 304: 299: 298: 280: 279: 260: 246: 240: 234: 232: 231: 226: 224: 223: 205: 204: 173:polynomial rings 120: 110: 52:invariant theory 40:polynomial rings 21: 3955: 3954: 3950: 3949: 3948: 3946: 3945: 3944: 3915: 3914: 3896: 3862: 3861: 3851: 3849: 3845: 3819:Grete Hermann: 3818: 3814: 3805: 3801: 3792: 3788: 3783: 3766: 3741: 3738: 3737: 3721: 3718: 3717: 3714:Krull dimension 3697: 3694: 3693: 3677: 3674: 3673: 3670:Noetherian ring 3653: 3650: 3649: 3639: 3615: 3611: 3596: 3592: 3578: 3575: 3574: 3571: 3548: 3542: 3517: 3513: 3512: 3508: 3497: 3494: 3493: 3487: 3481: 3475: 3469: 3446: 3442: 3427: 3423: 3415: 3412: 3411: 3405: 3399: 3393: 3363: 3341: 3337: 3335: 3332: 3331: 3325: 3305: 3301: 3286: 3282: 3274: 3265: 3261: 3246: 3242: 3234: 3231: 3230: 3221: 3201: 3197: 3182: 3178: 3170: 3159: 3156: 3155: 3151: 3134: 3130: 3128: 3125: 3124: 3098: 3094: 3088: 3084: 3069: 3065: 3059: 3055: 3053: 3050: 3049: 3032: 3028: 3026: 3023: 3022: 2995: 2991: 2973: 2969: 2957: 2953: 2948: 2945: 2944: 2938: 2930: 2913: 2909: 2907: 2904: 2903: 2897: 2874: 2870: 2855: 2851: 2843: 2832: 2829: 2828: 2817: 2814: 2813: 2796: 2792: 2777: 2773: 2771: 2768: 2767: 2734: 2730: 2715: 2711: 2697: 2694: 2693: 2657: 2645: 2641: 2632: 2628: 2607: 2603: 2594: 2590: 2582: 2579: 2578: 2547: 2543: 2542: 2538: 2521: 2517: 2516: 2505: 2504: 2503: 2486: 2482: 2481: 2477: 2469: 2465: 2464: 2460: 2448: 2444: 2429: 2418: 2403: 2399: 2398: 2394: 2377: 2373: 2372: 2368: 2366: 2363: 2362: 2336: 2332: 2323: 2319: 2317: 2314: 2313: 2307: 2297: 2274: 2270: 2268: 2265: 2264: 2247: 2243: 2241: 2238: 2237: 2210: 2206: 2204: 2201: 2200: 2180: 2176: 2161: 2157: 2148: 2144: 2142: 2139: 2138: 2113: 2109: 2108: 2104: 2087: 2083: 2082: 2078: 2076: 2073: 2072: 2049: 2045: 2043: 2040: 2039: 2016: 2012: 2006: 1995: 1979: 1975: 1967: 1964: 1963: 1940: 1936: 1934: 1931: 1930: 1906: 1902: 1887: 1883: 1881: 1878: 1877: 1856: 1852: 1850: 1847: 1846: 1826: 1822: 1807: 1803: 1789: 1786: 1785: 1779: 1762: 1758: 1743: 1739: 1737: 1734: 1733: 1723: 1700: 1690: 1670: 1666: 1651: 1647: 1639: 1636: 1635: 1614: 1608: 1598: 1592: 1566: 1562: 1560: 1557: 1556: 1536: 1532: 1517: 1513: 1505: 1502: 1501: 1495: 1489: 1476: 1444: 1440: 1419: 1415: 1406: 1402: 1394: 1391: 1390: 1385:free resolution 1378: 1372: 1355: 1349: 1343: 1331: 1311: 1307: 1292: 1288: 1280: 1277: 1276: 1274:polynomial ring 1267: 1264: 1256:free resolution 1238: 1234: 1232: 1229: 1228: 1211: 1207: 1205: 1202: 1201: 1184: 1180: 1178: 1175: 1174: 1139: 1135: 1114: 1110: 1101: 1097: 1089: 1086: 1085: 1078: 1072: 1062: 1052: 1046: 1040: 1027: 1021: 1012: 1006: 978: 975: 974: 954: 950: 941: 937: 928: 924: 915: 911: 909: 906: 905: 885: 881: 879: 876: 875: 858: 854: 852: 849: 848: 831: 827: 825: 822: 821: 804: 800: 798: 795: 794: 762: 758: 749: 745: 737: 734: 733: 707: 703: 694: 690: 688: 685: 684: 661: 657: 655: 652: 651: 631: 627: 625: 622: 621: 595: 591: 585: 581: 566: 562: 556: 552: 550: 547: 546: 523: 519: 504: 500: 495: 492: 491: 484: 461: 457: 442: 438: 433: 430: 429: 408: 404: 402: 399: 398: 372: 368: 362: 358: 343: 339: 333: 329: 327: 324: 323: 314: 313:of elements of 294: 290: 275: 271: 266: 263: 262: 256: 242: 236: 219: 215: 200: 196: 194: 191: 190: 165: 159: 138: 116: 106: 28: 23: 22: 15: 12: 11: 5: 3953: 3943: 3942: 3937: 3932: 3927: 3913: 3912: 3894: 3866:David Eisenbud 3860: 3859: 3843: 3812: 3799: 3785: 3784: 3782: 3779: 3778: 3777: 3772: 3765: 3762: 3745: 3725: 3701: 3681: 3657: 3623: 3618: 3614: 3610: 3607: 3604: 3599: 3595: 3591: 3588: 3585: 3582: 3570: 3567: 3530: 3523: 3520: 3516: 3511: 3507: 3504: 3501: 3457: 3454: 3449: 3445: 3441: 3438: 3435: 3430: 3426: 3422: 3419: 3362: 3359: 3344: 3340: 3313: 3308: 3304: 3300: 3297: 3294: 3289: 3285: 3281: 3277: 3273: 3268: 3264: 3260: 3257: 3254: 3249: 3245: 3241: 3238: 3209: 3204: 3200: 3196: 3193: 3190: 3185: 3181: 3177: 3173: 3169: 3166: 3163: 3137: 3133: 3112: 3109: 3106: 3101: 3097: 3091: 3087: 3083: 3080: 3077: 3072: 3068: 3062: 3058: 3035: 3031: 3006: 3003: 2998: 2994: 2990: 2987: 2984: 2981: 2976: 2972: 2968: 2965: 2960: 2956: 2952: 2916: 2912: 2885: 2882: 2877: 2873: 2869: 2866: 2863: 2858: 2854: 2850: 2846: 2842: 2839: 2836: 2799: 2795: 2791: 2788: 2785: 2780: 2776: 2742: 2737: 2733: 2729: 2726: 2723: 2718: 2714: 2710: 2707: 2704: 2701: 2687:exact sequence 2683:Koszul complex 2679: 2678: 2667: 2664: 2660: 2656: 2653: 2648: 2644: 2640: 2635: 2631: 2627: 2624: 2621: 2616: 2613: 2610: 2606: 2602: 2597: 2593: 2589: 2586: 2569: 2568: 2557: 2550: 2546: 2541: 2537: 2534: 2531: 2524: 2520: 2512: 2509: 2502: 2499: 2496: 2489: 2485: 2480: 2472: 2468: 2463: 2457: 2454: 2451: 2447: 2443: 2440: 2437: 2432: 2427: 2424: 2421: 2417: 2413: 2406: 2402: 2397: 2393: 2390: 2387: 2380: 2376: 2371: 2345: 2342: 2339: 2335: 2331: 2326: 2322: 2285: 2282: 2277: 2273: 2263:coincide, and 2250: 2246: 2221: 2218: 2213: 2209: 2188: 2183: 2179: 2175: 2172: 2169: 2164: 2160: 2156: 2151: 2147: 2135: 2134: 2123: 2116: 2112: 2107: 2103: 2100: 2097: 2090: 2086: 2081: 2052: 2048: 2036: 2035: 2024: 2019: 2015: 2009: 2004: 2001: 1998: 1994: 1990: 1987: 1982: 1978: 1974: 1971: 1943: 1939: 1914: 1909: 1905: 1901: 1898: 1895: 1890: 1886: 1859: 1855: 1834: 1829: 1825: 1821: 1818: 1815: 1810: 1806: 1802: 1799: 1796: 1793: 1765: 1761: 1757: 1754: 1751: 1746: 1742: 1727:Koszul complex 1722: 1721:Koszul complex 1719: 1699: 1696: 1678: 1673: 1669: 1665: 1662: 1659: 1654: 1650: 1646: 1643: 1580: 1577: 1574: 1569: 1565: 1544: 1539: 1535: 1531: 1528: 1525: 1520: 1516: 1512: 1509: 1473: 1472: 1461: 1458: 1455: 1452: 1447: 1443: 1439: 1436: 1433: 1428: 1425: 1422: 1418: 1414: 1409: 1405: 1401: 1398: 1337:indeterminates 1319: 1314: 1310: 1306: 1303: 1300: 1295: 1291: 1287: 1284: 1263: 1260: 1241: 1237: 1214: 1210: 1187: 1183: 1171: 1170: 1159: 1156: 1153: 1150: 1147: 1142: 1138: 1134: 1131: 1128: 1123: 1120: 1117: 1113: 1109: 1104: 1100: 1096: 1093: 982: 971: 970: 957: 953: 949: 944: 940: 936: 931: 927: 923: 918: 914: 888: 884: 861: 857: 834: 830: 807: 803: 791: 790: 779: 776: 773: 770: 765: 761: 757: 752: 748: 744: 741: 728:exact sequence 715: 710: 706: 702: 697: 693: 672: 669: 664: 660: 634: 630: 615: 614: 603: 598: 594: 588: 584: 580: 577: 574: 569: 565: 559: 555: 531: 526: 522: 518: 515: 512: 507: 503: 499: 472: 469: 464: 460: 456: 453: 450: 445: 441: 437: 411: 407: 395: 394: 383: 380: 375: 371: 365: 361: 357: 354: 351: 346: 342: 336: 332: 302: 297: 293: 289: 286: 283: 278: 274: 270: 222: 218: 214: 211: 208: 203: 199: 188:generating set 161:Main article: 158: 155: 137: 134: 26: 18:Syzygy theorem 9: 6: 4: 3: 2: 3952: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3922: 3920: 3909: 3905: 3904: 3899: 3895: 3893: 3890: 3887: 3886:0-387-94269-6 3883: 3879: 3878:0-387-94268-8 3875: 3871: 3867: 3864: 3863: 3854: 3847: 3841: 3838: 3834: 3830: 3826: 3822: 3816: 3809: 3803: 3796: 3790: 3786: 3776: 3773: 3771: 3768: 3767: 3761: 3759: 3743: 3723: 3715: 3699: 3679: 3671: 3655: 3647: 3646:singularities 3642: 3637: 3616: 3612: 3608: 3605: 3602: 3597: 3593: 3586: 3583: 3580: 3566: 3564: 3563:Gröbner basis 3559: 3554: 3551: 3545: 3528: 3521: 3518: 3514: 3505: 3502: 3490: 3484: 3478: 3472: 3455: 3447: 3443: 3439: 3436: 3433: 3428: 3424: 3417: 3408: 3404:of dimension 3402: 3396: 3391: 3390:Grete Hermann 3387: 3382: 3380: 3376: 3372: 3368: 3358: 3342: 3338: 3328: 3306: 3302: 3298: 3295: 3292: 3287: 3283: 3275: 3266: 3262: 3258: 3255: 3252: 3247: 3243: 3236: 3227: 3224: 3202: 3198: 3194: 3191: 3188: 3183: 3179: 3171: 3167: 3164: 3161: 3135: 3131: 3110: 3107: 3104: 3099: 3095: 3089: 3085: 3081: 3078: 3075: 3070: 3066: 3060: 3056: 3033: 3029: 3020: 3004: 2996: 2992: 2988: 2985: 2982: 2979: 2974: 2970: 2966: 2963: 2958: 2954: 2941: 2934: 2914: 2910: 2900: 2883: 2875: 2871: 2867: 2864: 2861: 2856: 2852: 2844: 2840: 2837: 2834: 2797: 2793: 2789: 2786: 2783: 2778: 2774: 2764: 2763: 2761: 2757: 2735: 2731: 2727: 2724: 2721: 2716: 2712: 2705: 2702: 2699: 2692: 2688: 2684: 2665: 2662: 2658: 2654: 2646: 2642: 2633: 2629: 2622: 2614: 2611: 2608: 2604: 2595: 2591: 2584: 2577: 2576: 2575: 2574: 2555: 2548: 2544: 2539: 2535: 2532: 2529: 2522: 2518: 2510: 2507: 2500: 2497: 2494: 2487: 2483: 2478: 2470: 2466: 2461: 2455: 2452: 2449: 2441: 2438: 2430: 2425: 2422: 2419: 2415: 2404: 2400: 2395: 2391: 2388: 2385: 2378: 2374: 2369: 2361: 2360: 2359: 2343: 2340: 2337: 2333: 2324: 2320: 2310: 2304: 2300: 2283: 2280: 2275: 2271: 2248: 2244: 2235: 2234:empty product 2219: 2216: 2211: 2207: 2186: 2181: 2177: 2173: 2170: 2167: 2162: 2158: 2154: 2149: 2145: 2121: 2114: 2110: 2105: 2101: 2098: 2095: 2088: 2084: 2079: 2071: 2070: 2069: 2068: 2050: 2046: 2022: 2017: 2013: 2007: 2002: 1999: 1996: 1992: 1988: 1980: 1976: 1962: 1961: 1960: 1959: 1941: 1937: 1928: 1912: 1907: 1903: 1899: 1896: 1893: 1888: 1884: 1875: 1857: 1853: 1827: 1823: 1819: 1816: 1813: 1808: 1804: 1797: 1794: 1791: 1782: 1763: 1759: 1755: 1752: 1749: 1744: 1740: 1730: 1728: 1718: 1716: 1711: 1709: 1705: 1698:Low dimension 1695: 1693: 1671: 1667: 1663: 1660: 1657: 1652: 1648: 1641: 1631: 1626: 1624: 1618: 1611: 1605: 1601: 1595: 1578: 1575: 1572: 1567: 1563: 1537: 1533: 1529: 1526: 1523: 1518: 1514: 1507: 1498: 1492: 1486: 1483: 1479: 1459: 1453: 1445: 1441: 1434: 1426: 1423: 1420: 1416: 1407: 1403: 1396: 1389: 1388: 1387: 1386: 1381: 1375: 1370: 1365: 1363: 1358: 1352: 1346: 1342: 1338: 1334: 1312: 1308: 1304: 1301: 1298: 1293: 1289: 1282: 1275: 1270: 1259: 1257: 1239: 1235: 1212: 1208: 1200:are free and 1185: 1181: 1157: 1154: 1148: 1140: 1136: 1129: 1121: 1118: 1115: 1111: 1102: 1098: 1091: 1084: 1083: 1082: 1075: 1070: 1065: 1060: 1055: 1049: 1043: 1037: 1035: 1030: 1024: 1018: 1015: 1010: 1003: 1002:second syzygy 998: 996: 980: 955: 951: 947: 942: 938: 934: 929: 925: 921: 916: 912: 904: 903: 902: 886: 882: 859: 855: 832: 828: 805: 801: 777: 771: 763: 759: 750: 746: 739: 732: 731: 730: 729: 713: 708: 704: 695: 691: 670: 662: 658: 650: 632: 628: 620: 601: 596: 592: 586: 582: 578: 575: 572: 567: 563: 557: 553: 545: 544: 543: 524: 520: 516: 513: 510: 505: 501: 490: 470: 462: 458: 454: 451: 448: 443: 439: 427: 409: 405: 381: 378: 373: 369: 363: 359: 355: 352: 349: 344: 340: 334: 330: 322: 321: 320: 317: 295: 291: 287: 284: 281: 276: 272: 259: 254: 250: 245: 239: 220: 216: 212: 209: 206: 201: 197: 189: 184: 182: 178: 174: 170: 164: 154: 152: 148: 144: 133: 131: 127: 122: 119: 114: 109: 104: 100: 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 48:David Hilbert 45: 41: 37: 33: 19: 3901: 3869: 3852: 3846: 3836: 3820: 3815: 3802: 3797:36, 473–530. 3789: 3640: 3572: 3555: 3549: 3543: 3488: 3482: 3476: 3470: 3406: 3400: 3394: 3383: 3364: 3326: 3228: 3222: 2939: 2932: 2898: 2765: 2753: 2690: 2682: 2681:This is the 2680: 2570: 2308: 2302: 2298: 2136: 2037: 1780: 1731: 1724: 1712: 1704:vector space 1701: 1633: 1627: 1616: 1609: 1603: 1599: 1593: 1496: 1490: 1487: 1481: 1477: 1474: 1379: 1373: 1366: 1360:is always a 1356: 1350: 1344: 1332: 1268: 1265: 1172: 1073: 1063: 1053: 1047: 1041: 1038: 1028: 1022: 1019: 1013: 1005: 1001: 999: 972: 792: 616: 396: 315: 257: 252: 248: 243: 241:over a ring 237: 235:of a module 185: 166: 139: 123: 117: 107: 86: 84: 80:prime ideals 35: 29: 3361:Computation 3324:is exactly 3220:is exactly 1874:free module 1377:is at most 1362:free module 1348:, then the 1057:is free or 1034:zero module 993:denote the 901:such that 683:defined by 428:with basis 426:free module 113:zero module 32:mathematics 3919:Categories 3781:References 3636:regularity 3048:such that 2137:such that 1958:direct sum 1845:, and let 1625:, below). 1597:and every 1591:for every 1475:of length 1059:projective 649:linear map 319:such that 95:generators 3908:EMS Press 3606:… 3437:… 3375:monomials 3367:algorithm 3312:⟩ 3296:… 3280:⟨ 3256:… 3208:⟩ 3192:… 3176:⟨ 3079:⋯ 2989:± 2983:… 2967:− 2881:⟩ 2865:… 2849:⟨ 2787:… 2725:… 2652:→ 2639:→ 2626:→ 2623:⋯ 2620:→ 2612:− 2601:→ 2588:→ 2536:∧ 2533:⋯ 2530:∧ 2511:^ 2501:∧ 2498:⋯ 2495:∧ 2439:− 2416:∑ 2412:↦ 2392:∧ 2389:⋯ 2386:∧ 2341:− 2330:→ 2171:⋯ 2102:∧ 2099:⋯ 2096:∧ 1993:⨁ 1970:Λ 1897:… 1876:of basis 1817:… 1753:… 1661:… 1527:… 1457:⟶ 1451:⟶ 1438:⟶ 1435:⋯ 1432:⟶ 1424:− 1413:⟶ 1400:⟶ 1302:… 1262:Statement 1152:⟶ 1146:⟶ 1133:⟶ 1130:⋯ 1127:⟶ 1119:− 1108:⟶ 1095:⟶ 981:⊕ 948:⊕ 935:≅ 922:⊕ 775:→ 769:→ 756:→ 743:→ 701:↦ 668:→ 576:⋯ 514:… 452:… 353:⋯ 285:… 251:or first 210:… 179:over any 87:relations 3833:abstract 3764:See also 249:relation 186:Given a 91:syzygies 3910:, 2001 3892:1322960 3672:. Then 3330:if the 2929:); the 2573:complex 1956:is the 1339:over a 1020:If the 647:of the 261:-tuple 177:modules 136:History 121:steps. 3884:  3876:  3392:: Let 3371:degree 2689:, but 2038:where 1706:has a 973:where 619:kernel 253:syzygy 169:ideals 103:module 97:of an 89:, or 70:, and 64:ideals 44:fields 3668:be a 3410:over 3152:1 = 0 2301:> 1872:be a 1708:basis 1341:field 489:tuple 424:be a 99:ideal 42:over 3882:ISBN 3874:ISBN 2935:− 1) 2296:for 2174:< 2168:< 2155:< 1925:The 1732:Let 1725:The 1619:− 1) 1039:Let 1000:The 874:and 483:The 397:Let 247:, a 181:ring 78:and 3855:= 1 3825:doi 3716:of 2758:of 2358:by 1929:of 1689:is 1371:of 1330:in 1071:of 171:in 30:In 3921:: 3906:, 3900:, 3889:MR 3880:; 3868:, 3760:. 3553:. 3226:. 1710:. 1694:. 1602:∈ 1485:. 1480:≀ 1364:. 1258:. 1017:. 997:. 778:0. 382:0. 183:. 153:. 34:, 3853:c 3831:( 3827:: 3744:A 3724:A 3700:A 3680:A 3656:A 3641:n 3622:] 3617:n 3613:x 3609:, 3603:, 3598:1 3594:x 3590:[ 3587:k 3584:= 3581:A 3550:L 3544:M 3529:. 3522:n 3519:c 3515:2 3510:) 3506:d 3503:t 3500:( 3489:c 3483:d 3477:M 3471:L 3456:; 3453:] 3448:n 3444:x 3440:, 3434:, 3429:1 3425:x 3421:[ 3418:k 3407:t 3401:L 3395:M 3343:i 3339:g 3327:t 3307:t 3303:g 3299:, 3293:, 3288:1 3284:g 3276:/ 3272:] 3267:n 3263:x 3259:, 3253:, 3248:1 3244:x 3240:[ 3237:k 3223:n 3203:n 3199:x 3195:, 3189:, 3184:1 3180:x 3172:/ 3168:R 3165:= 3162:k 3136:i 3132:x 3111:, 3108:1 3105:= 3100:n 3096:x 3090:n 3086:p 3082:+ 3076:+ 3071:1 3067:x 3061:1 3057:p 3034:i 3030:p 3005:. 3002:) 2997:n 2993:x 2986:, 2980:, 2975:2 2971:x 2964:, 2959:1 2955:x 2951:( 2940:n 2933:n 2931:( 2915:i 2911:G 2899:n 2884:. 2876:n 2872:x 2868:, 2862:, 2857:1 2853:x 2845:/ 2841:R 2838:= 2835:k 2798:n 2794:x 2790:, 2784:, 2779:1 2775:x 2762:. 2741:] 2736:n 2732:x 2728:, 2722:, 2717:1 2713:x 2709:[ 2706:k 2703:= 2700:R 2666:. 2663:I 2659:/ 2655:R 2647:0 2643:L 2634:1 2630:L 2615:1 2609:t 2605:L 2596:t 2592:L 2585:0 2556:, 2549:t 2545:i 2540:G 2523:j 2519:i 2508:G 2488:1 2484:i 2479:G 2471:j 2467:i 2462:g 2456:1 2453:+ 2450:j 2446:) 2442:1 2436:( 2431:t 2426:1 2423:= 2420:j 2405:t 2401:i 2396:G 2379:1 2375:i 2370:G 2344:1 2338:t 2334:L 2325:t 2321:L 2309:t 2303:k 2299:t 2284:0 2281:= 2276:t 2272:L 2249:1 2245:L 2220:R 2217:= 2212:0 2208:L 2187:. 2182:t 2178:i 2163:2 2159:i 2150:1 2146:i 2122:, 2115:t 2111:i 2106:G 2089:1 2085:i 2080:G 2051:t 2047:L 2023:, 2018:t 2014:L 2008:k 2003:0 2000:= 1997:t 1989:= 1986:) 1981:1 1977:L 1973:( 1942:1 1938:L 1913:. 1908:k 1904:G 1900:, 1894:, 1889:1 1885:G 1858:1 1854:L 1833:] 1828:n 1824:x 1820:, 1814:, 1809:1 1805:x 1801:[ 1798:k 1795:= 1792:R 1781:I 1764:k 1760:g 1756:, 1750:, 1745:1 1741:g 1691:n 1677:] 1672:n 1668:x 1664:, 1658:, 1653:1 1649:x 1645:[ 1642:k 1617:n 1615:( 1610:n 1604:k 1600:c 1594:i 1579:0 1576:= 1573:c 1568:i 1564:x 1543:] 1538:n 1534:x 1530:, 1524:, 1519:1 1515:x 1511:[ 1508:k 1497:k 1491:n 1482:n 1478:k 1460:0 1454:M 1446:0 1442:L 1427:1 1421:k 1417:L 1408:k 1404:L 1397:0 1380:n 1374:M 1357:M 1351:n 1345:k 1333:n 1318:] 1313:n 1309:x 1305:, 1299:, 1294:1 1290:x 1286:[ 1283:k 1269:M 1240:n 1236:R 1213:n 1209:R 1186:i 1182:L 1158:, 1155:0 1149:M 1141:0 1137:L 1122:1 1116:n 1112:L 1103:n 1099:R 1092:0 1079:∞ 1074:M 1064:n 1054:M 1048:n 1042:n 1029:k 1023:k 1014:k 1007:k 956:2 952:F 943:1 939:S 930:1 926:F 917:1 913:R 887:2 883:F 860:1 856:F 833:1 829:S 806:1 802:R 772:M 764:0 760:L 751:1 747:R 740:0 714:. 709:i 705:g 696:i 692:G 671:M 663:0 659:L 633:1 629:R 602:, 597:k 593:G 587:k 583:a 579:+ 573:+ 568:1 564:G 558:1 554:a 530:) 525:k 521:a 517:, 511:, 506:1 502:a 498:( 487:- 485:k 471:. 468:) 463:k 459:G 455:, 449:, 444:1 440:G 436:( 410:0 406:L 379:= 374:k 370:g 364:k 360:a 356:+ 350:+ 345:1 341:g 335:1 331:a 316:R 301:) 296:k 292:a 288:, 282:, 277:1 273:a 269:( 258:k 244:R 238:M 221:k 217:g 213:, 207:, 202:1 198:g 118:n 108:n 20:)

Index

Syzygy theorem
mathematics
polynomial rings
fields
David Hilbert
invariant theory
algebraic geometry
Hilbert's basis theorem
ideals
finitely generated
Hilbert's Nullstellensatz
affine algebraic varieties
prime ideals
syzygies
generators
ideal
module
zero module
homological algebra
commutative algebra
Hilbert polynomial
rings of invariants
Hilbert–Burch theorem
syzygy (mathematics)
ideals
polynomial rings
modules
ring
generating set
free module

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑