Knowledge

Tate conjecture

Source đź“ť

24: 754: 1008:. Namely, it would imply the Lefschetz standard conjecture (that the inverse of the Lefschetz isomorphism is defined by an algebraic correspondence); that the KĂĽnneth components of the diagonal are algebraic; and that numerical equivalence and homological equivalence of algebraic cycles are the same. 803:
over finitely generated fields of characteristic not 2. (On a surface, the nontrivial part of the conjecture is about divisors.) In characteristic zero, the Tate conjecture for K3 surfaces was proved by André and Tankeev. For K3 surfaces over finite fields of characteristic not 2, the Tate conjecture
566: 953: 749:{\displaystyle {\text{Hom}}(A,B)\otimes _{\mathbf {Z} }\mathbf {Q} _{\ell }\to {\text{Hom}}_{G}\left(H_{1}\left(A_{k_{s}},\mathbf {Q} _{\ell }\right),H_{1}\left(B_{k_{s}},\mathbf {Q} _{\ell }\right)\right)} 351: 529:. Zarhin extended these results to any finitely generated base field. The Tate conjecture for divisors on abelian varieties implies the Tate conjecture for divisors on any product of curves 548:
The (known) Tate conjecture for divisors on abelian varieties is equivalent to a powerful statement about homomorphisms between abelian varieties. Namely, for any abelian varieties
871: 1401: 1205: 1416: 1005: 80: 467:
be a morphism from a smooth projective surface onto a smooth projective curve over a finite field. Suppose that the generic fiber
273: 476: 1341: 499: 124:. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the 511: 1304: 1024:
D. Ulmer. Arithmetic Geometry over Global Function Fields (2014), 283-337. Proposition 5.1.2 and Theorem 6.3.1.
1406: 1299:, Proceedings of Symposia in Pure Mathematics, vol. 55, American Mathematical Society, pp. 71–83, 452: 1381: 510:. By contrast, the Hodge conjecture for divisors on any smooth complex projective variety is known (the 854: 428:
means a finite linear combination of subvarieties; so an equivalent statement is that every element of
1292: 1245: 1226: 105: 51: 1159: 971: 998: 178: 1411: 1314: 1277: 1257: 1238: 1178: 1142: 1122: 1095: 517:
Probably the most important known case is that the Tate conjecture is true for divisors on
387: 240: 1074:
André, Yves (1996), "On the Shafarevich and Tate conjectures for hyper-Kähler varieties",
966:, Tate showed that the Tate conjecture plus the semisimplicity conjecture would imply the 8: 148: 1261: 1182: 1126: 121: 1281: 1213: 1194: 1168: 1157:
Madapusi Pera, K. (2013), "The Tate conjecture for K3 surfaces in odd characteristic",
1146: 1099: 526: 144: 93: 37: 1229:(1965), "Algebraic cycles and poles of zeta functions", in Schilling, O. F. G. (ed.), 948:{\displaystyle H^{i}\left(X\times _{k}{\overline {k}},\mathbf {Q} _{\ell }(n)\right).} 1337: 1300: 1198: 1150: 1103: 205: 166: 113: 70: 1362: 1329: 1265: 1186: 1130: 1083: 503: 125: 1285: 1004:
Like the Hodge conjecture, the Tate conjecture would imply most of Grothendieck's
1328:, Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, pp. 283–337, 1310: 1273: 1234: 1138: 1091: 518: 109: 1385: 865:
showed that the Tate conjecture (as stated above) implies the semisimplicity of
209: 1333: 1190: 455:(algebraic cycles of codimension 1) is a major open problem. For example, let 1395: 1321: 1110: 525:
for abelian varieties over number fields, part of Faltings's solution of the
522: 521:. This is a theorem of Tate for abelian varieties over finite fields, and of 219: 141: 117: 89: 41: 197: 1350: 805: 768: 252: 155: 1367: 1269: 1134: 1087: 800: 375: 101: 1113:(1983), "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern", 1042:
J. Tate. Arithmetical Algebraic Geometry (1965), 93-110. Equation (8).
1218: 993:
is equal to the rank of the group of algebraic cycles of codimension
1173: 1248:(1966), "Endomorphisms of abelian varieties over finite fields", 764: 1295:(1994), "Conjectures on algebraic cycles in â„“-adic cohomology", 826:
be a smooth projective variety over a finitely generated field
23: 378:, which means that this representation of the Galois group 346:{\displaystyle H^{2i}(V_{k_{s}},\mathbf {Q} _{\ell }(i))=W} 1051:
K. Madapusi Pera. Inventiones Mathematicae. Theorem 1.
759:
is an isomorphism. In particular, an abelian variety
1324:(2014), "Curves and Jacobians over function fields", 874: 834:
predicts that the representation of the Galois group
569: 276: 1060:
J. Tate. Motives (1994), Part 1, 71-83. Theorem 2.9.
1033:
J. Tate. Motives (1994), Part 1, 71-83. Theorem 5.2.
1353:(2017), "Recent progress on the Tate conjecture", 947: 748: 345: 1386:The Tate conjecture over finite fields (AIM talk) 1393: 267:) determines an element of the cohomology group 1326:Arithmetic Geometry over Global Function Fields 131: 1355:Bulletin of the American Mathematical Society 1233:, New York: Harper and Row, pp. 93–110, 1156: 416:-vector space, by the classes of codimension- 116:in terms of a more computable invariant, the 814:surveys known cases of the Tate conjecture. 494:). Then the Tate conjecture for divisors on 970:, namely that the order of the pole of the 22: 1402:Topological methods of algebraic geometry 1366: 1217: 1172: 1109: 1006:standard conjectures on algebraic cycles 853:is semisimple (that is, a direct sum of 81:Standard conjectures on algebraic cycles 1394: 1349: 1204: 862: 817: 811: 808:, Charles, Madapusi Pera, and Maulik. 432:is the class of an algebraic cycle on 1320: 1073: 154:which is finitely generated over its 1291: 1244: 1225: 767:by the Galois representation on its 500:Birch and Swinnerton-Dyer conjecture 799:The Tate conjecture also holds for 13: 1417:Unsolved problems in number theory 14: 1428: 1375: 918: 726: 671: 604: 596: 556:over a finitely generated field 315: 1231:Arithmetical Algebraic Geometry 1210:A remark on the Tate conjecture 263:(understood to be defined over 218:, scalars then extended to the 1054: 1045: 1036: 1027: 1018: 934: 928: 849:) on the â„“-adic cohomology of 614: 587: 575: 446: 334: 331: 325: 290: 1: 1067: 908: 475:, which is a curve over the 208:groups (coefficients in the 7: 855:irreducible representations 228:) of the base extension of 132:Statement of the conjecture 10: 1433: 405:fixed by the Galois group 1334:10.1007/978-3-0348-0853-8 1191:10.1007/s00222-014-0557-5 832:semisimplicity conjecture 397:states that the subspace 200:â„“ which is invertible in 76: 65: 57: 47: 33: 21: 1250:Inventiones Mathematicae 1160:Inventiones Mathematicae 1115:Inventiones Mathematicae 1011: 451:The Tate conjecture for 108:that would describe the 804:was proved by Nygaard, 512:Lefschetz (1,1)-theorem 968:strong Tate conjecture 949: 750: 347: 1076:Mathematische Annalen 999:numerical equivalence 950: 861:of characteristic 0, 751: 498:is equivalent to the 382:is tensored with the 371: ) denotes the 348: 179:absolute Galois group 118:Galois representation 1407:Diophantine geometry 872: 763:is determined up to 567: 388:cyclotomic character 274: 1262:1966InMat...2..134T 1183:2013arXiv1301.6326M 1127:1983InMat..73..349F 818:Related conjectures 239:; these groups are 18: 1270:10.1007/bf01404549 1135:10.1007/BF01388432 1088:10.1007/BF01444219 945: 746: 560:, the natural map 527:Mordell conjecture 486:), is smooth over 356:which is fixed by 343: 145:projective variety 94:algebraic geometry 38:Algebraic geometry 16: 1368:10.1090/bull/1588 1343:978-3-0348-0852-1 911: 621: 573: 519:abelian varieties 409:is spanned, as a 206:â„“-adic cohomology 167:separable closure 86: 85: 71:abelian varieties 28:John Tate in 1993 1424: 1371: 1370: 1346: 1317: 1288: 1241: 1222: 1221: 1201: 1176: 1153: 1106: 1061: 1058: 1052: 1049: 1043: 1040: 1034: 1031: 1025: 1022: 962:finite of order 954: 952: 951: 946: 941: 937: 927: 926: 921: 912: 904: 902: 901: 884: 883: 755: 753: 752: 747: 745: 741: 740: 736: 735: 734: 729: 720: 719: 718: 717: 698: 697: 685: 681: 680: 679: 674: 665: 664: 663: 662: 643: 642: 628: 627: 622: 619: 613: 612: 607: 601: 600: 599: 574: 571: 504:Jacobian variety 420:subvarieties of 352: 350: 349: 344: 324: 323: 318: 309: 308: 307: 306: 289: 288: 126:Hodge conjecture 122:Ă©tale cohomology 110:algebraic cycles 26: 19: 15: 1432: 1431: 1427: 1426: 1425: 1423: 1422: 1421: 1392: 1391: 1378: 1344: 1307: 1070: 1065: 1064: 1059: 1055: 1050: 1046: 1041: 1037: 1032: 1028: 1023: 1019: 1014: 922: 917: 916: 903: 897: 893: 889: 885: 879: 875: 873: 870: 869: 844: 820: 795: 788: 787: 776: 730: 725: 724: 713: 709: 708: 704: 703: 699: 693: 689: 675: 670: 669: 658: 654: 653: 649: 648: 644: 638: 634: 633: 629: 623: 618: 617: 608: 603: 602: 595: 594: 590: 570: 568: 565: 564: 544: 535: 449: 442: 426:algebraic cycle 415: 395:Tate conjecture 366: 319: 314: 313: 302: 298: 297: 293: 281: 277: 275: 272: 271: 241:representations 238: 227: 217: 210:â„“-adic integers 204:. Consider the 187: 164: 134: 98:Tate conjecture 29: 17:Tate conjecture 12: 11: 5: 1430: 1420: 1419: 1414: 1409: 1404: 1390: 1389: 1377: 1376:External links 1374: 1373: 1372: 1361:(4): 575–590, 1357:, New Series, 1347: 1342: 1322:Ulmer, Douglas 1318: 1305: 1289: 1256:(2): 134–144, 1242: 1223: 1202: 1167:(2): 625–668, 1154: 1121:(3): 349–366, 1111:Faltings, Gerd 1107: 1069: 1066: 1063: 1062: 1053: 1044: 1035: 1026: 1016: 1015: 1013: 1010: 956: 955: 944: 940: 936: 933: 930: 925: 920: 915: 910: 907: 900: 896: 892: 888: 882: 878: 842: 819: 816: 793: 785: 781: 774: 757: 756: 744: 739: 733: 728: 723: 716: 712: 707: 702: 696: 692: 688: 684: 678: 673: 668: 661: 657: 652: 647: 641: 637: 632: 626: 616: 611: 606: 598: 593: 589: 586: 583: 580: 577: 540: 533: 477:function field 448: 445: 443:coefficients. 440: 413: 364: 354: 353: 342: 339: 336: 333: 330: 327: 322: 317: 312: 305: 301: 296: 292: 287: 284: 280: 259:subvariety of 236: 225: 220:â„“-adic numbers 215: 185: 162: 133: 130: 84: 83: 78: 74: 73: 67: 63: 62: 59: 58:Conjectured in 55: 54: 49: 48:Conjectured by 45: 44: 35: 31: 30: 27: 9: 6: 4: 3: 2: 1429: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1399: 1397: 1387: 1383: 1380: 1379: 1369: 1364: 1360: 1356: 1352: 1348: 1345: 1339: 1335: 1331: 1327: 1323: 1319: 1316: 1312: 1308: 1306:0-8218-1636-5 1302: 1298: 1294: 1290: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1240: 1236: 1232: 1228: 1224: 1220: 1215: 1211: 1207: 1203: 1200: 1196: 1192: 1188: 1184: 1180: 1175: 1170: 1166: 1162: 1161: 1155: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1072: 1071: 1057: 1048: 1039: 1030: 1021: 1017: 1009: 1007: 1002: 1000: 996: 992: 988: 984: 980: 976: 973: 972:zeta function 969: 965: 961: 942: 938: 931: 923: 913: 905: 898: 894: 890: 886: 880: 876: 868: 867: 866: 864: 863:Moonen (2017) 860: 856: 852: 848: 841: 837: 833: 829: 825: 815: 813: 812:Totaro (2017) 809: 807: 802: 797: 792: 784: 780: 773: 770: 766: 762: 742: 737: 731: 721: 714: 710: 705: 700: 694: 690: 686: 682: 676: 666: 659: 655: 650: 645: 639: 635: 630: 624: 609: 591: 584: 581: 578: 563: 562: 561: 559: 555: 551: 546: 543: 539: 532: 528: 524: 520: 515: 513: 509: 505: 501: 497: 493: 489: 485: 481: 478: 474: 470: 466: 462: 458: 454: 444: 439: 435: 431: 427: 423: 419: 412: 408: 404: 400: 396: 391: 389: 386:power of the 385: 381: 377: 374: 370: 363: 359: 340: 337: 328: 320: 310: 303: 299: 294: 285: 282: 278: 270: 269: 268: 266: 262: 258: 254: 250: 246: 242: 235: 231: 224: 221: 214: 211: 207: 203: 199: 195: 191: 184: 180: 176: 172: 168: 161: 157: 153: 150: 146: 143: 139: 129: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 90:number theory 82: 79: 75: 72: 68: 64: 60: 56: 53: 50: 46: 43: 42:number theory 39: 36: 32: 25: 20: 1358: 1354: 1351:Totaro, Burt 1325: 1296: 1253: 1249: 1230: 1219:1709.04489v1 1209: 1164: 1158: 1118: 1114: 1079: 1075: 1056: 1047: 1038: 1029: 1020: 1003: 994: 990: 986: 982: 978: 974: 967: 963: 959: 957: 858: 850: 846: 839: 835: 831: 827: 823: 821: 810: 798: 790: 782: 778: 771: 760: 758: 557: 553: 549: 547: 541: 537: 530: 516: 507: 495: 491: 487: 483: 479: 472: 468: 464: 460: 456: 450: 437: 433: 429: 425: 421: 417: 410: 406: 402: 398: 394: 392: 383: 379: 372: 368: 361: 357: 355: 264: 260: 256: 248: 244: 233: 229: 222: 212: 201: 198:prime number 193: 189: 182: 174: 170: 159: 151: 137: 135: 97: 87: 77:Consequences 69:divisors on 1412:Conjectures 1382:James Milne 1206:Moonen, Ben 1082:: 205–248, 801:K3 surfaces 769:Tate module 447:Known cases 253:codimension 156:prime field 66:Known cases 1396:Categories 1293:Tate, John 1246:Tate, John 1227:Tate, John 1068:References 376:Tate twist 247:. For any 173:, and let 102:conjecture 100:is a 1963 1199:253746655 1174:1301.6326 1151:121049418 1104:122949797 924:ℓ 909:¯ 895:× 732:ℓ 677:ℓ 615:→ 610:ℓ 592:⊗ 321:ℓ 106:John Tate 52:John Tate 1208:(2017), 536:Ă— ... Ă— 523:Faltings 502:for the 459: : 453:divisors 196:. Fix a 1315:1265523 1297:Motives 1278:0206004 1258:Bibcode 1239:0225778 1179:Bibcode 1143:0718935 1123:Bibcode 1096:1391213 997:modulo 857:). For 765:isogeny 360:. Here 251:≥ 0, a 177:be the 147:over a 114:variety 1340:  1313:  1303:  1286:245902 1284:  1276:  1237:  1197:  1149:  1141:  1102:  1094:  838:= Gal( 830:. The 158:. Let 142:smooth 96:, the 1282:S2CID 1214:arXiv 1195:S2CID 1169:arXiv 1147:S2CID 1100:S2CID 1012:Notes 985:) at 436:with 424:. An 192:) of 165:be a 149:field 140:be a 112:on a 34:Field 1338:ISBN 1301:ISBN 958:For 822:Let 806:Ogus 552:and 393:The 181:Gal( 136:Let 92:and 61:1963 40:and 1363:doi 1330:doi 1266:doi 1187:doi 1165:201 1131:doi 1084:doi 1080:305 796:). 620:Hom 572:Hom 514:). 506:of 471:of 401:of 243:of 232:to 169:of 120:on 104:of 88:In 1398:: 1384:, 1359:54 1336:, 1311:MR 1309:, 1280:, 1274:MR 1272:, 1264:, 1252:, 1235:MR 1212:, 1193:, 1185:, 1177:, 1163:, 1145:, 1139:MR 1137:, 1129:, 1119:73 1117:, 1098:, 1092:MR 1090:, 1078:, 1001:. 989:= 981:, 789:, 545:. 463:→ 390:. 128:. 1388:. 1365:: 1332:: 1268:: 1260:: 1254:2 1216:: 1189:: 1181:: 1171:: 1133:: 1125:: 1086:: 995:j 991:q 987:t 983:t 979:X 977:( 975:Z 964:q 960:k 943:. 939:) 935:) 932:n 929:( 919:Q 914:, 906:k 899:k 891:X 887:( 881:i 877:H 859:k 851:X 847:k 845:/ 843:s 840:k 836:G 828:k 824:X 794:â„“ 791:Z 786:s 783:k 779:A 777:( 775:1 772:H 761:A 743:) 738:) 727:Q 722:, 715:s 711:k 706:B 701:( 695:1 691:H 687:, 683:) 672:Q 667:, 660:s 656:k 651:A 646:( 640:1 636:H 631:( 625:G 605:Q 597:Z 588:) 585:B 582:, 579:A 576:( 558:k 554:B 550:A 542:n 538:C 534:1 531:C 508:F 496:X 492:C 490:( 488:k 484:C 482:( 480:k 473:f 469:F 465:C 461:X 457:f 441:â„“ 438:Q 434:V 430:W 422:V 418:i 414:â„“ 411:Q 407:G 403:W 399:W 384:i 380:G 373:i 369:i 367:( 365:â„“ 362:Q 358:G 341:W 338:= 335:) 332:) 329:i 326:( 316:Q 311:, 304:s 300:k 295:V 291:( 286:i 283:2 279:H 265:k 261:V 257:i 255:- 249:i 245:G 237:s 234:k 230:V 226:â„“ 223:Q 216:â„“ 213:Z 202:k 194:k 190:k 188:/ 186:s 183:k 175:G 171:k 163:s 160:k 152:k 138:V

Index


Algebraic geometry
number theory
John Tate
abelian varieties
Standard conjectures on algebraic cycles
number theory
algebraic geometry
conjecture
John Tate
algebraic cycles
variety
Galois representation
Ă©tale cohomology
Hodge conjecture
smooth
projective variety
field
prime field
separable closure
absolute Galois group
prime number
â„“-adic cohomology
â„“-adic integers
â„“-adic numbers
representations
codimension
Tate twist
cyclotomic character
divisors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑