Knowledge

Thermodynamic cycle

Source đź“ť

2455:. Power cycles can be organized into two categories: real cycles and ideal cycles. Cycles encountered in real world devices (real cycles) are difficult to analyze because of the presence of complicating effects (friction), and the absence of sufficient time for the establishment of equilibrium conditions. For the purpose of analysis and design, idealized models (ideal cycles) are created; these ideal models allow engineers to study the effects of major parameters that dominate the cycle without having to spend significant time working out intricate details present in the real cycle model. 3203:. The actual device is made up of a series of stages, each of which is itself modeled as an idealized thermodynamic process. Although each stage which acts on the working fluid is a complex real device, they may be modelled as idealized processes which approximate their real behavior. If energy is added by means other than combustion, then a further assumption is that the exhaust gases would be passed from the exhaust to a heat exchanger that would sink the waste heat to the environment and the working gas would be reused at the inlet stage. 3739: 2434: 31: 1601: 3218: 3179: 2514: 2372: 3225: 4938:
Heat flows into the loop through the top isotherm and the left isochore, and some of this heat flows back out through the bottom isotherm and the right isochore, but most of the heat flow is through the pair of isotherms. This makes sense since all the work done by the cycle is done by the pair of
3251:
As the net work output for a cycle is represented by the interior of the cycle, there is a significant difference between the predicted work output of the ideal cycle and the actual work output shown by a real engine. It may also be observed that the real individual processes diverge from their
3146:. There is no difference between the two except the purpose of the refrigerator is to cool a very small space while the household heat pump is intended to warm or cool a house. Both work by moving heat from a cold space to a warm space. The most common refrigeration cycle is the 3232: 4402: 3190:
Thermodynamic cycles may be used to model real devices and systems, typically by making a series of assumptions. simplifying assumptions are often necessary to reduce the problem to a more manageable form. For example, as shown in the figure, devices such a
1888:
output, while heat pump cycles transfer heat from low to high temperatures by using mechanical work as the input. Cycles composed entirely of quasistatic processes can operate as power or heat pump cycles by controlling the process direction. On a
2064:
Equation (2) is consistent with the First Law; even though the internal energy changes during the course of the cyclic process, when the cyclic process finishes the system's internal energy is the same as the energy it had when the process began.
4943:. This suggests that all the net heat comes in through the top isotherm. In fact, all of the heat which comes in through the left isochore comes out through the right isochore: since the top isotherm is all at the same warmer temperature 2924: 2729: 3033: 2838: 2643: 1667:
to its initial state. In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a
3118: 4997:, and since change in energy for an isochore is proportional to change in temperature, then all of the heat coming in through the left isochore is cancelled out exactly by the heat going out the right isochore. 2517:
The clockwise thermodynamic cycle indicated by the arrows shows that the cycle represents a heat engine. The cycle consists of four states (the point shown by crosses) and four thermodynamic processes (lines).
4918:
A Stirling cycle is like an Otto cycle, except that the adiabats are replaced by isotherms. It is also the same as an Ericsson cycle with the isobaric processes substituted for constant volume processes.
4139: 4500: 1320: 2059: 4810: 5259: 4891: 5127: 1986: 4661: 3911: 5186: 1772: 4131: 3206:
The difference between an idealized cycle and actual performance may be significant. For example, the following images illustrate the differences in work output predicted by an ideal
4569:
Thus, the total heat flow per cycle is calculated without knowing the heat capacities and temperature changes for each step (although this information would be needed to assess the
3983: 1910: 2360: 4564: 4057: 1860:
would be the total work and heat output during the cycle. The repeating nature of the process path allows for continuous operation, making the cycle an important concept in
4018: 1155: 1100: 1045: 5050: 2307: 2258: 2223: 2188: 2153: 2118: 852: 805: 720: 673: 585: 538: 756: 624: 4722: 4693: 2844: 2649: 1858: 1825: 990: 4995: 4968: 3941: 3158:
is an alternative that absorbs the refrigerant in a liquid solution rather than evaporating it. Gas refrigeration cycles include the reversed Brayton cycle and the
2930: 2735: 4083: 2531: 489: 3851: 3831: 3807: 3787: 1795: 828: 781: 696: 649: 561: 514: 1913:
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress.
3264:. Any thermodynamic processes may be used. However, when idealized cycles are modeled, often processes where one state variable is kept constant, such as: 3182:
Example of a real system modelled by an idealized process: PV and TS diagrams of a Brayton cycle mapped to actual processes of a gas turbine engine
1630: 4607:
of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
5409: 1331: 1219: 3044: 2421:
3→4: Isentropic / adiabatic compression: Constant entropy (s), Increase in pressure (P), Decrease in volume (v), Increase in temperature (T)
453: 1672:. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a 4896:
The second law of thermodynamics limits the efficiency and COP for all cyclic devices to levels at or below the Carnot efficiency. The
1309: 5571: 1342: 4397:{\displaystyle W_{cycle}=p_{A}(v_{2}-v_{1})+p_{C}(v_{4}-v_{3})=p_{A}(v_{2}-v_{1})+p_{C}(v_{1}-v_{2})=(p_{A}-p_{C})(v_{2}-v_{1})} 2458:
Power cycles can also be divided according to the type of heat engine they seek to model. The most common cycles used to model
912: 4407: 2424:
4→1: Isochoric heating: Constant volume (v), Increase in pressure (P), Increase in entropy (S), Increase in temperature (T)
1997: 1623: 1210: 879: 446: 324: 4738: 5198: 4592: 2312: 262: 4825: 4404:, which is just the area of the rectangle. If the total heat flow per cycle is required, this is easily obtained. Since 3813:
vanishes. Therefore, the internal energy changes of a perfect gas undergoing various processes connecting initial state
5402: 5066: 3703:. 1→2 accomplishes both the heat rejection and the compression. Originally developed for use in reciprocating engines. 3619:. Originally developed for use in reciprocating engines. The external combustion version of this cycle is known as the 1394: 1368: 889: 343: 1947: 5637: 5345: 5320: 3129: 295: 4613: 5721: 5340:
Cengel, Yunus A.; Boles, Michael A. (2002). Thermodynamics: an engineering approach. Boston: McGraw-Hill. pp. 452.
3859: 1447: 918: 317: 5675: 3620: 1894: 1616: 5142: 3038:
For the ideal Stirling cycle, no volume change happens in process 4-1 and 2-3, thus equation (3) simplifies to:
1917:
Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a
5726: 5716: 3155: 1898: 1713: 1547: 79: 4088: 1442: 5711: 5395: 2447:
Thermodynamic power cycles are the basis for the operation of heat engines, which supply most of the world's
1522: 1295: 272: 3946: 5622: 2418:
cooling: Constant volume(v), Decrease in pressure (P), Decrease in entropy (S), Decrease in temperature (T)
1691:
During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure.
907: 110: 100: 2318: 5057: 4505: 2225:). Energy transfer is considered as heat removed from the system, as the work done by the system is zero. 1704: 115: 105: 5536: 5426: 4725: 3677: 3334: 3252:
idealized counterparts; e.g., isochoric expansion (process 1-2) occurs with some actual volume change.
2479: 2459: 1399: 1363: 141: 75: 1437: 5690: 5379:
Hill and Peterson. "Mechanics and Thermodynamics of Propulsion", 2nd ed. Prentice Hall, 1991. 760 pp.
5283: 4023: 1677: 1192: 940: 386: 199: 189: 2068:
If the cyclic process moves clockwise around the loop, then W will be positive, and it represents a
5451: 4570: 5192:
In general, for any cyclic process the state points can be connected by reversible paths, so that
2525:
output from the ideal Stirling cycle (net work out), consisting of 4 thermodynamic processes, is:
5731: 5670: 5655: 5645: 5601: 3991: 3673: 3159: 3147: 1918: 1890: 1604: 1432: 1229: 1110: 1055: 1000: 932: 871: 407: 396: 62: 5023: 2919:{\displaystyle W_{3\to 4}=\int _{V_{3}}^{V_{4}}P\,dV,\,\,{\text{positive, work done by system}}} 2724:{\displaystyle W_{1\to 2}=\int _{V_{1}}^{V_{2}}P\,dV,\,\,{\text{negative, work done on system}}} 2275: 2234: 2199: 2164: 2129: 2094: 834: 787: 702: 655: 567: 520: 5312: 5305: 1537: 1254: 338: 92: 67: 3028:{\displaystyle W_{4\to 1}=\int _{V_{4}}^{V_{1}}P\,dV,\,\,{\text{zero work since }}V_{4}=V_{1}} 2833:{\displaystyle W_{2\to 3}=\int _{V_{2}}^{V_{3}}P\,dV,\,\,{\text{zero work since }}V_{2}=V_{3}} 2084:
The following processes are often used to describe different stages of a thermodynamic cycle:
1457: 738: 603: 5516: 5476: 4698: 4669: 3261: 3163: 1830: 1700: 1648: 1472: 1049: 362: 208: 57: 2638:{\displaystyle {\text{(3)}}\qquad W_{\rm {net}}=W_{1\to 2}+W_{2\to 3}+W_{3\to 4}+W_{4\to 1}} 2126: : The process is at a constant temperature during that part of the cycle (T=constant, 1800: 960: 5660: 4973: 4946: 4904:
are two other reversible cycles that use regeneration to obtain isothermal heat transfer.
3919: 1664: 1552: 1477: 1467: 267: 129: 8: 5665: 5566: 4062: 3549: 3520: 3298: 2263: 1865: 1703:
are process dependent. For a cycle for which the system returns to its initial state the
1497: 1259: 247: 242: 155: 1492: 471: 5522: 4604: 3836: 3816: 3792: 3772: 3381: 3342: 3292: 3274: 3135: 2269: 1780: 1692: 1586: 1249: 1244: 1197: 813: 766: 681: 634: 546: 499: 429: 413: 300: 252: 237: 227: 36: 30: 2266: : The process that proceeds without any change in enthalpy or specific enthalpy. 5685: 5507: 5341: 5316: 3810: 3434: 3286: 3268: 2415: 2193: 1581: 1542: 1532: 1104: 902: 730: 232: 222: 164: 5627: 3280: 2158: 1680:, the cycle is reversible. Whether carried out reversible or irreversibly, the net 1502: 1487: 1427: 1422: 1239: 1234: 884: 352: 217: 3305:
Some example thermodynamic cycles and their constituent processes are as follows:
5650: 3725: 3495: 2522: 2467: 2190:). Energy transfer is considered as heat removed from or work done by the system. 2155:). Energy transfer is considered as heat removed from or work done by the system. 1885: 1660: 1452: 1300: 954: 595: 418: 179: 146: 3738: 3260:
In practice, simple idealized thermodynamic cycles are usually made out of four
5617: 5576: 5561: 5546: 5481: 5471: 5466: 5441: 5264:
meaning that the net entropy change of the working fluid over a cycle is zero.
5010: 4913: 4901: 4897: 3652: 3557: 3527: 3478: 3388: 3207: 3162:. Multiple compression and expansion cycles allow gas refrigeration systems to 2507: 2503: 2499: 2448: 1861: 1685: 1656: 1507: 1277: 377: 257: 194: 184: 52: 22: 2161: : Pressure in that part of the cycle will remain constant. (P=constant, 5705: 5680: 5596: 5551: 5512: 5486: 5456: 5133: 3645: 3587: 3502: 3455: 3410: 3200: 2495: 2491: 2483: 2475: 2452: 2072:. If it moves counterclockwise, then W will be negative, and it represents a 1652: 1576: 894: 463: 424: 136: 5056:
Entropy is a state function and is defined in an absolute sense through the
5586: 5581: 5556: 5502: 5461: 4816: 4588: 4582: 3684: 3628: 3427: 3364: 3143: 2471: 1991:
This work is equal to the balance of heat (Q) transferred into the system:
1659:
into and out of the system, while varying pressure, temperature, and other
1527: 1512: 1462: 945: 3766: 3192: 3151: 2487: 2442: 2408: 2069: 1669: 1482: 290: 5591: 5387: 5278: 4600: 4596: 3708: 3616: 3196: 2463: 2433: 2388: 2380: 2228: 2123: 1571: 1517: 3113:{\displaystyle {\text{(4)}}\qquad W_{\rm {net}}=W_{1\to 2}+W_{3\to 4}} 2091: : No energy transfer as heat (Q) during that part of the cycle ( 4729: 3700: 3669: 3612: 3139: 2392: 2088: 2073: 1673: 169: 3224: 3608: 2400: 1285: 1202: 994: 402: 174: 5273: 5136:
to the final state, so that for an isothermal reversible process
3742:
An illustration of an ideal cycle heat engine (arrows clockwise).
3217: 2513: 2396: 2371: 2120:). Energy transfer is considered as work done by the system only. 1909: 1777:
The above states that there is no change of the internal energy (
1681: 391: 3178: 3604: 2404: 1884:. Power cycles are cycles which convert some heat input into a 1864:. Thermodynamic cycles are often represented mathematically as 4970:
and the bottom isotherm is all at the same cooler temperature
2315: : The process where the net entropy production is zero; 2260:). It is adiabatic (no heat nor mass exchange) and reversible. 1901:
directions indicate power and heat pump cycles, respectively.
1827:
represents the total work and heat input during the cycle and
3988:
Under this set of assumptions, for processes A and C we have
3245:
Actual and ideal overlaid, showing difference in work output
2231: : The process is one of constant entropy (S=constant, 3231: 1696: 367: 5365:, 5th edition. John Wiley & Sons, 1997. Chapter 21, 3757:
RIGHT (B) and LEFT (D) of the loop: a pair of parallel
3750:
TOP (A) and BOTTOM (C) of the loop: a pair of parallel
4495:{\displaystyle \Delta U_{cycle}=Q_{cycle}-W_{cycle}=0} 2375:
Description of each point in the thermodynamic cycles.
5201: 5145: 5069: 5026: 4976: 4949: 4930:
LEFT and RIGHT sides of the loop: a pair of parallel
4923:
TOP and BOTTOM of the loop: a pair of quasi-parallel
4828: 4741: 4701: 4672: 4616: 4508: 4410: 4142: 4091: 4065: 4026: 3994: 3949: 3922: 3862: 3839: 3819: 3795: 3775: 3746:
An ideal cycle is simple to analyze and consists of:
3047: 2933: 2847: 2738: 2652: 2534: 2321: 2278: 2237: 2202: 2167: 2132: 2097: 2054:{\displaystyle {\text{(2)}}\qquad W=Q=Q_{in}-Q_{out}} 2000: 1950: 1868:
in the modeling of the workings of an actual device.
1833: 1803: 1783: 1716: 1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 4805:{\displaystyle \ COP=1+{\frac {T_{L}}{T_{H}-T_{L}}}} 2196: : The process is constant volume (V=constant, 2079: 5254:{\displaystyle \oint dS=\oint {dQ_{rev} \over T}=0} 2383:is an example of a reversible thermodynamic cycle. 1663:within the system, and that eventually returns the 5304: 5253: 5180: 5121: 5044: 4989: 4962: 4886:{\displaystyle \ COP={\frac {T_{L}}{T_{H}-T_{L}}}} 4885: 4804: 4716: 4687: 4655: 4558: 4494: 4396: 4125: 4077: 4051: 4012: 3977: 3935: 3905: 3845: 3825: 3801: 3781: 3255: 3112: 3027: 2918: 2832: 2723: 2637: 2354: 2301: 2252: 2217: 2182: 2147: 2112: 2053: 1980: 1852: 1819: 1789: 1766: 1676:. If at every point in the cycle the system is in 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 5122:{\displaystyle S=\int _{0}^{T}{dQ_{rev} \over T}} 3210:and the actual performance of a Stirling engine: 5703: 1981:{\displaystyle {\text{(1)}}\qquad W=\oint P\ dV} 1876:Two primary classes of thermodynamic cycles are 16:Linked cyclic series of thermodynamic processes 5000: 4656:{\displaystyle \eta =1-{\frac {T_{L}}{T_{H}}}} 1937:). The area enclosed by the loop is the work ( 1684:change of the system is zero, as entropy is a 5403: 5376:, 7th ed. New York: McGraw-Hill, 2011. Print. 4939:isothermal processes, which are described by 3906:{\displaystyle \Delta U=\int _{a}^{b}C_{v}dT} 1624: 5367:Entropy and the Second Law of Thermodynamics 5303:Cengel, Yunus A.; Boles, Michael A. (2002). 3985:for any process undergone by a perfect gas. 2272: : The process that obeys the relation 5302: 5017:remains unchanged during a cyclic process: 5410: 5396: 5181:{\displaystyle \Delta S={Q_{rev} \over T}} 2366: 1631: 1617: 29: 4724:the highest. For Carnot power cycles the 2996: 2995: 2985: 2910: 2909: 2899: 2801: 2800: 2790: 2715: 2714: 2704: 2287: 1767:{\displaystyle \Delta U=E_{in}-E_{out}=0} 5417: 5372:Çengel, Yunus A., and Michael A. Boles. 5336: 5334: 5332: 4126:{\displaystyle Q=\Delta U=C_{v}\Delta T} 4059:, whereas for processes B and D we have 3737: 3547: 3332: 3177: 3169: 2521:For example :--the pressure-volume 2512: 2432: 2370: 1908: 5572:Homogeneous charge compression ignition 5374:Thermodynamics: An Engineering Approach 5307:Thermodynamics: an engineering approach 5132:where a reversible path is chosen from 3134:Thermodynamic heat pump cycles are the 1904: 5704: 4591:is a cycle composed of the totally 3978:{\displaystyle \Delta U=C_{v}\Delta T} 5391: 5329: 2510:, which also models hot air engines. 4819:the coefficient of performance is: 4695:is the lowest cycle temperature and 3405:The second Ericsson cycle from 1853 2355:{\displaystyle dS-{\frac {dQ}{T}}=0} 4559:{\displaystyle Q_{cycle}=W_{cycle}} 3123: 13: 5355: 5146: 4603:heat addition and rejection. The 4411: 4117: 4098: 4043: 4004: 3969: 3950: 3863: 3066: 3063: 3060: 2553: 2550: 2547: 1717: 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 5743: 5383: 4907: 4136:The total work done per cycle is 3574:Differs from Otto cycle in that V 3130:Heat pump and refrigeration cycle 2080:A list of thermodynamic processes 5361:Halliday, Resnick & Walker. 5311:. Boston: McGraw-Hill. pp.  3853:are always given by the formula 3230: 3223: 3216: 1871: 1797:) of the system over the cycle. 1647:consists of linked sequences of 1600: 1599: 919:Table of thermodynamic equations 4576: 4052:{\displaystyle Q=C_{p}\Delta T} 3256:Well-known thermodynamic cycles 3212: 3173: 3053: 2540: 2428: 2006: 1956: 1395:Maxwell's thermodynamic surface 5296: 4599:compression and expansion and 4391: 4365: 4362: 4336: 4330: 4304: 4288: 4262: 4246: 4220: 4204: 4178: 3809:for a closed system since its 3765:If the working substance is a 3733: 3156:absorption refrigeration cycle 3102: 3083: 2942: 2856: 2747: 2661: 2627: 2608: 2589: 2570: 1899:clockwise and counterclockwise 1695:(or path quantities), such as 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 5289: 3678:continuous detonation engines 3150:, which models systems using 2913:positive, work done by system 2718:negative, work done on system 2451:and run the vast majority of 1296:Mechanical equivalent of heat 1891:pressure–volume (PV) diagram 908:Onsager reciprocal relations 7: 5477:Stirling (pseudo/adiabatic) 5267: 5058:Third Law of Thermodynamics 5001:State functions and entropy 4013:{\displaystyle W=p\Delta v} 3548:Power cycles normally with 3333:Power cycles normally with 2480:external combustion engines 2460:internal combustion engines 1895:temperature–entropy diagram 1705:first law of thermodynamics 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 10: 5748: 5045:{\displaystyle \oint dZ=0} 4911: 4726:coefficient of performance 4580: 3127: 2440: 2302:{\displaystyle pV^{\,n}=C} 2253:{\displaystyle \delta S=0} 2218:{\displaystyle \delta V=0} 2183:{\displaystyle \delta P=0} 2148:{\displaystyle \delta T=0} 2113:{\displaystyle \delta Q=0} 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 5636: 5610: 5535: 5495: 5436: 5425: 5284:Thermogravitational cycle 3726:Gasoline / petrol engines 3516:isochoric then adiabatic 3359:A reversed Brayton cycle 1678:thermodynamic equilibrium 1321:An Inquiry Concerning the 4571:thermodynamic efficiency 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 5722:Thermodynamic processes 5363:Fundamentals of Physics 4717:{\displaystyle {T_{H}}} 4688:{\displaystyle {T_{L}}} 3337:- or heat pump cycles: 3262:thermodynamic processes 3154:that change phase. The 3148:vapor compression cycle 2367:Example: The Otto cycle 1941:) done by the process: 1853:{\displaystyle E_{out}} 1649:thermodynamic processes 5255: 5182: 5123: 5046: 4991: 4964: 4887: 4806: 4718: 4689: 4657: 4560: 4496: 4398: 4127: 4079: 4053: 4014: 3979: 3937: 3907: 3847: 3827: 3803: 3789:is only a function of 3783: 3743: 3277:(constant temperature) 3183: 3114: 3029: 2920: 2834: 2725: 2639: 2518: 2438: 2376: 2356: 2303: 2254: 2219: 2184: 2149: 2114: 2055: 1982: 1914: 1854: 1821: 1820:{\displaystyle E_{in}} 1791: 1768: 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 5727:Thermodynamic systems 5717:Equilibrium chemistry 5256: 5183: 5124: 5047: 4992: 4990:{\displaystyle T_{C}} 4965: 4963:{\displaystyle T_{H}} 4888: 4807: 4719: 4690: 4658: 4561: 4497: 4399: 4128: 4080: 4054: 4015: 3980: 3938: 3936:{\displaystyle C_{v}} 3908: 3848: 3828: 3804: 3784: 3741: 3239:Ideal Stirling cycle 3181: 3170:Modeling real systems 3115: 3030: 2999:zero work since  2921: 2835: 2804:zero work since  2726: 2640: 2516: 2436: 2374: 2357: 2304: 2255: 2220: 2185: 2150: 2115: 2056: 1983: 1925:axis shows pressure ( 1912: 1866:quasistatic processes 1855: 1822: 1792: 1769: 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 5712:Thermodynamic cycles 5661:Regenerative cooling 5539:combustion / thermal 5438:Without phase change 5429:combustion / thermal 5419:Thermodynamic cycles 5199: 5143: 5067: 5024: 5013:then the balance of 4974: 4947: 4826: 4739: 4699: 4670: 4614: 4593:reversible processes 4506: 4408: 4140: 4089: 4063: 4024: 3992: 3947: 3920: 3860: 3837: 3817: 3793: 3773: 3621:first Ericsson cycle 3521:Manson-Guise engines 3325:Heat rejection, 4→1 3199:can be modeled as a 3045: 2931: 2845: 2736: 2650: 2532: 2478:. Cycles that model 2437:Heat engine diagram. 2395:expansion: Constant 2319: 2276: 2235: 2200: 2165: 2130: 2095: 1998: 1948: 1905:Relationship to work 1831: 1801: 1781: 1714: 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 5090: 4078:{\displaystyle W=0} 3886: 3550:internal combustion 3335:external combustion 3319:Heat addition, 2→3 3309: 3301:(constant enthalpy) 3283:(constant pressure) 3242:Actual performance 3160:Hampson–Linde cycle 2981: 2895: 2786: 2700: 1933:axis shows volume ( 1645:thermodynamic cycle 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 5251: 5178: 5119: 5076: 5042: 4987: 4960: 4883: 4802: 4714: 4685: 4653: 4605:thermal efficiency 4556: 4492: 4394: 4123: 4075: 4049: 4010: 3975: 3933: 3903: 3872: 3843: 3823: 3799: 3779: 3744: 3382:Carnot heat engine 3308: 3295:(constant entropy) 3184: 3110: 3025: 2953: 2916: 2867: 2830: 2758: 2721: 2672: 2635: 2519: 2439: 2377: 2352: 2299: 2250: 2215: 2180: 2145: 2110: 2051: 1978: 1915: 1850: 1817: 1787: 1764: 1693:Process quantities 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 5699: 5698: 5676:Vapor-compression 5602:Staged combustion 5531: 5530: 5496:With phase change 5243: 5176: 5117: 4881: 4831: 4800: 4744: 4651: 3846:{\displaystyle b} 3826:{\displaystyle a} 3811:internal pressure 3802:{\displaystyle T} 3782:{\displaystyle U} 3731: 3730: 3463:variable pressure 3316:Compression, 1→2 3289:(constant volume) 3249: 3248: 3188: 3187: 3051: 3000: 2914: 2805: 2719: 2538: 2407:(v), Decrease in 2403:(P), Increase in 2399:(s), Decrease in 2344: 2004: 1971: 1954: 1921:. A PV diagram's 1790:{\displaystyle U} 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 5739: 5671:Vapor absorption 5434: 5433: 5412: 5405: 5398: 5389: 5388: 5349: 5338: 5327: 5326: 5310: 5300: 5260: 5258: 5257: 5252: 5244: 5239: 5238: 5237: 5218: 5187: 5185: 5184: 5179: 5177: 5172: 5171: 5156: 5128: 5126: 5125: 5120: 5118: 5113: 5112: 5111: 5092: 5089: 5084: 5051: 5049: 5048: 5043: 4996: 4994: 4993: 4988: 4986: 4985: 4969: 4967: 4966: 4961: 4959: 4958: 4892: 4890: 4889: 4884: 4882: 4880: 4879: 4878: 4866: 4865: 4855: 4854: 4845: 4829: 4811: 4809: 4808: 4803: 4801: 4799: 4798: 4797: 4785: 4784: 4774: 4773: 4764: 4742: 4723: 4721: 4720: 4715: 4713: 4712: 4711: 4694: 4692: 4691: 4686: 4684: 4683: 4682: 4662: 4660: 4659: 4654: 4652: 4650: 4649: 4640: 4639: 4630: 4565: 4563: 4562: 4557: 4555: 4554: 4530: 4529: 4501: 4499: 4498: 4493: 4485: 4484: 4460: 4459: 4435: 4434: 4403: 4401: 4400: 4395: 4390: 4389: 4377: 4376: 4361: 4360: 4348: 4347: 4329: 4328: 4316: 4315: 4303: 4302: 4287: 4286: 4274: 4273: 4261: 4260: 4245: 4244: 4232: 4231: 4219: 4218: 4203: 4202: 4190: 4189: 4177: 4176: 4164: 4163: 4132: 4130: 4129: 4124: 4116: 4115: 4084: 4082: 4081: 4076: 4058: 4056: 4055: 4050: 4042: 4041: 4019: 4017: 4016: 4011: 3984: 3982: 3981: 3976: 3968: 3967: 3942: 3940: 3939: 3934: 3932: 3931: 3912: 3910: 3909: 3904: 3896: 3895: 3885: 3880: 3852: 3850: 3849: 3844: 3832: 3830: 3829: 3824: 3808: 3806: 3805: 3800: 3788: 3786: 3785: 3780: 3496:Stirling engines 3310: 3307: 3234: 3227: 3220: 3213: 3174: 3124:Heat pump cycles 3119: 3117: 3116: 3111: 3109: 3108: 3090: 3089: 3071: 3070: 3069: 3052: 3049: 3034: 3032: 3031: 3026: 3024: 3023: 3011: 3010: 3001: 2998: 2980: 2979: 2978: 2968: 2967: 2966: 2949: 2948: 2925: 2923: 2922: 2917: 2915: 2912: 2894: 2893: 2892: 2882: 2881: 2880: 2863: 2862: 2839: 2837: 2836: 2831: 2829: 2828: 2816: 2815: 2806: 2803: 2785: 2784: 2783: 2773: 2772: 2771: 2754: 2753: 2730: 2728: 2727: 2722: 2720: 2717: 2699: 2698: 2697: 2687: 2686: 2685: 2668: 2667: 2644: 2642: 2641: 2636: 2634: 2633: 2615: 2614: 2596: 2595: 2577: 2576: 2558: 2557: 2556: 2539: 2536: 2468:gasoline engines 2361: 2359: 2358: 2353: 2345: 2340: 2332: 2308: 2306: 2305: 2300: 2292: 2291: 2259: 2257: 2256: 2251: 2224: 2222: 2221: 2216: 2189: 2187: 2186: 2181: 2154: 2152: 2151: 2146: 2119: 2117: 2116: 2111: 2060: 2058: 2057: 2052: 2050: 2049: 2031: 2030: 2005: 2002: 1987: 1985: 1984: 1979: 1969: 1955: 1952: 1882:heat pump cycles 1859: 1857: 1856: 1851: 1849: 1848: 1826: 1824: 1823: 1818: 1816: 1815: 1796: 1794: 1793: 1788: 1773: 1771: 1770: 1765: 1757: 1756: 1738: 1737: 1653:transfer of heat 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1180: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 332: 152: 151: 33: 19: 18: 5747: 5746: 5742: 5741: 5740: 5738: 5737: 5736: 5702: 5701: 5700: 5695: 5632: 5606: 5538: 5527: 5517:Organic Rankine 5491: 5445: 5442:hot air engines 5439: 5428: 5421: 5416: 5386: 5358: 5356:Further reading 5353: 5352: 5339: 5330: 5323: 5301: 5297: 5292: 5270: 5227: 5223: 5219: 5217: 5200: 5197: 5196: 5161: 5157: 5155: 5144: 5141: 5140: 5101: 5097: 5093: 5091: 5085: 5080: 5068: 5065: 5064: 5025: 5022: 5021: 5003: 4981: 4977: 4975: 4972: 4971: 4954: 4950: 4948: 4945: 4944: 4916: 4910: 4874: 4870: 4861: 4857: 4856: 4850: 4846: 4844: 4827: 4824: 4823: 4793: 4789: 4780: 4776: 4775: 4769: 4765: 4763: 4740: 4737: 4736: 4707: 4703: 4702: 4700: 4697: 4696: 4678: 4674: 4673: 4671: 4668: 4667: 4645: 4641: 4635: 4631: 4629: 4615: 4612: 4611: 4585: 4579: 4573:of the cycle). 4538: 4534: 4513: 4509: 4507: 4504: 4503: 4468: 4464: 4443: 4439: 4418: 4414: 4409: 4406: 4405: 4385: 4381: 4372: 4368: 4356: 4352: 4343: 4339: 4324: 4320: 4311: 4307: 4298: 4294: 4282: 4278: 4269: 4265: 4256: 4252: 4240: 4236: 4227: 4223: 4214: 4210: 4198: 4194: 4185: 4181: 4172: 4168: 4147: 4143: 4141: 4138: 4137: 4111: 4107: 4090: 4087: 4086: 4064: 4061: 4060: 4037: 4033: 4025: 4022: 4021: 3993: 3990: 3989: 3963: 3959: 3948: 3945: 3944: 3927: 3923: 3921: 3918: 3917: 3891: 3887: 3881: 3876: 3861: 3858: 3857: 3838: 3835: 3834: 3833:to final state 3818: 3815: 3814: 3794: 3791: 3790: 3774: 3771: 3770: 3736: 3581: 3577: 3464: 3322:Expansion, 3→4 3271:(constant heat) 3258: 3172: 3132: 3126: 3098: 3094: 3079: 3075: 3059: 3058: 3054: 3048: 3046: 3043: 3042: 3019: 3015: 3006: 3002: 2997: 2974: 2970: 2969: 2962: 2958: 2957: 2938: 2934: 2932: 2929: 2928: 2911: 2888: 2884: 2883: 2876: 2872: 2871: 2852: 2848: 2846: 2843: 2842: 2824: 2820: 2811: 2807: 2802: 2779: 2775: 2774: 2767: 2763: 2762: 2743: 2739: 2737: 2734: 2733: 2716: 2693: 2689: 2688: 2681: 2677: 2676: 2657: 2653: 2651: 2648: 2647: 2623: 2619: 2604: 2600: 2585: 2581: 2566: 2562: 2546: 2545: 2541: 2535: 2533: 2530: 2529: 2523:mechanical work 2504:hot air engines 2502:, which models 2494:, which models 2486:, which models 2474:, which models 2466:, which models 2445: 2431: 2369: 2333: 2331: 2320: 2317: 2316: 2286: 2282: 2277: 2274: 2273: 2236: 2233: 2232: 2201: 2198: 2197: 2166: 2163: 2162: 2131: 2128: 2127: 2096: 2093: 2092: 2082: 2039: 2035: 2023: 2019: 2001: 1999: 1996: 1995: 1951: 1949: 1946: 1945: 1907: 1886:mechanical work 1874: 1838: 1834: 1832: 1829: 1828: 1808: 1804: 1802: 1799: 1798: 1782: 1779: 1778: 1746: 1742: 1730: 1726: 1715: 1712: 1711: 1661:state variables 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1112: 1109: 1108: 1107: 1057: 1054: 1053: 1052: 1002: 999: 998: 997: 962: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 836: 833: 832: 815: 812: 811: 789: 786: 785: 768: 765: 764: 740: 737: 736: 704: 701: 700: 683: 680: 679: 657: 654: 653: 636: 633: 632: 605: 602: 601: 596:Compressibility 569: 566: 565: 548: 545: 544: 522: 519: 518: 501: 498: 497: 473: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 5745: 5735: 5734: 5732:Thermodynamics 5729: 5724: 5719: 5714: 5697: 5696: 5694: 5693: 5688: 5683: 5678: 5673: 5668: 5663: 5658: 5653: 5648: 5642: 5640: 5634: 5633: 5631: 5630: 5625: 5620: 5614: 5612: 5608: 5607: 5605: 5604: 5599: 5594: 5589: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5549: 5543: 5541: 5533: 5532: 5529: 5528: 5526: 5525: 5520: 5510: 5505: 5499: 5497: 5493: 5492: 5490: 5489: 5484: 5479: 5474: 5469: 5464: 5459: 5454: 5448: 5446: 5437: 5431: 5423: 5422: 5415: 5414: 5407: 5400: 5392: 5385: 5384:External links 5382: 5381: 5380: 5377: 5370: 5357: 5354: 5351: 5350: 5328: 5321: 5294: 5293: 5291: 5288: 5287: 5286: 5281: 5276: 5269: 5266: 5262: 5261: 5250: 5247: 5242: 5236: 5233: 5230: 5226: 5222: 5216: 5213: 5210: 5207: 5204: 5190: 5189: 5175: 5170: 5167: 5164: 5160: 5154: 5151: 5148: 5130: 5129: 5116: 5110: 5107: 5104: 5100: 5096: 5088: 5083: 5079: 5075: 5072: 5054: 5053: 5041: 5038: 5035: 5032: 5029: 5011:state function 5002: 4999: 4984: 4980: 4957: 4953: 4936: 4935: 4928: 4914:Stirling cycle 4912:Main article: 4909: 4908:Stirling cycle 4906: 4902:Ericsson cycle 4898:Stirling cycle 4894: 4893: 4877: 4873: 4869: 4864: 4860: 4853: 4849: 4843: 4840: 4837: 4834: 4813: 4812: 4796: 4792: 4788: 4783: 4779: 4772: 4768: 4762: 4759: 4756: 4753: 4750: 4747: 4710: 4706: 4681: 4677: 4664: 4663: 4648: 4644: 4638: 4634: 4628: 4625: 4622: 4619: 4581:Main article: 4578: 4575: 4553: 4550: 4547: 4544: 4541: 4537: 4533: 4528: 4525: 4522: 4519: 4516: 4512: 4491: 4488: 4483: 4480: 4477: 4474: 4471: 4467: 4463: 4458: 4455: 4452: 4449: 4446: 4442: 4438: 4433: 4430: 4427: 4424: 4421: 4417: 4413: 4393: 4388: 4384: 4380: 4375: 4371: 4367: 4364: 4359: 4355: 4351: 4346: 4342: 4338: 4335: 4332: 4327: 4323: 4319: 4314: 4310: 4306: 4301: 4297: 4293: 4290: 4285: 4281: 4277: 4272: 4268: 4264: 4259: 4255: 4251: 4248: 4243: 4239: 4235: 4230: 4226: 4222: 4217: 4213: 4209: 4206: 4201: 4197: 4193: 4188: 4184: 4180: 4175: 4171: 4167: 4162: 4159: 4156: 4153: 4150: 4146: 4122: 4119: 4114: 4110: 4106: 4103: 4100: 4097: 4094: 4074: 4071: 4068: 4048: 4045: 4040: 4036: 4032: 4029: 4009: 4006: 4003: 4000: 3997: 3974: 3971: 3966: 3962: 3958: 3955: 3952: 3930: 3926: 3916:Assuming that 3914: 3913: 3902: 3899: 3894: 3890: 3884: 3879: 3875: 3871: 3868: 3865: 3842: 3822: 3798: 3778: 3763: 3762: 3755: 3735: 3732: 3729: 3728: 3723: 3720: 3717: 3714: 3711: 3705: 3704: 3698: 3695: 3692: 3689: 3687: 3681: 3680: 3667: 3664: 3661: 3658: 3655: 3649: 3648: 3643: 3640: 3637: 3634: 3631: 3625: 3624: 3602: 3599: 3596: 3593: 3590: 3584: 3583: 3579: 3575: 3572: 3569: 3566: 3563: 3560: 3554: 3553: 3545: 3544: 3542: 3539: 3536: 3533: 3530: 3524: 3523: 3517: 3514: 3511: 3508: 3505: 3499: 3498: 3493: 3490: 3487: 3484: 3481: 3475: 3474: 3472: 3469: 3466: 3461: 3458: 3452: 3451: 3449: 3446: 3443: 3440: 3437: 3431: 3430: 3425: 3422: 3419: 3416: 3413: 3407: 3406: 3403: 3400: 3397: 3394: 3391: 3385: 3384: 3379: 3376: 3373: 3370: 3367: 3361: 3360: 3357: 3354: 3351: 3348: 3345: 3339: 3338: 3330: 3329: 3326: 3323: 3320: 3317: 3314: 3303: 3302: 3296: 3290: 3284: 3278: 3272: 3257: 3254: 3247: 3246: 3243: 3240: 3236: 3235: 3228: 3221: 3208:Stirling cycle 3186: 3185: 3171: 3168: 3138:for household 3128:Main article: 3125: 3122: 3121: 3120: 3107: 3104: 3101: 3097: 3093: 3088: 3085: 3082: 3078: 3074: 3068: 3065: 3062: 3057: 3036: 3035: 3022: 3018: 3014: 3009: 3005: 2994: 2991: 2988: 2984: 2977: 2973: 2965: 2961: 2956: 2952: 2947: 2944: 2941: 2937: 2926: 2908: 2905: 2902: 2898: 2891: 2887: 2879: 2875: 2870: 2866: 2861: 2858: 2855: 2851: 2840: 2827: 2823: 2819: 2814: 2810: 2799: 2796: 2793: 2789: 2782: 2778: 2770: 2766: 2761: 2757: 2752: 2749: 2746: 2742: 2731: 2713: 2710: 2707: 2703: 2696: 2692: 2684: 2680: 2675: 2671: 2666: 2663: 2660: 2656: 2645: 2632: 2629: 2626: 2622: 2618: 2613: 2610: 2607: 2603: 2599: 2594: 2591: 2588: 2584: 2580: 2575: 2572: 2569: 2565: 2561: 2555: 2552: 2549: 2544: 2508:Ericsson cycle 2500:Stirling cycle 2496:steam turbines 2476:diesel engines 2453:motor vehicles 2449:electric power 2441:Main article: 2430: 2427: 2426: 2425: 2422: 2419: 2412: 2368: 2365: 2364: 2363: 2351: 2348: 2343: 2339: 2336: 2330: 2327: 2324: 2310: 2298: 2295: 2290: 2285: 2281: 2267: 2261: 2249: 2246: 2243: 2240: 2226: 2214: 2211: 2208: 2205: 2191: 2179: 2176: 2173: 2170: 2156: 2144: 2141: 2138: 2135: 2121: 2109: 2106: 2103: 2100: 2081: 2078: 2062: 2061: 2048: 2045: 2042: 2038: 2034: 2029: 2026: 2022: 2018: 2015: 2012: 2009: 1989: 1988: 1977: 1974: 1968: 1965: 1962: 1959: 1906: 1903: 1873: 1870: 1862:thermodynamics 1847: 1844: 1841: 1837: 1814: 1811: 1807: 1786: 1775: 1774: 1763: 1760: 1755: 1752: 1749: 1745: 1741: 1736: 1733: 1729: 1725: 1722: 1719: 1686:state function 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 9: 6: 4: 3: 2: 5744: 5733: 5730: 5728: 5725: 5723: 5720: 5718: 5715: 5713: 5710: 5709: 5707: 5692: 5689: 5687: 5684: 5682: 5679: 5677: 5674: 5672: 5669: 5667: 5666:Transcritical 5664: 5662: 5659: 5657: 5654: 5652: 5649: 5647: 5646:Hampson–Linde 5644: 5643: 5641: 5639: 5638:Refrigeration 5635: 5629: 5626: 5624: 5621: 5619: 5616: 5615: 5613: 5609: 5603: 5600: 5598: 5595: 5593: 5590: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5570: 5568: 5567:Gas-generator 5565: 5563: 5560: 5558: 5555: 5553: 5552:Brayton/Joule 5550: 5548: 5545: 5544: 5542: 5540: 5534: 5524: 5521: 5518: 5514: 5511: 5509: 5506: 5504: 5501: 5500: 5498: 5494: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5463: 5460: 5458: 5457:Brayton/Joule 5455: 5453: 5450: 5449: 5447: 5443: 5435: 5432: 5430: 5424: 5420: 5413: 5408: 5406: 5401: 5399: 5394: 5393: 5390: 5378: 5375: 5371: 5368: 5364: 5360: 5359: 5347: 5346:0-07-238332-1 5343: 5337: 5335: 5333: 5324: 5322:0-07-238332-1 5318: 5314: 5309: 5308: 5299: 5295: 5285: 5282: 5280: 5277: 5275: 5272: 5271: 5265: 5248: 5245: 5240: 5234: 5231: 5228: 5224: 5220: 5214: 5211: 5208: 5205: 5202: 5195: 5194: 5193: 5173: 5168: 5165: 5162: 5158: 5152: 5149: 5139: 5138: 5137: 5135: 5134:absolute zero 5114: 5108: 5105: 5102: 5098: 5094: 5086: 5081: 5077: 5073: 5070: 5063: 5062: 5061: 5059: 5039: 5036: 5033: 5030: 5027: 5020: 5019: 5018: 5016: 5012: 5008: 4998: 4982: 4978: 4955: 4951: 4942: 4933: 4929: 4926: 4922: 4921: 4920: 4915: 4905: 4903: 4899: 4875: 4871: 4867: 4862: 4858: 4851: 4847: 4841: 4838: 4835: 4832: 4822: 4821: 4820: 4818: 4794: 4790: 4786: 4781: 4777: 4770: 4766: 4760: 4757: 4754: 4751: 4748: 4745: 4735: 4734: 4733: 4731: 4727: 4708: 4704: 4679: 4675: 4646: 4642: 4636: 4632: 4626: 4623: 4620: 4617: 4610: 4609: 4608: 4606: 4602: 4598: 4594: 4590: 4584: 4574: 4572: 4567: 4551: 4548: 4545: 4542: 4539: 4535: 4531: 4526: 4523: 4520: 4517: 4514: 4510: 4489: 4486: 4481: 4478: 4475: 4472: 4469: 4465: 4461: 4456: 4453: 4450: 4447: 4444: 4440: 4436: 4431: 4428: 4425: 4422: 4419: 4415: 4386: 4382: 4378: 4373: 4369: 4357: 4353: 4349: 4344: 4340: 4333: 4325: 4321: 4317: 4312: 4308: 4299: 4295: 4291: 4283: 4279: 4275: 4270: 4266: 4257: 4253: 4249: 4241: 4237: 4233: 4228: 4224: 4215: 4211: 4207: 4199: 4195: 4191: 4186: 4182: 4173: 4169: 4165: 4160: 4157: 4154: 4151: 4148: 4144: 4134: 4120: 4112: 4108: 4104: 4101: 4095: 4092: 4072: 4069: 4066: 4046: 4038: 4034: 4030: 4027: 4007: 4001: 3998: 3995: 3986: 3972: 3964: 3960: 3956: 3953: 3943:is constant, 3928: 3924: 3900: 3897: 3892: 3888: 3882: 3877: 3873: 3869: 3866: 3856: 3855: 3854: 3840: 3820: 3812: 3796: 3776: 3768: 3760: 3756: 3753: 3749: 3748: 3747: 3740: 3727: 3724: 3721: 3718: 3715: 3712: 3710: 3707: 3706: 3702: 3699: 3696: 3693: 3690: 3688: 3686: 3683: 3682: 3679: 3675: 3671: 3668: 3665: 3662: 3659: 3656: 3654: 3651: 3650: 3647: 3646:Diesel engine 3644: 3641: 3638: 3635: 3632: 3630: 3627: 3626: 3622: 3618: 3614: 3610: 3606: 3603: 3600: 3597: 3594: 3591: 3589: 3586: 3585: 3573: 3570: 3567: 3564: 3561: 3559: 3556: 3555: 3551: 3546: 3543: 3540: 3537: 3534: 3531: 3529: 3526: 3525: 3522: 3518: 3515: 3512: 3509: 3506: 3504: 3501: 3500: 3497: 3494: 3491: 3488: 3485: 3482: 3480: 3477: 3476: 3473: 3470: 3467: 3462: 3459: 3457: 3454: 3453: 3450: 3447: 3444: 3441: 3438: 3436: 3433: 3432: 3429: 3428:Steam engines 3426: 3423: 3420: 3417: 3414: 3412: 3409: 3408: 3404: 3401: 3398: 3395: 3392: 3390: 3387: 3386: 3383: 3380: 3377: 3374: 3371: 3368: 3366: 3363: 3362: 3358: 3355: 3352: 3349: 3346: 3344: 3341: 3340: 3336: 3331: 3327: 3324: 3321: 3318: 3315: 3312: 3311: 3306: 3300: 3297: 3294: 3291: 3288: 3285: 3282: 3279: 3276: 3273: 3270: 3267: 3266: 3265: 3263: 3253: 3244: 3241: 3238: 3237: 3233: 3229: 3226: 3222: 3219: 3215: 3214: 3211: 3209: 3204: 3202: 3201:Brayton cycle 3198: 3194: 3180: 3176: 3175: 3167: 3165: 3164:liquify gases 3161: 3157: 3153: 3149: 3145: 3144:refrigerators 3141: 3137: 3131: 3105: 3099: 3095: 3091: 3086: 3080: 3076: 3072: 3055: 3041: 3040: 3039: 3020: 3016: 3012: 3007: 3003: 2992: 2989: 2986: 2982: 2975: 2971: 2963: 2959: 2954: 2950: 2945: 2939: 2935: 2927: 2906: 2903: 2900: 2896: 2889: 2885: 2877: 2873: 2868: 2864: 2859: 2853: 2849: 2841: 2825: 2821: 2817: 2812: 2808: 2797: 2794: 2791: 2787: 2780: 2776: 2768: 2764: 2759: 2755: 2750: 2744: 2740: 2732: 2711: 2708: 2705: 2701: 2694: 2690: 2682: 2678: 2673: 2669: 2664: 2658: 2654: 2646: 2630: 2624: 2620: 2616: 2611: 2605: 2601: 2597: 2592: 2586: 2582: 2578: 2573: 2567: 2563: 2559: 2542: 2528: 2527: 2526: 2524: 2515: 2511: 2509: 2505: 2501: 2497: 2493: 2492:Rankine cycle 2489: 2485: 2484:Brayton cycle 2481: 2477: 2473: 2469: 2465: 2461: 2456: 2454: 2450: 2444: 2435: 2423: 2420: 2417: 2413: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2385: 2384: 2382: 2373: 2349: 2346: 2341: 2337: 2334: 2328: 2325: 2322: 2314: 2311: 2296: 2293: 2288: 2283: 2279: 2271: 2268: 2265: 2262: 2247: 2244: 2241: 2238: 2230: 2227: 2212: 2209: 2206: 2203: 2195: 2192: 2177: 2174: 2171: 2168: 2160: 2157: 2142: 2139: 2136: 2133: 2125: 2122: 2107: 2104: 2101: 2098: 2090: 2087: 2086: 2085: 2077: 2075: 2071: 2066: 2046: 2043: 2040: 2036: 2032: 2027: 2024: 2020: 2016: 2013: 2010: 2007: 1994: 1993: 1992: 1975: 1972: 1966: 1963: 1960: 1957: 1944: 1943: 1942: 1940: 1936: 1932: 1928: 1924: 1920: 1911: 1902: 1900: 1896: 1892: 1887: 1883: 1879: 1872:Heat and work 1869: 1867: 1863: 1845: 1842: 1839: 1835: 1812: 1809: 1805: 1784: 1761: 1758: 1753: 1750: 1747: 1743: 1739: 1734: 1731: 1727: 1723: 1720: 1710: 1709: 1708: 1706: 1702: 1698: 1694: 1689: 1687: 1683: 1679: 1675: 1671: 1666: 1662: 1658: 1654: 1651:that involve 1650: 1646: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1377: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1354: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1308: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1268: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1218: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1183: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 376: 375: 369: 366: 364: 361: 360: 358: 357: 354: 351: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 280: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 207: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 154: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 21: 20: 5523:Regenerative 5452:Bell Coleman 5418: 5373: 5366: 5362: 5306: 5298: 5263: 5191: 5131: 5055: 5014: 5006: 5004: 4940: 4937: 4931: 4924: 4917: 4895: 4817:refrigerator 4814: 4665: 4589:Carnot cycle 4586: 4583:Carnot cycle 4577:Carnot cycle 4568: 4135: 3987: 3915: 3764: 3758: 3751: 3745: 3343:Bell Coleman 3304: 3259: 3250: 3205: 3189: 3152:refrigerants 3133: 3037: 2520: 2488:gas turbines 2482:include the 2472:Diesel cycle 2457: 2446: 2429:Power cycles 2378: 2083: 2067: 2063: 1990: 1938: 1934: 1930: 1926: 1922: 1916: 1881: 1878:power cycles 1877: 1875: 1776: 1690: 1644: 1642: 1438:CarathĂ©odory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 281: 78: / 5691:Ionocaloric 5686:Vuilleumier 5508:Hygroscopic 3767:perfect gas 3734:Ideal cycle 3623:from 1833. 3519:Manson and 3435:Hygroscopic 3378:isothermal 3299:isenthalpic 3193:gas turbine 2443:Heat engine 2409:temperature 2264:Isenthalpic 2070:heat engine 1670:heat engine 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 5706:Categories 5656:Pulse tube 5628:Mixed/dual 5290:References 5279:Economizer 4925:isothermal 4815:and for a 4601:isothermal 4597:isentropic 4502:, we have 3722:isochoric 3719:isentropic 3713:isentropic 3701:Pulse jets 3670:Shcramjets 3663:isentropic 3657:isentropic 3642:isochoric 3571:isochoric 3568:isentropic 3562:isentropic 3513:isothermal 3507:isothermal 3492:isochoric 3489:isothermal 3483:isothermal 3471:isochoric 3465:and volume 3399:isothermal 3393:isothermal 3375:isentropic 3372:isothermal 3369:isentropic 3293:isentropic 3275:isothermal 3197:jet engine 3140:heat pumps 2506:, and the 2470:, and the 2464:Otto cycle 2389:Isentropic 2381:Otto Cycle 2313:Reversible 2270:Polytropic 2229:Isentropic 2124:Isothermal 1919:PV diagram 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 5651:Kleemenko 5537:Internal 5215:∮ 5203:∮ 5147:Δ 5078:∫ 5028:∮ 4934:processes 4932:isochoric 4927:processes 4868:− 4787:− 4730:heat pump 4627:− 4618:η 4462:− 4412:Δ 4379:− 4350:− 4318:− 4276:− 4234:− 4192:− 4118:Δ 4099:Δ 4044:Δ 4005:Δ 3970:Δ 3951:Δ 3874:∫ 3864:Δ 3761:processes 3759:isochoric 3754:processes 3716:isochoric 3697:isobaric 3694:adiabatic 3691:isochoric 3666:isobaric 3660:isochoric 3639:adiabatic 3633:adiabatic 3609:turbojets 3601:isobaric 3598:adiabatic 3592:adiabatic 3565:isochoric 3541:isobaric 3538:adiabatic 3532:adiabatic 3510:isochoric 3486:isochoric 3468:adiabatic 3460:adiabatic 3448:isobaric 3445:adiabatic 3439:adiabatic 3424:isobaric 3421:adiabatic 3415:adiabatic 3402:isobaric 3356:isobaric 3353:adiabatic 3347:adiabatic 3287:isochoric 3269:adiabatic 3103:→ 3084:→ 2955:∫ 2943:→ 2869:∫ 2857:→ 2760:∫ 2748:→ 2674:∫ 2662:→ 2628:→ 2609:→ 2590:→ 2571:→ 2416:Isochoric 2393:adiabatic 2329:− 2239:δ 2204:δ 2194:Isochoric 2169:δ 2134:δ 2099:δ 2089:Adiabatic 2074:heat pump 2033:− 1964:∮ 1740:− 1718:Δ 1707:applies: 1674:heat pump 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 5618:Combined 5577:Humphrey 5562:Expander 5547:Atkinson 5482:Stoddard 5472:Stirling 5467:Ericsson 5427:External 5268:See also 3752:isobaric 3653:Humphrey 3636:isobaric 3595:isobaric 3558:Atkinson 3535:isobaric 3528:Stoddard 3479:Stirling 3442:isobaric 3418:isobaric 3396:isobaric 3389:Ericsson 3350:isobaric 3281:isobaric 2462:are the 2401:pressure 2159:Isobaric 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 5681:Siemens 5597:Scuderi 5513:Rankine 5274:Entropy 3617:-shafts 3605:Ramjets 3588:Brayton 3456:Scuderi 3411:Rankine 2397:entropy 1682:entropy 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 5587:Miller 5582:Lenoir 5557:Diesel 5503:Kalina 5487:Manson 5462:Carnot 5344:  5319:  4830:  4743:  4728:for a 4666:where 3685:Lenoir 3674:pulse- 3629:Diesel 3615:, and 3613:-props 3578:< V 3503:Manson 3365:Carnot 3328:Notes 3313:Cycle 3136:models 2498:, the 2490:, the 2405:volume 1970:  1929:) and 1897:, the 1665:system 1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 5611:Mixed 5009:is a 4732:is: 4085:and 2414:2→3: 2387:1→2: 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 5623:HEHC 5592:Otto 5342:ISBN 5317:ISBN 4900:and 4587:The 4020:and 3709:Otto 3676:and 3142:and 2379:The 1880:and 1701:work 1699:and 1697:heat 1657:work 1655:and 1538:Tait 368:Heat 363:Work 93:Laws 5060:as 5005:If 4941:Q=W 4595:of 3195:or 3050:(4) 2537:(3) 2411:(T) 2003:(2) 1953:(1) 1893:or 1381:Art 327:in 5708:: 5331:^ 5315:. 5313:14 4566:. 4133:. 3769:, 3672:, 3611:, 3607:, 3582:. 3552:: 3166:. 2391:/ 2076:. 1688:. 1643:A 5519:) 5515:( 5444:) 5440:( 5411:e 5404:t 5397:v 5369:. 5348:. 5325:. 5249:0 5246:= 5241:T 5235:v 5232:e 5229:r 5225:Q 5221:d 5212:= 5209:S 5206:d 5188:. 5174:T 5169:v 5166:e 5163:r 5159:Q 5153:= 5150:S 5115:T 5109:v 5106:e 5103:r 5099:Q 5095:d 5087:T 5082:0 5074:= 5071:S 5052:. 5040:0 5037:= 5034:Z 5031:d 5015:Z 5007:Z 4983:C 4979:T 4956:H 4952:T 4876:L 4872:T 4863:H 4859:T 4852:L 4848:T 4842:= 4839:P 4836:O 4833:C 4795:L 4791:T 4782:H 4778:T 4771:L 4767:T 4761:+ 4758:1 4755:= 4752:P 4749:O 4746:C 4709:H 4705:T 4680:L 4676:T 4647:H 4643:T 4637:L 4633:T 4624:1 4621:= 4552:e 4549:l 4546:c 4543:y 4540:c 4536:W 4532:= 4527:e 4524:l 4521:c 4518:y 4515:c 4511:Q 4490:0 4487:= 4482:e 4479:l 4476:c 4473:y 4470:c 4466:W 4457:e 4454:l 4451:c 4448:y 4445:c 4441:Q 4437:= 4432:e 4429:l 4426:c 4423:y 4420:c 4416:U 4392:) 4387:1 4383:v 4374:2 4370:v 4366:( 4363:) 4358:C 4354:p 4345:A 4341:p 4337:( 4334:= 4331:) 4326:2 4322:v 4313:1 4309:v 4305:( 4300:C 4296:p 4292:+ 4289:) 4284:1 4280:v 4271:2 4267:v 4263:( 4258:A 4254:p 4250:= 4247:) 4242:3 4238:v 4229:4 4225:v 4221:( 4216:C 4212:p 4208:+ 4205:) 4200:1 4196:v 4187:2 4183:v 4179:( 4174:A 4170:p 4166:= 4161:e 4158:l 4155:c 4152:y 4149:c 4145:W 4121:T 4113:v 4109:C 4105:= 4102:U 4096:= 4093:Q 4073:0 4070:= 4067:W 4047:T 4039:p 4035:C 4031:= 4028:Q 4008:v 4002:p 3999:= 3996:W 3973:T 3965:v 3961:C 3957:= 3954:U 3929:v 3925:C 3901:T 3898:d 3893:v 3889:C 3883:b 3878:a 3870:= 3867:U 3841:b 3821:a 3797:T 3777:U 3580:4 3576:1 3106:4 3100:3 3096:W 3092:+ 3087:2 3081:1 3077:W 3073:= 3067:t 3064:e 3061:n 3056:W 3021:1 3017:V 3013:= 3008:4 3004:V 2993:, 2990:V 2987:d 2983:P 2976:1 2972:V 2964:4 2960:V 2951:= 2946:1 2940:4 2936:W 2907:, 2904:V 2901:d 2897:P 2890:4 2886:V 2878:3 2874:V 2865:= 2860:4 2854:3 2850:W 2826:3 2822:V 2818:= 2813:2 2809:V 2798:, 2795:V 2792:d 2788:P 2781:3 2777:V 2769:2 2765:V 2756:= 2751:3 2745:2 2741:W 2712:, 2709:V 2706:d 2702:P 2695:2 2691:V 2683:1 2679:V 2670:= 2665:2 2659:1 2655:W 2631:1 2625:4 2621:W 2617:+ 2612:4 2606:3 2602:W 2598:+ 2593:3 2587:2 2583:W 2579:+ 2574:2 2568:1 2564:W 2560:= 2554:t 2551:e 2548:n 2543:W 2362:. 2350:0 2347:= 2342:T 2338:Q 2335:d 2326:S 2323:d 2309:. 2297:C 2294:= 2289:n 2284:V 2280:p 2248:0 2245:= 2242:S 2213:0 2210:= 2207:V 2178:0 2175:= 2172:P 2143:0 2140:= 2137:T 2108:0 2105:= 2102:Q 2047:t 2044:u 2041:o 2037:Q 2028:n 2025:i 2021:Q 2017:= 2014:Q 2011:= 2008:W 1976:V 1973:d 1967:P 1961:= 1958:W 1939:W 1935:V 1931:X 1927:P 1923:Y 1846:t 1843:u 1840:o 1836:E 1813:n 1810:i 1806:E 1785:U 1762:0 1759:= 1754:t 1751:u 1748:o 1744:E 1735:n 1732:i 1728:E 1724:= 1721:U 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑