Knowledge

Nuclear fission

Source 📝

2793: 856: 2982:
had shown much earlier that neutrons were far more effectively captured by atoms if they were of low energy (so-called "slow" or "thermal" neutrons), because for quantum reasons it made the atoms look like much larger targets to the neutrons. Thus to slow down the secondary neutrons released by the fissioning uranium nuclei, Fermi and Szilard proposed a graphite "moderator", against which the fast, high-energy secondary neutrons would collide, effectively slowing them down. With enough uranium, and with sufficiently pure graphite, their "pile" could theoretically sustain a slow-neutron chain reaction. This would result in the production of heat, as well as the creation of radioactive fission products.
1809:(image below), and noting that the average binding energy of the actinide nuclides beginning with uranium is around 7.6 MeV per nucleon. Looking further left on the curve of binding energy, where the fission products cluster, it is easily observed that the binding energy of the fission products tends to center around 8.5 MeV per nucleon. Thus, in any fission event of an isotope in the actinide mass range, roughly 0.9 MeV are released per nucleon of the starting element. The fission of U by a slow neutron yields nearly identical energy to the fission of U by a fast neutron. This energy release profile holds for thorium and the various minor actinides as well. 2612:
blowing away." Rearrangement of the core material's subcritical components would need to proceed as fast as possible to ensure effective detonation. Additionally, a third basic component was necessary, "...an initiator—a Ra + Be source or, better, a Po + Be source, with the radium or polonium attached perhaps to one piece of the core and the beryllium to the other, to smash together and spray neutrons when the parts mated to start the chain reaction." However, any bomb would "necessitate locating, mining and processing hundreds of tons of uranium ore...", while U-235 separation or the production of Pu-239 would require additional industrial capacity.
1883: 2896:(uranium fission) for the first time, and predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction. The 11 February 1939 paper by Meitner and Frisch compared the process to the division of a liquid drop and estimated the energy released at 200 MeV. The 1 September 1939 paper by Bohr and Wheeler used this liquid drop model to quantify fission details, including the energy released, estimated the cross section for neutron-induced fission, and deduced 2632: 2361: 1284: 8811: 7890: 6897: 869: 2971: 8835: 2749:. In Chadwick's words, "...In order to explain the great penetrating power of the radiation we must further assume that the particle has no net charge..." The existence of the neutron was first postulated by Rutherford in 1920, and in the words of Chadwick, "...how on earth were you going to build up a big nucleus with a large positive charge? And the answer was a neutral particle." Subsequently, he communicated his findings in more detail. 3321: 84: 45: 2352:
reactor. However, many fission fragments are neutron-rich and decay via β emissions. According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely."
4580:
fission' in that paper. Placzek was sceptical; couldn't I do some experiments to show the existence of those fast-moving fragments of the uranium nucleus? Oddly enough that thought hadn't occurred to me, but now I quickly set to work, and the experiment (which was really very easy) was done in two days, and a short note about it was sent off to Nature together with the other note I had composed over the telephone with Lise Meitner.
2258:
of equilibrium." The negative contribution of Coulomb energy arises from the repulsive electric force of the protons. The symmetry term arises from the fact that effective forces in the nucleus are stronger for unlike neutron-proton pairs, rather than like neutron–neutron or proton–proton pairs. The pairing term arises from the fact that like nucleons form spin-zero pairs in the same spatial state. The pairing is positive if
8847: 7880: 6885: 3307: 2462: 2583: 8823: 6909: 3139:
long in a tank of manganese solution, they were able to confirm more neutrons were emitted than absorbed. However, the hydrogen within the water absorbed the slow neutrons necessary for fission. Carbon in the form of graphite, was then considered, because of its smaller capture cross section. In April 1940, Fermi was able to confirm carbon's potential for a slow-neutron chain reaction, after receiving
2843:
Hahn's ability as a chemist. Marie Curie had been separating barium from radium for many years, and the techniques were well-known. Meitner and Frisch then correctly interpreted Hahn's results to mean that the nucleus of uranium had split roughly in half. Frisch suggested the process be named "nuclear fission", by analogy to the process of living cell division into two cells, which was then called
3147:. In August and September, the Columbia team enlarged upon the cross section measurements by making a series of exponential "piles". The first piles consisted of a uranium-graphite lattice, consisting of 288 cans, each containing 60 pounds of uranium oxide, surrounded by graphite bricks. Fermi's goal was to determine critical mass necessary to sustain neutron generation. Fermi defined the 1275: 1845:. The latter figure means that a nuclear fission explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons (total of both types of radiation ~6%), and the rest as kinetic energy of fission fragments (this appears almost immediately when the fragments impact surrounding matter, as simple heat). 1891:
energy ratios of a deformed nucleus relative to a spherical form for the surface and Coulomb terms. Additional terms can be included such as symmetry, pairing, the finite range of the nuclear force, and charge distribution within the nuclei to improve the estimate. Normally binding energy is referred to and plotted as average binding energy per nucleon.
1744:, allowing an extra neutron to occupy the same nuclear orbital as the last neutron in the nucleus. In such isotopes, therefore, no neutron kinetic energy is needed, for all the necessary energy is supplied by absorption of any neutron, either of the slow or fast variety (the former are used in moderated nuclear reactors, and the latter are used in 1532: 2255: 3177:'s "eggs". Starting on 16 November 1942, Fermi had Anderson and Zinn working in two twelve-hours shifts, constructing a pile that eventually reached 57 layers by 1 Dec. The final pile consisted of 771,000 pounds of graphite, 80,590 pounds of uranium oxide, and 12,400 pounds of uranium metal, with ten cadmium 1354:. However, the binary process happens merely because it is the most probable. In anywhere from two to four fissions per 1000 in a nuclear reactor, ternary fission can produce three positively charged fragments (plus neutrons) and the smallest of these may range from so small a charge and mass as a proton ( 3294:
in 1956. Large-scale natural uranium fission chain reactions, moderated by normal water, had occurred far in the past and would not be possible now. This ancient process was able to use normal water as a moderator only because 2 billion years before the present, natural uranium was richer in the
2053:
The curve of binding energy is characterized by a broad maximum near mass number 60 at 8.6 MeV, then gradually decreases to 7.6 MeV at the highest mass numbers. Mass numbers higher than 238 are rare. At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8,
3151:
k for assessing the chain reaction, with a value of 1.0 denoting a sustained chain reaction. In September 1941, Fermi's team was only able to achieve a k value of 0.87. In April 1942, before the project was centralized in Chicago, they had achieved 0.918 by removing moisture from the oxide. In May
3055:
not yet determined, but which was assumed to be much larger than that of natural uranium. They calculated only a pound or two in a volume less than a golf ball, would result in a chain reaction faster than vaporization, and the resultant explosion would generate temperature greater than the interior
2919:
realized that the neutron-driven fission of heavy atoms could be used to create a nuclear chain reaction. Such a reaction using neutrons was an idea he had first formulated in 1933, upon reading Rutherford's disparaging remarks about generating power from neutron collisions. However, Szilárd had not
2306:
In nuclear fission events the nuclei may break into any combination of lighter nuclei, but the most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass
2981:
With the news of fission neutrons from uranium fission, Szilárd immediately understood the possibility of a nuclear chain reaction using uranium. In the summer, Fermi and Szilard proposed the idea of a nuclear reactor (pile) to mediate this process. The pile would use natural uranium as fuel. Fermi
2875:
It was clear to a number of scientists at Columbia that they should try to detect the energy released in the nuclear fission of uranium from neutron bombardment. On 25 January 1939, a Columbia University team conducted the first nuclear fission experiment in the United States, which was done in the
2850:
News spread quickly of the new discovery, which was correctly seen as an entirely novel physical effect with great scientific—and potentially practical—possibilities. Meitner's and Frisch's interpretation of the discovery of Hahn and Strassmann crossed the Atlantic Ocean with Niels Bohr, who was to
2712:
noted in 1915, Rutherford attempted to "break up the atom." Rutherford was able to accomplish the first artificial transmutation of nitrogen into oxygen, using alpha particles directed at nitrogen N + α → O + p.  Rutherford stated, "...we must conclude that the nitrogen atom is disintegrated,"
2611:
would completely fission less than 1 percent of its nuclear material before it expanded enough to stop the chain reaction from proceeding. Tamper always increased efficiency: it reflected neutrons back into the core and its inertia...slowed the core's expansion and helped keep the core surface from
2257:
where the nuclear binding energy is proportional to the nuclear volume, while nucleons near the surface interact with fewer nucleons, reducing the effect of the volume term. According to Lilley, "For all naturally occurring nuclei, the surface-energy term dominates and the nucleus exists in a state
1890:
The binding energy of the nucleus is the difference between the rest-mass energy of the nucleus and the rest-mass energy of the neutron and proton nucleons. The binding energy formula includes volume, surface and Coulomb energy terms that include empirically derived coefficients for all three, plus
1848:
Some processes involving neutrons are notable for absorbing or finally yielding energy — for example neutron kinetic energy does not yield heat immediately if the neutron is captured by a uranium-238 atom to breed plutonium-239, but this energy is emitted if the plutonium-239 is later fissioned. On
1789:
After an incident particle has fused with a parent nucleus, if the excitation energy is sufficient, the nucleus breaks into fragments. This is called scission, and occurs at about 10 seconds. The fragments can emit prompt neutrons at between 10 and 10 seconds. At about 10 seconds, the fragments can
1735:
elements, however, those isotopes that have an odd number of neutrons (such as U with 143 neutrons) bind an extra neutron with an additional 1 to 2 MeV of energy over an isotope of the same element with an even number of neutrons (such as U with 146 neutrons). This extra binding energy is made
3138:
In April 1939, creating a chain reaction in natural uranium became the goal of Fermi and Szilard, as opposed to isotope separation. Their first efforts involved five hundred pounds of uranium oxide from the Eldorado Radium Corporation. Packed into fifty-two cans two inches in diameter and two feet
2788:
notably suggested in 1934 that instead of creating a new, heavier element 93, that "it is conceivable that the nucleus breaks up into several large fragments." However, the quoted objection comes some distance down, and was but one of several gaps she noted in Fermi's claim. Although Noddack was a
2477:
Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission
1832:
nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleus appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which
1399:
in opposition. Plotting the sum of these two energies as a function of elongated shape, they determined the resultant energy surface had a saddle shape. The saddle provided an energy barrier called the critical energy barrier. Energy of about 6 MeV provided by the incident neutron was necessary to
3185:
counter, with the control rods removed, after the end of each shift. On 2 Dec. 1942, with k approaching 1.0, Fermi had all but one of the control rod removed, and gradually removed the last one. The neutron counter clicks increased, as did the pen recorder, when Fermi announced "The pile has gone
3091:
reported on the "strong indications that Pu undergoes fission with slow neutrons." This meant chemical separation was an alternative to uranium isotope separation. Instead, a nuclear reactor fueled with ordinary uranium could produce a plutonium isotope as a nuclear explosive substitute for U. In
1666:
About 6 MeV of the fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission. Uranium-238, for example, has a near-zero fission cross section for
2842:
of the nucleus, but he was unsure of what the physical basis for the results were. Barium had an atomic mass 40% less than uranium, and no previously known methods of radioactive decay could account for such a large difference in the mass of the nucleus. Frisch was skeptical, but Meitner trusted
2369:
and does not continue the reaction. Another neutron is simply lost and does not collide with anything, also not continuing the reaction. However, the one neutron does collide with an atom of uranium-235, which then fissions and releases two neutrons and some binding energy. 3. Both of those
2351:
Neutron-induced fission of U-235 emits a total energy of 207 MeV, of which about 200 MeV is recoverable, Prompt fission fragments amount to 168 MeV, which are easily stopped with a fraction of a millimeter. Prompt neutrons total 5 MeV, and this energy is recovered as heat via scattering in the
4579:
The paper was composed by several long-distance telephone calls, Lise Meitner having returned to Stockholm in the meantime. I asked an American biologist who was working with Hevesy what they call the process by which single cells divide in two; 'fission', he said, so I used the term 'nuclear
2892:. There, the news on nuclear fission was spread even further, which fostered many more experimental demonstrations. The 6 January 1939 Hahn and Strassman paper announced the discover of fission. In their second publication on nuclear fission in February 1939, Hahn and Strassmann used the term 1805:(200 MeV) of energy, the equivalent of roughly >2 trillion kelvin, for each fission event. The exact isotope which is fissioned, and whether or not it is fissionable or fissile, has only a small impact on the amount of energy released. This can be easily seen by examining the curve of 1278:
A visual representation of an induced nuclear fission event where a slow-moving neutron is absorbed by the nucleus of a uranium-235 atom, which fissions into two fast-moving lighter elements (fission products) and additional neutrons. Most of the energy released is in the form of the kinetic
2764:
moving at about the speed of sound...produces nuclear reactions in many materials much more easily than a beam of protons...traveling thousands of times faster." According to Rhodes, "Slowing down a neutron gave it more time in the vicinity of the nucleus, and that gave it more time to be
2721:
then used alpha particles to "disintegrate" boron, fluorine, sodium, aluminum, and phosphorus before reaching a limitation associated with the energy of his alpha particle source. Eventually, in 1932, a fully artificial nuclear reaction and nuclear transmutation was achieved by Rutherford's
2397:
is exactly unity, the reactions proceed at a steady rate and the reactor is said to be critical. It is possible to achieve criticality in a reactor using natural uranium as fuel, provided that the neutrons have been efficiently moderated to thermal energies." Moderators include light water,
1865:
and increase in size faster than it could be controlled by human intervention. In this case, the first experimental atomic reactors would have run away to a dangerous and messy "prompt critical reaction" before their operators could have manually shut them down (for this reason, designer
2867:
physicists working at Princeton, heard the news and carried it back to Columbia. Rabi said he told Enrico Fermi; Fermi gave credit to Lamb. Bohr soon thereafter went from Princeton to Columbia to see Fermi. Not finding Fermi in his office, Bohr went down to the cyclotron area and found
2344:, while the heavier nuclei require additional neutrons to remain stable. Nuclei that are neutron- or proton-rich have excessive binding energy for stability, and the excess energy may convert a neutron to a proton or a proton to a neutron via the weak nuclear force, a process known as 1330:
During induced fission, a compound system is formed after an incident particle fuses with a target. The resultant excitation energy may be sufficient to emit neutrons, or gamma-rays, and nuclear scission. Fission into two fragments is called binary fission, and is the most common
2606:
The objective of an atomic bomb is to produce a device, according to Serber, "...in which energy is released by a fast neutron chain reaction in one or more of the materials known to show nuclear fission." According to Rhodes, "Untamped, a bomb core even as large as twice the
1708:
for application, where the fast neutrons are supplied by nuclear fusion). However, this process cannot happen to a great extent in a nuclear reactor, as too small a fraction of the fission neutrons produced by any type of fission have enough energy to efficiently fission
2765:
captured." Fermi's team, studying radiative capture which is the emission of gamma radiation after the nucleus captures a neutron, studied sixty elements, inducing radioactivity in forty. In the process, they discovered the ability of hydrogen to slow down the neutrons.
2084: 2940:, that during the fission of uranium, "the energy released in this new reaction must be very much higher than all previously known cases...," which might lead to "large-scale production of energy and radioactive elements, unfortunately also perhaps to atomic bombs." 2543:
While, in principle, all fission reactors can act in all three capacities, in practice the tasks lead to conflicting engineering goals and most reactors have been built with only one of the above tasks in mind. (There are several early counter-examples, such as the
1813: 3095:
In October 1941, MAUD released its final report to the U.S. Government. The report stated, "We have now reached the conclusion that it will be possible to make an effective uranium bomb...The material for the first bomb could be ready by the end of 1943..."
1540:
attraction distance, and are then pushed apart and away by their electrical charge. In the liquid drop model, the two fission fragments are predicted to be the same size. The nuclear shell model allows for them to differ in size, as usually experimentally
2364:
A schematic nuclear fission chain reaction. 1. A uranium-235 atom absorbs a neutron and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2. One of those neutrons is absorbed by an atom of
2880:. The experiment involved placing uranium oxide inside of an ionization chamber and irradiating it with neutrons, and measuring the energy thus released. The results confirmed that fission was occurring and hinted strongly that it was the isotope 1254:
collective motion that results in the division of a parent nucleus into two or more fragment nuclei. The fission process can occur spontaneously, or it can be induced by an incident particle." The energy from a fission reaction is produced by its
3126:
scientists discussed seven possible ways to extract plutonium from irradiated uranium, and decided to pursue investigation of all seven. On 17 June, the first batch of uranium nitrate hexahydrate (UNH) was undergoing neutron bombardment in the
1996: 1249:
Younes and Loveland define fission as, "...a collective motion of the protons and neutrons that make up the nucleus, and as such it is distinguishable from other phenomena that break up the nucleus. Nuclear fission is an extreme example of
1041:
Apart from fission induced by a neutron, harnessed and exploited by humans, a natural form of spontaneous radioactive decay (not requiring a neutron) is also referred to as fission, and occurs especially in very high-mass-number isotopes.
3988:
is emitted by means of the repulsive electrostatic energy between the 2 daughter nuclei, which takes the form of the "kinetic energy" of the fission products, this kinetic energy results in both later blast and thermal effects.
1191:) whose radiotoxicity is far higher than that of the long lived fission products. Concerns over nuclear waste accumulation and the destructive potential of nuclear weapons are a counterbalance to the peaceful desire to use 3791: 2730:, who used artificially accelerated protons against lithium-7, to split this nucleus into two alpha particles. The feat was popularly known as "splitting the atom", and would win them the 1951 Nobel Prize in Physics for 2717:. This was the first observation of a nuclear reaction, that is, a reaction in which particles from one decay are used to transform another atomic nucleus. It also offered a new way to study the nucleus. Rutherford and 1861:" zone which deliberately relies on these neutrons for a supercritical chain-reaction (one in which each fission cycle yields more neutrons than it absorbs). Without their existence, the nuclear chain-reaction would be 965:. Hahn and Strassmann proved that a fission reaction had taken place on 19 December 1938, and Meitner and her nephew Frisch explained it theoretically in January 1939. Frisch named the process "fission" by analogy with 3164:
built sixteen exponential piles. Acquisition of purer forms of graphite, without traces of boron and its large cross section, became paramount. Also important was the acquisition of highly purified forms of oxide from
3092:
May, they demonstrated the cross section of plutonium was 1.7 times that of U235. When plutonium's cross section for fast fission was measured to be ten times that of U238, plutonium became a viable option for a bomb.
2489:
Critical fission reactors are built for three primary purposes, which typically involve different engineering trade-offs to take advantage of either the heat or the neutrons produced by the fission chain reaction:
1414: ≈ 240. It is found that the activation energy decreases as A increases. Eventually, a point is reached where activation energy disappears altogether...it would undergo very rapid spontaneous fission." 3064:
in two parts, "On the construction of a 'super-bomb; based on a nuclear chain reaction in uranium," and "Memorandum on the properties of a radioactive 'super-bomb.' ". On 10 April 1940, the first meeting of the
1387:, and Eugene Feenberg's estimates of nucleus radius and surface tension, to estimate the mass differences of parent and daughters in fission. They then equated this mass difference to energy using Einstein's 2783:
for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". The German chemist
2380:
John Lilley states, "...neutron-induced fission generates extra neutrons which can induce further fissions in the next generation and so on in a chain reaction. The chain reaction is characterized by the
1535:
The stages of binary fission in a liquid drop model. Energy input deforms the nucleus into a fat "cigar" shape, then a "peanut" shape, followed by binary fission as the two lobes exceed the short-range
3107:
report to Roosevelt. The report, amongst other things, called for parallel development of all isotope-separation systems. On 6 December, Bush and Conant reorganized the Uranium Committee's tasks, with
2834:, also a refugee, was also in Sweden when Meitner received a letter from Hahn dated 19 December describing his chemical proof that some of the product of the bombardment of uranium with neutrons was 3056:
of the sun, and pressures greater than the center of the earth. Additionally, the costs of isotope separation "would be insignificant compared to the cost of the war." By March 1940, encouraged by
1459:. In a nuclear reactor or nuclear weapon, the overwhelming majority of fission events are induced by bombardment with another particle, a neutron, which is itself produced by prior fission events. 2439:
is by definition a reactor that produces more fissile material than it consumes and needs a minimum of two neutrons produced for each neutron absorbed in a fissile nucleus. Thus, in general, the
7427: 1019:
as the original parent atom. The two (or more) nuclei produced are most often of comparable but slightly different sizes, typically with a mass ratio of products of about 3 to 2, for common
1368: = 18). The most common small fragments, however, are composed of 90% helium-4 nuclei with more energy than alpha particles from alpha decay (so-called "long range alphas" at ~16 1903: 1689:. The remaining energy to initiate fission can be supplied by two other mechanisms: one of these is more kinetic energy of the incoming neutron, which is increasingly able to fission a 5660: 2250:{\displaystyle B=a_{v}\mathbf {A} -a_{s}\mathbf {A} ^{2/3}-a_{c}{\frac {\mathbf {Z} ^{2}}{\mathbf {A} ^{1/3}}}-a_{a}{\frac {(\mathbf {N} -\mathbf {Z} )^{2}}{\mathbf {A} }}\pm \Delta } 1667:
neutrons of less than 1 MeV energy. If no additional energy is supplied by any other mechanism, the nucleus will not fission, but will merely absorb the neutron, as happens when
2602:. An estimated 39,000 people were killed by the atomic bomb, of whom 23,145–28,113 were Japanese factory workers, 2,000 were Korean slave laborers, and 150 were Japanese combatants. 2947:(in Paris) to refrain from publishing on the possibility of a chain reaction, lest the Nazi government become aware of the possibilities on the eve of what would later be known as 2040:. Thus, the mass of an atom is less than the mass of its constituent protons and neutrons, assuming the average binding energy of its electrons is negligible. The binding energy 1232:
to both enable uranium (and thorium) supplies to last longer and to reduce the amount of "waste". The industry term for a process that fissions all or nearly all actinides is a "
6246: 4673:(February 1939). "Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung". 2775:
studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which the group dubbed
2830:, the union of Austria with Germany in March 1938, but she fled in July 1938 to Sweden and started a correspondence by mail with Hahn in Berlin. By coincidence, her nephew 2079:
may be used to express the binding energy as the sum of five terms, which are the volume energy, a surface correction, Coulomb energy, a symmetry term, and a pairing term:
1549:
are a measurable property related to the probability that fission will occur in a nuclear reaction. Cross sections are a function of incident neutron energy, and those for
1824:
level of color is proportional to (larger) nuclei charge. Electrons (smaller) on this time-scale are seen only stroboscopically and the hue level is their kinetic energy.
7420: 2928:
neutron, such an element, if assembled in sufficiently large mass, could sustain a nuclear chain reaction." On 25 January 1939, after learning of Hahn's discovery from
1436:(the isotope of plutonium with mass number 239). These fuels break apart into a bimodal range of chemical elements with atomic masses centering near 95 and 135 daltons ( 3947: 3295:
shorter-lived fissile isotope U (about 3%), than natural uranium available today (which is only 0.7%, and must be enriched to 3% to be usable in light-water reactors).
3013:. Roosevelt quickly understood the implications, stating, "Alex, what you are after is to see that the Nazis don't blow us up." Roosevelt ordered the formation of the 2920:
been able to achieve a neutron-driven chain reaction using beryllium. Szilard stated, "...if we could find an element which is split by neutrons and which would emit
6440: 7523: 5071: 2662:
proposed a model of the atom in which a very small, dense and positively charged nucleus of protons was surrounded by orbiting, negatively charged electrons (the
7413: 2967:
found "...the number of neutrons emitted by fission to be about two." Fermi and Anderson estimated "a yield of about two neutrons per each neutron captured."
7483: 5848: 4292: 7744: 7444: 7436: 969:
of living cells. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional
7488: 5375: 3979: 1400:
overcome this barrier and cause the nucleus to fission. According to John Lilley, "The energy required to overcome the barrier to fission is called the
5670: 2393:> 1, the reactor is supercritical and the chain reaction diverges. This is the situation in a fission bomb where growth is at an explosive rate. If 1376:). Though less common than binary fission, it still produces significant helium-4 and tritium gas buildup in the fuel rods of modern nuclear reactors. 7528: 4028: 2447:(BR)...U offers a superior breeding potential for both thermal and fast reactors, while Pu offers a superior breeding potential for fast reactors." 6551: 2932:, Szilard noted, "...if enough neutrons are emitted...then it should be, of course, possible to sustain a chain reaction. All of the things which 2370:
neutrons collide with uranium-235 atoms, each of which fissions and releases between one and three neutrons, which can then continue the reaction.
1069:
The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely
6696: 3839: 1503:
are not, meaning it can never achieve criticality. While there is a very small (albeit nonzero) chance of a thermal neutron inducing fission in
64:. The uranium-236, in turn, splits into fast-moving lighter elements (fission products) and releases several free neutrons, one or more "prompt 4496:
Hook, Ernest B. (2002). "Interdisciplinary Dissonance and Prematurity: Ida Noddack's Suggestion of Nuclear Fission". In Hook, Ernest B. (ed.).
8908: 7478: 7334: 5355: 3240:
at the University of Chicago, played important contributing roles. Overall scientific direction of the project was managed by the physicist
1693:
heavy nucleus as it exceeds a kinetic energy of 1 MeV or more (so-called fast neutrons). Such high energy neutrons are able to fission
7543: 7533: 7513: 5677: 5108: 7605: 7550: 7319: 2385:, which is defined as the ratio of the number of neutrons in one generation to the number in the preceding generation. If, in a reactor, 5044: 3186:
critical." They had achieved a k of 1.0006, which meant neutron intensity doubled every two minutes, in addition to breeding plutonium.
7893: 7567: 5443: 4961: 4930: 2515:
are intended to produce neutrons and/or activate radioactive sources for scientific, medical, engineering, or other research purposes.
1841:
kinetic energy per neutron of ~2 MeV (total of 4.8 MeV). The fission reaction also releases ~7 MeV in prompt gamma ray
7773: 7750: 7670: 5946: 5052: 3956:, interact readily with matter. They transfer their energy quickly to the surrounding weapon materials, which rapidly become heated"" 3260: 2847:. Just as the term nuclear "chain reaction" would later be borrowed from chemistry, so the term "fission" was borrowed from biology. 2591: 900: 814: 7682: 6185: 3286:) have been discovered at which self-sustaining nuclear fission took place approximately 2 billion years ago. French physicist 1857:, because they give a characteristic "reaction" time for the total nuclear reaction to double in size, if the reaction is run in a " 7611: 1870:
included radiation-counter-triggered control rods, suspended by electromagnets, which could automatically drop into the center of
7924: 7810: 7503: 7458: 6396: 6236: 6175: 1593:
needs a fast neutron to supply the additional 1 MeV needed to cross the critical energy barrier for fission. In the case of
6316: 4443:
E. Fermi, E. Amaldi, O. D'Agostino, F. Rasetti, and E. Segrè (1934) "Radioattività provocata da bombardamento di neutroni III",
2997:
and were spurred to attempt to attract the attention of the United States government to the issue. Towards this, they persuaded
8544: 7508: 7498: 7288: 6141: 1582:
at lower neutron energy levels. Absorption of any neutron makes available to the nucleus binding energy of about 5.3 MeV.
1097:
undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes a self-sustaining
4054: 3103:
were able to demonstrate the enrichment of uranium through gaseous barrier diffusion. On 27 November, Bush delivered to third
2054:
carbon-12, oxygen-16, neon-20 and magnesium-24. Binding energy due to the nuclear force approaches a constant value for large
1138:
than the heavy elements which are normally fissioned as fuel, and remain so for significant amounts of time, giving rise to a
8588: 8263: 7405: 5370: 4820: 4505: 4226: 4200: 4148: 3962: 3825: 3421: 2951:. With some hesitation Fermi agreed to self-censor. But Joliot-Curie did not, and in April 1939 his team in Paris, including 2872:. Bohr grabbed him by the shoulder and said: "Young man, let me explain to you about something new and exciting in physics." 17: 3051:, who had been working on a critical mass formula. assuming isotope separation was possible, they considered U, which had a 7805: 7600: 7314: 7283: 7228: 6192: 1853:
emitted as radioactive decay products with half-lives up to several minutes, from fission-daughters, are very important to
3443:(1989). "Как было открыто спонтанное деление" [How spontaneous fission was discovered]. In Черникова, Вера (ed.). 3200:
In the United States, an all-out effort for making atomic weapons was begun in late 1942. This work was taken over by the
2792: 8730: 6947: 6913: 6109: 5655: 5620: 5068: 2745:
to observe protons knocked out of several elements by beryllium radiation, following up on earlier observations made by
2435:
Lee states, "One important comparison for the three major fissile nuclides, U, U, and Pu, is their breeding potential. A
1391:
formula. The stimulation of the nucleus after neutron bombardment was analogous to the vibrations of a liquid drop, with
163: 2789:
renowned analytical chemist, she lacked the background in physics to appreciate the enormity of what she was proposing.
1026:. Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), 7783: 7778: 7633: 7538: 7473: 7263: 6807: 6391: 4613:
H. L. Anderson; E. T. Booth; J. R. Dunning; E. Fermi; G. N. Glasoe & F. G. Slack (1939). "The Fission of Uranium".
3952:
of the fission energy is released as kinetic energy of the two large fission fragments. These fragments, being massive
3128: 2889: 2963:
that the number of neutrons emitted with nuclear fission of uranium was then reported at 3.5 per fission. Szilard and
1737: 61: 7799: 7768: 7628: 7557: 5471: 5350: 4656: 4600: 4572: 4130: 3729: 3568: 3502: 3456: 3394: 3349: 2389:
is less than unity, the reactor is subcritical, the number of neutrons decreases and the chain reaction dies out. If
1318:
Nuclear fission can occur without neutron bombardment as a type of radioactive decay. This type of fission is called
4529: 3247:
In July 1945, the first atomic explosive device, dubbed "The Gadget", was detonated in the New Mexico desert in the
3232:, in New Mexico, which was the scientific hub for research on bomb development and design. Other sites, notably the 2936:
predicted appeared suddenly real to me." After the Hahn-Strassman paper was published, Szilard noted in a letter to
8671: 7660: 7329: 6701: 6566: 5101: 3933:
These fission neutrons have a wide energy spectrum, ranging from 0 to 14 MeV, with a mean of 2 MeV and a
2470: 2300: 467: 4296: 2756:, referring to the neutron, "It would therefore serve as a new nuclear probe of surpassing power of penetration." 855: 7562: 6644: 6478: 6080: 5958: 5615: 5476: 5059:
Historical account complete with audio and teacher's guides from the American Institute of Physics History Center
3271: 2884:
in particular that was fissioning. The next day, the Fifth Washington Conference on Theoretical Physics began in
659: 3881:
V, Kopeikin; L, Mikaelyan and; V, Sinev (2004). "Reactor as a Source of Antineutrinos: Thermal Fission Energy".
8681: 7860: 6634: 6483: 5941: 4173: 3596: 3229: 2994: 2283:, which is called the odd–even effect on the fragments' charge distribution. This can be seen in the empirical 364: 7698: 4011: 3006: 7493: 7395: 6408: 6241: 5665: 5593: 4102: 3233: 3061: 3014: 893: 4370: 3152:
1942, Fermi planned a full-scale chain reacting pile, Chicago Pile-1, after one of the exponential piles at
2701:, "conveyed the tremendous and inevitable conclusion that the element thorium was slowly and spontaneously 8913: 8851: 8211: 7654: 7468: 6751: 6488: 6197: 5951: 5448: 4166:
Nuke-Rebuke: Writers & Artists Against Nuclear Energy & Weapons (The Contemporary anthology series)
3201: 3104: 2626: 2479: 1058:
in Moscow, in an experiment intended to confirm that, without bombardment by neutrons, the fission rate of
946: 4032: 2532: 2293:
have higher yield values. However, no odd–even effect is observed on fragment distribution based on their
1615:
adjusts from an odd to an even mass. In the words of Younes and Lovelace, "...the neutron absorption on a
8770: 8029: 7917: 7588: 7151: 6901: 6814: 6786: 6743: 6708: 6546: 6373: 6311: 6136: 6040: 5926: 5394: 5094: 2076: 677: 647: 148: 3036:. Subsequently, Dunning, bombarding the U-235 sample with neutrons generated by the Columbia University 2060:, while the Coulomb acts over a larger distance so that electrical potential energy per proton grows as 8903: 8883: 7666: 7594: 7383: 7238: 7211: 6735: 6594: 6273: 5791: 5748: 5600: 3287: 2944: 2559: 1143: 724: 274: 4544:"Entdeckung der Kernspaltung 1938, Versuchsaufbau, Deutsches Museum München | Faszination Museum" 2050:
relationship. The binding energy also provides an estimate of the total energy released from fission.
8676: 8534: 8196: 8141: 8121: 8116: 7884: 7820: 7729: 7463: 7268: 7121: 6889: 6571: 6180: 5963: 4939: 3843: 3312: 2651: 1741: 1109: 989: 610: 3135:'s team. On 20 August, using ultramicrochemistry techniques, they successfully extracted plutonium. 2779:. However, not all were convinced by Fermi's analysis of his results, though he would win the 1938 8898: 8888: 8878: 8873: 8605: 7949: 7206: 7116: 6980: 6819: 6661: 6561: 6473: 5682: 5568: 5528: 5340: 3344: 3237: 3123: 3044: 1991:{\displaystyle m(\mathbf {A} ,\mathbf {Z} )=\mathbf {Z} m_{H}+\mathbf {N} m_{n}-\mathbf {B} /c^{2}} 1440:). Most nuclear fuels undergo spontaneous fission only very slowly, decaying instead mainly via an 886: 873: 605: 309: 2409:
According to John C. Lee, "For all nuclear reactors in operation and those under development, the
8827: 8765: 8750: 8146: 8126: 7845: 7835: 7146: 6940: 6724: 6691: 6666: 6280: 6057: 5863: 5786: 5743: 5726: 5687: 5610: 3140: 2567: 2456: 2047: 1874:). If these delayed neutrons are captured without producing fissions, they produce heat as well. 1854: 1388: 1384: 600: 497: 462: 158: 6649: 3746: 3656: 3251:
test. It was fueled by plutonium created at Hanford. In August 1945, two more atomic devices – "
1637:
nucleus with excitation energy greater than the critical fission energy, whereas in the case of
1424:
for the nucleus. The nuclides that can sustain a fission chain reaction are suitable for use as
1263:, while about 6 percent each comes from initial neutrons and gamma rays and those emitted after 8893: 8278: 8174: 8101: 8091: 7972: 7910: 7840: 7641: 7387: 7298: 6972: 6556: 5843: 5387: 2780: 2776: 2647: 2563: 2500: 2375: 1820:
in the case of a cluster of positively charged nuclei, akin to a cluster of fission fragments.
1098: 1005: 974: 654: 304: 269: 7435: 3591:
J. Kliman, M. G. Itkis, S. Gmuca (eds.). World Scientific Publishing Co. Pte. Ltd. Singapore.
3584: 3384: 8218: 8009: 7391: 7126: 6850: 6586: 6541: 6003: 5931: 5858: 5853: 5818: 5605: 5573: 5360: 5287: 4192:
Nagasaki 1945: the first full-length eyewitness account of the atomic bomb attack on Nagasaki
4096: 3864: 3610: 3411: 3241: 3052: 3029: 2804:. The table and instruments are originals, but would not have been together in the same room. 2702: 2284: 2072:
is larger than 120 nucleus fragments. Fusion energy is released when lighter nuclei combine.
1546: 1470: 1287: 1012: 779: 664: 556: 4970: 4943: 4243: 2746: 2658:
and the elaboration of new nuclear physics that described the components of atoms. In 1911,
2441:
conversion ratio (CR) is defined as the ratio of fissile material produced to that destroyed
719: 8666: 8639: 8617: 8524: 8457: 8206: 8136: 8081: 7830: 7692: 7248: 7136: 7093: 7043: 6761: 6536: 6521: 5838: 5796: 5632: 5538: 5466: 5011: 4901: 4849: 4783: 4729: 4682: 4622: 4470: 4416: 4382: 4333: 4258: 4069: 3900: 3758: 3668: 3622: 3283: 3221: 2852: 2528: 2483: 2417:
materials, U, U, and Pu, and the associated isotopic chains. For the current generation of
1745: 1705: 1417: 1225: 1221: 789: 764: 581: 60:
nucleus, with the excitation energy provided by the kinetic energy of the neutron plus the
5049: 4458: 1034:. The smallest of these fragments in ternary processes ranges in size from a proton to an 8: 8745: 8688: 8610: 8583: 8268: 8131: 8106: 7815: 7365: 7243: 7156: 6860: 6671: 6456: 6050: 5918: 5896: 5721: 5578: 5345: 5307: 5140: 3440: 3157: 3148: 2869: 2864: 2555: 2495: 1882: 1858: 1421: 1319: 1128: 1051: 1043: 985: 684: 563: 457: 400: 393: 383: 324: 319: 153: 7617: 7324: 5015: 4905: 4853: 4787: 4733: 4686: 4626: 4474: 4420: 4386: 4337: 4262: 4145: 4073: 3904: 3762: 3747:"Resonance in Uranium and Thorium Disintegrations and the Phenomenon of Nuclear Fission" 3672: 3626: 3076:
at Oxford wrote his Estimate of the size of an actual separation plant." Simon proposed
1886:
The "curve of binding energy": A graph of binding energy per nucleon of common isotopes.
1762:
that fission easily following the absorption of a thermal (0.25 meV) neutron are called
8725: 8703: 8693: 8529: 7723: 7686: 7623: 7360: 7181: 7161: 7141: 7025: 6933: 6840: 6576: 6413: 6340: 6151: 5801: 5771: 5755: 5738: 5382: 5272: 5220: 5170: 5117: 5001: 4867: 4745: 4698: 4351: 4274: 3916: 3890: 3359: 3225: 3144: 3002: 2831: 2742: 2734:, although it was not the nuclear fission reaction later discovered in heavy elements. 2536: 2410: 1515: 1343:. Since in nuclear fission, the nucleus emits more neutrons than the one it absorbs, a 1229: 1196: 1147: 962: 627: 622: 437: 5062: 4055:"Microscopic calculations of potential energy surfaces: Fission and fusion properties" 3589:
Dynamical aspects of nuclear fission: proceedings of the 6th International Conference.
1728:
of only 0.75 MeV, meaning half of them have less than this insufficient energy).
8834: 8627: 8452: 8313: 8273: 8243: 8228: 8201: 8111: 8014: 7954: 7944: 7825: 7788: 7253: 7131: 7068: 7033: 5908: 5701: 5588: 5563: 5501: 5458: 5302: 5297: 5292: 5135: 4816: 4652: 4596: 4568: 4511: 4501: 4278: 4222: 4196: 4169: 4126: 3934: 3821: 3725: 3592: 3585:"Comparative study of the ternary particle emission in 243-Cm (nth,f) and 244-Cm(SF)" 3564: 3498: 3452: 3417: 3390: 3205: 3195: 3182: 3077: 3033: 3025: 2856: 2844: 2679: 2659: 2504: 1817: 1721: 1380: 1233: 1139: 1070: 966: 940: 799: 794: 754: 632: 371: 359: 342: 314: 284: 125: 4702: 3920: 8786: 8760: 8755: 8735: 8720: 8561: 8551: 8331: 8258: 7994: 7711: 7258: 6756: 5811: 5776: 5533: 5523: 5411: 5399: 5240: 5235: 5225: 5215: 5210: 5081: 5039: 5019: 4909: 4871: 4857: 4791: 4749: 4737: 4690: 4670: 4630: 4478: 4424: 4390: 4355: 4341: 4266: 4077: 3908: 3766: 3676: 3630: 3339: 3209: 3132: 3112: 2916: 2885: 2817: 2797: 2663: 2531:
makes Pu (a nuclear fuel) from the naturally very abundant U (not a nuclear fuel).
2511: 2274: 1850: 1834: 1437: 1369: 1332: 1256: 1217: 1213: 1016: 954: 917: 819: 809: 739: 492: 410: 378: 198: 130: 4318: 3216:
in Washington, which had the first industrial-scale nuclear reactors and produced
1900:
is the energy required to separate it into its constituent neutrons and protons."
1212:- or rather its decay products - are a major gamma ray emitter. All actinides are 8815: 8796: 8710: 8477: 8392: 8248: 8238: 8223: 8181: 8086: 8036: 7987: 7370: 7355: 7171: 7083: 6925: 6654: 6614: 6068: 5882: 5806: 5781: 5627: 5420: 5322: 5312: 5277: 5145: 5075: 5056: 4270: 4216: 4190: 3100: 3021: 3010: 2998: 2952: 2761: 2757: 2694: 2686: 2670:
improved upon this in 1913 by reconciling the quantum behavior of electrons (the
2595: 2519: 1862: 1791: 1392: 1336: 1291: 1102: 1074: 1031: 804: 784: 759: 689: 576: 504: 415: 75: 6146: 4530:"Originalgeräte zur Entdeckung der Kernspaltung, "Hahn-Meitner-Straßmann-Tisch"" 3948:"NUCLEAR EVENTS AND THEIR CONSEQUENCES by the Borden institute..."approximately 3084: 8791: 8740: 8715: 8519: 8484: 8417: 8407: 8323: 8303: 8298: 8283: 8253: 8233: 8191: 8169: 8151: 8051: 8041: 7977: 7850: 7717: 7676: 7218: 7176: 7166: 7088: 7078: 7048: 6609: 6604: 6599: 6349: 6256: 6225: 6207: 5731: 5637: 5583: 5548: 5481: 5428: 5282: 5175: 5160: 5150: 3354: 3174: 3116: 3066: 3048: 2975: 2753: 2738: 2727: 2718: 2709: 2587: 2571: 2037: 1871: 1806: 1441: 1344: 1340: 1260: 1166: 1090: 1055: 1047: 1001: 993: 921: 860: 714: 709: 588: 521: 329: 264: 241: 228: 215: 115: 93: 38: 31: 6629: 4612: 4543: 4500:. Berkeley and Los Angeles: University of California Press. pp. 124–148. 3111:
developing gaseous diffusion, Lawrence developing electromagnetic separation,
2554:
As of 2019, the 448 nuclear power plants worldwide provided a capacity of 398
1085:, which give the same products each time. Nuclear fission produces energy for 8867: 8839: 8698: 8658: 8622: 8578: 8504: 8467: 8385: 8308: 8076: 8071: 8024: 8004: 7293: 7053: 7038: 6794: 6085: 5491: 5332: 4886: 4634: 4515: 4482: 4244:"The scattering of α and β particles by matter and the structure of the atom" 4152: 3770: 3680: 3326: 3057: 3040:, confirmed "U-235 was responsible for the slow neutron fission of uranium." 2990: 2986: 2937: 2929: 2732:"Transmutation of atomic nuclei by artificially accelerated atomic particles" 2723: 2655: 2608: 2574:, and the resultant generated steam is used to drive a turbine or generator. 2566:. Energy from fission is transmitted through conduction or convection to the 2466: 2015: 1795: 1537: 1456: 1445: 1433: 1396: 1355: 1351: 1307: 1299: 1192: 1086: 1082: 1008:
of the resulting elements must be greater than that of the starting element.
839: 834: 829: 824: 774: 432: 405: 249: 188: 141: 120: 5024: 4989: 1350:
Binary fission may produce any of the fission products, at 95±15 and 135±15
8595: 8539: 8489: 8472: 8293: 8066: 7999: 7793: 7739: 7734: 7273: 7233: 7098: 6360: 5496: 5438: 5365: 5317: 5187: 4796: 4771: 4717: 4429: 4404: 4395: 3364: 3334: 3248: 3213: 3170: 3166: 3088: 2956: 2948: 2813: 2768: 2675: 2639: 2631: 2545: 2307:
of about 90 to 100 daltons and the other the remaining 130 to 140 daltons.
1867: 1802: 1466: 1425: 1339:, in which a third particle is emitted. This third particle is commonly an 1094: 958: 928:
splits into two or more smaller nuclei. The fission process often produces
769: 744: 729: 474: 422: 279: 7437:
Nuclear and radioactive disasters, former facilities, tests and test sites
3634: 2907:
was the major contributor to that cross section and slow-neutron fission.
2646:
The discovery of nuclear fission occurred in 1938 in the buildings of the
1302:, a combination of the two typical of current nuclear power reactors, and 8600: 8566: 8440: 8430: 8373: 8356: 8341: 8288: 8186: 7865: 7015: 6771: 6418: 6008: 5515: 5486: 5045:
Annotated bibliography for nuclear fission from the Alsos Digital Library
3291: 3178: 3161: 3153: 3108: 3073: 2964: 2933: 2881: 2860: 2785: 2690: 2599: 2598:, on 9 August 1945 rose over 18 kilometres (11 mi) above the bomb's 2399: 2366: 2360: 2005: 1777:
that do not easily fission when they absorb a thermal neutron are called
1690: 1462: 1448: 1429: 1409: 1303: 1295: 1201: 1135: 1078: 734: 427: 349: 202: 57: 53: 4293:"Cockcroft and Walton split lithium with high energy protons April 1932" 1259:, though a large majority of it, about 85 percent, is found in fragment 8634: 8556: 8494: 8462: 8402: 8096: 7855: 7063: 7010: 6124: 4718:"Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction" 4694: 3895: 3252: 2877: 2671: 2667: 2345: 1452: 1264: 1063: 704: 694: 551: 531: 354: 224: 4963:
DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 2
4932:
DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory Volume 1
4913: 4081: 3912: 3290:
discovered the Oklo Fossil Reactors in 1972, but it was postulated by
3204:
in 1943, and known as the Manhattan Engineer District. The top-secret
2970: 1283: 8644: 8571: 8445: 8425: 8397: 8336: 7647: 7350: 7223: 7058: 7005: 6995: 6956: 6766: 6129: 6119: 5247: 5200: 5165: 5086: 4862: 4837: 4741: 4346: 3217: 3037: 2888:
under the joint auspices of the George Washington University and the
2826: 2809: 2635: 2548: 2311: 1663:
nucleus has an excitation energy below the critical fission energy."
1251: 1151: 1015:
because the resulting fragments (or daughter atoms) are not the same
950: 929: 749: 699: 526: 514: 509: 388: 65: 6624: 4188: 2499:
are intended to produce heat for nuclear power, either as part of a
68:" (not shown) and a (proportionally) large amount of kinetic energy. 8380: 8361: 8346: 8046: 7518: 7000: 6985: 6855: 6498: 6493: 6433: 6102: 6030: 6013: 5998: 5973: 5716: 5205: 5006: 3724:. John Wiley & Sons, Ltd. pp. 7–9, 13–14, 38–43, 265–267. 2824:. Meitner, an Austrian Jew, lost her Austrian citizenship with the 2682:, which became essential to understanding the physics of fission. 2524: 2429: 2403: 1732: 1465:
isotopes such as uranium-238 require additional energy provided by
1428:. The most common nuclear fuels are U (the isotope of uranium with 1268: 1199:
produces virtually no plutonium and much less minor actinides, but
1134:
The products of nuclear fission, however, are on average far more
83: 44: 8514: 8056: 7278: 6824: 6776: 6639: 6619: 6018: 5993: 5433: 5264: 5252: 5230: 5195: 4835: 4548: 3320: 3256: 2698: 2523:
are intended to produce nuclear fuels in bulk from more abundant
1829: 1373: 1124: 1059: 1023: 1020: 981: 970: 211: 184: 176: 108: 98: 49: 4838:"Number of Neutrons Liberated in the Nuclear Fission of Uranium" 2461: 1678:
absorbs slow and even some fraction of fast neutrons, to become
1123:
is a million times more than that released in the combustion of
8061: 7982: 7933: 6428: 6423: 6403: 6383: 6368: 6251: 5988: 5968: 5936: 4168:. The Spirit That Moves Us Press. May 1, 1984. pp. 22–29. 3563:. New York: Simon & Schuster Paperbacks. pp. 135–138. 3169:
Chemical Works. Finally, acquiring pure uranium metal from the
2835: 2821: 2801: 2582: 1842: 1725: 936: 932: 103: 4498:
Prematurity in Scientific Discovery: On Resistance and Neglect
30:"Split the atom" redirects here. For the album by Noisia, see 7103: 6990: 6845: 6802: 6465: 6321: 6114: 5978: 3449:
Brief Moment of Triumph — About making scientific discoveries
3279: 1361: 1035: 4990:"Nuclear Fission Dynamics: Past, Present, Needs, and Future" 3445:Краткий Миг Торжества — О том, как делаются научные открытия 3156:
reached a k of 0.995. Between 15 September and 15 November,
1837:. Also, an average of 2.5 neutrons are emitted, with a 1224:
can fission them all albeit only in certain configurations.
973:
during the fission process, opening up the possibility of a
8435: 8368: 8351: 8019: 7704: 6326: 6215: 6025: 5983: 4887:"On the Nuclear Physical Stability of the Uranium Minerals" 3275: 2772: 2558:, with about 85% being light-water cooled reactors such as 2535:
previously tested using Th to breed the fissile isotope U (
2422: 1838: 1274: 1105:
or at a very rapid, uncontrolled rate in a nuclear weapon.
1093:. Both uses are possible because certain substances called 997: 925: 3266: 3261:
used against the Japanese cities of Hiroshima and Nagasaki
7902: 6299: 6163: 4969:. U.S. Department of Energy. January 1993. Archived from 4218:
The Impact of the A-bomb, Hiroshima and Nagasaki, 1945–85
2418: 1821: 1812: 1801:
Typical fission events release about two hundred million
1531: 1372:(MeV)), plus helium-6 nuclei, and tritons (the nuclei of 3131:
cyclotron. On 27 July, the irradiated UNH was ready for
2654:, following over four decades of work on the science of 4029:"Nuclear Fission and Fusion, and Nuclear Interactions" 1894:
According to Lilley, "The binding energy of a nucleus
27:
Nuclear reaction splitting an atom into multiple parts
4189:
Tatsuichirō Akizuki; Gordon Honeycombe (March 1982).
4125:. John Wiley & Sons, Inc. pp. 324, 327–329. 3984:
The various energies emitted per fission event pg 4.
2443:...when the CR is greater than 1.0, it is called the 2287:
data for each fission product, as products with even
2087: 1906: 1101:
possible, releasing energy at a controlled rate in a
4295:. Outreach.phy.cam.ac.uk. 1932-04-14. Archived from 4052: 3302: 3173:, meant the replacement of oxide pseudospheres with 2995:
Germans might make use of the fission chain reaction
1833:
fly apart at about 3% of the speed of light, due to
1279:
velocities of the fission products and the neutrons.
4836:H. Von Halban; F. Joliot & L. Kowarski (1939). 3382: 3208:, as it was colloquially known, was led by General 3080:as the best method for uranium isotope separation. 3001:to lend his name to a letter directed to President 2697:, investigating the radioactive gas emanating from 1146:make up only a small fraction of fission products. 1112:released in the fission of an equivalent amount of 1000:the bulk material where fission takes place). Like 6955: 5849:Blue Ribbon Commission on America's Nuclear Future 4221:. Iwanami Shoten. 1 January 1985. pp. 56–78. 4084:. Archived from the original on September 29, 2006 4005:in beta decay and gamma decay(residual radiation)" 3993:is released in prompt or initial gamma radiation, 2910: 2310:Stable nuclei, and unstable nuclei with very long 2249: 1990: 1751:According to Younes and Loveland, "Actinides like 988:which can release large amounts of energy both as 3435: 3433: 2741:discovered the neutron in 1932. Chadwick used an 8865: 4567:. Cambridge University Press. pp. 114–117. 3837: 3119:responsible for theoretical studies and design. 1030:positively charged fragments are produced, in a 4988:Bulgac, Aurel; Jin, Shi; Stetcu, Ionel (2020). 4987: 3997:in prompt neutron radiation (99.36% of total), 3189: 2620: 2046:is expressed in energy units, using Einstein's 7683:Thor missile launch failures at Johnston Atoll 4668: 4447:, vol. 5, no. 1, pages 452–453. 4031:. National Physical Laboratory. Archived from 3492: 3430: 2693:named, radioactivity. In 1900, Rutherford and 7918: 7484:Nuclear and radiation accidents by death toll 7479:Nuclear and radiation accidents and incidents 7421: 6941: 6552:Small sealed transportable autonomous (SSTAR) 5102: 4715: 4241: 4146:The Atomic Bombings of Hiroshima and Nagasaki 4010:. Technical University Vienna. Archived from 3874: 3451:] (in Russian). Наука. pp. 108–112. 3409: 2270:are both even, adding to the binding energy. 2066:increases. Fission energy is released when a 1488:are fast enough to induce another fission in 1477:of the neutrons released from the fission of 1469:(such as those produced by nuclear fusion in 894: 4884: 4402: 4368: 3857: 3657:"On the Shape and Stability of Heavy Nuclei" 3212:. Among the project's dozens of sites were: 2708:In 1919, following up on an earlier anomaly 1604:however, that extra energy is provided when 56:nucleus, turning it briefly into an excited 7606:1996 San Juan de Dios radiotherapy accident 7489:Nuclear and radiation fatalities by country 4769: 4456: 4316: 3820:, Dover Publications, Mineola, NY, p. 259, 3722:Nuclear Physics: Principles and Application 2915:During this period the Hungarian physicist 2314:, follow a trend of stability evident when 1360: = 1), to as large a fragment as 1004:, for fission to produce energy, the total 7925: 7911: 7428: 7414: 6948: 6934: 5109: 5095: 3842:. European Nuclear Society. Archived from 3028:was able to separate U-235 and U-238 from 3020:In February 1940, encouraged by Fermi and 2943:Szilard now urged Fermi (in New York) and 1790:emit gamma rays. At 10 seconds β decay, β- 1736:available as a result of the mechanism of 901: 887: 7774:Vulnerability of nuclear plants to attack 7751:Atomic bombings of Hiroshima and Nagasaki 7671:Three Mile Island accident health effects 5023: 5005: 4861: 4795: 4428: 4394: 4345: 3894: 3757:(4). American Physical Society: 418–419. 3667:(5). American Physical Society: 504–505. 3611:"The Atomic Masses of the Heavy Elements" 2974:Drawing of the first artificial reactor, 7769:International Nuclear Event Scale (INES) 7612:Clinic of Zaragoza radiotherapy accident 6464: 4810: 3654: 3608: 3493:Younes, Walid; Loveland, Walter (2021). 3181:. Neutron intensity was measured with a 2969: 2820:began performing similar experiments in 2791: 2630: 2581: 2482:. Such devices use radioactive decay or 2460: 2359: 1881: 1811: 1530: 1432:235 and of use in nuclear reactors) and 1282: 1273: 1150:which does not lead to fission produces 43: 7811:International Day against Nuclear Tests 7459:Crimes involving radioactive substances 4123:Nuclear Reactor Physics and Engineering 3621:(1). American Physical Society: 64–75. 3439: 3267:Natural fission chain-reactors on Earth 2539:) continue to be studied and developed. 2025:is the atomic mass of a hydrogen atom, 14: 8866: 8545:Integrated gasification combined cycle 7601:Instituto Oncológico Nacional#Accident 7289:Wireless electronic devices and health 6479:Liquid-fluoride thorium reactor (LFTR) 5116: 4562: 4116: 4114: 4112: 4001:in delayed neutron energy (0.64%) and 3937:of 0.75 MeV. See Byrne, op. cite. 3719: 3558: 3274:is uncommon. At three ore deposits at 1794:, and gamma rays are emitted from the 935:, and releases a very large amount of 8589:Radioisotope thermoelectric generator 8264:Quantum chromodynamics binding energy 7906: 7409: 6929: 6721: 6484:Molten-Salt Reactor Experiment (MSRE) 5893: 5880: 5090: 3554: 3552: 3550: 3548: 3546: 3544: 3542: 3540: 3538: 3536: 3534: 3488: 3224:, which was primarily concerned with 2273:In fission there is a preference for 1228:aims to recover usable material from 8909:German inventions of the Nazi period 8822: 7806:History of the anti-nuclear movement 7315:List of civilian radiation accidents 7284:Wireless device radiation and health 7279:Biological dose units and quantities 7229:Electromagnetic radiation and health 6908: 5881: 4716:Meitner, Lisa; Frisch, O.R. (1939). 4495: 3744: 3715: 3713: 3711: 3709: 3707: 3705: 3703: 3701: 3699: 3697: 3532: 3530: 3528: 3526: 3524: 3522: 3520: 3518: 3516: 3514: 3486: 3484: 3482: 3480: 3478: 3476: 3474: 3472: 3470: 3468: 1518:is orders of magnitude more likely. 1313: 1239: 8846: 8731:World energy supply and consumption 7464:Criticality accidents and incidents 6489:Integral Molten Salt Reactor (IMSR) 4770:Bohr, Niels; Wheeler, John (1939). 4651:, Simon and Schuster, pp. 267–270, 4405:"The Bakerian Lecture: The neutron" 4195:. Quartet Books. pp. 134–137. 4120: 4109: 3880: 3831: 3389:. Anmol Publications. p. 202. 3383:M. G. Arora & M. Singh (1994). 3099:In November 1941, John Dunning and 2796:The nuclear fission display at the 2713:while the newspapers stated he had 2450: 1325: 939:even by the energetic standards of 24: 7568:Nuclear power accidents by country 7264:Radioactivity in the life sciences 6298: 5449:Positron-emission tomography (PET) 4923: 4815:. Viking Penguin. pp. 28–30. 4804: 4772:"The Mechanism of Nuclear Fission" 4409:Proceedings of the Royal Society A 4375:Proceedings of the Royal Society A 3495:An Introduction to Nuclear Fission 3129:Washington University in St. Louis 2890:Carnegie Institution of Washington 2503:or a local power system such as a 2432:and loaded into fuel assemblies." 2421:, the enriched U contains 2.5~4.5 2355: 2244: 1322:, and was first observed in 1940. 25: 8925: 7800:Bulletin of the Atomic Scientists 5472:Neutron capture therapy of cancer 5371:Radioisotope thermoelectric (RTG) 5033: 4463:Zeitschrift für Angewandte Chemie 4319:"Possible Existence of a Neutron" 3869:Bulletin of the Atomic Scientists 3694: 3511: 3465: 3410:Gopal B. Saha (1 November 2010). 2650:for Chemistry, today part of the 2425:of U, which is fabricated into UO 1877: 8845: 8833: 8821: 8810: 8809: 7889: 7888: 7878: 7661:Kramatorsk radiological accident 6907: 6896: 6895: 6883: 6572:Fast Breeder Test Reactor (FBTR) 5050:The Discovery of Nuclear Fission 3413:Fundamentals of Nuclear Pharmacy 3319: 3305: 2577: 2471:Philippsburg Nuclear Power Plant 2235: 2219: 2211: 2171: 2159: 2124: 2105: 2075:Carl Friedrich von Weizsäcker's 1969: 1951: 1933: 1922: 1914: 1740:, which itself is caused by the 1571:are a million times higher than 1383:, the packing fraction curve of 1335:. Occurring least frequently is 1062:was negligible, as predicted by 868: 867: 854: 82: 7563:List of orphan source incidents 5661:Historical stockpiles and tests 4894:The Journal of Chemical Physics 4878: 4829: 4763: 4709: 4662: 4641: 4606: 4585: 4556: 4536: 4522: 4489: 4450: 4437: 4362: 4310: 4285: 4235: 4209: 4182: 4158: 4139: 4053:L. Bonneau; P. Quentin (2005). 4046: 4021: 3972: 3940: 3927: 3810: 3784: 3738: 3282:, sixteen sites (the so-called 2911:Fission chain reaction realized 2383:neutron multiplication factor k 2326:. For lighter nuclei less than 2299:. This result is attributed to 6562:Energy Multiplier Module (EM2) 5444:Single-photon emission (SPECT) 5040:The Effects of Nuclear Weapons 4942:. January 1993. Archived from 4595:, Simon and Schuster, p. 268, 3648: 3602: 3577: 3403: 3376: 2224: 2207: 2032:is the mass of a neutron, and 1926: 1910: 1271:as the product of such decay. 947:Nuclear fission was discovered 13: 1: 7885:Nuclear technology portal 6890:Nuclear technology portal 4649:The Making of the Atomic Bomb 4593:The Making of the Atomic Bomb 3561:The Making of the Atomic Bomb 3370: 3234:Berkeley Radiation Laboratory 3015:Advisory Committee on Uranium 2808:After the Fermi publication, 2332:= 20, the line has the slope 1521: 7655:Andreev Bay nuclear accident 7642:Chazhma Bay nuclear accident 6752:Field-reversed configuration 6362:Uranium Naturel Graphite Gaz 4563:Frisch, Otto Robert (1980). 4371:"The existence of a neutron" 4271:10.1080/14786435.2011.617037 3982:Nuclear Engineering Overview 3954:and highly charged particles 3863:Hans A. Bethe (April 1950), 3818:Neutrons, Nuclei, and Matter 3497:. Springer. pp. 28–30. 3255:", a uranium-235 bomb, and " 3202:U.S. Army Corps of Engineers 3190:Manhattan Project and beyond 3143:'s graphite bricks at their 3115:developing centrifuges, and 3105:National Academy of Sciences 2627:Discovery of nuclear fission 2621:Discovery of nuclear fission 2480:subcritical fission reactors 1724:energy of 2 MeV, but a 1379:Bohr and Wheeler used their 1267:, plus about 3 percent from 1244: 1142:problem. However, the seven 1089:and drives the explosion of 62:forces that bind the neutron 48:Induced fission reaction. A 7: 7589:Nyonoksa radiation accident 7152:Cosmic background radiation 6709:Aircraft Reactor Experiment 5894: 5656:States with nuclear weapons 3298: 3259:", a plutonium bomb – were 2077:semi-empirical mass formula 1193:fission as an energy source 1144:long-lived fission products 648:High-energy nuclear physics 10: 8930: 7932: 7861:Russell–Einstein Manifesto 7784:Films about nuclear issues 7779:Books about nuclear issues 7667:Three Mile Island accident 7595:Fukushima nuclear accident 7474:Military nuclear accidents 7469:Nuclear meltdown accidents 7381: 7239:Lasers and aviation safety 6722: 6547:Liquid-metal-cooled (LMFR) 5671:Tests in the United States 4062:AIP Conference Proceedings 3792:"Essential cross sections" 3583:S. Vermote, et al. (2008) 3416:. Springer. pp. 11–. 3193: 2959:, reported in the journal 2624: 2615: 2560:pressurized water reactors 2454: 2373: 1849:the other hand, so-called 1046:was discovered in 1940 by 36: 29: 8805: 8779: 8655: 8535:Fossil fuel power station 8503: 8416: 8322: 8197:Electric potential energy 8162: 8142:Thermodynamic temperature 8122:Thermodynamic free energy 8117:Thermodynamic equilibrium 7963: 7940: 7874: 7821:Nuclear-Free Future Award 7759: 7730:Totskoye nuclear exercise 7576: 7558:Sunken nuclear submarines 7443: 7379: 7343: 7307: 7269:Radioactive contamination 7194: 7122:Electromagnetic radiation 7112: 7024: 6971: 6964: 6877: 6833: 6785: 6742: 6732: 6684: 6672:Stable Salt Reactor (SSR) 6585: 6567:Reduced-moderation (RMWR) 6532: 6515: 6455: 6382: 6374:Advanced gas-cooled (AGR) 6348: 6339: 6291: 6271: 6224: 6206: 6162: 6067: 6049: 5917: 5904: 5889: 5876: 5831: 5764: 5709: 5700: 5648: 5556: 5547: 5514: 5457: 5419: 5410: 5331: 5263: 5186: 5128: 5124: 5082:Nuclear Fission Animation 5065:Nuclear Fission Explained 4940:U.S. Department of Energy 4101:: CS1 maint: unfit URL ( 3655:Feenberg, eugene (1939). 3313:Nuclear technology portal 3062:Frisch–Peierls memorandum 2985:In August 1939, Szilard, 2924:neutrons when it absorbs 2652:Free University of Berlin 2413:is based on one of three 1784: 1742:Pauli exclusion principle 1720:(fission neutrons have a 1066:; it was not negligible. 990:electromagnetic radiation 8606:Concentrated solar power 7382:See also the categories 7320:1996 Costa Rica accident 6981:Acoustic radiation force 6577:Dual fluid reactor (DFR) 6193:Steam-generating (SGHWR) 5529:Electron-beam processing 5078:What is Nuclear Fission? 4635:10.1103/PhysRev.55.511.2 4483:10.1002/ange.19340473707 3883:Physics of Atomic Nuclei 3771:10.1103/PhysRev.55.418.2 3681:10.1103/PhysRev.55.504.2 3559:Rhodes, Richard (1986). 3345:Fission fragment reactor 3238:Metallurgical Laboratory 3047:, Frisch teamed up with 3045:University of Birmingham 2705:itself into argon gas!" 2533:Thermal breeder reactors 1526: 37:Not to be confused with 8147:Volume (thermodynamics) 8127:Thermodynamic potential 8030:Mass–energy equivalence 7836:Nuclear power phase-out 7294:Radiation heat-transfer 7147:Gravitational radiation 6692:Organic nuclear reactor 5864:Nuclear power phase-out 5787:Nuclear decommissioning 5727:Reactor-grade plutonium 5477:Targeted alpha-particle 5356:Accidents and incidents 5025:10.3389/fphy.2020.00063 4647:Richard Rhodes (1986). 4591:Richard Rhodes. (1986) 3609:Dempster, A.J. (1938). 3141:National Carbon Company 3034:glass mass spectrometer 3007:Einstein–Szilárd letter 2568:nuclear reactor coolant 2551:, now decommissioned). 2457:Nuclear reactor physics 2048:mass-energy equivalence 1738:neutron pairing effects 1408:and is about 6 MeV for 1389:mass-energy equivalence 1385:Arthur Jeffrey Dempster 159:Interacting boson model 8102:Quantum thermodynamics 8092:Laws of thermodynamics 7973:Conservation of energy 7841:Nuclear weapons debate 7335:1990 Zaragoza accident 7330:1984 Moroccan accident 7299:Linear energy transfer 6973:Non-ionizing radiation 4811:Zoellner, Tom (2009). 4797:10.1103/PhysRev.56.426 4565:What Little I Remember 4445:La Ricerca Scientifica 4430:10.1098/rspa.1933.0152 4396:10.1098/rspa.1932.0112 4251:Philosophical Magazine 4242:E. Rutherford (1911). 3838:Marion Brünglinghaus. 2978: 2805: 2781:Nobel Prize in Physics 2777:ausenium and hesperium 2771:and his colleagues in 2648:Kaiser Wilhelm Society 2643: 2603: 2564:boiling water reactors 2474: 2376:Nuclear chain reaction 2371: 2251: 1992: 1887: 1825: 1542: 1310: 1288:Fission product yields 1280: 1099:nuclear chain reaction 975:nuclear chain reaction 69: 8219:Interatomic potential 8010:Energy transformation 7699:K-19 nuclear accident 7494:Nuclear weapons tests 7325:1987 Goiânia accident 7127:Synchrotron radiation 7117:Earth's energy budget 7099:Radioactive materials 7094:Particle accelerators 5854:Anti-nuclear movement 4885:P. K. Kuroda (1956). 4459:"Über das Element 93" 4403:Chadwick, J. (1933). 4369:Chadwick, J. (1932). 4121:Lee, John C. (2020). 3720:Lilley, John (2001). 3635:10.1103/PhysRev.53.64 3350:Hybrid fusion/fission 3272:Criticality in nature 3242:J. Robert Oppenheimer 3030:uranium tetrachloride 3005:. On 11 October, the 2973: 2945:Frédéric Joliot-Curie 2795: 2634: 2585: 2486:to trigger fissions. 2484:particle accelerators 2464: 2363: 2301:nucleon pair breaking 2252: 1993: 1885: 1815: 1766:, whereas those like 1746:fast-neutron reactors 1534: 1471:thermonuclear weapons 1286: 1277: 1222:fast breeder reactors 1013:nuclear transmutation 1011:Fission is a form of 546:High-energy processes 244:– equal all the above 142:Models of the nucleus 47: 18:Thermonuclear fission 8667:Efficient energy use 8640:Airborne wind energy 8618:Solar thermal energy 8525:Electricity delivery 8137:Thermodynamic system 8082:Irreversible process 7831:Nuclear power debate 7693:Cuban Missile Crisis 7544:in the United States 7396:Radiation protection 7249:Radiation protection 7137:Black-body radiation 7044:Background radiation 6959:(physics and health) 6762:Reversed field pinch 6557:Traveling-wave (TWR) 6041:Supercritical (SCWR) 5539:Gemstone irradiation 4994:Frontiers in Physics 4457:Ida Noddack (1934). 4317:J. Chadwick (1932). 3284:Oklo Fossil Reactors 3222:Oak Ridge, Tennessee 2853:Princeton University 2529:fast breeder reactor 2085: 1904: 1706:thermonuclear weapon 1418:Maria Goeppert Mayer 1226:Nuclear reprocessing 582:nuclear astrophysics 8914:Austrian inventions 8689:Energy conservation 8611:Photovoltaic system 8584:Nuclear power plant 8269:Quantum fluctuation 8132:Thermodynamic state 8107:Thermal equilibrium 7816:Nuclear close calls 7366:Radiation hardening 7308:Radiation incidents 7244:Medical radiography 7203:Radiation syndrome 7157:Cherenkov radiation 5927:Aqueous homogeneous 5722:Reprocessed uranium 5395:Safety and security 5016:2020FrP.....8...63B 4906:1956JChPh..25..781K 4854:1939Natur.143..680V 4788:1939PhRv...56..426B 4734:1939Natur.143..239M 4687:1939NW.....27...89H 4675:Naturwissenschaften 4627:1939PhRv...55..511A 4475:1934AngCh..47..653N 4421:1933RSPSA.142....1C 4387:1932RSPSA.136..692C 4338:1932Natur.129Q.312C 4263:2012PMag...92..379R 4155:. atomicarchive.com 4074:2005AIPC..798...77B 3968:on 25 January 2017. 3905:2004PAN....67.1892K 3865:"The Hydrogen Bomb" 3763:1939PhRv...55..418B 3673:1939PhRv...55..504F 3627:1938PhRv...53...64D 3441:Петржак, Константин 3158:Herbert L. Anderson 3149:reproduction factor 2870:Herbert L. Anderson 2865:Columbia University 2838:. Hahn suggested a 2760:stated, "A beam of 2592:atomic bomb dropped 2527:. The better known 2320:is plotted against 1748:, and in weapons). 1422:nuclear shell model 1420:later proposed the 1320:spontaneous fission 1129:hydrogen fuel cells 1044:Spontaneous fission 986:exothermic reaction 564:Photodisintegration 487:Capturing processes 401:Spontaneous fission 394:Internal conversion 325:Valley of stability 320:Island of stability 154:Nuclear shell model 8726:Sustainable energy 8704:Energy development 8694:Energy consumption 8530:Energy engineering 7724:Operation Plumbbob 7687:Operation Fishbowl 7624:Chernobyl disaster 7361:Radioactive source 7182:Radiation exposure 7162:Askaryan radiation 7142:Particle radiation 7026:Ionizing radiation 6841:Dense plasma focus 5756:Actinide chemistry 5221:Isotope separation 5118:Nuclear technology 5074:2018-03-08 at the 5055:2010-02-16 at the 4695:10.1007/BF01488988 3796:LibreTexts Library 3360:Nuclear propulsion 3226:uranium enrichment 3145:Pupin Laboratories 3122:On 23 April 1942, 3083:On 28 March 1941, 3072:In December 1940, 3009:was delivered via 3003:Franklin Roosevelt 2979: 2832:Otto Robert Frisch 2806: 2743:ionization chamber 2737:English physicist 2644: 2604: 2537:thorium fuel cycle 2501:generating station 2475: 2411:nuclear fuel cycle 2372: 2247: 1988: 1888: 1826: 1543: 1516:neutron absorption 1311: 1281: 1230:spent nuclear fuel 1197:thorium fuel cycle 1148:Neutron absorption 1073:processes such as 996:of the fragments ( 967:biological fission 963:Otto Robert Frisch 861:Physics portal 655:Quark–gluon plasma 438:Radiogenic nuclide 70: 8904:German inventions 8884:Nuclear chemistry 8861: 8860: 8628:Solar power tower 8274:Quantum potential 8112:Thermal reservoir 8015:Energy transition 7900: 7899: 7826:Nuclear-free zone 7789:Anti-war movement 7745:Rocky Flats Plant 7403: 7402: 7384:Radiation effects 7254:Radiation therapy 7190: 7189: 7132:Thermal radiation 7069:Neutron radiation 7034:Radioactive decay 6923: 6922: 6873: 6872: 6869: 6868: 6820:Magnetized-target 6717: 6716: 6680: 6679: 6511: 6510: 6507: 6506: 6451: 6450: 6335: 6334: 6267: 6266: 5872: 5871: 5827: 5826: 5696: 5695: 5683:Weapon-free zones 5510: 5509: 5502:Radiopharmacology 5069:Nuclear Files.org 5063:atomicarchive.com 4914:10.1063/1.1743058 4822:978-0-670-02064-5 4728:(3615): 239–240. 4507:978-0-520-23106-1 4228:978-4-00-009766-6 4202:978-0-7043-3382-6 4082:10.1063/1.2137231 3913:10.1134/1.1811196 3840:"Nuclear fission" 3826:978-0-486-48238-5 3745:Bohr, N. (1939). 3423:978-1-4419-5860-0 3386:Nuclear Chemistry 3206:Manhattan Project 3196:Manhattan Project 3183:boron trifluoride 3078:gaseous diffusion 3060:, they wrote the 3026:Alfred O. C. Nier 2993:thought that the 2680:Liquid drop model 2660:Ernest Rutherford 2512:research reactors 2505:nuclear submarine 2275:fission fragments 2239: 2189: 1835:Coulomb repulsion 1818:Coulomb explosion 1402:activation energy 1381:liquid drop model 1370:megaelectronvolts 1314:Radioactive decay 1240:Physical overview 1234:closed fuel cycle 1071:quantum tunneling 941:radioactive decay 911: 910: 597: 343:Radioactive decay 299:Nuclear stability 126:Nuclear structure 52:is absorbed by a 16:(Redirected from 8921: 8849: 8848: 8837: 8825: 8824: 8813: 8812: 8787:Carbon footprint 8721:Renewable energy 8562:Hydroelectricity 8552:Geothermal power 7995:Energy condition 7927: 7920: 7913: 7904: 7903: 7892: 7891: 7883: 7882: 7881: 7712:Kyshtym disaster 7707:nuclear meltdown 7634:Related articles 7618:Goiânia accident 7430: 7423: 7416: 7407: 7406: 7344:Related articles 7259:Radiation damage 7084:Nuclear reactors 6969: 6968: 6950: 6943: 6936: 6927: 6926: 6911: 6910: 6899: 6898: 6888: 6887: 6886: 6798: 6757:Levitated dipole 6727: 6719: 6718: 6667:Helium gas (GFR) 6530: 6529: 6525: 6462: 6461: 6346: 6345: 6296: 6295: 6289: 6288: 6284: 6283: 6065: 6064: 6061: 6060: 5899: 5891: 5890: 5883:Nuclear reactors 5878: 5877: 5777:High-level (HLW) 5707: 5706: 5554: 5553: 5534:Food irradiation 5524:Atomic gardening 5417: 5416: 5400:Nuclear meltdown 5226:Nuclear material 5216:Fissile material 5211:Fertile material 5126: 5125: 5111: 5104: 5097: 5088: 5087: 5029: 5027: 5009: 4984: 4982: 4981: 4975: 4968: 4957: 4955: 4954: 4948: 4937: 4918: 4917: 4891: 4882: 4876: 4875: 4865: 4863:10.1038/143680a0 4833: 4827: 4826: 4808: 4802: 4801: 4799: 4767: 4761: 4760: 4758: 4756: 4742:10.1038/143239a0 4713: 4707: 4706: 4666: 4660: 4645: 4639: 4638: 4610: 4604: 4589: 4583: 4582: 4560: 4554: 4553: 4540: 4534: 4533: 4526: 4520: 4519: 4493: 4487: 4486: 4454: 4448: 4441: 4435: 4434: 4432: 4400: 4398: 4381:(830): 692–708. 4366: 4360: 4359: 4349: 4347:10.1038/129312a0 4323: 4314: 4308: 4307: 4305: 4304: 4289: 4283: 4282: 4248: 4239: 4233: 4232: 4213: 4207: 4206: 4186: 4180: 4179: 4162: 4156: 4143: 4137: 4136: 4118: 4107: 4106: 4100: 4092: 4090: 4089: 4059: 4050: 4044: 4043: 4041: 4040: 4025: 4019: 4018: 4017:on May 15, 2018. 4016: 4009: 3976: 3970: 3969: 3967: 3961:. Archived from 3960: 3944: 3938: 3931: 3925: 3924: 3898: 3878: 3872: 3861: 3855: 3854: 3852: 3851: 3835: 3829: 3816:J. Byrne (2011) 3814: 3808: 3807: 3805: 3803: 3788: 3782: 3781: 3779: 3777: 3742: 3736: 3735: 3717: 3692: 3691: 3689: 3687: 3652: 3646: 3645: 3643: 3641: 3606: 3600: 3581: 3575: 3574: 3556: 3509: 3508: 3490: 3463: 3462: 3437: 3428: 3427: 3407: 3401: 3400: 3380: 3340:Fissile material 3329: 3324: 3323: 3315: 3310: 3309: 3308: 3210:Leslie R. Groves 3133:Glenn T. Seaborg 3113:Eger V. Murphree 2906: 2904: 2903: 2886:Washington, D.C. 2818:Fritz Strassmann 2798:Deutsches Museum 2762:thermal neutrons 2752:In the words of 2664:Rutherford model 2520:breeder reactors 2451:Fission reactors 2343: 2337: 2331: 2325: 2319: 2298: 2292: 2282: 2269: 2263: 2256: 2254: 2253: 2248: 2240: 2238: 2233: 2232: 2231: 2222: 2214: 2205: 2203: 2202: 2190: 2188: 2187: 2183: 2174: 2168: 2167: 2162: 2156: 2154: 2153: 2141: 2140: 2136: 2127: 2121: 2120: 2108: 2103: 2102: 2071: 2065: 2059: 2045: 2035: 2031: 2024: 2013: 2003: 1997: 1995: 1994: 1989: 1987: 1986: 1977: 1972: 1964: 1963: 1954: 1946: 1945: 1936: 1925: 1917: 1899: 1859:delayed-critical 1851:delayed neutrons 1792:delayed neutrons 1776: 1774: 1773: 1761: 1759: 1758: 1731:Among the heavy 1719: 1717: 1716: 1703: 1701: 1700: 1688: 1686: 1685: 1677: 1675: 1674: 1662: 1660: 1659: 1652:, the resulting 1651: 1649: 1648: 1636: 1634: 1633: 1625: 1623: 1622: 1614: 1612: 1611: 1603: 1601: 1600: 1592: 1590: 1589: 1581: 1579: 1578: 1570: 1568: 1567: 1559: 1557: 1556: 1513: 1511: 1510: 1498: 1496: 1495: 1487: 1485: 1484: 1451:over periods of 1438:fission products 1333:nuclear reaction 1326:Nuclear reaction 1257:fission products 1211: 1208: 1207: 1190: 1188: 1187: 1179: 1177: 1176: 1164: 1162: 1161: 1122: 1120: 1119: 955:Fritz Strassmann 903: 896: 889: 876: 871: 870: 863: 859: 858: 735:Skłodowska-Curie 595: 411:Neutron emission 179:' classification 131:Nuclear reaction 86: 72: 71: 21: 8929: 8928: 8924: 8923: 8922: 8920: 8919: 8918: 8899:1938 in science 8889:Neutron sources 8879:Nuclear physics 8874:Nuclear fission 8864: 8863: 8862: 8857: 8801: 8797:Waste-to-energy 8775: 8711:Energy security 8657: 8651: 8507: 8499: 8478:Natural uranium 8412: 8393:Mechanical wave 8324:Energy carriers 8318: 8158: 8087:Isolated system 7965: 7959: 7936: 7931: 7901: 7896: 7879: 7877: 7870: 7846:Peace activists 7761: 7755: 7580: 7578: 7572: 7450: 7448: 7446: 7439: 7434: 7404: 7399: 7398: 7375: 7371:Havana syndrome 7356:Nuclear physics 7339: 7303: 7196: 7186: 7172:Unruh radiation 7108: 7089:Nuclear weapons 7074:Nuclear fission 7020: 6960: 6954: 6924: 6919: 6884: 6882: 6865: 6829: 6796: 6781: 6738: 6728: 6723: 6713: 6676: 6581: 6526: 6519: 6518: 6503: 6447: 6378: 6353: 6331: 6303: 6285: 6278: 6277: 6276: 6263: 6229: 6220: 6202: 6167: 6158: 6072: 6055: 6054: 6053: 6045: 5959:Natural fission 5913: 5912: 5900: 5895: 5885: 5868: 5844:Nuclear weapons 5823: 5782:Low-level (LLW) 5760: 5692: 5644: 5543: 5506: 5453: 5406: 5327: 5259: 5182: 5120: 5115: 5076:Wayback Machine 5057:Wayback Machine 5036: 4979: 4977: 4973: 4966: 4960: 4952: 4950: 4946: 4935: 4929: 4926: 4924:Further reading 4921: 4889: 4883: 4879: 4834: 4830: 4823: 4809: 4805: 4776:Physical Review 4768: 4764: 4754: 4752: 4714: 4710: 4667: 4663: 4646: 4642: 4615:Physical Review 4611: 4607: 4590: 4586: 4575: 4561: 4557: 4542: 4541: 4537: 4528: 4527: 4523: 4508: 4494: 4490: 4455: 4451: 4442: 4438: 4367: 4363: 4321: 4315: 4311: 4302: 4300: 4291: 4290: 4286: 4246: 4240: 4236: 4229: 4215: 4214: 4210: 4203: 4187: 4183: 4176: 4164: 4163: 4159: 4144: 4140: 4133: 4119: 4110: 4094: 4093: 4087: 4085: 4057: 4051: 4047: 4038: 4036: 4027: 4026: 4022: 4014: 4007: 3978: 3977: 3973: 3965: 3958: 3946: 3945: 3941: 3932: 3928: 3879: 3875: 3862: 3858: 3849: 3847: 3836: 3832: 3815: 3811: 3801: 3799: 3790: 3789: 3785: 3775: 3773: 3751:Physical Review 3743: 3739: 3732: 3718: 3695: 3685: 3683: 3661:Physical Review 3653: 3649: 3639: 3637: 3615:Physical Review 3607: 3603: 3582: 3578: 3571: 3557: 3512: 3505: 3491: 3466: 3459: 3438: 3431: 3424: 3408: 3404: 3397: 3381: 3377: 3373: 3325: 3318: 3311: 3306: 3304: 3301: 3269: 3198: 3192: 3101:Eugene T. Booth 3022:John R. Dunning 3011:Alexander Sachs 2999:Albert Einstein 2953:Hans von Halban 2913: 2902: 2900: 2899: 2898: 2897: 2758:Philip Morrison 2695:Frederick Soddy 2689:had found, and 2687:Henri Becquerel 2629: 2623: 2618: 2596:Nagasaki, Japan 2580: 2459: 2453: 2428: 2378: 2358: 2356:Chain reactions 2339: 2333: 2327: 2321: 2315: 2294: 2288: 2278: 2265: 2259: 2234: 2227: 2223: 2218: 2210: 2206: 2204: 2198: 2194: 2179: 2175: 2170: 2169: 2163: 2158: 2157: 2155: 2149: 2145: 2132: 2128: 2123: 2122: 2116: 2112: 2104: 2098: 2094: 2086: 2083: 2082: 2067: 2061: 2055: 2041: 2033: 2030: 2026: 2023: 2019: 2009: 1999: 1982: 1978: 1973: 1968: 1959: 1955: 1950: 1941: 1937: 1932: 1921: 1913: 1905: 1902: 1901: 1895: 1880: 1863:prompt critical 1855:reactor control 1816:Animation of a 1787: 1772: 1770: 1769: 1768: 1767: 1757: 1755: 1754: 1753: 1752: 1715: 1713: 1712: 1711: 1710: 1699: 1697: 1696: 1695: 1694: 1684: 1682: 1681: 1680: 1679: 1673: 1671: 1670: 1669: 1668: 1658: 1656: 1655: 1654: 1653: 1647: 1645: 1644: 1643: 1642: 1632: 1630: 1629: 1628: 1627: 1626:target forms a 1621: 1619: 1618: 1617: 1616: 1610: 1608: 1607: 1606: 1605: 1599: 1597: 1596: 1595: 1594: 1588: 1586: 1585: 1584: 1583: 1577: 1575: 1574: 1573: 1572: 1566: 1564: 1563: 1562: 1561: 1555: 1553: 1552: 1551: 1550: 1529: 1524: 1509: 1507: 1506: 1505: 1504: 1494: 1492: 1491: 1490: 1489: 1483: 1481: 1480: 1479: 1478: 1406:fission barrier 1393:surface tension 1337:ternary fission 1328: 1316: 1292:thermal neutron 1247: 1242: 1206: 1204: 1203: 1202: 1200: 1186: 1184: 1183: 1182: 1181: 1175: 1173: 1172: 1171: 1170: 1167:minor actinides 1160: 1158: 1157: 1156: 1155: 1118: 1116: 1115: 1114: 1113: 1103:nuclear reactor 1091:nuclear weapons 1075:proton emission 1032:ternary fission 957:and physicists 914:Nuclear fission 907: 866: 853: 852: 845: 844: 680: 670: 669: 650: 640: 639: 584: 580: 577:Nucleosynthesis 569: 568: 547: 539: 538: 488: 480: 479: 453: 451:Nuclear fission 443: 442: 416:Proton emission 345: 335: 334: 300: 292: 291: 193: 180: 169: 168: 144: 76:Nuclear physics 42: 35: 28: 23: 22: 15: 12: 11: 5: 8927: 8917: 8916: 8911: 8906: 8901: 8896: 8891: 8886: 8881: 8876: 8859: 8858: 8856: 8855: 8843: 8831: 8819: 8806: 8803: 8802: 8800: 8799: 8794: 8792:Jevons paradox 8789: 8783: 8781: 8777: 8776: 8774: 8773: 8768: 8763: 8758: 8753: 8748: 8743: 8738: 8733: 8728: 8723: 8718: 8716:Energy storage 8713: 8708: 8707: 8706: 8696: 8691: 8686: 8685: 8684: 8679: 8674: 8663: 8661: 8653: 8652: 8650: 8649: 8648: 8647: 8642: 8632: 8631: 8630: 8625: 8615: 8614: 8613: 8608: 8598: 8593: 8592: 8591: 8586: 8576: 8575: 8574: 8569: 8564: 8554: 8549: 8548: 8547: 8542: 8532: 8527: 8522: 8520:Electric power 8517: 8511: 8509: 8501: 8500: 8498: 8497: 8492: 8487: 8482: 8481: 8480: 8470: 8465: 8460: 8455: 8450: 8449: 8448: 8443: 8438: 8428: 8422: 8420: 8418:Primary energy 8414: 8413: 8411: 8410: 8405: 8400: 8395: 8390: 8389: 8388: 8378: 8377: 8376: 8366: 8365: 8364: 8359: 8349: 8344: 8339: 8334: 8328: 8326: 8320: 8319: 8317: 8316: 8311: 8306: 8301: 8296: 8291: 8286: 8281: 8276: 8271: 8266: 8261: 8256: 8251: 8246: 8241: 8236: 8231: 8226: 8221: 8216: 8215: 8214: 8204: 8199: 8194: 8189: 8184: 8179: 8178: 8177: 8166: 8164: 8160: 8159: 8157: 8156: 8155: 8154: 8149: 8144: 8139: 8134: 8129: 8124: 8119: 8114: 8109: 8104: 8099: 8094: 8089: 8084: 8079: 8074: 8069: 8064: 8059: 8054: 8052:Entropic force 8049: 8042:Thermodynamics 8039: 8034: 8033: 8032: 8027: 8017: 8012: 8007: 8002: 7997: 7992: 7991: 7990: 7980: 7975: 7969: 7967: 7961: 7960: 7958: 7957: 7952: 7947: 7941: 7938: 7937: 7930: 7929: 7922: 7915: 7907: 7898: 7897: 7875: 7872: 7871: 7869: 7868: 7863: 7858: 7853: 7851:Peace movement 7848: 7843: 7838: 7833: 7828: 7823: 7818: 7813: 7808: 7803: 7796: 7791: 7786: 7781: 7776: 7771: 7765: 7763: 7757: 7756: 7754: 7753: 7747: 7742: 7737: 7732: 7726: 7720: 7718:Windscale fire 7714: 7708: 7701: 7695: 7689: 7679: 7677:Lucens reactor 7673: 7663: 7657: 7651: 7644: 7638: 7637: 7636: 7631: 7620: 7614: 7608: 7603: 7597: 7591: 7584: 7582: 7574: 7573: 7571: 7570: 7565: 7560: 7555: 7554: 7553: 7548: 7547: 7546: 7541: 7534:United Kingdom 7531: 7526: 7521: 7516: 7511: 7506: 7501: 7491: 7486: 7481: 7476: 7471: 7466: 7461: 7455: 7453: 7441: 7440: 7433: 7432: 7425: 7418: 7410: 7401: 7400: 7380: 7377: 7376: 7374: 7373: 7368: 7363: 7358: 7353: 7347: 7345: 7341: 7340: 7338: 7337: 7332: 7327: 7322: 7317: 7311: 7309: 7305: 7304: 7302: 7301: 7296: 7291: 7286: 7281: 7276: 7271: 7266: 7261: 7256: 7251: 7246: 7241: 7236: 7231: 7226: 7221: 7219:Health physics 7216: 7215: 7214: 7209: 7200: 7198: 7192: 7191: 7188: 7187: 7185: 7184: 7179: 7177:Dark radiation 7174: 7169: 7167:Bremsstrahlung 7164: 7159: 7154: 7149: 7144: 7139: 7134: 7129: 7124: 7119: 7113: 7110: 7109: 7107: 7106: 7101: 7096: 7091: 7086: 7081: 7079:Nuclear fusion 7076: 7071: 7066: 7061: 7056: 7051: 7049:Alpha particle 7046: 7041: 7036: 7030: 7028: 7022: 7021: 7019: 7018: 7013: 7008: 7003: 6998: 6993: 6988: 6983: 6977: 6975: 6966: 6962: 6961: 6953: 6952: 6945: 6938: 6930: 6921: 6920: 6918: 6917: 6905: 6893: 6878: 6875: 6874: 6871: 6870: 6867: 6866: 6864: 6863: 6858: 6853: 6851:Muon-catalyzed 6848: 6843: 6837: 6835: 6831: 6830: 6828: 6827: 6822: 6817: 6812: 6811: 6810: 6800: 6791: 6789: 6783: 6782: 6780: 6779: 6774: 6769: 6764: 6759: 6754: 6748: 6746: 6740: 6739: 6733: 6730: 6729: 6715: 6714: 6712: 6711: 6706: 6705: 6704: 6699: 6688: 6686: 6682: 6681: 6678: 6677: 6675: 6674: 6669: 6664: 6659: 6658: 6657: 6652: 6647: 6642: 6637: 6632: 6627: 6622: 6617: 6612: 6607: 6602: 6591: 6589: 6583: 6582: 6580: 6579: 6574: 6569: 6564: 6559: 6554: 6549: 6544: 6542:Integral (IFR) 6539: 6533: 6527: 6516: 6513: 6512: 6509: 6508: 6505: 6504: 6502: 6501: 6496: 6491: 6486: 6481: 6476: 6470: 6468: 6459: 6453: 6452: 6449: 6448: 6446: 6445: 6444: 6443: 6438: 6437: 6436: 6431: 6426: 6421: 6406: 6401: 6400: 6399: 6388: 6386: 6380: 6379: 6377: 6376: 6371: 6366: 6357: 6355: 6351: 6343: 6337: 6336: 6333: 6332: 6330: 6329: 6324: 6319: 6314: 6308: 6306: 6301: 6293: 6286: 6272: 6269: 6268: 6265: 6264: 6262: 6261: 6260: 6259: 6254: 6249: 6244: 6233: 6231: 6227: 6222: 6221: 6219: 6218: 6212: 6210: 6204: 6203: 6201: 6200: 6195: 6190: 6189: 6188: 6183: 6172: 6170: 6165: 6160: 6159: 6157: 6156: 6155: 6154: 6149: 6144: 6139: 6134: 6133: 6132: 6127: 6122: 6112: 6107: 6106: 6105: 6100: 6097: 6094: 6091: 6077: 6075: 6070: 6062: 6047: 6046: 6044: 6043: 6038: 6037: 6036: 6033: 6028: 6023: 6022: 6021: 6016: 6006: 6001: 5996: 5991: 5986: 5981: 5976: 5971: 5961: 5956: 5955: 5954: 5949: 5944: 5939: 5929: 5923: 5921: 5915: 5914: 5906: 5905: 5902: 5901: 5887: 5886: 5874: 5873: 5870: 5869: 5867: 5866: 5861: 5859:Uranium mining 5856: 5851: 5846: 5841: 5835: 5833: 5829: 5828: 5825: 5824: 5822: 5821: 5816: 5815: 5814: 5809: 5799: 5794: 5789: 5784: 5779: 5774: 5768: 5766: 5762: 5761: 5759: 5758: 5753: 5752: 5751: 5741: 5736: 5735: 5734: 5732:Minor actinide 5729: 5724: 5713: 5711: 5704: 5698: 5697: 5694: 5693: 5691: 5690: 5685: 5680: 5675: 5674: 5673: 5668: 5658: 5652: 5650: 5646: 5645: 5643: 5642: 5641: 5640: 5630: 5625: 5624: 5623: 5618: 5608: 5603: 5598: 5597: 5596: 5586: 5581: 5576: 5571: 5566: 5560: 5558: 5551: 5545: 5544: 5542: 5541: 5536: 5531: 5526: 5520: 5518: 5512: 5511: 5508: 5507: 5505: 5504: 5499: 5494: 5489: 5484: 5479: 5474: 5469: 5463: 5461: 5455: 5454: 5452: 5451: 5446: 5441: 5436: 5431: 5429:Autoradiograph 5425: 5423: 5414: 5408: 5407: 5405: 5404: 5403: 5402: 5392: 5391: 5390: 5380: 5379: 5378: 5368: 5363: 5358: 5353: 5348: 5343: 5337: 5335: 5329: 5328: 5326: 5325: 5320: 5315: 5310: 5305: 5300: 5295: 5290: 5285: 5280: 5275: 5269: 5267: 5261: 5260: 5258: 5257: 5256: 5255: 5250: 5245: 5244: 5243: 5238: 5223: 5218: 5213: 5208: 5203: 5198: 5192: 5190: 5184: 5183: 5181: 5180: 5179: 5178: 5173: 5163: 5158: 5153: 5151:Atomic nucleus 5148: 5143: 5138: 5132: 5130: 5122: 5121: 5114: 5113: 5106: 5099: 5091: 5085: 5084: 5079: 5066: 5060: 5047: 5042: 5035: 5034:External links 5032: 5031: 5030: 4985: 4958: 4925: 4922: 4920: 4919: 4877: 4828: 4821: 4803: 4782:(5): 426–450. 4762: 4708: 4671:Strassmann, F. 4661: 4640: 4605: 4584: 4573: 4555: 4552:. 7 July 2015. 4535: 4521: 4506: 4488: 4449: 4436: 4361: 4309: 4284: 4257:(4): 669–688. 4234: 4227: 4208: 4201: 4181: 4174: 4157: 4151:2002-10-07 at 4138: 4131: 4108: 4045: 4020: 3986:"167 MeV" 3971: 3939: 3926: 3896:hep-ph/0410100 3873: 3856: 3830: 3809: 3783: 3737: 3730: 3693: 3647: 3601: 3576: 3569: 3510: 3503: 3464: 3457: 3429: 3422: 3402: 3395: 3374: 3372: 3369: 3368: 3367: 3362: 3357: 3355:Nuclear fusion 3352: 3347: 3342: 3337: 3331: 3330: 3316: 3300: 3297: 3288:Francis Perrin 3268: 3265: 3191: 3188: 3175:Frank Spedding 3117:Arthur Compton 3067:MAUD Committee 2976:Chicago Pile-1 2912: 2909: 2901: 2845:binary fission 2754:Richard Rhodes 2739:James Chadwick 2728:John Cockcroft 2719:James Chadwick 2715:split the atom 2710:Ernest Marsden 2625:Main article: 2622: 2619: 2617: 2614: 2588:mushroom cloud 2579: 2576: 2572:heat exchanger 2541: 2540: 2516: 2508: 2496:power reactors 2478:reactions are 2467:cooling towers 2452: 2449: 2445:breeding ratio 2426: 2374:Main article: 2357: 2354: 2285:fragment yield 2246: 2243: 2237: 2230: 2226: 2221: 2217: 2213: 2209: 2201: 2197: 2193: 2186: 2182: 2178: 2173: 2166: 2161: 2152: 2148: 2144: 2139: 2135: 2131: 2126: 2119: 2115: 2111: 2107: 2101: 2097: 2093: 2090: 2038:speed of light 2028: 2021: 1985: 1981: 1976: 1971: 1967: 1962: 1958: 1953: 1949: 1944: 1940: 1935: 1931: 1928: 1924: 1920: 1916: 1912: 1909: 1879: 1878:Binding energy 1876: 1872:Chicago Pile-1 1807:binding energy 1796:decay products 1786: 1783: 1771: 1756: 1714: 1704:directly (see 1698: 1683: 1672: 1657: 1646: 1631: 1620: 1609: 1598: 1587: 1576: 1565: 1554: 1547:cross sections 1528: 1525: 1523: 1520: 1508: 1493: 1482: 1345:chain reaction 1327: 1324: 1315: 1312: 1306:, used in the 1261:kinetic energy 1246: 1243: 1241: 1238: 1205: 1185: 1174: 1159: 1117: 1108:The amount of 1006:binding energy 1002:nuclear fusion 994:kinetic energy 909: 908: 906: 905: 898: 891: 883: 880: 879: 878: 877: 864: 847: 846: 843: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 681: 676: 675: 672: 671: 668: 667: 662: 657: 651: 646: 645: 642: 641: 638: 637: 636: 635: 630: 625: 616: 615: 614: 613: 608: 603: 592: 591: 589:Nuclear fusion 585: 575: 574: 571: 570: 567: 566: 561: 560: 559: 548: 545: 544: 541: 540: 537: 536: 535: 534: 529: 519: 518: 517: 512: 502: 501: 500: 489: 486: 485: 482: 481: 478: 477: 472: 471: 470: 460: 454: 449: 448: 445: 444: 441: 440: 435: 430: 425: 419: 418: 413: 408: 403: 398: 397: 396: 391: 381: 376: 375: 374: 369: 368: 367: 352: 346: 341: 340: 337: 336: 333: 332: 330:Stable nuclide 327: 322: 317: 312: 307: 305:Binding energy 301: 298: 297: 294: 293: 290: 289: 288: 287: 277: 272: 267: 261: 260: 246: 245: 238: 237: 221: 220: 208: 207: 195: 194: 181: 175: 174: 171: 170: 167: 166: 161: 156: 151: 145: 140: 139: 136: 135: 134: 133: 128: 123: 118: 116:Nuclear matter 113: 112: 111: 106: 96: 88: 87: 79: 78: 39:Nuclear fusion 32:Split the Atom 26: 9: 6: 4: 3: 2: 8926: 8915: 8912: 8910: 8907: 8905: 8902: 8900: 8897: 8895: 8894:Radioactivity 8892: 8890: 8887: 8885: 8882: 8880: 8877: 8875: 8872: 8871: 8869: 8854: 8853: 8844: 8842: 8841: 8836: 8832: 8830: 8829: 8820: 8818: 8817: 8808: 8807: 8804: 8798: 8795: 8793: 8790: 8788: 8785: 8784: 8782: 8778: 8772: 8771:United States 8769: 8767: 8766:South America 8764: 8762: 8759: 8757: 8754: 8752: 8749: 8747: 8744: 8742: 8739: 8737: 8734: 8732: 8729: 8727: 8724: 8722: 8719: 8717: 8714: 8712: 8709: 8705: 8702: 8701: 8700: 8699:Energy policy 8697: 8695: 8692: 8690: 8687: 8683: 8680: 8678: 8675: 8673: 8670: 8669: 8668: 8665: 8664: 8662: 8660: 8654: 8646: 8643: 8641: 8638: 8637: 8636: 8633: 8629: 8626: 8624: 8623:Solar furnace 8621: 8620: 8619: 8616: 8612: 8609: 8607: 8604: 8603: 8602: 8599: 8597: 8594: 8590: 8587: 8585: 8582: 8581: 8580: 8579:Nuclear power 8577: 8573: 8570: 8568: 8565: 8563: 8560: 8559: 8558: 8555: 8553: 8550: 8546: 8543: 8541: 8538: 8537: 8536: 8533: 8531: 8528: 8526: 8523: 8521: 8518: 8516: 8513: 8512: 8510: 8506: 8505:Energy system 8502: 8496: 8493: 8491: 8488: 8486: 8483: 8479: 8476: 8475: 8474: 8471: 8469: 8466: 8464: 8461: 8459: 8458:Gravitational 8456: 8454: 8451: 8447: 8444: 8442: 8439: 8437: 8434: 8433: 8432: 8429: 8427: 8424: 8423: 8421: 8419: 8415: 8409: 8406: 8404: 8401: 8399: 8396: 8394: 8391: 8387: 8386:Hydrogen fuel 8384: 8383: 8382: 8379: 8375: 8372: 8371: 8370: 8367: 8363: 8360: 8358: 8355: 8354: 8353: 8350: 8348: 8345: 8343: 8340: 8338: 8335: 8333: 8330: 8329: 8327: 8325: 8321: 8315: 8312: 8310: 8307: 8305: 8302: 8300: 8297: 8295: 8292: 8290: 8287: 8285: 8282: 8280: 8277: 8275: 8272: 8270: 8267: 8265: 8262: 8260: 8257: 8255: 8252: 8250: 8247: 8245: 8242: 8240: 8237: 8235: 8232: 8230: 8227: 8225: 8222: 8220: 8217: 8213: 8210: 8209: 8208: 8207:Gravitational 8205: 8203: 8200: 8198: 8195: 8193: 8190: 8188: 8185: 8183: 8180: 8176: 8173: 8172: 8171: 8168: 8167: 8165: 8161: 8153: 8150: 8148: 8145: 8143: 8140: 8138: 8135: 8133: 8130: 8128: 8125: 8123: 8120: 8118: 8115: 8113: 8110: 8108: 8105: 8103: 8100: 8098: 8095: 8093: 8090: 8088: 8085: 8083: 8080: 8078: 8077:Heat transfer 8075: 8073: 8072:Heat capacity 8070: 8068: 8065: 8063: 8060: 8058: 8055: 8053: 8050: 8048: 8045: 8044: 8043: 8040: 8038: 8035: 8031: 8028: 8026: 8025:Negative mass 8023: 8022: 8021: 8018: 8016: 8013: 8011: 8008: 8006: 8005:Energy system 8003: 8001: 7998: 7996: 7993: 7989: 7986: 7985: 7984: 7981: 7979: 7976: 7974: 7971: 7970: 7968: 7962: 7956: 7953: 7951: 7948: 7946: 7943: 7942: 7939: 7935: 7928: 7923: 7921: 7916: 7914: 7909: 7908: 7905: 7895: 7887: 7886: 7873: 7867: 7864: 7862: 7859: 7857: 7854: 7852: 7849: 7847: 7844: 7842: 7839: 7837: 7834: 7832: 7829: 7827: 7824: 7822: 7819: 7817: 7814: 7812: 7809: 7807: 7804: 7802: 7801: 7797: 7795: 7792: 7790: 7787: 7785: 7782: 7780: 7777: 7775: 7772: 7770: 7767: 7766: 7764: 7758: 7752: 7748: 7746: 7743: 7741: 7738: 7736: 7733: 7731: 7727: 7725: 7721: 7719: 7715: 7713: 7709: 7706: 7702: 7700: 7696: 7694: 7690: 7688: 7684: 7680: 7678: 7674: 7672: 7668: 7664: 7662: 7658: 7656: 7652: 7649: 7645: 7643: 7639: 7635: 7632: 7630: 7627: 7626: 7625: 7621: 7619: 7615: 7613: 7609: 7607: 7604: 7602: 7598: 7596: 7592: 7590: 7586: 7585: 7583: 7575: 7569: 7566: 7564: 7561: 7559: 7556: 7552: 7551:United States 7549: 7545: 7542: 7540: 7537: 7536: 7535: 7532: 7530: 7527: 7525: 7522: 7520: 7517: 7515: 7512: 7510: 7507: 7505: 7502: 7500: 7497: 7496: 7495: 7492: 7490: 7487: 7485: 7482: 7480: 7477: 7475: 7472: 7470: 7467: 7465: 7462: 7460: 7457: 7456: 7454: 7452: 7442: 7438: 7431: 7426: 7424: 7419: 7417: 7412: 7411: 7408: 7397: 7393: 7389: 7388:Radioactivity 7385: 7378: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7352: 7349: 7348: 7346: 7342: 7336: 7333: 7331: 7328: 7326: 7323: 7321: 7318: 7316: 7313: 7312: 7310: 7306: 7300: 7297: 7295: 7292: 7290: 7287: 7285: 7282: 7280: 7277: 7275: 7272: 7270: 7267: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7242: 7240: 7237: 7235: 7232: 7230: 7227: 7225: 7222: 7220: 7217: 7213: 7210: 7208: 7205: 7204: 7202: 7201: 7199: 7193: 7183: 7180: 7178: 7175: 7173: 7170: 7168: 7165: 7163: 7160: 7158: 7155: 7153: 7150: 7148: 7145: 7143: 7140: 7138: 7135: 7133: 7130: 7128: 7125: 7123: 7120: 7118: 7115: 7114: 7111: 7105: 7102: 7100: 7097: 7095: 7092: 7090: 7087: 7085: 7082: 7080: 7077: 7075: 7072: 7070: 7067: 7065: 7062: 7060: 7057: 7055: 7054:Beta particle 7052: 7050: 7047: 7045: 7042: 7040: 7039:Cluster decay 7037: 7035: 7032: 7031: 7029: 7027: 7023: 7017: 7014: 7012: 7009: 7007: 7004: 7002: 6999: 6997: 6994: 6992: 6989: 6987: 6984: 6982: 6979: 6978: 6976: 6974: 6970: 6967: 6965:Main articles 6963: 6958: 6951: 6946: 6944: 6939: 6937: 6932: 6931: 6928: 6916: 6915: 6906: 6904: 6903: 6894: 6892: 6891: 6880: 6879: 6876: 6862: 6859: 6857: 6854: 6852: 6849: 6847: 6844: 6842: 6839: 6838: 6836: 6832: 6826: 6823: 6821: 6818: 6816: 6813: 6809: 6808:electrostatic 6806: 6805: 6804: 6801: 6799: 6793: 6792: 6790: 6788: 6784: 6778: 6775: 6773: 6770: 6768: 6765: 6763: 6760: 6758: 6755: 6753: 6750: 6749: 6747: 6745: 6741: 6737: 6731: 6726: 6720: 6710: 6707: 6703: 6700: 6698: 6695: 6694: 6693: 6690: 6689: 6687: 6683: 6673: 6670: 6668: 6665: 6663: 6660: 6656: 6653: 6651: 6648: 6646: 6643: 6641: 6638: 6636: 6633: 6631: 6628: 6626: 6623: 6621: 6618: 6616: 6613: 6611: 6608: 6606: 6603: 6601: 6598: 6597: 6596: 6593: 6592: 6590: 6588: 6587:Generation IV 6584: 6578: 6575: 6573: 6570: 6568: 6565: 6563: 6560: 6558: 6555: 6553: 6550: 6548: 6545: 6543: 6540: 6538: 6537:Breeder (FBR) 6535: 6534: 6531: 6528: 6523: 6514: 6500: 6497: 6495: 6492: 6490: 6487: 6485: 6482: 6480: 6477: 6475: 6472: 6471: 6469: 6467: 6463: 6460: 6458: 6454: 6442: 6439: 6435: 6432: 6430: 6427: 6425: 6422: 6420: 6417: 6416: 6415: 6412: 6411: 6410: 6407: 6405: 6402: 6398: 6395: 6394: 6393: 6390: 6389: 6387: 6385: 6381: 6375: 6372: 6370: 6367: 6365: 6363: 6359: 6358: 6356: 6354: 6347: 6344: 6342: 6338: 6328: 6325: 6323: 6320: 6318: 6315: 6313: 6310: 6309: 6307: 6305: 6297: 6294: 6290: 6287: 6282: 6275: 6270: 6258: 6255: 6253: 6250: 6248: 6245: 6243: 6240: 6239: 6238: 6235: 6234: 6232: 6230: 6223: 6217: 6214: 6213: 6211: 6209: 6205: 6199: 6196: 6194: 6191: 6187: 6184: 6182: 6179: 6178: 6177: 6174: 6173: 6171: 6169: 6161: 6153: 6150: 6148: 6145: 6143: 6140: 6138: 6135: 6131: 6128: 6126: 6123: 6121: 6118: 6117: 6116: 6113: 6111: 6108: 6104: 6101: 6098: 6095: 6092: 6089: 6088: 6087: 6084: 6083: 6082: 6079: 6078: 6076: 6074: 6066: 6063: 6059: 6052: 6048: 6042: 6039: 6034: 6032: 6029: 6027: 6024: 6020: 6017: 6015: 6012: 6011: 6010: 6007: 6005: 6002: 6000: 5997: 5995: 5992: 5990: 5987: 5985: 5982: 5980: 5977: 5975: 5972: 5970: 5967: 5966: 5965: 5962: 5960: 5957: 5953: 5950: 5948: 5945: 5943: 5940: 5938: 5935: 5934: 5933: 5930: 5928: 5925: 5924: 5922: 5920: 5916: 5911: 5910: 5903: 5898: 5892: 5888: 5884: 5879: 5875: 5865: 5862: 5860: 5857: 5855: 5852: 5850: 5847: 5845: 5842: 5840: 5839:Nuclear power 5837: 5836: 5834: 5830: 5820: 5819:Transmutation 5817: 5813: 5810: 5808: 5805: 5804: 5803: 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5783: 5780: 5778: 5775: 5773: 5770: 5769: 5767: 5763: 5757: 5754: 5750: 5747: 5746: 5745: 5742: 5740: 5737: 5733: 5730: 5728: 5725: 5723: 5720: 5719: 5718: 5715: 5714: 5712: 5708: 5705: 5703: 5699: 5689: 5686: 5684: 5681: 5679: 5676: 5672: 5669: 5667: 5664: 5663: 5662: 5659: 5657: 5654: 5653: 5651: 5647: 5639: 5636: 5635: 5634: 5631: 5629: 5626: 5622: 5619: 5617: 5616:high-altitude 5614: 5613: 5612: 5609: 5607: 5606:Proliferation 5604: 5602: 5599: 5595: 5592: 5591: 5590: 5587: 5585: 5582: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5561: 5559: 5555: 5552: 5550: 5546: 5540: 5537: 5535: 5532: 5530: 5527: 5525: 5522: 5521: 5519: 5517: 5513: 5503: 5500: 5498: 5495: 5493: 5492:Brachytherapy 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5464: 5462: 5460: 5456: 5450: 5447: 5445: 5442: 5440: 5437: 5435: 5432: 5430: 5427: 5426: 5424: 5422: 5418: 5415: 5413: 5409: 5401: 5398: 5397: 5396: 5393: 5389: 5386: 5385: 5384: 5381: 5377: 5374: 5373: 5372: 5369: 5367: 5364: 5362: 5359: 5357: 5354: 5352: 5349: 5347: 5344: 5342: 5339: 5338: 5336: 5334: 5330: 5324: 5321: 5319: 5316: 5314: 5311: 5309: 5306: 5304: 5301: 5299: 5296: 5294: 5291: 5289: 5288:Cross section 5286: 5284: 5281: 5279: 5276: 5274: 5271: 5270: 5268: 5266: 5262: 5254: 5251: 5249: 5246: 5242: 5239: 5237: 5234: 5233: 5232: 5229: 5228: 5227: 5224: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5202: 5199: 5197: 5194: 5193: 5191: 5189: 5185: 5177: 5174: 5172: 5169: 5168: 5167: 5164: 5162: 5159: 5157: 5154: 5152: 5149: 5147: 5144: 5142: 5139: 5137: 5134: 5133: 5131: 5127: 5123: 5119: 5112: 5107: 5105: 5100: 5098: 5093: 5092: 5089: 5083: 5080: 5077: 5073: 5070: 5067: 5064: 5061: 5058: 5054: 5051: 5048: 5046: 5043: 5041: 5038: 5037: 5026: 5021: 5017: 5013: 5008: 5003: 4999: 4995: 4991: 4986: 4976:on 2013-12-03 4972: 4965: 4964: 4959: 4949:on 2014-03-19 4945: 4941: 4934: 4933: 4928: 4927: 4915: 4911: 4907: 4903: 4899: 4895: 4888: 4881: 4873: 4869: 4864: 4859: 4855: 4851: 4848:(3625): 680. 4847: 4843: 4839: 4832: 4824: 4818: 4814: 4807: 4798: 4793: 4789: 4785: 4781: 4777: 4773: 4766: 4751: 4747: 4743: 4739: 4735: 4731: 4727: 4723: 4719: 4712: 4704: 4700: 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4665: 4658: 4657:0-671-44133-7 4654: 4650: 4644: 4636: 4632: 4628: 4624: 4620: 4616: 4609: 4602: 4601:0-671-44133-7 4598: 4594: 4588: 4581: 4576: 4574:0-52-128010-9 4570: 4566: 4559: 4551: 4550: 4545: 4539: 4531: 4525: 4517: 4513: 4509: 4503: 4499: 4492: 4484: 4480: 4476: 4472: 4468: 4464: 4460: 4453: 4446: 4440: 4431: 4426: 4422: 4418: 4415:(846): 1–25. 4414: 4410: 4406: 4397: 4392: 4388: 4384: 4380: 4376: 4372: 4365: 4357: 4353: 4348: 4343: 4339: 4335: 4332:(3252): 312. 4331: 4327: 4320: 4313: 4299:on 2012-09-02 4298: 4294: 4288: 4280: 4276: 4272: 4268: 4264: 4260: 4256: 4252: 4245: 4238: 4230: 4224: 4220: 4219: 4212: 4204: 4198: 4194: 4193: 4185: 4177: 4171: 4167: 4161: 4154: 4153:archive.today 4150: 4147: 4142: 4134: 4132:9781119582328 4128: 4124: 4117: 4115: 4113: 4104: 4098: 4083: 4079: 4075: 4071: 4067: 4063: 4056: 4049: 4035:on 2010-03-05 4034: 4030: 4024: 4013: 4006: 4004: 4003:"13 MeV" 4000: 3996: 3992: 3987: 3983: 3975: 3964: 3957: 3955: 3951: 3943: 3936: 3930: 3922: 3918: 3914: 3910: 3906: 3902: 3897: 3892: 3888: 3884: 3877: 3870: 3866: 3860: 3846:on 2013-01-17 3845: 3841: 3834: 3827: 3823: 3819: 3813: 3797: 3793: 3787: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3741: 3733: 3731:9780471979364 3727: 3723: 3716: 3714: 3712: 3710: 3708: 3706: 3704: 3702: 3700: 3698: 3682: 3678: 3674: 3670: 3666: 3662: 3658: 3651: 3636: 3632: 3628: 3624: 3620: 3616: 3612: 3605: 3598: 3594: 3590: 3586: 3580: 3572: 3570:9781451677614 3566: 3562: 3555: 3553: 3551: 3549: 3547: 3545: 3543: 3541: 3539: 3537: 3535: 3533: 3531: 3529: 3527: 3525: 3523: 3521: 3519: 3517: 3515: 3506: 3504:9783030845940 3500: 3496: 3489: 3487: 3485: 3483: 3481: 3479: 3477: 3475: 3473: 3471: 3469: 3460: 3458:5-02-007779-8 3454: 3450: 3446: 3442: 3436: 3434: 3425: 3419: 3415: 3414: 3406: 3398: 3396:81-261-1763-X 3392: 3388: 3387: 3379: 3375: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3332: 3328: 3327:Energy portal 3322: 3317: 3314: 3303: 3296: 3293: 3289: 3285: 3281: 3277: 3273: 3264: 3262: 3258: 3254: 3250: 3245: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3197: 3187: 3184: 3180: 3176: 3172: 3168: 3163: 3159: 3155: 3150: 3146: 3142: 3136: 3134: 3130: 3125: 3120: 3118: 3114: 3110: 3106: 3102: 3097: 3093: 3090: 3086: 3081: 3079: 3075: 3070: 3068: 3063: 3059: 3058:Mark Oliphant 3054: 3053:cross section 3050: 3046: 3041: 3039: 3035: 3031: 3027: 3023: 3018: 3016: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2983: 2977: 2972: 2968: 2966: 2962: 2958: 2954: 2950: 2946: 2941: 2939: 2938:Lewis Strauss 2935: 2931: 2930:Eugene Wigner 2927: 2923: 2918: 2908: 2895: 2891: 2887: 2883: 2879: 2873: 2871: 2866: 2862: 2858: 2854: 2848: 2846: 2841: 2837: 2833: 2829: 2828: 2823: 2819: 2815: 2811: 2803: 2799: 2794: 2790: 2787: 2782: 2778: 2774: 2770: 2766: 2763: 2759: 2755: 2750: 2748: 2747:Joliot-Curies 2744: 2740: 2735: 2733: 2729: 2725: 2724:Ernest Walton 2720: 2716: 2711: 2706: 2704: 2700: 2696: 2692: 2688: 2683: 2681: 2678:proposed the 2677: 2673: 2669: 2665: 2661: 2657: 2656:radioactivity 2653: 2649: 2641: 2637: 2633: 2628: 2613: 2610: 2609:critical mass 2601: 2597: 2593: 2589: 2584: 2578:Fission bombs 2575: 2573: 2569: 2565: 2561: 2557: 2552: 2550: 2547: 2538: 2534: 2530: 2526: 2522: 2521: 2517: 2514: 2513: 2509: 2506: 2502: 2498: 2497: 2493: 2492: 2491: 2487: 2485: 2481: 2472: 2468: 2463: 2458: 2448: 2446: 2442: 2438: 2433: 2431: 2424: 2420: 2416: 2412: 2407: 2405: 2401: 2396: 2392: 2388: 2384: 2377: 2368: 2362: 2353: 2349: 2347: 2342: 2336: 2330: 2324: 2318: 2313: 2308: 2304: 2302: 2297: 2291: 2286: 2281: 2276: 2271: 2268: 2262: 2241: 2228: 2215: 2199: 2195: 2191: 2184: 2180: 2176: 2164: 2150: 2146: 2142: 2137: 2133: 2129: 2117: 2113: 2109: 2099: 2095: 2091: 2088: 2080: 2078: 2073: 2070: 2064: 2058: 2051: 2049: 2044: 2039: 2017: 2016:atomic number 2012: 2007: 2002: 1983: 1979: 1974: 1965: 1960: 1956: 1947: 1942: 1938: 1929: 1918: 1907: 1898: 1892: 1884: 1875: 1873: 1869: 1864: 1860: 1856: 1852: 1846: 1844: 1840: 1836: 1831: 1823: 1819: 1814: 1810: 1808: 1804: 1799: 1797: 1793: 1782: 1780: 1765: 1749: 1747: 1743: 1739: 1734: 1729: 1727: 1723: 1707: 1692: 1664: 1640: 1548: 1539: 1538:nuclear force 1533: 1519: 1517: 1502: 1476: 1472: 1468: 1467:fast neutrons 1464: 1460: 1458: 1454: 1450: 1447: 1443: 1439: 1435: 1431: 1427: 1426:nuclear fuels 1423: 1419: 1415: 1413: 1412: 1407: 1403: 1398: 1397:Coulomb force 1394: 1390: 1386: 1382: 1377: 1375: 1371: 1367: 1363: 1359: 1358: 1353: 1348: 1347:is possible. 1346: 1342: 1338: 1334: 1323: 1321: 1309: 1308:thorium cycle 1305: 1301: 1300:plutonium-239 1297: 1293: 1289: 1285: 1276: 1272: 1270: 1266: 1262: 1258: 1253: 1237: 1235: 1231: 1227: 1223: 1219: 1215: 1210: 1198: 1194: 1168: 1153: 1149: 1145: 1141: 1140:nuclear waste 1137: 1132: 1130: 1126: 1111: 1106: 1104: 1100: 1096: 1095:nuclear fuels 1092: 1088: 1087:nuclear power 1084: 1083:cluster decay 1080: 1076: 1072: 1067: 1065: 1061: 1057: 1053: 1049: 1045: 1039: 1037: 1033: 1029: 1025: 1022: 1018: 1014: 1009: 1007: 1003: 999: 995: 991: 987: 983: 978: 976: 972: 968: 964: 960: 956: 952: 948: 944: 942: 938: 934: 931: 927: 923: 920:in which the 919: 915: 904: 899: 897: 892: 890: 885: 884: 882: 881: 875: 865: 862: 857: 851: 850: 849: 848: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 682: 679: 674: 673: 666: 663: 661: 658: 656: 653: 652: 649: 644: 643: 634: 631: 629: 626: 624: 621: 620: 618: 617: 612: 609: 607: 604: 602: 599: 598: 594: 593: 590: 587: 586: 583: 578: 573: 572: 565: 562: 558: 557:by cosmic ray 555: 554: 553: 550: 549: 543: 542: 533: 530: 528: 525: 524: 523: 520: 516: 513: 511: 508: 507: 506: 503: 499: 496: 495: 494: 491: 490: 484: 483: 476: 473: 469: 468:pair breaking 466: 465: 464: 461: 459: 456: 455: 452: 447: 446: 439: 436: 434: 433:Decay product 431: 429: 426: 424: 421: 420: 417: 414: 412: 409: 407: 406:Cluster decay 404: 402: 399: 395: 392: 390: 387: 386: 385: 382: 380: 377: 373: 370: 366: 363: 362: 361: 358: 357: 356: 353: 351: 348: 347: 344: 339: 338: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 302: 296: 295: 286: 283: 282: 281: 278: 276: 273: 271: 268: 266: 263: 262: 259: 255: 251: 250:Mirror nuclei 248: 247: 243: 240: 239: 236: 235: 232: −  231: 226: 223: 222: 219: 218: 213: 210: 209: 206: 205: 200: 197: 196: 192: 191: 186: 183: 182: 178: 173: 172: 165: 162: 160: 157: 155: 152: 150: 147: 146: 143: 138: 137: 132: 129: 127: 124: 122: 121:Nuclear force 119: 117: 114: 110: 107: 105: 102: 101: 100: 97: 95: 92: 91: 90: 89: 85: 81: 80: 77: 74: 73: 67: 63: 59: 55: 51: 46: 40: 33: 19: 8850: 8838: 8826: 8814: 8596:Oil refinery 8540:Cogeneration 8473:Nuclear fuel 8279:Quintessence 8067:Free entropy 8000:Energy level 7964:Fundamental 7876: 7798: 7794:Bikini Atoll 7740:Hanford Site 7735:Bikini Atoll 7539:in Australia 7529:Soviet Union 7524:South Africa 7392:Radiobiology 7274:Radiobiology 7234:Laser safety 7073: 6912: 6900: 6881: 6861:Pyroelectric 6815:Laser-driven 6595:Sodium (SFR) 6522:fast-neutron 6361: 5907: 5797:Reprocessing 5678:WMD treaties 5497:Radiosurgery 5467:Fast-neutron 5439:Scintigraphy 5155: 4997: 4993: 4978:. Retrieved 4971:the original 4962: 4951:. Retrieved 4944:the original 4931: 4897: 4893: 4880: 4845: 4841: 4831: 4812: 4806: 4779: 4775: 4765: 4755:20 September 4753:. Retrieved 4725: 4721: 4711: 4681:(6): 89–95. 4678: 4674: 4664: 4648: 4643: 4618: 4614: 4608: 4592: 4587: 4578: 4564: 4558: 4547: 4538: 4524: 4497: 4491: 4466: 4462: 4452: 4444: 4439: 4412: 4408: 4378: 4374: 4364: 4329: 4325: 4312: 4301:. Retrieved 4297:the original 4287: 4254: 4250: 4237: 4217: 4211: 4191: 4184: 4165: 4160: 4141: 4122: 4097:cite journal 4086:. Retrieved 4065: 4061: 4048: 4037:. Retrieved 4033:the original 4023: 4012:the original 4002: 3999:"7 MeV" 3998: 3995:"5 MeV" 3994: 3991:"5 MeV" 3990: 3985: 3981: 3974: 3963:the original 3953: 3949: 3942: 3929: 3889:(10): 1892. 3886: 3882: 3876: 3868: 3859: 3848:. Retrieved 3844:the original 3833: 3817: 3812: 3800:. Retrieved 3795: 3786: 3774:. Retrieved 3754: 3750: 3740: 3721: 3684:. Retrieved 3664: 3660: 3650: 3638:. Retrieved 3618: 3614: 3604: 3588: 3579: 3560: 3494: 3448: 3444: 3412: 3405: 3385: 3378: 3365:Photofission 3335:Cold fission 3270: 3246: 3214:Hanford Site 3199: 3179:control rods 3171:Ames process 3167:Mallinckrodt 3137: 3121: 3098: 3094: 3089:Glen Seaborg 3085:Emilio Segré 3082: 3071: 3042: 3019: 2984: 2980: 2960: 2957:Lew Kowarski 2949:World War II 2942: 2925: 2921: 2914: 2894:Uranspaltung 2893: 2876:basement of 2874: 2849: 2839: 2825: 2814:Lise Meitner 2807: 2769:Enrico Fermi 2767: 2751: 2736: 2731: 2714: 2707: 2684: 2676:George Gamow 2674:). In 1928, 2645: 2640:Lise Meitner 2605: 2570:, then to a 2553: 2542: 2518: 2510: 2494: 2488: 2476: 2444: 2440: 2436: 2434: 2414: 2408: 2394: 2390: 2386: 2382: 2379: 2350: 2340: 2334: 2328: 2322: 2316: 2309: 2305: 2295: 2289: 2279: 2272: 2266: 2260: 2081: 2074: 2068: 2062: 2056: 2052: 2042: 2010: 2000: 1896: 1893: 1889: 1868:Enrico Fermi 1847: 1827: 1800: 1788: 1778: 1763: 1750: 1730: 1665: 1638: 1544: 1500: 1474: 1461: 1416: 1410: 1405: 1401: 1378: 1365: 1356: 1349: 1329: 1317: 1290:by mass for 1248: 1133: 1107: 1068: 1040: 1027: 1010: 979: 959:Lise Meitner 949:by chemists 945: 913: 912: 475:Photofission 450: 423:Decay energy 350:Alpha α 257: 253: 233: 229: 216: 203: 189: 8852:WikiProject 8672:Agriculture 8601:Solar power 8567:Tidal power 8441:Natural gas 8431:Fossil fuel 8374:Latent heat 8342:Electricity 7866:Smiling Sun 7577:Individual 7514:North Korea 7016:Ultraviolet 7011:Radio waves 6772:Stellarator 6736:confinement 6630:Superphénix 6457:Molten-salt 6409:VHTR (HTGR) 6186:HW BLWR 250 6152:R4 Marviken 6081:Pressurized 6051:Heavy water 6035:many others 5964:Pressurized 5919:Light water 5621:underground 5579:Disarmament 5487:Tomotherapy 5482:Proton-beam 5346:Power plant 5308:Temperature 5141:Engineering 4469:(37): 653. 3798:. July 2022 3292:Paul Kuroda 3162:Walter Zinn 3154:Stagg Field 3109:Harold Urey 3074:Franz Simon 2965:Walter Zinn 2934:H. G. Wells 2917:Leó Szilárd 2882:uranium 235 2861:Willis Lamb 2851:lecture at 2786:Ida Noddack 2722:colleagues 2703:transmuting 2691:Marie Curie 2400:heavy water 2367:uranium-238 2006:mass number 1779:fissionable 1691:fissionable 1463:Fissionable 1449:decay chain 1430:mass number 1304:uranium-233 1296:uranium-235 1294:fission of 1169:(from both 1136:radioactive 1110:free energy 1079:alpha decay 984:, it is an 780:Oppenheimer 458:Spontaneous 428:Decay chain 379:K/L capture 355:Beta β 225:Isodiaphers 149:Liquid drop 58:uranium-236 54:uranium-235 8868:Categories 8635:Wind power 8557:Hydropower 8508:components 8463:Hydropower 8453:Geothermal 8403:Sound wave 8314:Zero-point 8244:Mechanical 8229:Ionization 8202:Electrical 8097:Negentropy 7978:Energetics 7856:Peace camp 7646:1985–1987 7579:accidents 7447:disasters 7197:and health 7195:Radiation 7064:Cosmic ray 6797:(acoustic) 6414:PBR (PBMR) 5802:Spent fuel 5792:Repository 5772:Fuel cycle 5739:Activation 5516:Processing 5383:Propulsion 5341:by country 5273:Activation 5007:1912.00287 4980:2012-01-03 4953:2012-01-03 4900:(4): 781. 4669:Hahn, O.; 4621:(5): 511. 4303:2013-01-04 4175:0930370155 4088:2008-07-28 4039:2013-01-04 3850:2013-01-04 3597:9812837523 3371:References 3253:Little Boy 3230:Los Alamos 3194:See also: 3069:was held. 2878:Pupin Hall 2672:Bohr model 2668:Niels Bohr 2600:hypocenter 2473:in Germany 2455:See also: 2346:beta decay 2312:half-lives 2277:with even 1522:Energetics 1341:α particle 1265:beta decay 1064:Niels Bohr 980:For heavy 810:Strassmann 800:Rutherford 678:Scientists 633:Artificial 628:Cosmogenic 623:Primordial 619:Nuclides: 596:Processes: 552:Spallation 66:gamma rays 8746:Australia 8682:Transport 8677:Computing 8645:Wind farm 8572:Wave farm 8446:Petroleum 8426:Bioenergy 8398:Radiation 8337:Capacitor 8259:Potential 7648:Therac-25 7581:and sites 7451:incidents 7445:Lists of 7351:Half-life 7224:Dosimetry 7059:Gamma ray 7006:Microwave 6996:Starlight 6957:Radiation 6767:Spheromak 6466:Fluorides 6130:IPHWR-700 6125:IPHWR-540 6120:IPHWR-220 5909:Moderator 5589:Explosion 5564:Arms race 5351:Economics 5303:Reflector 5298:Radiation 5293:Generator 5248:Plutonium 5201:Deuterium 5166:Radiation 5136:Chemistry 4516:883986381 4279:126189920 4068:: 77–84. 3802:9 October 3776:9 October 3686:9 October 3640:9 October 3218:plutonium 3038:cyclotron 2857:I.I. Rabi 2827:Anschluss 2810:Otto Hahn 2685:In 1896, 2636:Otto Hahn 2549:N reactor 2430:fuel rods 2245:Δ 2242:± 2216:− 2192:− 2143:− 2110:− 1966:− 1541:observed. 1473:). While 1453:millennia 1269:neutrinos 1252:amplitude 1245:Mechanism 1152:plutonium 1056:Kurchatov 1038:nucleus. 951:Otto Hahn 815:Świątecki 730:Pi. Curie 725:Fr. Curie 720:Ir. Curie 715:Cockcroft 690:Becquerel 611:Supernova 315:Drip line 310:p–n ratio 285:Borromean 164:Ab initio 8816:Category 8381:Hydrogen 8347:Enthalpy 8249:Negative 8239:Magnetic 8224:Internal 8182:Chemical 8047:Enthalpy 7966:concepts 7894:Category 7760:Related 7650:accident 7519:Pakistan 7001:Sunlight 6986:Infrared 6902:Category 6856:Polywell 6787:Inertial 6744:Magnetic 6499:TMSR-LF1 6494:TMSR-500 6474:Fuji MSR 6434:THTR-300 6274:Graphite 6137:PHWR KWU 6103:ACR-1000 6031:IPWR-900 6014:ACPR1000 6009:HPR-1000 5999:CPR-1000 5974:APR-1400 5765:Disposal 5717:Actinide 5710:Products 5569:Delivery 5412:Medicine 5241:depleted 5236:enriched 5206:Helium-3 5171:ionizing 5072:Archived 5053:Archived 4703:33512939 4149:Archived 3921:18521811 3871:, p. 99. 3299:See also 3236:and the 2840:bursting 2525:isotopes 2404:graphite 1733:actinide 1545:Fission 1395:and the 1127:or from 1052:Petrzhak 1024:isotopes 982:nuclides 971:neutrons 918:reaction 874:Category 775:Oliphant 760:Lawrence 740:Davisson 710:Chadwick 606:Big Bang 493:electron 463:Products 384:Isomeric 275:Even/odd 252: – 227:– equal 214:– equal 212:Isotones 201:– equal 187:– equal 185:Isotopes 177:Nuclides 99:Nucleons 8828:Commons 8656:Use and 8515:Biomass 8485:Radiant 8332:Battery 8304:Thermal 8299:Surface 8284:Radiant 8254:Phantom 8234:Kinetic 8212:Binding 8192:Elastic 8175:Nuclear 8170:Binding 8057:Entropy 7955:Outline 7945:History 7629:Effects 7212:chronic 6914:Commons 6825:Z-pinch 6795:Bubble 6777:Tokamak 6640:FBR-600 6620:CFR-600 6615:BN-1200 6281:coolant 6208:Organic 6093:CANDU 9 6090:CANDU 6 6058:coolant 6019:ACP1000 5994:CAP1400 5932:Boiling 5897:Fission 5744:Fission 5688:Weapons 5628:Warfare 5611:Testing 5601:History 5594:effects 5549:Weapons 5459:Therapy 5434:RadBall 5421:Imaging 5313:Thermal 5278:Capture 5265:Neutron 5253:Thorium 5231:Uranium 5196:Tritium 5176:braking 5156:Fission 5146:Physics 5129:Science 5012:Bibcode 4902:Bibcode 4872:4089039 4850:Bibcode 4813:Uranium 4784:Bibcode 4750:4113262 4730:Bibcode 4683:Bibcode 4623:Bibcode 4549:YouTube 4471:Bibcode 4417:Bibcode 4383:Bibcode 4356:4076465 4334:Bibcode 4259:Bibcode 4070:Bibcode 3901:Bibcode 3759:Bibcode 3669:Bibcode 3623:Bibcode 3257:Fat Man 3249:Trinity 3124:Met Lab 3049:Peierls 3043:At the 2699:thorium 2642:in 1912 2616:History 2590:of the 2546:Hanford 2469:of the 2437:breeder 2415:fissile 2036:is the 1843:photons 1830:uranium 1828:When a 1764:fissile 1374:tritium 1352:daltons 1218:fissile 1214:fertile 1125:methane 1060:uranium 1048:Flyorov 1021:fissile 1017:element 998:heating 992:and as 933:photons 922:nucleus 830:Thomson 820:Szilárd 790:Purcell 770:Meitner 705:N. Bohr 700:A. Bohr 685:Alvarez 601:Stellar 505:neutron 389:Gamma γ 242:Isomers 199:Isobars 94:Nucleus 50:neutron 8840:Portal 8761:Mexico 8756:Europe 8751:Canada 8736:Africa 8659:supply 8468:Marine 8357:Fossil 8309:Vacuum 8062:Exergy 7983:Energy 7934:Energy 7762:topics 7685:under 7504:France 7394:, and 6725:Fusion 6685:Others 6625:Phénix 6610:BN-800 6605:BN-600 6600:BN-350 6429:HTR-PM 6424:HTR-10 6404:UHTREX 6369:Magnox 6364:(UNGG) 6257:Lucens 6252:KS 150 5989:ATMEA1 5969:AP1000 5952:Kerena 5832:Debate 5584:Ethics 5574:Design 5557:Topics 5388:rocket 5366:Fusion 5361:Policy 5323:Fusion 5283:Poison 5161:Fusion 5000:: 63. 4870:  4842:Nature 4819:  4748:  4722:Nature 4701:  4655:  4599:  4571:  4514:  4504:  4354:  4326:Nature 4277:  4225:  4199:  4172:  4129:  3919:  3824:  3728:  3595:  3567:  3501:  3455:  3420:  3393:  3228:; and 2991:Wigner 2987:Teller 2961:Nature 2863:, two 2836:barium 2822:Berlin 2816:, and 2802:Munich 2402:, and 1998:where 1785:Output 1726:median 1250:large- 1195:. The 1165:) and 1154:(from 1081:, and 1054:, and 937:energy 924:of an 872:  840:Wigner 835:Walton 825:Teller 755:Jensen 522:proton 265:Stable 8780:Misc. 8490:Solar 8294:Sound 8163:Types 8037:Power 7988:Units 7950:Index 7749:1945 7728:1954 7722:1957 7716:1957 7710:1957 7703:1961 7697:1961 7691:1962 7681:1962 7675:1969 7665:1979 7659:1980 7653:1982 7640:1985 7622:1986 7616:1987 7610:1990 7599:2001 7593:2011 7587:2019 7509:India 7499:China 7207:acute 7104:X-ray 6991:Light 6846:Migma 6834:Other 6803:Fusor 6702:Piqua 6697:Arbus 6655:PRISM 6397:MHR-T 6392:GTMHR 6322:EGP-6 6317:AMB-X 6292:Water 6237:HWGCR 6176:HWLWR 6115:IPHWR 6086:CANDU 5947:ESBWR 5702:Waste 5666:Tests 5649:Lists 5633:Yield 5376:MMRTG 5333:Power 5002:arXiv 4974:(PDF) 4967:(PDF) 4947:(PDF) 4936:(PDF) 4890:(PDF) 4868:S2CID 4746:S2CID 4699:S2CID 4352:S2CID 4322:(PDF) 4275:S2CID 4247:(PDF) 4058:(PDF) 4015:(PDF) 4008:(PDF) 3966:(PDF) 3959:(PDF) 3917:S2CID 3891:arXiv 3447:[ 3280:Gabon 3032:in a 1527:Input 1442:alpha 1362:argon 1036:argon 1028:three 930:gamma 916:is a 805:Soddy 785:Proca 765:Mayer 745:Fermi 695:Bethe 270:Magic 8741:Asia 8495:Wind 8436:Coal 8408:Work 8369:Heat 8352:Fuel 8289:Rest 8187:Dark 8152:Work 8020:Mass 7705:SL-1 7669:and 7449:and 6662:Lead 6645:CEFR 6635:PFBR 6517:None 6327:RBMK 6312:AM-1 6242:EL-4 6216:WR-1 6198:AHWR 6142:MZFR 6110:CVTR 6099:AFCR 6026:VVER 5984:APWR 5979:APR+ 5942:ABWR 5812:cask 5807:pool 5749:LLFP 5638:TNTe 5318:Fast 5188:Fuel 4817:ISBN 4757:2023 4653:ISBN 4597:ISBN 4569:ISBN 4512:OCLC 4502:ISBN 4401:and 4223:ISBN 4197:ISBN 4170:ISBN 4127:ISBN 4103:link 3935:mode 3822:ISBN 3804:2023 3778:2023 3726:ISBN 3688:2023 3642:2023 3593:ISBN 3565:ISBN 3499:ISBN 3453:ISBN 3418:ISBN 3391:ISBN 3276:Oklo 3160:and 3087:and 2989:and 2955:and 2859:and 2773:Rome 2726:and 2638:and 2586:The 2465:The 2419:LWRs 2264:and 1839:mean 1722:mode 1560:and 1501:most 1475:some 1457:eons 1446:beta 1220:and 1180:and 961:and 953:and 926:atom 795:Rabi 750:Hahn 660:RHIC 280:Halo 8362:Oil 6734:by 6650:PFR 6441:PMR 6419:AVR 6341:Gas 6279:by 6247:KKN 6181:ATR 6096:EC6 6056:by 6004:EPR 5937:BWR 5020:doi 4910:doi 4858:doi 4846:143 4792:doi 4738:doi 4726:143 4691:doi 4631:doi 4479:doi 4425:doi 4413:142 4391:doi 4379:136 4342:doi 4330:129 4267:doi 4078:doi 4066:798 3950:82% 3909:doi 3767:doi 3677:doi 3631:doi 3587:in 3278:in 2926:one 2922:two 2800:in 2666:). 2594:on 2562:or 2556:GWE 2423:wt% 2014:is 2004:is 1822:Hue 1781:." 1455:to 1404:or 1236:". 1216:or 665:LHC 579:and 8870:: 7390:, 7386:, 6384:He 6350:CO 6226:CO 6147:R3 5018:. 5010:. 4996:. 4992:. 4938:. 4908:. 4898:25 4896:. 4892:. 4866:. 4856:. 4844:. 4840:. 4790:. 4780:56 4778:. 4774:. 4744:. 4736:. 4724:. 4720:. 4697:. 4689:. 4679:27 4677:. 4629:. 4619:55 4617:. 4577:. 4546:. 4510:. 4477:. 4467:47 4465:. 4461:. 4423:. 4411:. 4407:. 4389:. 4377:. 4373:. 4350:. 4340:. 4328:. 4324:. 4273:. 4265:. 4255:21 4253:. 4249:. 4111:^ 4099:}} 4095:{{ 4076:. 4064:. 4060:. 3915:. 3907:. 3899:. 3887:67 3885:. 3867:, 3794:. 3765:. 3755:55 3753:. 3749:. 3696:^ 3675:. 3665:55 3663:. 3659:. 3629:. 3619:53 3617:. 3613:. 3513:^ 3467:^ 3432:^ 3263:. 3244:. 3220:; 3024:, 3017:. 2855:. 2812:, 2406:. 2348:. 2338:= 2303:. 2018:, 2008:, 1803:eV 1798:. 1641:+ 1569:Pu 1514:, 1499:, 1434:Pu 1298:, 1131:. 1077:, 1050:, 977:. 943:. 532:rp 498:2× 365:0v 360:2β 256:↔ 7926:e 7919:t 7912:v 7429:e 7422:t 7415:v 6949:e 6942:t 6935:v 6524:) 6520:( 6352:2 6304:O 6302:2 6300:H 6228:2 6168:O 6166:2 6164:H 6073:O 6071:2 6069:D 5110:e 5103:t 5096:v 5028:. 5022:: 5014:: 5004:: 4998:8 4983:. 4956:. 4916:. 4912:: 4904:: 4874:. 4860:: 4852:: 4825:. 4800:. 4794:: 4786:: 4759:. 4740:: 4732:: 4705:. 4693:: 4685:: 4659:. 4637:. 4633:: 4625:: 4603:. 4532:. 4518:. 4485:. 4481:: 4473:: 4433:. 4427:: 4419:: 4399:. 4393:: 4385:: 4358:. 4344:: 4336:: 4306:. 4281:. 4269:: 4261:: 4231:. 4205:. 4178:. 4135:. 4105:) 4091:. 4080:: 4072:: 4042:. 3980:" 3923:. 3911:: 3903:: 3893:: 3853:. 3828:. 3806:. 3780:. 3769:: 3761:: 3734:. 3690:. 3679:: 3671:: 3644:. 3633:: 3625:: 3599:. 3573:. 3507:. 3461:. 3426:. 3399:. 2905:U 2507:. 2427:2 2395:k 2391:k 2387:k 2341:Z 2335:N 2329:N 2323:N 2317:Z 2296:A 2290:Z 2280:Z 2267:Z 2261:N 2236:A 2229:2 2225:) 2220:Z 2212:N 2208:( 2200:a 2196:a 2185:3 2181:/ 2177:1 2172:A 2165:2 2160:Z 2151:c 2147:a 2138:3 2134:/ 2130:2 2125:A 2118:s 2114:a 2106:A 2100:v 2096:a 2092:= 2089:B 2069:A 2063:Z 2057:A 2043:B 2034:c 2029:n 2027:m 2022:H 2020:m 2011:Z 2001:A 1984:2 1980:c 1975:/ 1970:B 1961:n 1957:m 1952:N 1948:+ 1943:H 1939:m 1934:Z 1930:= 1927:) 1923:Z 1919:, 1915:A 1911:( 1908:m 1897:B 1775:U 1760:U 1718:U 1702:U 1687:U 1676:U 1661:U 1650:U 1639:n 1635:U 1624:U 1613:U 1602:U 1591:U 1580:U 1558:U 1512:U 1497:U 1486:U 1444:- 1411:A 1366:Z 1364:( 1357:Z 1209:U 1189:U 1178:U 1163:U 1121:U 902:e 895:t 888:v 527:p 515:r 510:s 372:β 258:N 254:Z 234:Z 230:N 217:N 204:A 190:Z 109:n 104:p 41:. 34:. 20:)

Index

Thermonuclear fission
Split the Atom
Nuclear fusion

neutron
uranium-235
uranium-236
forces that bind the neutron
gamma rays
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.