Knowledge

Thin-film interference

Source 📝

2765: 1035: 2056: 20: 2897: 1115: 1655: 2805: 1085: 1077: 2785: 2982:." In 1923, C. W. Mason noted that the barbules in the peacock feather were made from very thin layers. Some of these layers were colored while others were transparent. He noticed that pressing the barbule would shift the color toward the blue, while swelling it with a chemical would shift it toward the red. He also found that bleaching the pigments from the feathers did not remove the iridescence. This helped to dispel the surface color theory and reinforce the structural color theory. 120: 2909: 128: 1097:
phase and constructively interfere (as depicted in the first figure). If the distance traveled by beam A is an odd integer multiple of the half wavelength of light in the film, the beams destructively interfere (as in the second figure). Thus, the film shown in these figures reflects more strongly at the wavelength of the light beam in the first figure, and less strongly at that of the beam in the second figure.
927: 623: 95:, but rather are a mixture of various wavelengths. Therefore, the colors observed are rarely those of the rainbow, but rather browns, golds, turquoises, teals, bright blues, purples, and magentas. Studying the light reflected or transmitted by a thin film can reveal information about the thickness of the film or the effective 2747:
due to thin-film layers is common in the natural world. The wings of many insects act as thin films because of their minimal thickness. This is clearly visible in the wings of many flies and wasps. In butterflies, the thin-film optics are visible when the wing itself is not covered by pigmented wing
1096:
The phase relationship of the two reflected beams depends on the relationship between the wavelength of beam A in the film, and the film's thickness. If the total distance beam A travels in the film is an integer multiple of the wavelength of the beam in the film, then the two reflected beams are in
1662:
In the case of a thin oil film, a layer of oil sits on top of a layer of water. The oil may have an index of refraction near 1.5 and the water has an index of 1.33. As in the case of the soap bubble, the materials on either side of the oil film (air and water) both have refractive indices that are
1067:
If the incident light is broadband, or white, such as light from the sun, interference patterns appear as colorful bands. Different wavelengths of light create constructive interference for different film thicknesses. Different regions of the film appear in different colors depending on the local
1092:
The figures show two incident light beams (A and B). Each beam produces a reflected beam (dashed). The reflections of interest are beam A’s reflection off of the lower surface and beam B’s reflection off of the upper surface. These reflected beams combine to produce a resultant beam (C). If the
235:
Consider light incident on a thin film and reflected by both the upper and lower boundaries. The optical path difference (OPD) of the reflected light must be calculated in order to determine the condition for interference. Referring to the ray diagram above, the OPD between the two waves is the
1046:
in nature, interference patterns appear as light and dark bands. Light bands correspond to regions at which constructive interference is occurring between the reflected waves and dark bands correspond to destructive interference regions. As the thickness of the film varies from one location to
1105:
The type of interference that occurs when light is reflected from a thin film is dependent upon the wavelength and angle of the incident light, the thickness of the film, the refractive indices of the material on either side of the film, and the index of the film medium. Various possible film
2069:
An anti-reflection coating eliminates reflected light and maximizes transmitted light in an optical system. A film is designed such that reflected light produces destructive interference and transmitted light produces constructive interference for a given wavelength of light. In the simplest
3019:, he could reduce the reflections on the surface. In 1819, after watching a layer of alcohol evaporate from a sheet of glass, Fraunhofer noted that colors appeared just before the liquid evaporated completely, deducing that any thin film of transparent material will produce colors. 190:
at a boundary depending on the refractive indices of the materials on either side of the boundary. This phase shift occurs if the refractive index of the medium the light is travelling through is less than the refractive index of the material it is striking. In other words, if
165:
between the two light waves depends on the difference in their phase. This difference in turn depends on the thickness of the film layer, the refractive index of the film, and the angle of incidence of the original wave on the film. Additionally, a phase shift of 180° or
231:
and the light is travelling from material 1 to material 2, then a phase shift occurs upon reflection. The pattern of light that results from this interference can appear either as light and dark bands or as colorful bands depending upon the source of the incident light.
2821:
takes advantage of thin film interference to selectively choose which wavelengths of light are allowed to transmit through the device. These films are created through deposition processes in which material is added to a substrate in a controlled manner. Methods include
922:{\displaystyle {\begin{aligned}OPD&=n_{2}\left({\frac {2d}{\cos(\theta _{2})}}\right)-2d\tan(\theta _{2})n_{2}\sin(\theta _{2})\\&=2n_{2}d\left({\frac {1-\sin ^{2}(\theta _{2})}{\cos(\theta _{2})}}\right)\\&=2n_{2}d\cos {\big (}\theta _{2})\\\end{aligned}}} 2812:. At a 45° angle the coating is slightly thicker to the incident light, causing the center wavelength to shift toward the red and reflections appear at the violet end of the spectrum. At 0°, for which this coating was designed, almost no reflection is observed. 1270:). Light that is transmitted at the upper air-film interface will continue to the lower film-air interface where it can be reflected or transmitted. The reflection that occurs at this boundary will not change the phase of the reflected wave because 1051:", demonstrates the interference pattern that results when light is reflected from a spherical surface adjacent to a flat surface. Concentric rings are observed when the surface is illuminated with monochromatic light. This phenomenon is used with 2635: 1428: 1960: 349: 439: 160:
provide a quantitative description of how much of the light will be transmitted or reflected at an interface. The light reflected from the upper and lower surfaces will interfere. The degree of constructive or destructive
1211:). The reflection that occurs at the upper boundary of the film (the air-film boundary) will introduce a 180° phase shift in the reflected wave because the refractive index of the air is less than the index of the film ( 1093:
reflected beams are in phase (as in the first figure) the resultant beam is relatively strong. If, on the other hand, the reflected beams have opposite phase, the resulting beam is attenuated (as in the second figure).
2851:
is a technique that is often used to measure properties of thin films. In a typical ellipsometry experiment polarized light is reflected off a film surface and is measured by a detector. The complex reflectance ratio,
2523: 2903:
colors are produced when steel is heated and a thin film of iron oxide forms on the surface. The color indicates the temperature the steel reached, which made this one of the earliest practical uses of thin-film
2216: 525: 155:
range. As light strikes the surface of a film, it is either transmitted or reflected at the upper surface. Light that is transmitted reaches the bottom surface and may once again be transmitted or reflected. The
2816:
Thin films are used commercially in anti-reflection coatings, mirrors, and optical filters. They can be engineered to control the amount of light reflected or transmitted at a surface for a given wavelength. A
2733:, the reflected waves will be completely out of phase and will destructively interfere. Further reduction in reflection is possible by adding more layers, each designed to match a specific wavelength of light. 1512: 2041: 1744: 616: 1021: 2432: 628: 2919:
caused by thin-film interference is a commonly observed phenomenon in nature, being found in a variety of plants and animals. One of the first known studies of this phenomenon was conducted by
2764: 2358: 1862: 2287: 1327: 1268: 1800: 1209: 2692: 2118: 2731: 1165: 1577: 229: 1604: 1644: 950: 2870: 184: 2533: 1624: 1539: 2872:, of the system is measured. A model analysis is then conducted, in which the information is used to determine film layer thicknesses and refractive indices. 1335: 1870: 242: 2960: 360: 2951:, who helped to establish the wave theory of light in 1816. However, very little explanation could be made of the iridescence until the 1870s, when 2993:, first described the process of thin-film interference as an explanation for the iridescence. The first examination of iridescent feathers by an 2784: 2440: 2947:
provided the first explanation of constructive and destructive interference. Young's contribution went largely unnoticed until the work of
2126: 445: 2878:
is an emerging technique for measuring refractive index and thickness of molecular scale thin films and how these change when stimulated.
2120:
is a quarter-wavelength of the incident light and its refractive index is greater than the index of air and less than the index of glass.
3359: 1438: 1970: 2845:
of a thin-film features distinct oscillations and the extrema of the spectrum can be used to calculate the thickness of the thin-film.
1666: 57: 2974:, as some form of surface color, such as a dye or pigment that might alter the light when reflected from different angles. In 1919, 3055: 537: 2943:, that the iridescence in a peacock feather was due to the fact that the transparent layers in the feather were so thin. In 1801, 958: 2978:
proposed that the bright, changing colors were not caused by dyes or pigments, but by microscopic structures, which he termed "
2754:
butterfly. The glossy appearance of buttercup flowers is also due to a thin film as well as the shiny breast feathers of the
932:
Interference will be constructive if the optical path difference is equal to an integer multiple of the wavelength of light,
2841:, that aids in light collecting. The effects of thin-film interference can also be seen in oil slicks and soap bubbles. The 123:
Demonstration of the optical path length difference for light reflected from the upper and lower boundaries of a thin film.
2363: 2295: 49:
and decreasing it at others. When white light is incident on a thin film, this effect produces colorful reflections.
1805: 2222: 1273: 1214: 1749: 2875: 1047:
another, the interference may change from constructive to destructive. A good example of this phenomenon, termed "
3065: 162: 42: 3170: 2964: 3090:
Stavenga, D. G. (2014). "Thin Film and Multilayer Optics Cause Structural Colors of Many Insects and Birds".
2694:
is equal to a quarter-wavelength of the incident light and if the light strikes the film at normal incidence
2292:
A 180° phase shift will be induced upon reflection at both the top and bottom interfaces of the film because
3214: 3169:
Van Der Kooi, C. J.; Wilts, B. D.; Leertouwer, H. L.; Staal, M.; Elzenga, J. T. M.; Stavenga, D. G. (2014).
3022:
Little advancement was made in thin-film coating technology until 1936, when John Strong began evaporating
1170: 2647: 2073: 3375: 3215:"Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules" 2827: 2823: 2697: 1129: 1038:
Gasoline on water shows a pattern of bright and dark fringes when illuminated with 589nm laser light.
2818: 1544: 194: 2944: 2055: 1056: 1034: 2970:
In much of the early work, scientists tried to explain iridescence, in animals like peacocks and
2064: 1582: 187: 100: 2900: 65: 1629: 1026:
This condition may change after considering possible phase shifts that occur upon reflection.
935: 2967:, in 1899, the mechanisms of thin-film interference could be demonstrated on a larger scale. 2891: 2744: 1106:
configurations and the related equations are explained in more detail in the examples below.
3004:, in 1942, revealed an extremely tiny array of thin-film structures on the nanometer scale. 2896: 19: 3348: 2855: 2630:{\displaystyle 2n_{\rm {coating}}d\cos(\theta _{2})=\left(m-{\frac {1}{2}}\right)\lambda } 1126:, light travels through air and strikes a soap film. The air has a refractive index of 1 ( 169: 8: 3039: 2994: 2952: 88: 87:
The reflection from a thin film is typically not individual wavelengths as produced by a
3352: 3239: 3146: 3121: 2755: 1609: 1524: 1423:{\displaystyle 2n_{\rm {film}}d\cos(\theta _{2})=\left(m-{\frac {1}{2}}\right)\lambda } 1114: 3026:
in order to make anti-reflection coatings on glass. During the 1930s, improvements in
2997:
occurred in 1939, revealing complex thin-film structures, while an examination of the
1955:{\displaystyle 2n_{\rm {oil}}d\cos(\theta _{2})=\left(m-{\frac {1}{2}}\right)\lambda } 3244: 3195: 3151: 3031: 3008: 1048: 157: 2833:
Thin films are also found in nature. Many animals have a layer of tissue behind the
2070:
implementation of such a coating, the film is created so that its optical thickness
1654: 344:{\displaystyle OPD=n_{2}({\overline {AB}}+{\overline {BC}})-n_{1}({\overline {AD}})} 3234: 3226: 3185: 3141: 3133: 3099: 3060: 2979: 2948: 2804: 132: 96: 80:
of the incident light, then the interference pattern will be washed out due to the
77: 3360:
Thin film and multilayer optics cause structural colors of many insects and birds
2838: 1084: 1076: 52:
Thin-film interference explains the multiple colors seen in light reflected from
3103: 3007:
The first production of thin-film coatings occurred quite by accident. In 1817,
434:{\displaystyle {\overline {AB}}={\overline {BC}}={\frac {d}{\cos(\theta _{2})}}} 3120:
Van Der Kooi, C. J.; Elzenga, J.T.M.; Dijksterhuis, J.; Stavenga, D.G. (2017).
2998: 2986: 2956: 2809: 531: 108: 92: 2736:
Interference of transmitted light is completely constructive for these films.
1746:. There will be a phase shift upon reflection from the upper boundary because 3369: 3171:"Iridescent flowers? Contribution of surface structures to optical signaling" 2975: 3248: 3230: 3199: 3155: 3137: 2971: 2934: 2933:
feathers was caused by thin, alternating layers of plate and air. In 1704,
2925: 2920: 2848: 2842: 1052: 99:
of the film medium. Thin films have many commercial applications including
2908: 3027: 3016: 2916: 2887: 1123: 119: 73: 53: 3213:
Stavenga, D. G.; Leertouwer, H. L.; Marshall, N. J.; Osorio, D. (2010).
3119: 3043: 3035: 1043: 46: 35: 3290:
By Hugh Angus Macleod – Institute of Physics Publishing 2001 Pages 1–4
3190: 2518:{\displaystyle 2n_{\rm {coating}}d\cos {\big (}\theta _{2})=m\lambda } 3001: 2791: 2771: 2750: 2211:{\displaystyle n_{\rm {air}}<n_{\rm {coating}}<n_{\rm {glass}}} 1329:. The condition for interference for a soap bubble is the following: 520:{\displaystyle {\overline {AD}}=2d\tan(\theta _{2})\sin(\theta _{1})} 148: 144: 81: 39: 3302:
By Shūichi Kinoshita - World Scientific Publishing 2008 Page 165-167
3023: 1507:{\displaystyle 2n_{\rm {film}}d\cos {\big (}\theta _{2})=m\lambda } 2036:{\displaystyle 2n_{\rm {oil}}d\cos {\big (}\theta _{2})=m\lambda } 127: 3271:
By Shūichi Kinoshita – World Scientific Publishing 2008 pages 3–6
2939: 2930: 1739:{\displaystyle n_{\rm {air}}<n_{\rm {water}}<n_{\rm {oil}}} 69: 3212: 3168: 2991:
A Spectrophotometric Study of Certain Cases of Structural Color
2834: 152: 136: 104: 3012: 2434:. The equations for interference of the reflected light are: 1802:
but no shift upon reflection from the lower boundary because
1606:
is the angle of incidence of the wave on the lower boundary,
611:{\displaystyle n_{1}\sin(\theta _{1})=n_{2}\sin(\theta _{2})} 61: 24: 3038:, possible. In 1939, Walter H. Geffcken created the first 1016:{\displaystyle 2n_{2}d\cos {\big (}\theta _{2})=m\lambda } 2748:
scales, which is the case in the blue wing spots of the
3316:
Fowles, Grant R. (1989), "Multiple-Beam Interference",
3219:
Proceedings of the Royal Society B: Biological Sciences
76:. If the thickness of the film is much larger than the 2858: 2700: 2650: 2536: 2443: 2366: 2298: 2225: 2129: 2076: 2059:
Light incident on an anti-reflection coating on glass
1973: 1873: 1808: 1752: 1669: 1632: 1612: 1585: 1547: 1527: 1441: 1338: 1276: 1217: 1173: 1132: 961: 938: 626: 540: 448: 363: 245: 197: 172: 3362:
Materials today: Proceedings, 1S, 109 – 121 (2014).
2427:{\displaystyle n_{\rm {coating}}<n_{\rm {glass}}} 3283: 3281: 3279: 3277: 1864:. The equations for interference will be the same. 1167:) and the film has an index that is larger than 1 ( 3345:Optics of Thin Films; An Optical Multilayer Theory 2864: 2725: 2686: 2629: 2517: 2426: 2353:{\displaystyle n_{\rm {air}}<n_{\rm {coating}}} 2352: 2281: 2210: 2112: 2035: 1954: 1856: 1794: 1738: 1638: 1618: 1598: 1571: 1533: 1506: 1422: 1321: 1262: 1203: 1159: 1015: 944: 921: 610: 519: 433: 343: 223: 178: 147:is a layer of material with thickness in the sub- 64:. It is also the mechanism behind the action of 38:reflected by the upper and lower boundaries of a 3367: 3274: 3264: 3262: 3260: 3258: 1965:for constructive interference of reflected light 1857:{\displaystyle n_{\rm {oil}}>n_{\rm {water}}} 1433:for constructive interference of reflected light 45:with one another, increasing reflection at some 3122:"Functional optics of glossy buttercup flowers" 2282:{\displaystyle d=\lambda /(4n_{\rm {coating}})} 2046:for destructive interference of reflected light 1517:for destructive interference of reflected light 1322:{\displaystyle n_{\rm {film}}>n_{\rm {air}}} 1263:{\displaystyle n_{\rm {air}}<n_{\rm {film}}} 1795:{\displaystyle n_{\rm {air}}<n_{\rm {oil}}} 3255: 2912:Iridescent interference colors in an oil film 2488: 2006: 1477: 986: 897: 3324: 3115: 3113: 2929:, Hooke postulated that the iridescence in 2050: 3325:Greivenkamp, John (1995), "Interference", 3085: 3083: 3081: 3238: 3189: 3145: 2794:flowers is due to thin-film interference. 3300:Structural colors in the realm of nature 3269:Structural colors in the realm of nature 3110: 3089: 3056:Reflectometric interference spectroscopy 2907: 2895: 2803: 2054: 1653: 1113: 1083: 1075: 1033: 126: 118: 18: 3078: 1029: 23:Thin-film interference caused by water- 3368: 3342: 3334:Hecht, Eugene (2002), "Interference", 3315: 3126:Journal of the Royal Society Interface 1658:Light incident on an oil film on water 3333: 1579:is the refractive index of the film, 2778:) are due to thin-film interference. 1118:Light incident on a soap film in air 1071: 2961:the electromagnetic nature of light 1204:{\displaystyle n_{\rm {film}}>1} 1062: 13: 3309: 2687:{\displaystyle dn_{\rm {coating}}} 2678: 2675: 2672: 2669: 2666: 2663: 2660: 2564: 2561: 2558: 2555: 2552: 2549: 2546: 2471: 2468: 2465: 2462: 2459: 2456: 2453: 2418: 2415: 2412: 2409: 2406: 2391: 2388: 2385: 2382: 2379: 2376: 2373: 2344: 2341: 2338: 2335: 2332: 2329: 2326: 2311: 2308: 2305: 2270: 2267: 2264: 2261: 2258: 2255: 2252: 2202: 2199: 2196: 2193: 2190: 2175: 2172: 2169: 2166: 2163: 2160: 2157: 2142: 2139: 2136: 2113:{\displaystyle dn_{\rm {coating}}} 2104: 2101: 2098: 2095: 2092: 2089: 2086: 1989: 1986: 1983: 1889: 1886: 1883: 1848: 1845: 1842: 1839: 1836: 1821: 1818: 1815: 1786: 1783: 1780: 1765: 1762: 1759: 1730: 1727: 1724: 1709: 1706: 1703: 1700: 1697: 1682: 1679: 1676: 1663:less than the index of the film. 1563: 1560: 1557: 1554: 1460: 1457: 1454: 1451: 1357: 1354: 1351: 1348: 1313: 1310: 1307: 1292: 1289: 1286: 1283: 1254: 1251: 1248: 1245: 1230: 1227: 1224: 1189: 1186: 1183: 1180: 1145: 1142: 1139: 14: 3387: 188:may be introduced upon reflection 131:Thin-film interference caused by 34:is a natural phenomenon in which 2876:Dual polarisation interferometry 2783: 2763: 3066:Transfer-matrix method (optics) 3011:discovered that, by tarnishing 2799: 2726:{\displaystyle (\theta _{2}=0)} 1160:{\displaystyle n_{\rm {air}}=1} 3293: 3206: 3162: 2720: 2701: 2592: 2579: 2503: 2276: 2240: 2021: 1917: 1904: 1572:{\displaystyle n_{\rm {film}}} 1492: 1385: 1372: 1109: 1080:Constructive phase interaction 1001: 912: 853: 840: 829: 816: 761: 748: 729: 716: 691: 678: 605: 592: 570: 557: 514: 501: 492: 479: 425: 412: 338: 320: 304: 268: 224:{\displaystyle n_{1}<n_{2}} 1: 3318:Introduction to Modern Optics 3071: 2963:. After the invention of the 2770:The blue wing patches of the 2528:for constructive interference 1088:Destructive phase interaction 3092:Materials Today: Proceedings 2739: 2640:for destructive interference 1646:is the wavelength of light. 459: 392: 374: 333: 299: 281: 7: 3104:10.1016/j.matpr.2014.09.007 3049: 1649: 1599:{\displaystyle \theta _{2}} 1100: 10: 3392: 2965:Fabry–Perot interferometer 2885: 2881: 2772:European peacock butterfly 2062: 3288:Thin-film optical filters 2828:physical vapor deposition 2824:chemical vapor deposition 2808:An antireflection-coated 2644:If the optical thickness 1055:to measure the shape and 135:defrosting coating on an 114: 2051:Anti-reflection coatings 1639:{\displaystyle \lambda } 1042:Where incident light is 945:{\displaystyle \lambda } 101:anti-reflection coatings 3343:Knittl, Zdeněk (1976), 2065:Anti-reflective coating 1541:is the film thickness, 66:antireflection coatings 3231:10.1098/rspb.2010.2293 3138:10.1098/rsif.2016.0933 2913: 2905: 2866: 2813: 2727: 2688: 2631: 2519: 2428: 2354: 2283: 2212: 2114: 2060: 2037: 1956: 1858: 1796: 1740: 1659: 1640: 1620: 1600: 1573: 1535: 1508: 1424: 1323: 1264: 1205: 1161: 1119: 1089: 1081: 1039: 1017: 946: 923: 612: 521: 435: 345: 225: 180: 140: 124: 32:Thin-film interference 28: 2911: 2899: 2892:structural coloration 2886:Further information: 2867: 2865:{\displaystyle \rho } 2807: 2745:Structural coloration 2728: 2689: 2632: 2520: 2429: 2355: 2284: 2213: 2115: 2058: 2038: 1957: 1859: 1797: 1741: 1657: 1641: 1621: 1601: 1574: 1536: 1509: 1425: 1324: 1265: 1206: 1162: 1117: 1087: 1079: 1037: 1018: 947: 924: 613: 522: 436: 346: 226: 181: 130: 122: 84:of the light source. 22: 3040:interference filters 2937:stated in his book, 2856: 2843:reflectance spectrum 2698: 2648: 2534: 2441: 2364: 2296: 2223: 2127: 2074: 1971: 1871: 1806: 1750: 1667: 1630: 1610: 1583: 1545: 1525: 1439: 1336: 1274: 1215: 1171: 1130: 1030:Monochromatic source 959: 936: 624: 538: 446: 361: 243: 195: 179:{\displaystyle \pi } 170: 3353:1976otf..book.....K 2995:electron microscope 1626:is an integer, and 89:diffraction grating 3327:Handbook of Optics 3225:(1715): 2098–104. 2959:helped to explain 2914: 2906: 2862: 2819:Fabry–Pérot etalon 2814: 2723: 2684: 2627: 2515: 2424: 2350: 2279: 2208: 2110: 2061: 2033: 1952: 1854: 1792: 1736: 1660: 1636: 1616: 1596: 1569: 1531: 1504: 1420: 1319: 1260: 1201: 1157: 1120: 1090: 1082: 1040: 1013: 942: 919: 917: 608: 517: 431: 341: 221: 176: 141: 125: 29: 16:Optical phenomenon 3191:10.1111/nph.12808 3132:(127): 20160933. 3032:vacuum deposition 3009:Joseph Fraunhofer 2980:structural colors 2617: 1942: 1619:{\displaystyle m} 1534:{\displaystyle d} 1410: 1122:In the case of a 1072:Phase interaction 857: 695: 462: 429: 395: 377: 336: 302: 284: 158:Fresnel equations 3383: 3376:Thin-film optics 3355: 3339: 3338:, Addison Wesley 3330: 3321: 3303: 3297: 3291: 3285: 3272: 3266: 3253: 3252: 3242: 3210: 3204: 3203: 3193: 3175: 3166: 3160: 3159: 3149: 3117: 3108: 3107: 3087: 3061:Thin-film optics 2949:Augustin Fresnel 2871: 2869: 2868: 2863: 2787: 2767: 2756:bird of paradise 2732: 2730: 2729: 2724: 2713: 2712: 2693: 2691: 2690: 2685: 2683: 2682: 2681: 2639: 2636: 2634: 2633: 2628: 2623: 2619: 2618: 2610: 2591: 2590: 2569: 2568: 2567: 2527: 2524: 2522: 2521: 2516: 2502: 2501: 2492: 2491: 2476: 2475: 2474: 2433: 2431: 2430: 2425: 2423: 2422: 2421: 2396: 2395: 2394: 2359: 2357: 2356: 2351: 2349: 2348: 2347: 2316: 2315: 2314: 2288: 2286: 2285: 2280: 2275: 2274: 2273: 2239: 2217: 2215: 2214: 2209: 2207: 2206: 2205: 2180: 2179: 2178: 2147: 2146: 2145: 2119: 2117: 2116: 2111: 2109: 2108: 2107: 2045: 2042: 2040: 2039: 2034: 2020: 2019: 2010: 2009: 1994: 1993: 1992: 1964: 1961: 1959: 1958: 1953: 1948: 1944: 1943: 1935: 1916: 1915: 1894: 1893: 1892: 1863: 1861: 1860: 1855: 1853: 1852: 1851: 1826: 1825: 1824: 1801: 1799: 1798: 1793: 1791: 1790: 1789: 1770: 1769: 1768: 1745: 1743: 1742: 1737: 1735: 1734: 1733: 1714: 1713: 1712: 1687: 1686: 1685: 1645: 1643: 1642: 1637: 1625: 1623: 1622: 1617: 1605: 1603: 1602: 1597: 1595: 1594: 1578: 1576: 1575: 1570: 1568: 1567: 1566: 1540: 1538: 1537: 1532: 1516: 1513: 1511: 1510: 1505: 1491: 1490: 1481: 1480: 1465: 1464: 1463: 1432: 1429: 1427: 1426: 1421: 1416: 1412: 1411: 1403: 1384: 1383: 1362: 1361: 1360: 1328: 1326: 1325: 1320: 1318: 1317: 1316: 1297: 1296: 1295: 1269: 1267: 1266: 1261: 1259: 1258: 1257: 1235: 1234: 1233: 1210: 1208: 1207: 1202: 1194: 1193: 1192: 1166: 1164: 1163: 1158: 1150: 1149: 1148: 1068:film thickness. 1063:Broadband source 1022: 1020: 1019: 1014: 1000: 999: 990: 989: 974: 973: 951: 949: 948: 943: 928: 926: 925: 920: 918: 911: 910: 901: 900: 885: 884: 866: 862: 858: 856: 852: 851: 832: 828: 827: 812: 811: 795: 786: 785: 767: 760: 759: 741: 740: 728: 727: 700: 696: 694: 690: 689: 670: 662: 656: 655: 617: 615: 614: 609: 604: 603: 585: 584: 569: 568: 550: 549: 526: 524: 523: 518: 513: 512: 491: 490: 463: 458: 450: 440: 438: 437: 432: 430: 428: 424: 423: 401: 396: 391: 383: 378: 373: 365: 350: 348: 347: 342: 337: 332: 324: 319: 318: 303: 298: 290: 285: 280: 272: 267: 266: 230: 228: 227: 222: 220: 219: 207: 206: 185: 183: 182: 177: 97:refractive index 78:coherence length 3391: 3390: 3386: 3385: 3384: 3382: 3381: 3380: 3366: 3365: 3358:D.G. Stavenga, 3312: 3310:Further reading 3307: 3306: 3298: 3294: 3286: 3275: 3267: 3256: 3211: 3207: 3178:New Phytologist 3173: 3167: 3163: 3118: 3111: 3088: 3079: 3074: 3052: 2989:, in his paper 2894: 2884: 2857: 2854: 2853: 2839:Tapetum lucidum 2802: 2795: 2788: 2779: 2768: 2742: 2708: 2704: 2699: 2696: 2695: 2659: 2658: 2654: 2649: 2646: 2645: 2637: 2609: 2602: 2598: 2586: 2582: 2545: 2544: 2540: 2535: 2532: 2531: 2525: 2497: 2493: 2487: 2486: 2452: 2451: 2447: 2442: 2439: 2438: 2405: 2404: 2400: 2372: 2371: 2367: 2365: 2362: 2361: 2325: 2324: 2320: 2304: 2303: 2299: 2297: 2294: 2293: 2251: 2250: 2246: 2235: 2224: 2221: 2220: 2189: 2188: 2184: 2156: 2155: 2151: 2135: 2134: 2130: 2128: 2125: 2124: 2085: 2084: 2080: 2075: 2072: 2071: 2067: 2053: 2043: 2015: 2011: 2005: 2004: 1982: 1981: 1977: 1972: 1969: 1968: 1962: 1934: 1927: 1923: 1911: 1907: 1882: 1881: 1877: 1872: 1869: 1868: 1835: 1834: 1830: 1814: 1813: 1809: 1807: 1804: 1803: 1779: 1778: 1774: 1758: 1757: 1753: 1751: 1748: 1747: 1723: 1722: 1718: 1696: 1695: 1691: 1675: 1674: 1670: 1668: 1665: 1664: 1652: 1631: 1628: 1627: 1611: 1608: 1607: 1590: 1586: 1584: 1581: 1580: 1553: 1552: 1548: 1546: 1543: 1542: 1526: 1523: 1522: 1514: 1486: 1482: 1476: 1475: 1450: 1449: 1445: 1440: 1437: 1436: 1430: 1402: 1395: 1391: 1379: 1375: 1347: 1346: 1342: 1337: 1334: 1333: 1306: 1305: 1301: 1282: 1281: 1277: 1275: 1272: 1271: 1244: 1243: 1239: 1223: 1222: 1218: 1216: 1213: 1212: 1179: 1178: 1174: 1172: 1169: 1168: 1138: 1137: 1133: 1131: 1128: 1127: 1112: 1103: 1074: 1065: 1032: 995: 991: 985: 984: 969: 965: 960: 957: 956: 937: 934: 933: 916: 915: 906: 902: 896: 895: 880: 876: 864: 863: 847: 843: 833: 823: 819: 807: 803: 796: 794: 790: 781: 777: 765: 764: 755: 751: 736: 732: 723: 719: 685: 681: 671: 663: 661: 657: 651: 647: 640: 627: 625: 622: 621: 599: 595: 580: 576: 564: 560: 545: 541: 539: 536: 535: 508: 504: 486: 482: 451: 449: 447: 444: 443: 419: 415: 405: 400: 384: 382: 366: 364: 362: 359: 358: 325: 323: 314: 310: 291: 289: 273: 271: 262: 258: 244: 241: 240: 215: 211: 202: 198: 196: 193: 192: 171: 168: 167: 139:cockpit window. 117: 109:optical filters 17: 12: 11: 5: 3389: 3379: 3378: 3364: 3363: 3356: 3340: 3331: 3322: 3311: 3308: 3305: 3304: 3292: 3273: 3254: 3205: 3161: 3109: 3076: 3075: 3073: 3070: 3069: 3068: 3063: 3058: 3051: 3048: 3034:methods, like 2987:Ernest Merritt 2972:scarab beetles 2957:Heinrich Hertz 2883: 2880: 2861: 2810:optical window 2801: 2798: 2797: 2796: 2789: 2782: 2780: 2769: 2762: 2741: 2738: 2722: 2719: 2716: 2711: 2707: 2703: 2680: 2677: 2674: 2671: 2668: 2665: 2662: 2657: 2653: 2642: 2641: 2626: 2622: 2616: 2613: 2608: 2605: 2601: 2597: 2594: 2589: 2585: 2581: 2578: 2575: 2572: 2566: 2563: 2560: 2557: 2554: 2551: 2548: 2543: 2539: 2529: 2514: 2511: 2508: 2505: 2500: 2496: 2490: 2485: 2482: 2479: 2473: 2470: 2467: 2464: 2461: 2458: 2455: 2450: 2446: 2420: 2417: 2414: 2411: 2408: 2403: 2399: 2393: 2390: 2387: 2384: 2381: 2378: 2375: 2370: 2346: 2343: 2340: 2337: 2334: 2331: 2328: 2323: 2319: 2313: 2310: 2307: 2302: 2290: 2289: 2278: 2272: 2269: 2266: 2263: 2260: 2257: 2254: 2249: 2245: 2242: 2238: 2234: 2231: 2228: 2218: 2204: 2201: 2198: 2195: 2192: 2187: 2183: 2177: 2174: 2171: 2168: 2165: 2162: 2159: 2154: 2150: 2144: 2141: 2138: 2133: 2106: 2103: 2100: 2097: 2094: 2091: 2088: 2083: 2079: 2063:Main article: 2052: 2049: 2048: 2047: 2032: 2029: 2026: 2023: 2018: 2014: 2008: 2003: 2000: 1997: 1991: 1988: 1985: 1980: 1976: 1966: 1951: 1947: 1941: 1938: 1933: 1930: 1926: 1922: 1919: 1914: 1910: 1906: 1903: 1900: 1897: 1891: 1888: 1885: 1880: 1876: 1850: 1847: 1844: 1841: 1838: 1833: 1829: 1823: 1820: 1817: 1812: 1788: 1785: 1782: 1777: 1773: 1767: 1764: 1761: 1756: 1732: 1729: 1726: 1721: 1717: 1711: 1708: 1705: 1702: 1699: 1694: 1690: 1684: 1681: 1678: 1673: 1651: 1648: 1635: 1615: 1593: 1589: 1565: 1562: 1559: 1556: 1551: 1530: 1519: 1518: 1503: 1500: 1497: 1494: 1489: 1485: 1479: 1474: 1471: 1468: 1462: 1459: 1456: 1453: 1448: 1444: 1434: 1419: 1415: 1409: 1406: 1401: 1398: 1394: 1390: 1387: 1382: 1378: 1374: 1371: 1368: 1365: 1359: 1356: 1353: 1350: 1345: 1341: 1315: 1312: 1309: 1304: 1300: 1294: 1291: 1288: 1285: 1280: 1256: 1253: 1250: 1247: 1242: 1238: 1232: 1229: 1226: 1221: 1200: 1197: 1191: 1188: 1185: 1182: 1177: 1156: 1153: 1147: 1144: 1141: 1136: 1111: 1108: 1102: 1099: 1073: 1070: 1064: 1061: 1049:Newton's rings 1031: 1028: 1024: 1023: 1012: 1009: 1006: 1003: 998: 994: 988: 983: 980: 977: 972: 968: 964: 941: 930: 929: 914: 909: 905: 899: 894: 891: 888: 883: 879: 875: 872: 869: 867: 865: 861: 855: 850: 846: 842: 839: 836: 831: 826: 822: 818: 815: 810: 806: 802: 799: 793: 789: 784: 780: 776: 773: 770: 768: 766: 763: 758: 754: 750: 747: 744: 739: 735: 731: 726: 722: 718: 715: 712: 709: 706: 703: 699: 693: 688: 684: 680: 677: 674: 669: 666: 660: 654: 650: 646: 643: 641: 639: 636: 633: 630: 629: 607: 602: 598: 594: 591: 588: 583: 579: 575: 572: 567: 563: 559: 556: 553: 548: 544: 528: 527: 516: 511: 507: 503: 500: 497: 494: 489: 485: 481: 478: 475: 472: 469: 466: 461: 457: 454: 441: 427: 422: 418: 414: 411: 408: 404: 399: 394: 390: 387: 381: 376: 372: 369: 352: 351: 340: 335: 331: 328: 322: 317: 313: 309: 306: 301: 297: 294: 288: 283: 279: 276: 270: 265: 261: 257: 254: 251: 248: 218: 214: 210: 205: 201: 175: 116: 113: 15: 9: 6: 4: 3: 2: 3388: 3377: 3374: 3373: 3371: 3361: 3357: 3354: 3350: 3346: 3341: 3337: 3332: 3329:, McGraw–Hill 3328: 3323: 3319: 3314: 3313: 3301: 3296: 3289: 3284: 3282: 3280: 3278: 3270: 3265: 3263: 3261: 3259: 3250: 3246: 3241: 3236: 3232: 3228: 3224: 3220: 3216: 3209: 3201: 3197: 3192: 3187: 3184:(2): 667–73. 3183: 3179: 3172: 3165: 3157: 3153: 3148: 3143: 3139: 3135: 3131: 3127: 3123: 3116: 3114: 3105: 3101: 3097: 3093: 3086: 3084: 3082: 3077: 3067: 3064: 3062: 3059: 3057: 3054: 3053: 3047: 3045: 3041: 3037: 3033: 3029: 3025: 3020: 3018: 3014: 3010: 3005: 3003: 3000: 2996: 2992: 2988: 2983: 2981: 2977: 2976:Lord Rayleigh 2973: 2968: 2966: 2962: 2958: 2954: 2953:James Maxwell 2950: 2946: 2942: 2941: 2936: 2932: 2928: 2927: 2922: 2918: 2910: 2904:interference. 2902: 2898: 2893: 2889: 2879: 2877: 2873: 2859: 2850: 2846: 2844: 2840: 2836: 2831: 2829: 2825: 2820: 2811: 2806: 2793: 2790:The gloss of 2786: 2781: 2777: 2773: 2766: 2761: 2760: 2759: 2757: 2753: 2752: 2746: 2737: 2734: 2717: 2714: 2709: 2705: 2655: 2651: 2624: 2620: 2614: 2611: 2606: 2603: 2599: 2595: 2587: 2583: 2576: 2573: 2570: 2541: 2537: 2530: 2512: 2509: 2506: 2498: 2494: 2483: 2480: 2477: 2448: 2444: 2437: 2436: 2435: 2401: 2397: 2368: 2321: 2317: 2300: 2247: 2243: 2236: 2232: 2229: 2226: 2219: 2185: 2181: 2152: 2148: 2131: 2123: 2122: 2121: 2081: 2077: 2066: 2057: 2030: 2027: 2024: 2016: 2012: 2001: 1998: 1995: 1978: 1974: 1967: 1949: 1945: 1939: 1936: 1931: 1928: 1924: 1920: 1912: 1908: 1901: 1898: 1895: 1878: 1874: 1867: 1866: 1865: 1831: 1827: 1810: 1775: 1771: 1754: 1719: 1715: 1692: 1688: 1671: 1656: 1647: 1633: 1613: 1591: 1587: 1549: 1528: 1501: 1498: 1495: 1487: 1483: 1472: 1469: 1466: 1446: 1442: 1435: 1417: 1413: 1407: 1404: 1399: 1396: 1392: 1388: 1380: 1376: 1369: 1366: 1363: 1343: 1339: 1332: 1331: 1330: 1302: 1298: 1278: 1240: 1236: 1219: 1198: 1195: 1175: 1154: 1151: 1134: 1125: 1116: 1107: 1098: 1094: 1086: 1078: 1069: 1060: 1059:of surfaces. 1058: 1054: 1053:optical flats 1050: 1045: 1044:monochromatic 1036: 1027: 1010: 1007: 1004: 996: 992: 981: 978: 975: 970: 966: 962: 955: 954: 953: 939: 907: 903: 892: 889: 886: 881: 877: 873: 870: 868: 859: 848: 844: 837: 834: 824: 820: 813: 808: 804: 800: 797: 791: 787: 782: 778: 774: 771: 769: 756: 752: 745: 742: 737: 733: 724: 720: 713: 710: 707: 704: 701: 697: 686: 682: 675: 672: 667: 664: 658: 652: 648: 644: 642: 637: 634: 631: 620: 619: 618: 600: 596: 589: 586: 581: 577: 573: 565: 561: 554: 551: 546: 542: 533: 509: 505: 498: 495: 487: 483: 476: 473: 470: 467: 464: 455: 452: 442: 420: 416: 409: 406: 402: 397: 388: 385: 379: 370: 367: 357: 356: 355: 329: 326: 315: 311: 307: 295: 292: 286: 277: 274: 263: 259: 255: 252: 249: 246: 239: 238: 237: 233: 216: 212: 208: 203: 199: 189: 173: 164: 159: 154: 150: 146: 143:In optics, a 138: 134: 129: 121: 112: 110: 106: 102: 98: 94: 90: 85: 83: 79: 75: 74:camera lenses 71: 67: 63: 59: 55: 50: 48: 44: 41: 37: 33: 26: 21: 3344: 3335: 3326: 3317: 3299: 3295: 3287: 3268: 3222: 3218: 3208: 3181: 3177: 3164: 3129: 3125: 3095: 3091: 3028:vacuum pumps 3021: 3006: 2990: 2984: 2969: 2945:Thomas Young 2938: 2935:Isaac Newton 2926:Micrographia 2924: 2923:in 1665. In 2921:Robert Hooke 2915: 2874: 2849:Ellipsometry 2847: 2832: 2830:techniques. 2826:and various 2815: 2800:Applications 2775: 2749: 2743: 2735: 2643: 2291: 2068: 1661: 1520: 1121: 1104: 1095: 1091: 1066: 1041: 1025: 931: 529: 353: 234: 163:interference 142: 86: 54:soap bubbles 51: 31: 30: 3098:: 109–121. 3017:nitric acid 2917:Iridescence 2888:iridescence 1124:soap bubble 1110:Soap bubble 532:Snell's law 236:following: 47:wavelengths 36:light waves 3072:References 3046:coatings. 3044:dielectric 3036:sputtering 3347:, Wiley, 3002:butterfly 2985:In 1925, 2901:Tempering 2860:ρ 2792:buttercup 2776:Aglais io 2751:Aglais io 2740:In nature 2706:θ 2625:λ 2607:− 2584:θ 2577:⁡ 2513:λ 2495:θ 2484:⁡ 2233:λ 2031:λ 2013:θ 2002:⁡ 1950:λ 1932:− 1909:θ 1902:⁡ 1634:λ 1588:θ 1502:λ 1484:θ 1473:⁡ 1418:λ 1400:− 1377:θ 1370:⁡ 1011:λ 993:θ 982:⁡ 940:λ 904:θ 893:⁡ 845:θ 838:⁡ 821:θ 814:⁡ 801:− 753:θ 746:⁡ 721:θ 714:⁡ 702:− 683:θ 676:⁡ 597:θ 590:⁡ 562:θ 555:⁡ 506:θ 499:⁡ 484:θ 477:⁡ 460:¯ 417:θ 410:⁡ 393:¯ 375:¯ 334:¯ 308:− 300:¯ 282:¯ 174:π 149:nanometer 145:thin film 82:linewidth 58:oil films 43:interfere 40:thin film 3370:Category 3249:21159676 3200:24713039 3156:28228540 3050:See also 3024:fluorite 1650:Oil film 1101:Examples 1057:flatness 186:radians 68:used on 27:boundary 3349:Bibcode 3320:, Dover 3240:3107630 3147:5332578 2940:Opticks 2931:peacock 2882:History 354:Where, 105:mirrors 70:glasses 3336:Optics 3247:  3237:  3198:  3154:  3144:  3042:using 2999:morpho 2837:, the 2835:retina 2638:  2526:  2044:  1963:  1521:Where 1515:  1431:  530:Using 153:micron 137:Airbus 115:Theory 107:, and 3174:(PDF) 3030:made 3015:with 3013:glass 93:prism 62:water 25:lipid 3245:PMID 3196:PMID 3152:PMID 2955:and 2890:and 2398:< 2360:and 2318:< 2182:< 2149:< 1828:> 1772:< 1716:< 1689:< 1299:> 1237:< 1196:> 209:< 72:and 56:and 3235:PMC 3227:doi 3223:278 3186:doi 3182:203 3142:PMC 3134:doi 3100:doi 2574:cos 2481:cos 1999:cos 1899:cos 1470:cos 1367:cos 979:cos 890:cos 835:cos 805:sin 743:sin 711:tan 673:cos 587:sin 552:sin 496:sin 474:tan 407:cos 151:to 133:ITO 91:or 60:on 3372:: 3276:^ 3257:^ 3243:. 3233:. 3221:. 3217:. 3194:. 3180:. 3176:. 3150:. 3140:. 3130:14 3128:. 3124:. 3112:^ 3094:. 3080:^ 2758:. 952:. 534:, 111:. 103:, 3351:: 3251:. 3229:: 3202:. 3188:: 3158:. 3136:: 3106:. 3102:: 3096:1 2774:( 2721:) 2718:0 2715:= 2710:2 2702:( 2679:g 2676:n 2673:i 2670:t 2667:a 2664:o 2661:c 2656:n 2652:d 2621:) 2615:2 2612:1 2604:m 2600:( 2596:= 2593:) 2588:2 2580:( 2571:d 2565:g 2562:n 2559:i 2556:t 2553:a 2550:o 2547:c 2542:n 2538:2 2510:m 2507:= 2504:) 2499:2 2489:( 2478:d 2472:g 2469:n 2466:i 2463:t 2460:a 2457:o 2454:c 2449:n 2445:2 2419:s 2416:s 2413:a 2410:l 2407:g 2402:n 2392:g 2389:n 2386:i 2383:t 2380:a 2377:o 2374:c 2369:n 2345:g 2342:n 2339:i 2336:t 2333:a 2330:o 2327:c 2322:n 2312:r 2309:i 2306:a 2301:n 2277:) 2271:g 2268:n 2265:i 2262:t 2259:a 2256:o 2253:c 2248:n 2244:4 2241:( 2237:/ 2230:= 2227:d 2203:s 2200:s 2197:a 2194:l 2191:g 2186:n 2176:g 2173:n 2170:i 2167:t 2164:a 2161:o 2158:c 2153:n 2143:r 2140:i 2137:a 2132:n 2105:g 2102:n 2099:i 2096:t 2093:a 2090:o 2087:c 2082:n 2078:d 2028:m 2025:= 2022:) 2017:2 2007:( 1996:d 1990:l 1987:i 1984:o 1979:n 1975:2 1946:) 1940:2 1937:1 1929:m 1925:( 1921:= 1918:) 1913:2 1905:( 1896:d 1890:l 1887:i 1884:o 1879:n 1875:2 1849:r 1846:e 1843:t 1840:a 1837:w 1832:n 1822:l 1819:i 1816:o 1811:n 1787:l 1784:i 1781:o 1776:n 1766:r 1763:i 1760:a 1755:n 1731:l 1728:i 1725:o 1720:n 1710:r 1707:e 1704:t 1701:a 1698:w 1693:n 1683:r 1680:i 1677:a 1672:n 1614:m 1592:2 1564:m 1561:l 1558:i 1555:f 1550:n 1529:d 1499:m 1496:= 1493:) 1488:2 1478:( 1467:d 1461:m 1458:l 1455:i 1452:f 1447:n 1443:2 1414:) 1408:2 1405:1 1397:m 1393:( 1389:= 1386:) 1381:2 1373:( 1364:d 1358:m 1355:l 1352:i 1349:f 1344:n 1340:2 1314:r 1311:i 1308:a 1303:n 1293:m 1290:l 1287:i 1284:f 1279:n 1255:m 1252:l 1249:i 1246:f 1241:n 1231:r 1228:i 1225:a 1220:n 1199:1 1190:m 1187:l 1184:i 1181:f 1176:n 1155:1 1152:= 1146:r 1143:i 1140:a 1135:n 1008:m 1005:= 1002:) 997:2 987:( 976:d 971:2 967:n 963:2 913:) 908:2 898:( 887:d 882:2 878:n 874:2 871:= 860:) 854:) 849:2 841:( 830:) 825:2 817:( 809:2 798:1 792:( 788:d 783:2 779:n 775:2 772:= 762:) 757:2 749:( 738:2 734:n 730:) 725:2 717:( 708:d 705:2 698:) 692:) 687:2 679:( 668:d 665:2 659:( 653:2 649:n 645:= 638:D 635:P 632:O 606:) 601:2 593:( 582:2 578:n 574:= 571:) 566:1 558:( 547:1 543:n 515:) 510:1 502:( 493:) 488:2 480:( 471:d 468:2 465:= 456:D 453:A 426:) 421:2 413:( 403:d 398:= 389:C 386:B 380:= 371:B 368:A 339:) 330:D 327:A 321:( 316:1 312:n 305:) 296:C 293:B 287:+ 278:B 275:A 269:( 264:2 260:n 256:= 253:D 250:P 247:O 217:2 213:n 204:1 200:n

Index


lipid
light waves
thin film
interfere
wavelengths
soap bubbles
oil films
water
antireflection coatings
glasses
camera lenses
coherence length
linewidth
diffraction grating
prism
refractive index
anti-reflection coatings
mirrors
optical filters


ITO
Airbus
thin film
nanometer
micron
Fresnel equations
interference
may be introduced upon reflection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.