Knowledge

Time–temperature superposition

Source 📝

988: 69: 286: 28: 145: 1939: 245:(E) of a polymer is influenced by the load and the response time. Time–temperature superposition implies that the response time function of the elastic modulus at a certain temperature resembles the shape of the same functions of adjacent temperatures. Curves of E vs. log(response time) at one temperature can be shifted to overlap with adjacent curves, as long as the data sets did not suffer from ageing effects during the test time (see 2299: 2073: 2022: 226:
transition from a hard “glassy” state to a soft “rubbery” state in which the modulus can be several orders of magnitude lower than it was in the glassy state. The transition from glassy to rubbery behavior is continuous and the transition zone is often referred to as the leathery zone. The onset temperature of the transition zone, moving from glassy to rubbery, is known as the
628: 832: 237:
In the 1940s Andrews and Tobolsky showed that there was a simple relationship between temperature and time for the mechanical response of a polymer. Modulus measurements are made by stretching or compressing a sample at a prescribed rate of deformation. For polymers, changing the rate of deformation
1954:
The principle of time-temperature superposition requires the assumption of thermorheologically simple behavior (all curves have the same characteristic time variation law with temperature). From an initial spectral window and a series of isotherms in this window, we can calculate the master curves
276:
or viscosity can often be a strong indicator of the molecular structure and molecular mobility. Time–temperature superposition avoids the inefficiency of measuring a polymer's behavior over long periods of time at a specified temperature by utilizing the fact that at higher temperatures and shorter
225:
polymer against the temperature at which you measured it, you will get a curve which can be divided up into distinct regions of physical behavior. At very low temperatures, the polymer will behave like a glass and exhibit a high modulus. As you increase the temperature, the polymer will undergo a
264:
Consider a viscoelastic body that is subjected to dynamic loading. If the excitation frequency is low enough the viscous behavior is paramount and all polymer chains have the time to respond to the applied load within a time period. In contrast, at higher frequencies, the chains do not have the
205:
The translation factor is often computed using an empirical relation first established by Malcolm L. Williams, Robert F. Landel and John D. Ferry (also called the Williams-Landel-Ferry or WLF model). An alternative model suggested by Arrhenius is also used. The WLF model is related to macroscopic
2359:
For the superposition principle to apply, the sample must be homogeneous, isotropic and amorphous. The material must be linear viscoelastic under the deformations of interest, i.e., the deformation must be expressed as a linear function of the stress by applying very small strains, e.g. 0.01%.
136:
as a function of time do not change shape as the temperature is changed but appear only to shift left or right. This implies that a master curve at a given temperature can be used as the reference to predict curves at various temperatures by applying a shift operation. The time-temperature
1897: 1679: 1441: 470: 265:
time to fully respond and the resulting artificial viscosity results in an increase in the macroscopic modulus. Moreover, at constant frequency, an increase in temperature results in a reduction of the modulus due to an increase in free volume and chain movement.
238:
will cause the curve described above to be shifted along the temperature axis. Increasing the rate of deformation will shift the curve to higher temperatures so that the transition from a glassy to a rubbery state will happen at higher temperatures.
2254: 651: 1930:≈ 50 K. Experimentally observed values deviate from the values in the table. These orders of magnitude are useful and are a good indicator of the quality of a relationship that has been computed from experimental data. 1169: 909: 1697: 1270: 623:{\displaystyle {\begin{aligned}&T>T_{0}\quad \implies \quad a_{\rm {T}}<1\\&T<T_{0}\quad \implies \quad a_{\rm {T}}>1\\&T=T_{0}\quad \implies \quad a_{\rm {T}}=1\,.\end{aligned}}} 452: 656: 475: 1497: 1212:
are positive constants that depend on the material and the reference temperature. This relationship holds only in the approximate temperature range . To determine the constants, the factor
2490:
Experiments that determine the mechanical properties of polymers often use periodic loading. For such situations, the loading rate is related to the frequency of the applied load.
2150: 827:{\displaystyle {\begin{aligned}G'(\omega ,T)&=G'\left(a_{\rm {T}}\,\omega ,T_{0}\right)\\G''(\omega ,T)&=G''\left(a_{\rm {T}}\,\omega ,T_{0}\right).\end{aligned}}} 339:. At constant strain, the stress relaxes faster at the higher temperature. The principle of time-temperature superposition states that the change in temperature from 192:
experimental determination of frequency-dependent curves of isothermal viscoelastic mechanical properties at several temperatures and for a small range of frequencies
1192: 2018:
The viscoelastic behavior is well modeled and allows extrapolation beyond the field of experimental frequencies which typically ranges from 0.01 to 100 Hz .
2525:
Andrews, R. D.; Tobolsky, A. V. (August 1951). "Elastoviscous properties of polyisobutylene. IV. Relaxation time spectrum and calculation of bulk viscosity".
1994:. Conversely, lowering the temperature corresponds to the exploration of the part of the curve corresponding to high frequencies. For a reference temperature 268:
Time–temperature superposition is a procedure that has become important in the field of polymers to observe the dependence upon temperature on the change of
2320: 2094: 1916:
for a given polymer system be collected in a table. These constants are approximately the same for a large number of polymers and can be written
1058: 2388:
requires extensive dynamic testing at a number of scanning frequencies and temperature, which represents at least a hundred measurement points.
17: 1892:{\displaystyle C_{1}^{0}={\frac {C_{1}^{g}\,C_{2}^{g}}{C_{2}^{g}+(T_{0}-T_{g})}}\qquad {\rm {and}}\qquad C_{2}^{0}=C_{2}^{g}+(T_{0}-T_{g})\,.} 1436:{\displaystyle \log a_{\rm {T}}=-{\frac {C_{1}^{g}(T-T_{g})}{C_{2}^{g}+(T-T_{g})}}=\log \left({\frac {\eta _{\rm {T}}}{\eta _{T_{g}}}}\right)} 851: 201:
application of the translation factor to determine temperature-dependent moduli over the whole range of frequencies in the master curve.
2632: 374: 2589:
Curve has been generated with data from a dynamic test with a double scanning frequency / temperature on a viscoelastic polymer.
1684:
In particular, to transform the constants from those obtained at the glass transition temperature to a reference temperature
987: 2430:
Li, Rongzhi (February 2000). "Time-temperature superposition method for glass transition temperature of plastic materials".
1674:{\displaystyle C'_{1}={\frac {C_{1}\,C_{2}}{C_{2}+(T'_{0}-T_{0})}}\qquad {\rm {and}}\qquad C'_{2}=C_{2}+(T'_{0}-T_{0})\,.} 2414: 1017:, combined with the principle of time-temperature superposition, can account for variations in the intrinsic viscosity 2561: 2346: 2120: 2328: 2281:. This Arrhenius law, under this glass transition temperature, applies to secondary transitions (relaxation) called 2102: 845:
For a polymer in solution or "molten" state the following relationship can be used to determine the shift factor:
2576:
For the superposition principle to apply, the excitation frequency should be well above the characteristic time
2637: 2608: 2509: 2324: 2098: 2021: 246: 148:
Moduli measured using a dynamic viscoelastic modulus analyzer. The plots show the variation of elastic modulus
1962:
is taken as a reference for setting the frequency scale (the curve at that temperature undergoes no shift).
198:
experimental determination of a master curve showing the effect of frequency for a wide range of frequencies
2363:
To apply the WLF relationship, such a sample should be sought in the approximate temperature range , where
1024:
of amorphous polymers as a function of temperature, for temperatures near the glass transition temperature
227: 1460:
are the coefficients of the WLF model when the reference temperature is the glass transition temperature.
1980:) decreases. This amounts to explore a part of the master curve corresponding to frequencies lower than 195:
computation of a translation factor to correlate these properties for the temperature and frequency range
2249:{\displaystyle \log(a_{\rm {T}})=-{\frac {E_{a}}{2.303R}}\left({\frac {1}{T}}-{\frac {1}{T_{0}}}\right)} 124:
This superposition principle is used to determine temperature-dependent mechanical properties of linear
2662: 2458: 837:
A decrease in temperature increases the time characteristics while frequency characteristics decrease.
128:
materials from known properties at a reference temperature. The elastic moduli of typical amorphous
285: 2652: 2309: 2083: 68: 2313: 2087: 206:
motion of the bulk material, while the Arrhenius model considers local motion of polymer chains.
2657: 27: 1177: 144: 118: 1233:*. A good correlation between the two shift factors gives the values of the coefficients 960:
versus the reciprocal of temperature (in K), the slope of the curve can be interpreted as
132:
increase with loading rate but decrease when the temperature is increased. Curves of the
8: 464:
is called the horizontal translation factor or the shift factor and has the properties:
976: 2443: 2604: 2557: 2505: 2410: 1955:
of a material which extends over a broader frequency range. An arbitrary temperature
1195: 943: 1031:. The WLF model also expresses the change with the temperature of the shift factor. 2580:(also called relaxation time) which depends on the molecular weight of the polymer. 2534: 2439: 1477:
depend on the reference temperature. If the reference temperature is changed from
2627: 2044:
is the frequency. The shift factor is computed from data in the frequency range
242: 218: 138: 133: 114: 73: 1950:
as a function of frequency. The data have been fit to a polynomial of degree 7.
277:
time the polymer will behave the same, provided there are no phase transitions.
2538: 253: 840: 2646: 1014: 1938: 1164:{\displaystyle \log a_{\rm {T}}=-{\frac {C_{1}(T-T_{0})}{C_{2}+(T-T_{0})}}} 982: 217:
properties on the temperature at which they are measured. If you plot the
214: 125: 32: 222: 188:
The application of the principle typically involves the following steps:
942:
The time–temperature shift factor can also be described in terms of the
921:
is the viscosity (non-Newtonian) during continuous flow at temperature
904:{\displaystyle a_{\rm {T}}={\frac {\eta _{\rm {T}}}{\eta _{\rm {T0}}}}} 76:
of a viscoelastic material under periodic excitation. The frequency is
979:= 8.64x10 eV/K and the activation energy is expressed in terms of eV. 269: 256:
is closely related to the concept of time-temperature superposition.
2298: 2072: 1034:
Williams, Landel and Ferry proposed the following relationship for
273: 129: 2133:
The shift factor (which depends on the nature of the transition)
350:
is equivalent to multiplying the time scale by a constant factor
210: 2367:-transitions are observed (relaxation). The study to determine 2278: 633:
The superposition principle for complex dynamic moduli (G* = G
2015:
is described by an homographic function of the temperature.
1965:
In the frequency range , if the temperature increases from
1902:
These same authors have proposed the "universal constants"
841:
Relationship between shift factor and intrinsic viscosities
447:{\displaystyle E(t,T)=E({\frac {t}{a_{\rm {T}}}},T_{0})\,.} 31:
Temperature dependence of elastic relaxation modulus of a
2554:
Physical aging in amorphous polymers and other materials
2409:(2nd ed.). Taylor & Francis. pp. 486–491. 983:
Shift factor using the Williams-Landel-Ferry (WLF) model
289:
Schematic of the evolution of the instantaneous modulus
2001:, shifts of the modulus curves have the amplitude log( 2459:"Time-temperature superposition for polymeric blends" 2153: 1700: 1500: 1273: 1180: 1061: 854: 654: 473: 377: 2062: 2248: 1891: 1673: 1435: 1186: 1163: 903: 826: 622: 446: 357:which is only a function of the two temperatures 280: 2644: 2025:Principle of construction of a master curve for 1933: 2524: 2456: 1013:The empirical relationship of Williams-Landel- 176:is the phase angle as a function of frequency 2457:van Gurp, Marnix; Palmen, Jo (January 1998). 2405:Hiemenz, Paul C.; Lodge, Timothy P. (2007). 2404: 1942:Master curves for the instantaneous modulus 2499: 2327:. Unsourced material may be challenged and 2101:. Unsourced material may be challenged and 213:in particular, show a strong dependence of 2633:Temperature dependence of liquid viscosity 2556:. Amsterdam: Elsevier Scientific Pub. Co. 2502:Theory of viscoelasticity: an introduction 592: 588: 546: 542: 500: 496: 241:It has been shown experimentally that the 2347:Learn how and when to remove this message 2121:Learn how and when to remove this message 1885: 1737: 1667: 1530: 795: 714: 612: 440: 2504:. New York: Academic Press. p. 92. 2020: 1937: 986: 284: 143: 111:time–temperature superposition principle 67: 26: 14: 2645: 2551: 2598: 2008:). In the area of glass transition, 1987:while maintaining the temperature at 259: 2570: 2484: 2432:Materials Science and Engineering: A 2325:adding citations to reliable sources 2292: 2099:adding citations to reliable sources 2066: 1491:, the new coefficients are given by 2601:Viscoelastic properties of polymers 2270:is the universal gas constant, and 141:is based on the above observation. 24: 2429: 2169: 1814: 1811: 1808: 1600: 1597: 1594: 1404: 1286: 1074: 890: 878: 861: 789: 708: 600: 554: 508: 416: 137:superposition principle of linear 25: 2674: 1219:is calculated for each component 2603:(3d ed.). New York: Wiley. 2500:Christensen, Richard M. (1971). 2297: 2071: 2063:Shift factor using Arrhenius law 1247:that characterize the material. 1229:of the complex measured modulus 953:). By plotting the shift factor 935:is the viscosity at temperature 313:Consider the relaxation modulus 2592: 1819: 1805: 1605: 1591: 593: 587: 547: 541: 501: 495: 301:) in a static relaxation test. 2638:Williams-Landel-Ferry equation 2583: 2545: 2518: 2493: 2450: 2423: 2398: 2288: 2277:is a reference temperature in 2175: 2160: 1882: 1856: 1799: 1773: 1664: 1635: 1585: 1556: 1377: 1358: 1335: 1316: 1155: 1136: 1118: 1099: 760: 748: 679: 667: 589: 543: 497: 437: 402: 393: 381: 281:Time-temperature superposition 247:Williams-Landel-Ferry equation 18:Time-temperature superposition 13: 1: 2444:10.1016/S0921-5093(99)00602-4 2391: 1934:Construction of master curves 2029:for a reference temperature 1002:for a reference temperature 228:glass transition temperature 84:is the elastic modulus, and 7: 2621: 160:) and the loss factor, tan 10: 2679: 2539:10.1002/pol.1951.120070210 2527:Journal of Polymer Science 2266:is the activation energy, 991:Curve of the variation of 72:Temperature dependence of 2552:Struik, L. C. E. (1978). 2144:using an Arrhenius law: 2599:Ferry, John D. (1980). 1946:and the loss factor tan 645:is obtained similarly: 641:) at a fixed frequency 2250: 2135:can be defined, below 2059: 1972:, the complex modulus 1951: 1893: 1675: 1437: 1188: 1165: 1010: 905: 828: 624: 448: 310: 272:of a polymeric fluid. 221:of a noncrystallizing 185: 117:and in the physics of 106: 65: 2374:and the coefficients 2251: 2024: 1941: 1894: 1676: 1438: 1189: 1187:{\displaystyle \log } 1166: 990: 906: 829: 625: 449: 288: 147: 134:instantaneous modulus 119:glass-forming liquids 71: 30: 2321:improve this section 2151: 2095:improve this section 1698: 1498: 1271: 1178: 1059: 852: 652: 471: 375: 317:at two temperatures 43:is the modulus, and 1852: 1834: 1769: 1752: 1736: 1715: 1650: 1618: 1571: 1513: 1354: 1315: 368:. In other words, 309:is the temperature. 2246: 2060: 1952: 1889: 1838: 1820: 1755: 1738: 1722: 1701: 1671: 1638: 1606: 1559: 1501: 1433: 1340: 1301: 1184: 1161: 1011: 977:Boltzmann constant 901: 824: 822: 620: 618: 444: 311: 260:Physical principle 186: 107: 66: 2663:Rubber properties 2466:Rheology Bulletin 2407:Polymer chemistry 2357: 2356: 2349: 2239: 2219: 2204: 2131: 2130: 2123: 1803: 1589: 1463:The coefficients 1427: 1381: 1196:decadic logarithm 1159: 998:as a function of 944:activation energy 899: 422: 16:(Redirected from 2670: 2615: 2614: 2596: 2590: 2587: 2581: 2574: 2568: 2567: 2549: 2543: 2542: 2522: 2516: 2515: 2497: 2491: 2488: 2482: 2481: 2479: 2477: 2463: 2454: 2448: 2447: 2427: 2421: 2420: 2402: 2352: 2345: 2341: 2338: 2332: 2301: 2293: 2255: 2253: 2252: 2247: 2245: 2241: 2240: 2238: 2237: 2225: 2220: 2212: 2205: 2203: 2195: 2194: 2185: 2174: 2173: 2172: 2143: 2126: 2119: 2115: 2112: 2106: 2075: 2067: 1898: 1896: 1895: 1890: 1881: 1880: 1868: 1867: 1851: 1846: 1833: 1828: 1818: 1817: 1804: 1802: 1798: 1797: 1785: 1784: 1768: 1763: 1753: 1751: 1746: 1735: 1730: 1720: 1714: 1709: 1680: 1678: 1677: 1672: 1663: 1662: 1646: 1631: 1630: 1614: 1604: 1603: 1590: 1588: 1584: 1583: 1567: 1552: 1551: 1541: 1540: 1539: 1529: 1528: 1518: 1509: 1442: 1440: 1439: 1434: 1432: 1428: 1426: 1425: 1424: 1423: 1409: 1408: 1407: 1397: 1382: 1380: 1376: 1375: 1353: 1348: 1338: 1334: 1333: 1314: 1309: 1299: 1291: 1290: 1289: 1193: 1191: 1190: 1185: 1170: 1168: 1167: 1162: 1160: 1158: 1154: 1153: 1132: 1131: 1121: 1117: 1116: 1098: 1097: 1087: 1079: 1078: 1077: 910: 908: 907: 902: 900: 898: 897: 896: 883: 882: 881: 871: 866: 865: 864: 833: 831: 830: 825: 823: 816: 812: 811: 810: 794: 793: 792: 777: 747: 735: 731: 730: 729: 713: 712: 711: 696: 666: 629: 627: 626: 621: 619: 605: 604: 603: 586: 585: 569: 559: 558: 557: 540: 539: 523: 513: 512: 511: 494: 493: 477: 453: 451: 450: 445: 436: 435: 423: 421: 420: 419: 406: 305:is the time and 209:Some materials, 180:and temperature 113:is a concept in 35:material. Here 21: 2678: 2677: 2673: 2672: 2671: 2669: 2668: 2667: 2653:Polymer physics 2643: 2642: 2628:Viscoelasticity 2624: 2619: 2618: 2611: 2597: 2593: 2588: 2584: 2575: 2571: 2564: 2550: 2546: 2533:(23): 221–242. 2523: 2519: 2512: 2498: 2494: 2489: 2485: 2475: 2473: 2461: 2455: 2451: 2428: 2424: 2417: 2403: 2399: 2394: 2387: 2380: 2373: 2353: 2342: 2336: 2333: 2318: 2302: 2291: 2276: 2265: 2233: 2229: 2224: 2211: 2210: 2206: 2196: 2190: 2186: 2184: 2168: 2167: 2163: 2152: 2149: 2148: 2141: 2134: 2127: 2116: 2110: 2107: 2092: 2076: 2065: 2057: 2050: 2035: 2014: 2007: 2000: 1993: 1986: 1971: 1961: 1936: 1929: 1922: 1915: 1908: 1876: 1872: 1863: 1859: 1847: 1842: 1829: 1824: 1807: 1806: 1793: 1789: 1780: 1776: 1764: 1759: 1754: 1747: 1742: 1731: 1726: 1721: 1719: 1710: 1705: 1699: 1696: 1695: 1690: 1658: 1654: 1642: 1626: 1622: 1610: 1593: 1592: 1579: 1575: 1563: 1547: 1543: 1542: 1535: 1531: 1524: 1520: 1519: 1517: 1505: 1499: 1496: 1495: 1490: 1487: 1483: 1476: 1469: 1459: 1452: 1419: 1415: 1414: 1410: 1403: 1402: 1398: 1396: 1392: 1371: 1367: 1349: 1344: 1339: 1329: 1325: 1310: 1305: 1300: 1298: 1285: 1284: 1280: 1272: 1269: 1268: 1263: 1256: 1246: 1239: 1228: 1218: 1211: 1204: 1179: 1176: 1175: 1149: 1145: 1127: 1123: 1122: 1112: 1108: 1093: 1089: 1088: 1086: 1073: 1072: 1068: 1060: 1057: 1056: 1051: 1040: 1030: 1023: 1008: 997: 985: 966: 959: 952: 934: 927: 920: 889: 888: 884: 877: 876: 872: 870: 860: 859: 855: 853: 850: 849: 843: 821: 820: 806: 802: 788: 787: 783: 782: 778: 770: 763: 740: 737: 736: 725: 721: 707: 706: 702: 701: 697: 689: 682: 659: 655: 653: 650: 649: 617: 616: 599: 598: 594: 581: 577: 567: 566: 553: 552: 548: 535: 531: 521: 520: 507: 506: 502: 489: 485: 474: 472: 469: 468: 463: 431: 427: 415: 414: 410: 405: 376: 373: 372: 367: 356: 349: 338: 327: 283: 262: 243:elastic modulus 233: 219:elastic modulus 139:viscoelasticity 115:polymer physics 104: 97: 90: 74:elastic modulus 63: 56: 49: 23: 22: 15: 12: 11: 5: 2676: 2666: 2665: 2660: 2655: 2641: 2640: 2635: 2630: 2623: 2620: 2617: 2616: 2609: 2591: 2582: 2569: 2562: 2544: 2517: 2510: 2492: 2483: 2449: 2438:(1–2): 36–45. 2422: 2416:978-1574447798 2415: 2396: 2395: 2393: 2390: 2385: 2378: 2371: 2355: 2354: 2305: 2303: 2296: 2290: 2287: 2285:-transitions. 2274: 2263: 2257: 2256: 2244: 2236: 2232: 2228: 2223: 2218: 2215: 2209: 2202: 2199: 2193: 2189: 2183: 2180: 2177: 2171: 2166: 2162: 2159: 2156: 2139: 2129: 2128: 2079: 2077: 2070: 2064: 2061: 2055: 2048: 2033: 2012: 2005: 1998: 1991: 1984: 1969: 1959: 1935: 1932: 1927: 1920: 1913: 1906: 1900: 1899: 1888: 1884: 1879: 1875: 1871: 1866: 1862: 1858: 1855: 1850: 1845: 1841: 1837: 1832: 1827: 1823: 1816: 1813: 1810: 1801: 1796: 1792: 1788: 1783: 1779: 1775: 1772: 1767: 1762: 1758: 1750: 1745: 1741: 1734: 1729: 1725: 1718: 1713: 1708: 1704: 1688: 1682: 1681: 1670: 1666: 1661: 1657: 1653: 1649: 1645: 1641: 1637: 1634: 1629: 1625: 1621: 1617: 1613: 1609: 1602: 1599: 1596: 1587: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1555: 1550: 1546: 1538: 1534: 1527: 1523: 1516: 1512: 1508: 1504: 1488: 1485: 1481: 1474: 1467: 1457: 1450: 1444: 1443: 1431: 1422: 1418: 1413: 1406: 1401: 1395: 1391: 1388: 1385: 1379: 1374: 1370: 1366: 1363: 1360: 1357: 1352: 1347: 1343: 1337: 1332: 1328: 1324: 1321: 1318: 1313: 1308: 1304: 1297: 1294: 1288: 1283: 1279: 1276: 1261: 1254: 1244: 1237: 1224: 1216: 1209: 1202: 1183: 1172: 1171: 1157: 1152: 1148: 1144: 1141: 1138: 1135: 1130: 1126: 1120: 1115: 1111: 1107: 1104: 1101: 1096: 1092: 1085: 1082: 1076: 1071: 1067: 1064: 1049: 1038: 1028: 1021: 1006: 995: 984: 981: 964: 957: 950: 932: 925: 918: 912: 911: 895: 892: 887: 880: 875: 869: 863: 858: 842: 839: 835: 834: 819: 815: 809: 805: 801: 798: 791: 786: 781: 776: 773: 769: 766: 764: 762: 759: 756: 753: 750: 746: 743: 739: 738: 734: 728: 724: 720: 717: 710: 705: 700: 695: 692: 688: 685: 683: 681: 678: 675: 672: 669: 665: 662: 658: 657: 631: 630: 615: 611: 608: 602: 597: 591: 584: 580: 576: 573: 570: 568: 565: 562: 556: 551: 545: 538: 534: 530: 527: 524: 522: 519: 516: 510: 505: 499: 492: 488: 484: 481: 478: 476: 461: 455: 454: 443: 439: 434: 430: 426: 418: 413: 409: 404: 401: 398: 395: 392: 389: 386: 383: 380: 365: 354: 347: 336: 325: 282: 279: 261: 258: 254:Deborah number 231: 203: 202: 199: 196: 193: 102: 95: 88: 61: 54: 47: 9: 6: 4: 3: 2: 2675: 2664: 2661: 2659: 2658:Glass physics 2656: 2654: 2651: 2650: 2648: 2639: 2636: 2634: 2631: 2629: 2626: 2625: 2612: 2606: 2602: 2595: 2586: 2579: 2573: 2565: 2563:9780444416551 2559: 2555: 2548: 2540: 2536: 2532: 2528: 2521: 2513: 2507: 2503: 2496: 2487: 2471: 2467: 2460: 2453: 2445: 2441: 2437: 2433: 2426: 2418: 2412: 2408: 2401: 2397: 2389: 2384: 2377: 2370: 2366: 2361: 2351: 2348: 2340: 2337:December 2021 2330: 2326: 2322: 2316: 2315: 2311: 2306:This section 2304: 2300: 2295: 2294: 2286: 2284: 2280: 2273: 2269: 2262: 2242: 2234: 2230: 2226: 2221: 2216: 2213: 2207: 2200: 2197: 2191: 2187: 2181: 2178: 2164: 2157: 2154: 2147: 2146: 2145: 2138: 2125: 2122: 2114: 2111:December 2021 2104: 2100: 2096: 2090: 2089: 2085: 2080:This section 2078: 2074: 2069: 2068: 2054: 2047: 2043: 2039: 2032: 2028: 2023: 2019: 2016: 2011: 2004: 1997: 1990: 1983: 1979: 1975: 1968: 1963: 1958: 1949: 1945: 1940: 1931: 1926: 1919: 1912: 1905: 1886: 1877: 1873: 1869: 1864: 1860: 1853: 1848: 1843: 1839: 1835: 1830: 1825: 1821: 1794: 1790: 1786: 1781: 1777: 1770: 1765: 1760: 1756: 1748: 1743: 1739: 1732: 1727: 1723: 1716: 1711: 1706: 1702: 1694: 1693: 1692: 1687: 1668: 1659: 1655: 1651: 1647: 1643: 1639: 1632: 1627: 1623: 1619: 1615: 1611: 1607: 1580: 1576: 1572: 1568: 1564: 1560: 1553: 1548: 1544: 1536: 1532: 1525: 1521: 1514: 1510: 1506: 1502: 1494: 1493: 1492: 1480: 1473: 1466: 1461: 1456: 1449: 1429: 1420: 1416: 1411: 1399: 1393: 1389: 1386: 1383: 1372: 1368: 1364: 1361: 1355: 1350: 1345: 1341: 1330: 1326: 1322: 1319: 1311: 1306: 1302: 1295: 1292: 1281: 1277: 1274: 1267: 1266: 1265: 1260: 1253: 1248: 1243: 1236: 1232: 1227: 1222: 1215: 1208: 1201: 1197: 1181: 1150: 1146: 1142: 1139: 1133: 1128: 1124: 1113: 1109: 1105: 1102: 1094: 1090: 1083: 1080: 1069: 1065: 1062: 1055: 1054: 1053: 1048: 1044: 1041:in terms of ( 1037: 1032: 1027: 1020: 1016: 1005: 1001: 994: 989: 980: 978: 974: 970: 963: 956: 949: 945: 940: 938: 931: 924: 917: 893: 885: 873: 867: 856: 848: 847: 846: 838: 817: 813: 807: 803: 799: 796: 784: 779: 774: 771: 767: 765: 757: 754: 751: 744: 741: 732: 726: 722: 718: 715: 703: 698: 693: 690: 686: 684: 676: 673: 670: 663: 660: 648: 647: 646: 644: 640: 636: 613: 609: 606: 595: 582: 578: 574: 571: 563: 560: 549: 536: 532: 528: 525: 517: 514: 503: 490: 486: 482: 479: 467: 466: 465: 460: 457:The quantity 441: 432: 428: 424: 411: 407: 399: 396: 390: 387: 384: 378: 371: 370: 369: 364: 360: 353: 346: 342: 335: 331: 324: 320: 316: 308: 304: 300: 296: 292: 287: 278: 275: 271: 266: 257: 255: 250: 248: 244: 239: 235: 229: 224: 220: 216: 212: 207: 200: 197: 194: 191: 190: 189: 183: 179: 175: 171: 167: 163: 159: 155: 151: 146: 142: 140: 135: 131: 127: 122: 120: 116: 112: 101: 94: 87: 83: 79: 75: 70: 60: 53: 46: 42: 39:is the time, 38: 34: 29: 19: 2600: 2594: 2585: 2577: 2572: 2553: 2547: 2530: 2526: 2520: 2501: 2495: 2486: 2474:. Retrieved 2469: 2465: 2452: 2435: 2431: 2425: 2406: 2400: 2382: 2375: 2368: 2364: 2362: 2358: 2343: 2334: 2319:Please help 2307: 2282: 2271: 2267: 2260: 2258: 2136: 2132: 2117: 2108: 2093:Please help 2081: 2052: 2045: 2041: 2037: 2030: 2026: 2017: 2009: 2002: 1995: 1988: 1981: 1977: 1973: 1966: 1964: 1956: 1953: 1947: 1943: 1924: 1917: 1910: 1903: 1901: 1685: 1683: 1478: 1471: 1464: 1462: 1454: 1447: 1445: 1258: 1251: 1249: 1241: 1234: 1230: 1225: 1220: 1213: 1206: 1199: 1173: 1046: 1042: 1035: 1033: 1025: 1018: 1012: 1003: 999: 992: 972: 968: 961: 954: 947: 941: 936: 929: 922: 915: 913: 844: 836: 642: 638: 634: 632: 458: 456: 362: 358: 351: 344: 340: 333: 329: 322: 318: 314: 312: 306: 302: 298: 294: 290: 267: 263: 251: 240: 236: 215:viscoelastic 208: 204: 187: 181: 177: 173: 169: 165: 161: 157: 153: 149: 126:viscoelastic 123: 110: 108: 99: 92: 85: 81: 77: 58: 51: 44: 40: 36: 33:viscoelastic 2289:Limitations 2051:= 1 Hz and 223:crosslinked 2647:Categories 2610:0471048941 2511:0121742504 2476:7 December 2392:References 2058:= 1000 Hz. 328:such that 2308:does not 2222:− 2182:− 2158:⁡ 2082:does not 1923:≈ 15 and 1870:− 1787:− 1652:− 1573:− 1412:η 1400:η 1390:⁡ 1365:− 1323:− 1296:− 1278:⁡ 1143:− 1106:− 1084:− 1066:⁡ 1052:) : 886:η 874:η 797:ω 752:ω 716:ω 671:ω 590:⟹ 544:⟹ 498:⟹ 270:viscosity 172:), where 2622:See also 2472:(1): 5–8 1648:′ 1616:′ 1569:′ 1511:′ 971:, where 775:″ 745:″ 694:′ 664:′ 274:Rheology 211:polymers 130:polymers 2329:removed 2314:sources 2279:kelvins 2103:removed 2088:sources 1194:is the 975:is the 2607:  2560:  2508:  2413:  2259:where 1446:where 1174:where 914:where 230:, or T 2462:(PDF) 2198:2.303 1015:Ferry 637:+ i G 332:> 98:< 91:< 57:< 50:< 2605:ISBN 2558:ISBN 2506:ISBN 2478:2021 2411:ISBN 2381:and 2312:any 2310:cite 2086:any 2084:cite 1909:and 1470:and 1453:and 1240:and 1223:and 1205:and 1198:and 928:and 561:> 529:< 515:< 483:> 361:and 321:and 252:The 109:The 2535:doi 2440:doi 2436:278 2323:by 2155:log 2097:by 2036:. 1691:, 1484:to 1387:log 1275:log 1250:If 1182:log 1063:log 639:'' 343:to 249:). 82:G' 2649:: 2529:. 2470:67 2468:. 2464:. 2434:. 2027:E′ 1974:E′ 1944:E′ 1486:T′ 1264:: 1257:= 1221:M′ 939:. 919:T0 635:' 234:. 168:, 156:, 150:E′ 121:. 80:, 2613:. 2578:τ 2566:. 2541:. 2537:: 2531:7 2514:. 2480:. 2446:. 2442:: 2419:. 2386:2 2383:C 2379:1 2376:C 2372:T 2369:a 2365:α 2350:) 2344:( 2339:) 2335:( 2331:. 2317:. 2283:β 2275:0 2272:T 2268:R 2264:a 2261:E 2243:) 2235:0 2231:T 2227:1 2217:T 2214:1 2208:( 2201:R 2192:a 2188:E 2179:= 2176:) 2170:T 2165:a 2161:( 2142:, 2140:g 2137:T 2124:) 2118:( 2113:) 2109:( 2105:. 2091:. 2056:2 2053:ω 2049:1 2046:ω 2042:ω 2040:= 2038:f 2034:0 2031:T 2013:T 2010:a 2006:T 2003:a 1999:0 1996:T 1992:0 1989:T 1985:1 1982:ω 1978:ω 1976:( 1970:0 1967:T 1960:0 1957:T 1948:δ 1928:2 1925:C 1921:1 1918:C 1914:2 1911:C 1907:1 1904:C 1887:. 1883:) 1878:g 1874:T 1865:0 1861:T 1857:( 1854:+ 1849:g 1844:2 1840:C 1836:= 1831:0 1826:2 1822:C 1815:d 1812:n 1809:a 1800:) 1795:g 1791:T 1782:0 1778:T 1774:( 1771:+ 1766:g 1761:2 1757:C 1749:g 1744:2 1740:C 1733:g 1728:1 1724:C 1717:= 1712:0 1707:1 1703:C 1689:0 1686:T 1669:. 1665:) 1660:0 1656:T 1644:0 1640:T 1636:( 1633:+ 1628:2 1624:C 1620:= 1612:2 1608:C 1601:d 1598:n 1595:a 1586:) 1581:0 1577:T 1565:0 1561:T 1557:( 1554:+ 1549:2 1545:C 1537:2 1533:C 1526:1 1522:C 1515:= 1507:1 1503:C 1489:0 1482:0 1479:T 1475:2 1472:C 1468:1 1465:C 1458:2 1455:C 1451:1 1448:C 1430:) 1421:g 1417:T 1405:T 1394:( 1384:= 1378:) 1373:g 1369:T 1362:T 1359:( 1356:+ 1351:g 1346:2 1342:C 1336:) 1331:g 1327:T 1320:T 1317:( 1312:g 1307:1 1303:C 1293:= 1287:T 1282:a 1262:g 1259:T 1255:0 1252:T 1245:2 1242:C 1238:1 1235:C 1231:M 1226:M 1217:T 1214:a 1210:2 1207:C 1203:1 1200:C 1156:) 1151:0 1147:T 1140:T 1137:( 1134:+ 1129:2 1125:C 1119:) 1114:0 1110:T 1103:T 1100:( 1095:1 1091:C 1081:= 1075:T 1070:a 1050:0 1047:T 1045:- 1043:T 1039:T 1036:a 1029:g 1026:T 1022:0 1019:η 1009:. 1007:0 1004:T 1000:T 996:T 993:a 973:k 969:k 967:/ 965:a 962:E 958:T 955:a 951:a 948:E 946:( 937:T 933:T 930:η 926:0 923:T 916:η 894:0 891:T 879:T 868:= 862:T 857:a 818:. 814:) 808:0 804:T 800:, 790:T 785:a 780:( 772:G 768:= 761:) 758:T 755:, 749:( 742:G 733:) 727:0 723:T 719:, 709:T 704:a 699:( 691:G 687:= 680:) 677:T 674:, 668:( 661:G 643:ω 614:. 610:1 607:= 601:T 596:a 583:0 579:T 575:= 572:T 564:1 555:T 550:a 537:0 533:T 526:T 518:1 509:T 504:a 491:0 487:T 480:T 462:T 459:a 442:. 438:) 433:0 429:T 425:, 417:T 412:a 408:t 403:( 400:E 397:= 394:) 391:T 388:, 385:t 382:( 379:E 366:0 363:T 359:T 355:T 352:a 348:0 345:T 341:T 337:0 334:T 330:T 326:0 323:T 319:T 315:E 307:T 303:t 299:T 297:, 295:t 293:( 291:E 232:g 184:. 182:T 178:f 174:δ 170:T 166:f 164:( 162:δ 158:T 154:f 152:( 105:. 103:2 100:T 96:1 93:T 89:0 86:T 78:ω 64:. 62:2 59:T 55:1 52:T 48:0 45:T 41:G 37:t 20:)

Index

Time-temperature superposition

viscoelastic

elastic modulus
polymer physics
glass-forming liquids
viscoelastic
polymers
instantaneous modulus
viscoelasticity

polymers
viscoelastic
elastic modulus
crosslinked
glass transition temperature
elastic modulus
Williams-Landel-Ferry equation
Deborah number
viscosity
Rheology

activation energy
Boltzmann constant

Ferry
decadic logarithm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.