Knowledge

Time crystal

Source đź“ť

2074: 716: 2036:, supervised by Hans Keßler and Andreas Hemmerich. In periodically driven systems, time-translation symmetry is broken into a discrete time-translation symmetry due to the drive. Discrete time crystals break this discrete time-translation symmetry by oscillating at a multiple of the drive frequency. In the new experiment, the drive (pump laser) was operated continuously, thus respecting the continuous time-translation symmetry. Instead of a subharmonic response, the system showed an oscillation with an intrinsic frequency and a time phase taking random values between 0 and 2π, as expected for spontaneous breaking of continuous time-translation symmetry. Moreover, the observed 1600:: energy in the overall system is conserved, such a crystal does not spontaneously convert thermal energy into mechanical work, and it cannot serve as a perpetual store of work. But it may change perpetually in a fixed pattern in time for as long as the system can be maintained. They possess "motion without energy"—their apparent motion does not represent conventional kinetic energy. Recent experimental advances in probing discrete time crystals in their periodically driven nonequilibrium states have led to the beginning exploration of novel phases of nonequilibrium matter. 2098: 8894: 7543: 93: 8969: 2086: 8884: 7971: 729: 9355: 1286: 7995: 785: 1301:: they have repeated patterns in space and are not invariant under arbitrary translations or rotations. The laws of physics are unchanged by arbitrary translations and rotations. However, if we hold fixed the atoms of a crystal, the dynamics of an electron or other particle in the crystal depend on how it moves relative to the crystal, and particle momentum can change by interacting with the atoms of a crystal — for example in 8007: 1613: 7983: 32: 1217:, as it is a type (or phase) of non-equilibrium matter. Breaking of time symmetry can only occur in non-equilibrium systems. Discrete time crystals have in fact been observed in physics laboratories as early as 2016. One example of a time crystal, which demonstrates non-equilibrium, broken time symmetry is a constantly rotating ring of charged ions in an otherwise lowest-energy state. 1876:. This strongly interacting dipolar spin system was driven with microwave fields, and the ensemble spin state was determined with an optical (laser) field. It was observed that the spin polarization evolved at half the frequency of the microwave drive. The oscillations persisted for over 100 cycles. This 1603:
Time crystals do not evade the Second Law of Thermodynamics, although they spontaneously break "time-translation symmetry", the usual rule that a stable object will remain the same throughout time. In thermodynamics, a time crystal's entropy, understood as a measure of disorder in the system, remains
1856:
The researchers observed a subharmonic oscillation of the drive. The experiment showed "rigidity" of the time crystal, where the oscillation frequency remained unchanged even when the time crystal was perturbed, and that it gained a frequency of its own and vibrated according to it (rather than only
1237:
metals. By analogy, a time crystal arises through the spontaneous breaking of a time-translation symmetry. A time crystal can be informally defined as a time-periodic self-organizing structure. While an ordinary crystal is periodic (has a repeating structure) in space, a time crystal has a repeating
1776:
In February 2024, a team from Dortmund University in Germany built a time crystal from indium gallium arsenide that lasted for 40 minutes, nearly 10 million times longer than the previous record of around 5 milliseconds. In addition, the lack of any decay suggests the crystal could have lasted even
1178:
analogue to common crystals – whereas the atoms in crystals are arranged periodically in space, the atoms in a time crystal are arranged periodically in both space and time. Several different groups have demonstrated matter with stable periodic evolution in systems that are periodically driven. In
1719:
Later, time crystals in open systems, so called dissipative time crystals, were proposed in several platforms breaking a discrete and a continuous time-translation symmetry. A dissipative time crystal was experimentally realized for the first time in 2021 by the group of Andreas Hemmerich at the
1671:
that quantum space–time crystals in equilibrium are not possible. Later work restricted the scope of Watanabe and Oshikawa: strictly speaking, they showed that long-range order in both space and time is not possible in equilibrium, but breaking of time-translation symmetry alone is still possible.
1743:
In 2019, physicists Valerii Kozin and Oleksandr Kyriienko proved that, in theory, a permanent quantum time crystal can exist as an isolated system if the system contains unusual long-range multiparticle interactions. The original "no-go" argument only holds in the presence of typical short-range
1238:
structure in time. A time crystal is periodic in time in the same sense that the pendulum in a pendulum-driven clock is periodic in time. Unlike a pendulum, a time crystal "spontaneously" self-organizes into robust periodic motion (breaking a temporal symmetry).
1857:
the frequency of the drive). However, once the perturbation or frequency of vibration grew too strong, the time crystal "melted" and lost this subharmonic oscillation, and it returned to the same state as before where it moved only with the induced frequency.
6779:
Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto (2015). "Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions".
3530:
Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman Y.; Demler, Eugene; Lukin, Mikhail D. (2017).
1312:
Time crystals show a broken symmetry analogous to a discrete space-translation symmetry breaking. For example, the molecules of a liquid freezing on the surface of a crystal can align with the molecules of the crystal, but with a pattern
1566:, and a time-dependent frame can be found in which the system is indistinguishable from an equilibrium when measured stroboscopically (which is not the case of convection cells, oscillating chemical reactions and aerodynamic flutter), 1772:
In 2022, the Hamburg research team, supervised by Hans KeĂźler and Andreas Hemmerich, demonstrated, for the first time, a continuous dissipative time crystal exhibiting spontaneous breaking of continuous time-translation symmetry.
2040:
oscillations were shown to be robust against perturbations of technical or fundamental character, such as quantum noise and, due to the openness of the system, fluctuations associated with dissipation. The system consisted of a
1963:
and vice-versa in periodic cycles which are multiples of the laser's frequency. While the laser is necessary to maintain the necessary environmental conditions, no energy is absorbed from the laser, so the system remains in a
3793:
Filippo Maria, Gambetta; Carollo, Federico; Marcuzzi, Matteo; Garrahan, Juan P.; Lesanovsky, Igor (8 January 2019). "Discrete Time Crystals in the Absence of Manifest Symmetries or Disorder in Open Quantum Systems".
3609:
Zhang, J.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A. C.; Vishwanath, A.; Yao, N. Y.; Monroe, C. (2017). "Observation of a discrete time crystal".
1765:
with long-range multispin interactions, and showed it broke continuous time-translational symmetry. Certain spin correlations in the system oscillate in time, despite the system being closed and in a
1732:
and the time crystal was demonstrated to spontaneously break discrete time-translation symmetry by periodically switching between two atomic density patterns. In an earlier experiment in the group of
6428:
Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C. (2016). "Many-body localization in a quantum simulator with programmable random disorder".
4904:
Träger, Nick; Gruszecki, Paweł; Lisiecki, Filip; Groß, Felix; Förster, Johannes; Weigand, Markus; Głowiński, Hubert; Kuświk, Piotr; Dubowik, Janusz; Schütz, Gisela; Krawczyk, Maciej (2021-02-03).
1263:
is that a translation in time has no effect on physical laws, i.e. that the laws of nature that apply today were the same in the past and will be the same in the future. This symmetry implies the
1694:
and colleagues proposed a different way to create discrete time crystals in spin systems. These ideas were successful and independently realized by two experimental teams: a group led by
1690:
In 2016, research groups at Princeton and at Santa Barbara independently suggested that periodically driven quantum spin systems could show similar behaviour. Also in 2016, Norman Yao at
1740:, limit cycle dynamics was observed in 2019, but evidence of robustness against perturbations and the spontaneous character of the time-translation symmetry breaking were not addressed. 5997:
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang (2012). "Reply to Comment on "Space–Time Crystals of Trapped Ions"".
7100: 1225:
Ordinary (non-time) crystals form through spontaneous symmetry breaking related to a spatial symmetry. Such processes can produce materials with interesting properties, such as
1971:
Previously in June and November 2021 other teams had obtained virtual time crystals based on floquet systems under similar principles to those of the Google experiment, but on
1769:. However, demonstrating such a system in practice might be prohibitively difficult, and concerns about the physicality of the long-range nature of the model have been raised. 1898:
published a letter from the same group saying that for the first time they were able to observe interactions and the flow of constituent particles between two time crystals.
7164: 7194: 7030: 2788:
Mi, Xiao; Ippoliti, Matteo; Quintana, Chris; Greene, Ami; Chen, Zijun; Gross, Jonathan; Arute, Frank; Arya, Kunal; Atalaya, Juan; Babbush, Ryan; Bardin, Joseph C. (2022).
1965: 1588:
These characteristics makes discrete time crystals analogous to spatial crystals as described above and may be considered a novel type or phase of nonequilibrium matter.
4843:
Autti, S.; Heikkinen, P. J.; Mäkinen, J. T.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B. (February 2021). "AC Josephson effect between two superfluid time crystals".
1392: 5117:
Randall, J.; Bradley, C. E.; van der Gronden, F. V.; Galicia, A.; Abobeih, M. H.; Markham, M.; Twitchen, D. J.; Machado, F.; Yao, N. Y.; Taminiau, T. H. (2021-12-17).
2002:
reported a dissipative time crystal akin to the system of July 2021 but all-optical, which allowed the scientist to operate it at room temperature. In this experiment
4742: 7457: 1444: 1988: 1418: 3019: 1194:, which occurs when the lowest-energy state of a system is less symmetrical than the equations governing the system. In the crystal ground state, the continuous 7286: 1504: 1484: 1464: 1340:
and have repeated patterns in time even if the laws of the system are invariant by translation of time. The time crystals that are experimentally realized show
8930: 1166:
is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is already in its quantum
5934:
Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang (2012a). "Space-Time Crystals of Trapped Ions".
1202:
as well as space, the question arose in 2012 as to whether it is possible to break symmetry temporally, and thus create a "time crystal" that is resistant to
5693: 7117: 5019:
Kyprianidis, A.; Machado, F.; Morong, W.; Becker, P.; Collins, K. S.; Else, D. V.; Feng, L.; Hess, P. W.; Nayak, C.; Pagano, G.; Yao, N. Y. (2021-06-11).
2689: 760: 1687:
predicted the behaviour of discrete time crystals in a periodically driven system with "an ultracold atomic cloud bouncing on an oscillating mirror".
5216: 3671:
Iemini, Fernando; Russomanno, Angelo; Keeling, Jonathan; Schirò, Marco; Dalmonte, Marcello; Fazio, Rosario (16 July 2018). "Boundary time crystals".
7320: 7211: 6593:
Wang, Y. H.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. (2013). "Observation of Floquet-Bloch States on the Surface of a Topological Insulator".
7337: 50: 8083: 7354: 7303: 7252: 4497:
Khemani, Vedika; Moessner, Roderich; Sondhi, S. L. (2020). "Comment on 'Quantum Time Crystals from Hamiltonians with Long-Range Interactions'".
3380:
We show that an ultracold atomic cloud bouncing on an oscillating mirror can reveal spontaneous breaking of a discrete time-translation symmetry
1198:
in space is broken and replaced by the lower discrete symmetry of the periodic crystal. As the laws of physics are symmetrical under continuous
10039: 6483:
Volovik, G. E. (2013). "On the broken time translation symmetry in macroscopic systems: Precessing states and off-diagonal long-range order".
1209:
If a discrete time-translation symmetry is broken (which may be realized in periodically driven systems), then the system is referred to as a
9809: 8045: 7450: 7108: 6538:
von Keyserlingk, C. W.; Khemani, Vedika; Sondhi, S. L. (2016). "Absolute stability and spatiotemporal long-range order in Floquet systems".
5408: 1324:
the system exhibits spatial and temporal long-range order (unlike a local and intermittent order in a liquid near the surface of a crystal),
4782:
Autti, S.; Eltsov, V. B.; Volovik, G. E. (May 2018). "Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal".
1902: 3732:
Gong, Zongping; Hamazaki, Ryusuke; Ueda, Masahito (25 January 2018). "Discrete Time-Crystalline Order in Cavity and Circuit QED Systems".
10128: 8985: 8775: 5191: 9292: 8990: 8923: 8676: 8337: 7172: 7202: 7038: 2714: 1509:
Many systems can show behaviors of spontaneous time-translation symmetry breaking but may not be discrete (or Floquet) time crystals:
7987: 7269: 4754: 1789:
claimed to have created the world's first discrete time crystal. Using the ideas proposed by Yao et al., his team trapped a chain of
1932:. The main achievement of this work is a positive application of dissipation – actually helping to stabilise the system's dynamics. 8238: 7443: 4995: 4743:
https://www.msn.com/en-ca/news/technology/scientists-built-a-time-crystal-that-lasted-for-40-minutes-that-s-astonishing/ar-BB1iODrc
2286: 10164: 8563: 5761:
Guo, Lingzhen; Marthaler, Michael; Schön, Gerd (2013). "Phase Space Crystals: A New Way to Create a Quasienergy Band Structure".
1653: 6665: 1887:
reported that they had observed the formation of a time quasicrystal and its phase transition to a continuous time crystal in a
10007: 7147: 1910: 1137: 753: 5871:
Khemani, Vedika; Lazarides, Achilleas; Moessner, Roderich; Sondhi, S. L. (2016). "Phase Structure of Driven Quantum Systems".
4663: 4428:
Kozin, Valerii K.; Kyriienko, Oleksandr (2019-11-20). "Quantum Time Crystals from Hamiltonians with Long-Range Interactions".
4073:
KeĂźler, Hans; Kongkhambut, Phatthamon; Georges, Christoph; Mathey, Ludwig; Cosme, Jayson G.; Hemmerich, Andreas (2021-07-19).
8916: 6905: 5093: 3411: 3309: 3027: 2484: 2456: 2428: 2400: 2372: 6836: 2738: 8887: 8073: 7421: 7294: 6026:
Lindner, Netanel H.; Refael, Gil; Galitski, Victor (2011). "Floquet topological insulator in semiconductor quantum wells".
4395: 2032:
In June 2022, the observation of a continuous time crystal was reported by a team at the Institute of Laser Physics at the
1976: 1786: 1317:
symmetric than the crystal: it breaks the initial symmetry. This broken symmetry exhibits three important characteristics:
7430: 10149: 8845: 4691: 1999: 8421: 4521:
Kongkhambut, Phatthamon; Skulte, Jim; Mathey, Ludwig; Cosme, Jayson G.; Hemmerich, Andreas; KeĂźler, Hans (2022-08-05).
1691: 1646: 1327:
it is the result of interactions between the constituents of the system, which align themselves relative to each other.
7125: 5306: 3171:
Medenjak, Marko; BuÄŤa, Berislav; Jaksch, Dieter (2020-07-20). "Isolated Heisenberg magnet as a quantum time crystal".
2049:, which was pumped with an optical standing wave oriented perpendicularly with regard to the cavity axis and was in a 10154: 9802: 8897: 8785: 8038: 7975: 7134: 2021:
In March 2022, a new experiment studying time crystals on a quantum processor was performed by two physicists at the
746: 733: 68: 8713: 8371: 7371: 4321:
Dogra, Nishant; Landini, Manuele; Kroeger, Katrin; Hruby, Lorenz; Donner, Tobias; Esslinger, Tilman (2019-12-20).
2073: 715: 9559: 8708: 8436: 8416: 6122:
Nozières, Philippe (2013). "Time crystals: Can diamagnetic currents drive a charge density wave into rotation?".
5750: 1762: 1675:
Several realizations of time crystals, which avoid the equilibrium no-go arguments, were later proposed. In 2014
902: 5436:
Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick (2016). "Symmetric Satellite Swarms and Choreographic Crystals".
4715: 2546:
The "discrete" comes from the fact that their periodicity is a discrete, integer multiple of the driving period.
10179: 9955: 9629: 9554: 9285: 9184: 8703: 7243: 4970: 4729: 1984: 498: 8215: 7345: 3455: 2126: 9741: 9569: 8736: 8558: 8461: 8122: 8011: 7956: 7567: 7394: 7362: 7328: 3059: 1280: 1067: 7311: 6960: 1801:
was selected by a pair of laser beams. The lasers were pulsed, with the shape of the pulse controlled by an
9795: 9751: 9624: 9369: 8953: 8741: 8609: 8200: 8031: 7502: 7260: 2042: 1873: 1725: 1649:, and his team proposed creating a time crystal in the form of a constantly rotating ring of charged ions. 889: 673: 153: 3232:
Khemani, Vedika; Moessner, Roderich; Sondhi, S. L. (23 October 2019). "A Brief History of Time Crystals".
1939:
and physicists from multiple universities reported the observation of a discrete time crystal on Google's
10169: 10092: 8765: 8521: 8381: 8155: 8110: 8054: 1573: – the oscillations are in phase (synchronized) over arbitrarily long distances and time. 1537: 1983:
qubits using high frequency driving rather than many-body localization and then a collaboration between
1913:
to capture the recurring periodic magnetization structure in the first known video record of such type.
1894:
cooled to within one ten thousandth of a kelvin from absolute zero (0.0001 K). On August 17, 2020
1356:, DTC are so-called because "their periodicity is a discrete, integer multiple of the driving period".) 10174: 9923: 9896: 9061: 8977: 8637: 8509: 8406: 8282: 8210: 8117: 7747: 7656: 2064: 2026: 1623: 1533: 1526: 1130: 678: 303: 4768: 1951:
configuration of up and down spins and then stimulated with a laser to achieve a periodically driven "
9278: 8446: 8411: 8307: 8250: 7696: 7671: 1664: 1337: 1247: 1199: 929: 568: 243: 6391:
Shirley, Jon H. (1965). "Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time".
4258:"Self-Ordered Limit Cycles, Chaos, and Phase Slippage with a Superfluid inside an Optical Resonator" 1252:
Symmetries in nature lead directly to conservation laws, something which is precisely formulated by
10184: 10159: 10029: 9776: 9675: 9305: 9237: 9220: 8619: 8592: 8568: 8531: 8322: 8255: 8190: 8175: 8145: 8068: 7866: 7620: 7610: 7466: 5721: 1543:
However, discrete (or Floquet) time crystals are unique in that they follow a strict definition of
1151: 897: 563: 558: 84: 648: 9670: 9084: 9074: 9000: 8770: 8504: 8396: 8366: 8165: 7712: 2761: 2022: 1992: 1869: 1802: 1680: 1036: 253: 7277: 1604:
stationary over time, marginally satisfying the second law of thermodynamics by not decreasing.
1289:
Normal process (N-process) and Umklapp process (U-process). While the N-process conserves total
658: 10113: 9975: 9695: 9685: 9435: 9430: 9131: 8840: 8604: 8597: 8344: 7398: 5716: 1948: 1707: 1597: 1362: 1264: 1195: 643: 583: 553: 503: 223: 113: 10118: 10087: 9950: 9871: 9016: 8939: 8760: 8386: 8312: 8277: 7763: 7742: 7676: 6887: 3393: 2602: 2033: 1980: 1917: 1721: 1123: 823: 683: 298: 283: 5119:"Many-body–localized discrete time crystal with a programmable spin-based quantum simulator" 1423: 10077: 9901: 9861: 9614: 9374: 9159: 8550: 8299: 8150: 7732: 7507: 7155: 7055: 6985: 6851: 6799: 6735: 6680: 6612: 6557: 6502: 6447: 6400: 6355: 6298: 6239: 6190: 6141: 6045: 6012: 5953: 5890: 5843: 5780: 5708: 5648: 5585: 5522: 5455: 5355: 5253: 5140: 5042: 4927: 4862: 4801: 4610: 4544: 4447: 4344: 4279: 4206: 4154: 4096: 4016: 3943: 3920:
Iemini, F.; Russomanno, A.; Keeling, J.; Schirò, M.; Dalmonte, M.; Fazio, R. (2018-07-16).
3878: 3813: 3751: 3690: 3629: 3554: 3477: 3347: 3276: 3190: 3121: 2951: 2882: 2811: 2646: 2590: 2568: 2514: 2319: 2248: 2167: 1877: 1253: 273: 163: 4905: 4257: 4074: 3921: 3856: 8: 10052: 9911: 9906: 9891: 9866: 9843: 9819: 9589: 9481: 9471: 9384: 9339: 9225: 9204: 8869: 8822: 8652: 8426: 8180: 8160: 8095: 8090: 7686: 7666: 7651: 7600: 7181: 3533:"Observation of discrete time-crystalline order in a disordered dipolar many-body system" 2502: 2007: 1798: 1657: 1514: 1397: 1214: 1163: 513: 323: 173: 7417: 7059: 6989: 6855: 6803: 6739: 6684: 6616: 6561: 6506: 6451: 6404: 6359: 6302: 6243: 6194: 6145: 6049: 6016: 5957: 5894: 5847: 5784: 5712: 5652: 5589: 5526: 5459: 5359: 5257: 5144: 5046: 4931: 4866: 4805: 4614: 4548: 4451: 4348: 4283: 4210: 4158: 4100: 4020: 3947: 3882: 3817: 3755: 3694: 3633: 3558: 3481: 3351: 3280: 3194: 3125: 2955: 2886: 2815: 2650: 2594: 2518: 2323: 2252: 2171: 10108: 9985: 9980: 9933: 9736: 9665: 9499: 9252: 9164: 9141: 9122: 9102: 9066: 8585: 8431: 8233: 8170: 7833: 7823: 7661: 7572: 7412: 7355:"Physicists propose new definition of time crystals—then prove such things don't exist" 7235: 7087: 7017: 6911: 6823: 6789: 6767: 6725: 6652: 6602: 6581: 6547: 6526: 6492: 6471: 6437: 6379: 6345: 6319: 6288: 6276: 6263: 6229: 6220:
Sacha, Krzysztof (2015). "Modeling spontaneous breaking of time-translation symmetry".
6179:"Quantum simulations of a freely rotating ring of ultracold and identical bosonic ions" 6165: 6131: 6110: 6069: 6035: 6002: 5985: 5943: 5922: 5880: 5859: 5833: 5812: 5770: 5742: 5680: 5638: 5617: 5575: 5554: 5512: 5487: 5445: 5384: 5345: 5333: 5282: 5241: 5240:
Taheri, Hossein; Matsko, Andrey B.; Maleki, Lute; Sacha, Krzysztof (14 February 2022).
5172: 5130: 5074: 5032: 4951: 4917: 4886: 4852: 4825: 4791: 4642: 4576: 4534: 4498: 4479: 4437: 4376: 4334: 4303: 4269: 4238: 4172: 4120: 4086: 4045: 4006: 3994: 3975: 3933: 3902: 3868: 3837: 3803: 3775: 3741: 3714: 3680: 3653: 3619: 3583: 3544: 3532: 3509: 3467: 3417: 3371: 3337: 3328:
Sacha, Krzysztof (2015). "Modeling spontaneous breaking of time-translation symmetry".
3266: 3233: 3214: 3180: 3153: 3111: 2983: 2941: 2914: 2872: 2840: 2801: 2789: 2670: 2636: 2606: 2580: 2530: 2343: 2309: 2191: 2157: 2148:
Sacha, Krzysztof (2015). "Modeling spontaneous breaking of time-translation symmetry".
2102: 1991:
in the Netherlands called Qutech created time crystals from nuclear spins in carbon-13
1940: 1916:
In July 2021, a team led by Andreas Hemmerich at the Institute of Laser Physics at the
1703: 1695: 1489: 1469: 1449: 1062: 907: 693: 653: 628: 376: 367: 5730: 5118: 5020: 4598: 4522: 4322: 1551:
it is a broken symmetry – the system shows oscillations with a period
46: 10123: 10072: 10017: 9997: 9883: 9766: 9761: 9731: 9690: 9579: 9531: 9516: 9409: 9379: 9257: 9154: 9127: 9038: 9028: 9021: 8995: 8849: 8494: 8401: 8358: 8289: 8205: 8185: 8140: 8100: 8078: 7994: 7941: 7906: 7813: 7737: 7239: 7227: 7079: 7071: 7021: 7009: 7001: 6915: 6901: 6827: 6815: 6759: 6751: 6716:
Wilczek, Frank (2013). "Superfluidity and Space–Time Translation Symmetry Breaking".
6704: 6696: 6644: 6636: 6585: 6573: 6530: 6518: 6463: 6416: 6371: 6324: 6267: 6255: 6208: 6169: 6157: 6114: 6102: 6082: 6061: 5977: 5969: 5914: 5906: 5863: 5804: 5796: 5746: 5734: 5672: 5664: 5609: 5601: 5546: 5538: 5479: 5471: 5389: 5371: 5287: 5269: 5176: 5164: 5156: 5078: 5066: 5058: 4955: 4943: 4890: 4878: 4817: 4646: 4634: 4626: 4580: 4568: 4560: 4483: 4471: 4463: 4380: 4368: 4360: 4295: 4242: 4230: 4222: 4194: 4176: 4124: 4112: 4050: 4032: 3967: 3906: 3894: 3841: 3829: 3779: 3767: 3706: 3645: 3588: 3570: 3513: 3501: 3493: 3421: 3407: 3375: 3363: 3218: 3206: 3145: 3137: 2975: 2967: 2906: 2898: 2845: 2827: 2674: 2662: 2610: 2534: 2480: 2452: 2424: 2396: 2368: 2335: 2195: 2183: 2097: 2003: 1972: 1944: 1578: 1191: 623: 468: 358: 278: 6656: 6475: 6383: 6153: 6073: 5558: 5491: 4829: 3979: 3718: 2526: 2347: 10062: 10002: 9928: 9721: 9344: 9149: 8516: 8466: 8243: 7911: 7803: 7783: 7778: 7773: 7768: 7625: 7605: 7562: 7527: 7497: 7219: 7091: 7063: 6993: 6945: 6893: 6892:. Springer Series on Atomic, Optical, and Plasma Physics. Vol. 114. Springer. 6807: 6771: 6747: 6743: 6692: 6688: 6628: 6620: 6565: 6510: 6455: 6408: 6363: 6314: 6306: 6247: 6198: 6149: 6094: 6053: 5989: 5965: 5961: 5902: 5898: 5851: 5824:
Guo, Lingzhen; Liang, Pengfei (2020). "Condensed matter physics in time crystals".
5816: 5792: 5788: 5726: 5684: 5660: 5656: 5621: 5597: 5593: 5534: 5530: 5467: 5463: 5379: 5363: 5314: 5277: 5261: 5217:"New Breakthrough Could Bring Time Crystals Out of The Lab And Into The Real World" 5148: 5050: 4939: 4935: 4870: 4813: 4809: 4618: 4552: 4459: 4455: 4403: 4352: 4307: 4291: 4287: 4214: 4162: 4108: 4104: 4040: 4024: 3959: 3955: 3951: 3890: 3886: 3825: 3821: 3763: 3759: 3702: 3698: 3657: 3637: 3578: 3562: 3489: 3485: 3399: 3398:. Springer Series on Atomic, Optical, and Plasma Physics. Vol. 114. Springer. 3355: 3284: 3198: 3133: 3129: 2987: 2963: 2959: 2918: 2894: 2890: 2835: 2819: 2654: 2598: 2522: 2327: 2256: 2175: 1884: 1733: 1711: 1510: 1276: 1016: 328: 293: 288: 248: 218: 188: 148: 108: 9199: 5926: 3157: 1880:
response to the drive frequency is seen as a signature of time-crystalline order.
10082: 9992: 9938: 9838: 9711: 9564: 9301: 9194: 9189: 9117: 9112: 9079: 9006: 8642: 8580: 8270: 8265: 7936: 7891: 7557: 7474: 6859: 4323:"Dissipation-induced structural instability and chiral dynamics in a quantum gas" 2474: 2446: 2418: 2390: 2362: 2300:
Sacha, Krzysztof; Zakrzewski, Jakub (1 January 2018). "Time crystals: a review".
2011: 1920:
presented the first realization of a time crystal in an open system, a so-called
1864:
at Harvard also reported the creation of a driven time crystal. His group used a
1850: 1676: 1302: 1175: 1074: 875: 638: 588: 458: 213: 125: 4716:"Scientists Built a Time Crystal That Lasted for 40 Minutes. That's Astonishing" 3289: 3254: 3202: 2690:"Time Crystals Might Exist After All – And They Could Break Space-Time Symmetry" 1777:
longer, stating that it could last "at least a few hours, perhaps even longer".
10012: 9967: 9945: 9833: 9509: 9504: 9461: 9394: 9389: 9242: 8958: 8751: 8728: 8695: 8499: 8376: 7999: 7946: 7828: 7717: 7426: 6837:"The quasienergy of a quantum-mechanical system subjected to a periodic action" 6811: 6569: 6367: 6251: 6203: 6178: 5855: 5265: 4218: 4028: 3359: 3102:
Watanabe, Haruki; Oshikawa, Masaki (2015). "Absence of Quantum Time Crystals".
2823: 2331: 2179: 2090: 2078: 2046: 1952: 1929: 1925: 1729: 1660:) published several articles stating that space–time crystals were impossible. 1634: 1616: 1518: 1420:, is spontaneously broken to the lower discrete time-translation symmetry with 1321:
the system has a lower symmetry than the underlying arrangement of the crystal,
1180: 1159: 865: 720: 688: 668: 663: 618: 538: 473: 371: 258: 103: 20: 16:
Structure that repeats in time; a novel type or phase of non-equilibrium matter
8023: 7379: 7223: 6897: 6514: 6098: 5629:
Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals".
5192:"Physicists create discrete time crystals in a programmable quantum simulator" 4906:"Real-Space Observation of Magnon Interaction with Driven Space–Time Crystals" 4874: 3403: 10143: 10022: 9746: 9726: 9649: 9609: 9544: 9476: 9399: 9230: 8573: 8391: 8317: 7871: 7853: 7838: 7818: 7722: 7691: 7522: 7231: 7075: 7005: 6819: 6755: 6700: 6640: 6577: 6522: 6467: 6420: 6412: 6259: 6212: 6161: 6106: 6065: 5973: 5910: 5800: 5738: 5668: 5605: 5542: 5475: 5409:"'An ever-ticking clock': we made a 'time crystal' inside a quantum computer" 5375: 5273: 5160: 5062: 4630: 4564: 4467: 4364: 4226: 4036: 3574: 3497: 3367: 3210: 3141: 2971: 2902: 2831: 2666: 2187: 2050: 1861: 1790: 1699: 1668: 1630: 1619: 1306: 1234: 1230: 1171: 1047: 995: 968: 953: 943: 399: 380: 362: 263: 183: 9787: 6624: 5566:
Bruno, Patrick (2013b). "Comment on "Space-Time Crystals of Trapped Ions"".
5318: 5152: 5054: 4622: 4556: 4407: 4356: 593: 10047: 9771: 9644: 9639: 9634: 9599: 9549: 9247: 8793: 8718: 7808: 7630: 7435: 7083: 7013: 6950: 6933: 6763: 6708: 6648: 6375: 6328: 5981: 5918: 5808: 5676: 5613: 5550: 5483: 5393: 5367: 5334:"Realization of a discrete time crystal on 57 qubits of a quantum computer" 5291: 5168: 5070: 4947: 4882: 4821: 4638: 4572: 4475: 4372: 4299: 4234: 4167: 4142: 4116: 4054: 3971: 3898: 3833: 3771: 3710: 3649: 3592: 3505: 3149: 2979: 2910: 2849: 2339: 2057: 1806: 1766: 1522: 1167: 870: 613: 603: 573: 533: 528: 508: 353: 333: 9270: 1872:, which have strong dipole–dipole coupling and relatively long-lived spin 1585:, just like in spatial crystals. This is not the case for NMR spin echos. 9680: 9574: 9486: 9056: 9051: 8803: 8657: 8195: 7928: 7646: 7615: 7595: 7542: 2261: 2236: 2134: 2054: 2037: 1642: 1353: 1109: 1011: 990: 958: 948: 845: 698: 633: 608: 578: 523: 518: 450: 92: 8908: 6632: 3995:"Non-stationary coherent quantum many-body dynamics through dissipation" 3641: 3566: 3067: 10067: 10057: 9619: 9594: 9521: 9491: 9425: 9404: 9046: 8864: 8798: 8662: 7843: 7681: 7517: 6968: 6336:
Sacha, Krzysztof; Zakrzewski, Jakub (2018). "Time Crystals: a review".
4755:"Radical New Time Crystal Revealed That Lasts Millions of Times Longer" 3963: 2476:
Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics
2448:
Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics
1891: 1737: 1359:
The initial symmetry, which is the discrete time-translation symmetry (
973: 850: 543: 385: 178: 6459: 6310: 6057: 2739:"Google May Have Created an Unruly New State of Matter: Time Crystals" 2658: 2085: 1849:, have very close energy levels, separated by 12.642831 GHz. Ten 9918: 9107: 8647: 7901: 7727: 7512: 3454:
Yao, N. Y.; Potter, A. C.; Potirniche, I.-D.; Vishwanath, A. (2017).
1810: 1797:, confined by radio-frequency electromagnetic fields. One of the two 1794: 1529: 1104: 1057: 1052: 963: 598: 548: 421: 268: 168: 9354: 7408: 7304:"Physics team proposes a way to create an actual space-time crystal" 7067: 6997: 5500: 5116: 3792: 1853:
ions were placed in a line 0.025 mm long and coupled together.
1684: 1285: 9756: 9584: 9011: 8832: 8808: 8667: 8632: 6976:
Coleman, Piers (9 January 2013). "Quantum physics: Time crystals".
6552: 6442: 6350: 6293: 6277:"Anderson localization and Mott insulator phase in the time domain" 5885: 5838: 5643: 5350: 5135: 5037: 4922: 4857: 4796: 4539: 4503: 4442: 4339: 4274: 4091: 4011: 3938: 3873: 3808: 3746: 3685: 3624: 3549: 3472: 3271: 3238: 3185: 2932:
Shapere, Alfred; Wilczek, Frank (2012). "Classical Time Crystals".
2806: 2641: 2627:
Yao; Nayak (2018). "Time crystals in periodically driven systems".
2585: 2314: 1888: 1758: 1521:, and subharmonic response to a periodic driving force such as the 1226: 1006: 912: 860: 818: 784: 158: 7321:"Time crystals could behave almost like perpetual motion machines" 7250: 6794: 6730: 6607: 6497: 6234: 6136: 6040: 6007: 5948: 5775: 5580: 5517: 5450: 5094:"Creating Time Crystals Using New Quantum Computing Architectures" 3342: 3116: 2946: 2877: 2162: 1331: 9716: 9604: 9539: 9456: 9451: 9176: 8859: 8476: 7951: 7918: 7896: 7876: 3456:"Discrete Time Crystals: Rigidity, Criticality, and Realizations" 2015: 1865: 1563: 1203: 1187: 855: 806: 478: 463: 426: 417: 412: 7031:""Time Crystals" Could Be a Legitimate Form of Perpetual Motion" 4996:"Eternal Change for No Energy: A Time Crystal Finally Made Real" 4396:"Back to the future: The original time crystal makes a comeback" 3255:"Out-of-equilibrium phase diagram of long-range superconductors" 2715:"'Time Crystals' Could Be a Legitimate Form of Perpetual Motion" 2029:
and Brooklyn quantum processors observing a total of 57 qubits.
1612: 1577:
Moreover, the broken symmetry in time crystals is the result of
9325: 8836: 8332: 7886: 7881: 7487: 3060:"Notes from the Editors: The Aftermath of a Controversial Idea" 1936: 1906: 1290: 1094: 811: 431: 407: 138: 5018: 4692:"Physicists Create Continuous Time Crystal for the First Time" 4072: 3993:
BuÄŤa, Berislav; Tindall, Joseph; Jaksch, Dieter (2019-04-15).
1629:
The idea of a quantized time crystal was theorized in 2012 by
9334: 9320: 8105: 7861: 7482: 3919: 3670: 2567:
Else, D. W.; Monroe, C.; Nayak, C.; Yao, N. Y. (March 2020).
1809:
to avoid too much energy at the wrong optical frequency. The
1179:
terms of practical use, time crystals may one day be used as
1099: 436: 133: 7403: 4842: 4520: 8854: 8327: 8260: 7046:
Gibney, Elizabeth (2017). "The quest to crystallize time".
4903: 3253:
Uhrich, P.; Defenu, N.; Jafari, R.; Halimeh, J. C. (2020).
2006:
was used to direct lasers at a specific frequency inside a
1348:
one: they are periodically driven systems oscillating at a
801: 776: 3608: 2790:"Time-Crystalline Eigenstate Order on a Quantum Processor" 9330: 8471: 8456: 7492: 7338:"Physicist proves impossibility of quantum time crystals" 3252: 1667:-breaking, which ultimately led to the Watanabe–Oshikawa 1638: 143: 7195:"World's first time crystals cooked up using new recipe" 7135:"Time crystals enter the real world of condensed matter" 4320: 2787: 2762:"Physicists create time crystals with quantum computers" 7270:"Scientists Create A New Kind Of Matter: Time Crystals" 7179: 7101:"Death-defying time crystal could outlast the universe" 6934:"Focus: Turning a Quantum Computer into a Time Crystal" 5239: 4971:"World's first video recording of a space–time crystal" 1995:
on a diamond, attaining longer times but fewer qubits.
1710:. Both experiments were published in the same issue of 7251:
University of California, Berkeley (26 January 2017).
6537: 3857:"Dissipation Induced Nonstationarity in a Quantum Gas" 2281: 2279: 1663:
Subsequent work developed more precise definitions of
6176: 4496: 3231: 2062: 1975:
rather than quantum processors: first a group at the
1905:
described the creation of time crystal consisting of
1492: 1472: 1452: 1426: 1400: 1365: 1352:
of the frequency of the driving force. (According to
1270: 1170:. Time crystals were first proposed theoretically by 7253:"Physicists unveil new form of matter—time crystals" 8298: 7165:"'Choreographic crystals' have all the right moves" 5021:"Observation of a prethermal discrete time crystal" 2276: 41:
may be too technical for most readers to understand
7133:Hannaford, Peter; Sacha, Krzysztof (17 Mar 2020). 4781: 3170: 3020:"Perpetual Motion Test Could Amend Theory of Time" 2566: 2562: 2560: 2558: 2556: 2554: 2392:A Beautiful Question: Finding Nature's Deep Design 1562: – these oscillations generate no 1498: 1478: 1458: 1438: 1412: 1386: 7148:"Creating time crystals with a rotating ion ring" 4775: 3992: 3449: 3447: 1947:device. A chip of 20 qubits was used to obtain a 1652:In response to Wilczek and Zhang, Patrick Bruno ( 10141: 5242:"All-optical dissipative discrete time crystals" 4836: 4256:Piazza, Francesco; Ritsch, Helmut (2015-10-15). 4068: 4066: 4064: 3731: 3101: 2863:Wilczek, Frank (2012). "Quantum Time Crystals". 1293:momentum, the U-process changes phonon momentum. 8053: 7287:"Time crystals realize new order of space-time" 6080: 5407:Frey, Philipp; Rachel, Stephan (2 March 2022). 4769:"Physicists develop highly robust time crystal" 4730:"A Time Crystal Survived a Whopping 40 Minutes" 2731: 2622: 2620: 2551: 2299: 1332:Broken symmetry in discrete time crystals (DTC) 7372:"Time crystals might exist after all (Update)" 7132: 6834: 6025: 5870: 5092:S, Robert; ers; Berkeley, U. C. (2021-11-10). 4427: 3444: 3435: 2931: 2364:Conceptual Foundations of Quantum Field Theory 2287:"Physicists Create World's First Time Crystal" 2208: 1309:, however, is conserved in a perfect crystal. 9817: 9803: 9286: 8924: 8039: 7451: 6961:"Focus: New Crystal Type is Always in Motion" 6778: 5691: 5332:Frey, Philipp; Rachel, Stephan (2022-03-04). 5307:"Physicists produce biggest time crystal yet" 4664:"Researchers observe continuous time crystal" 4141:Gong, Zongping; Ueda, Masahito (2021-07-19). 4061: 3855:BuÄŤa, Berislav; Jaksch, Dieter (2019-12-23). 3315: 3308:harvp error: no target: CITEREFWilczek2013b ( 2783: 2781: 1131: 754: 7465: 7212:"Can matter cycle through shapes eternally?" 6427: 6335: 5435: 5091: 4975:Max Planck Institute for Intelligent Systems 4387: 4255: 3604: 3602: 2759: 2617: 1903:Max Planck Institute for Intelligent Systems 1344:time-translation symmetry breaking, not the 1241: 1190:in nature is a manifestation of spontaneous 9300: 7293:. Christian Science Monitor. Archived from 6592: 5628: 4075:"Observation of a Dissipative Time Crystal" 3529: 3525: 3523: 3439: 2219: 1868:crystal doped with a high concentration of 1785:In October 2016, Christopher Monroe at the 1545:discrete time-translation symmetry breaking 9810: 9796: 9293: 9279: 8931: 8917: 8046: 8032: 7541: 7458: 7444: 5996: 5933: 5823: 5760: 5406: 5331: 4599:"Unleashing spontaneity in a time crystal" 4523:"Observation of a continuous time crystal" 3854: 3453: 3085: 3005: 3001: 2778: 2712: 2124: 1935:In November 2021, a collaboration between 1138: 1124: 761: 747: 91: 8938: 7192: 7180:Joint Quantum Institute (22 March 2011). 7118:"Curious Crystal Dances for Its Symmetry" 6949: 6793: 6729: 6606: 6551: 6496: 6441: 6349: 6318: 6292: 6233: 6202: 6135: 6039: 6006: 5947: 5884: 5837: 5774: 5720: 5642: 5579: 5516: 5449: 5383: 5349: 5281: 5134: 5036: 4993: 4921: 4856: 4795: 4538: 4502: 4441: 4338: 4273: 4166: 4090: 4044: 4010: 3937: 3872: 3807: 3745: 3684: 3623: 3599: 3582: 3548: 3471: 3341: 3288: 3270: 3237: 3184: 3115: 3017: 2945: 2876: 2839: 2805: 2640: 2584: 2573:Annual Review of Condensed Matter Physics 2367:. Cambridge: Cambridge University Press. 2313: 2260: 2230: 2228: 2161: 2120: 2118: 1757:. Kozin and Kyriienko instead analyzed a 69:Learn how and when to remove this message 53:, without removing the technical details. 7162: 7098: 6663: 6177:Robicheaux, F.; Niffenegger, K. (2015). 6121: 6081:Mendonça, J. T.; Dodonov, V. V. (2014). 5189: 4968: 4140: 3520: 3304: 3225: 3081: 2626: 2603:10.1146/annurev-conmatphys-031119-050658 2420:Introduction to Condensed Matter Physics 2234: 1611: 1284: 1213:. A discrete time crystal never reaches 8564:Continuous-variable quantum information 7193:Ouellette, Jennifer (31 January 2017). 7115: 6975: 6715: 6482: 6390: 5692:Grifoni, Milena; Hänggi, Peter (1998). 4689: 4596: 3095: 3089: 2862: 2416: 2388: 1654:European Synchrotron Radiation Facility 10142: 10008:Atomic, molecular, and optical physics 7267: 7209: 7171:. Institute of Physics. Archived from 7145: 7116:Hackett, Jennifer (22 February 2016). 7045: 6274: 5565: 5498: 3385: 3057: 3045: 3041: 2760:Kubota, Taylor; University, Stanford. 2494: 2472: 2444: 2225: 2115: 1911:scanning transmission X-ray microscopy 9791: 9274: 8912: 8027: 7439: 7301: 7124:. Scientific American. Archived from 7037:. Scientific American. Archived from 7028: 6885: 6219: 5214: 4690:Hamburg, University of (2022-07-03). 4685: 4683: 4658: 4656: 4592: 4590: 4516: 4514: 4188: 4186: 4136: 4134: 3391: 3327: 2147: 2125:Zakrzewski, Jakub (15 October 2012). 51:make it understandable to non-experts 7982: 7422:University of California at Berkeley 7369: 7352: 7335: 7318: 7284: 7163:Johnston, Hamish (18 January 2016). 6958: 6931: 5501:"Comment on 'Quantum Time Crystals'" 5428: 5215:Starr, Michelle (16 February 2022). 4192: 3018:Wolchover, Natalie (25 April 2013). 2500: 1581:: the order is the consequence of a 25: 8006: 7276:. Popular mechanics. Archived from 6083:"Time Crystals in Ultracold Matter" 5304: 4393: 3026:. Simons Foundation. Archived from 2360: 2235:Richerme, Phil (January 18, 2017). 13: 7268:Weiner, Sophie (28 January 2017). 7099:Grossman, Lisa (18 January 2012). 6932:Ball, Philip (20 September 2021). 4680: 4653: 4597:LeBlanc, Lindsay J. (2022-08-05). 4587: 4511: 4183: 4131: 3986: 2473:SĂłlyom, Jenö (19 September 2007). 2445:SĂłlyom, Jenö (19 September 2007). 1728:strongly coupled to a dissipative 1720:Institute of Laser Physics at the 1647:University of California, Berkeley 1271:Broken symmetry in normal crystals 19:For the electronic component, see 14: 10196: 7431:Jagiellonian University in KrakĂłw 7388: 7285:Wood, Charlie (31 January 2017). 6087:Journal of Russian Laser Research 4994:Wolchover, Natalie (2021-07-30). 4969:Williams, Jon (9 February 2021). 3058:Thomas, Jessica (15 March 2013). 1998:In February 2022, a scientist at 1596:Time crystals do not violate the 1591: 9353: 8967: 8893: 8892: 8883: 8882: 8005: 7993: 7981: 7970: 7969: 7182:"Floquet Topological Insulators" 5190:Boerkamp, Martijn (2021-11-17). 4394:Cho, Adrian (27 November 2019). 2687: 2417:Feng, Duan; Jin, Guojun (2005). 2247:. American Physical Society: 5. 2096: 2084: 2072: 1744:fields that decay as quickly as 783: 728: 727: 714: 30: 10129:Timeline of physics discoveries 7370:Zyga, Lisa (9 September 2016). 7319:Zyga, Lisa (20 February 2012). 7201:. New Scientist. Archived from 7107:. New Scientist. Archived from 7029:Cowen, Ron (27 February 2012). 6959:Ball, Philip (8 January 2016). 5400: 5325: 5298: 5233: 5208: 5183: 5110: 5085: 5012: 4987: 4962: 4897: 4761: 4747: 4736: 4722: 4708: 4668:www.cui-advanced.uni-hamburg.de 4490: 4421: 4314: 4249: 4195:"Quantum time crystals open up" 4193:Ball, Philip (September 2021). 4143:"Time Crystals in Open Systems" 3913: 3848: 3786: 3725: 3664: 3428: 3321: 3297: 3246: 3164: 3074: 3051: 3034: 3011: 2994: 2925: 2856: 2753: 2706: 2681: 2466: 2438: 2423:. singapore: World Scientific. 2410: 2389:Wilczek, Frank (16 July 2015). 1813:electron states in that setup, 10165:Non-equilibrium thermodynamics 6748:10.1103/PhysRevLett.111.250402 6693:10.1103/PhysRevLett.110.118902 6338:Reports on Progress in Physics 5966:10.1103/PhysRevLett.109.163001 5903:10.1103/PhysRevLett.116.250401 5793:10.1103/PhysRevLett.111.205303 5661:10.1103/PhysRevLett.117.090402 5598:10.1103/PhysRevLett.111.029301 5535:10.1103/PhysRevLett.110.118901 5468:10.1103/PhysRevLett.116.015503 4940:10.1103/PhysRevLett.126.057201 4814:10.1103/PhysRevLett.120.215301 4460:10.1103/PhysRevLett.123.210602 4292:10.1103/PhysRevLett.115.163601 4109:10.1103/PhysRevLett.127.043602 3956:10.1103/PhysRevLett.121.035301 3891:10.1103/PhysRevLett.123.260401 3826:10.1103/PhysRevLett.122.015701 3764:10.1103/PhysRevLett.120.040404 3703:10.1103/PhysRevLett.121.035301 3490:10.1103/PhysRevLett.118.030401 3134:10.1103/PhysRevLett.114.251603 2964:10.1103/PhysRevLett.109.160402 2895:10.1103/PhysRevLett.109.160401 2501:Ball, Philip (July 17, 2018). 2382: 2361:Cao, Tian Yu (25 March 2004). 2354: 2302:Reports on Progress in Physics 2293: 2237:"How to Create a Time Crystal" 2213: 2202: 2141: 1780: 1515:oscillating chemical reactions 1369: 1: 9742:Macroscopic quantum phenomena 8559:Adiabatic quantum computation 7568:Spontaneous symmetry breaking 7336:Zyga, Lisa (22 August 2013). 6967:. APS Physics. Archived from 5731:10.1016/S0370-1573(98)00022-2 3066:. APS Physics. Archived from 2133:. APS Physics. Archived from 2127:"Viewpoint: Crystals of Time" 2109: 2060:between which it oscillated. 1993:nitrogen-vacancy (NV) centers 1540:nonlinear dynamical systems. 1281:spontaneous symmetry breaking 1069:Ultimate fate of the universe 9752:Order and disorder (physics) 8954:Principle of maximum entropy 8610:Topological quantum computer 2503:"In search of time crystals" 2018:at subharmonic frequencies. 1336:Time crystals seem to break 7: 10093:Quantum information science 8888:Quantum information science 8055:Quantum information science 7378:. Science X. Archived from 7361:. Science X. Archived from 7327:. Science X. Archived from 7310:. Science X. Archived from 7259:. Science X. Archived from 7154:. Science X. Archived from 7146:Hewitt, John (3 May 2013). 6154:10.1209/0295-5075/103/57008 3290:10.1103/physrevb.101.245148 3203:10.1103/physrevb.102.041117 1901:In February 2021 a team at 1299:broken translation symmetry 10: 10201: 10150:Branches of thermodynamics 9924:Classical electromagnetism 8978:Statistical thermodynamics 8283:quantum gate teleportation 7748:Spin gapless semiconductor 7657:Nearly free electron model 7353:Zyga, Lisa (9 July 2015). 7302:Yirka, Bob (9 July 2012). 7188:. Joint Quantum Institute. 6835:Zel'Dovich, Y. B. (1967). 6812:10.1103/PhysRevB.92.224512 6570:10.1103/PhysRevB.94.085112 6252:10.1103/PhysRevA.91.033617 6204:10.1103/PhysRevA.91.063618 5694:"Driven quantum tunneling" 5305:Cho, Adrian (2022-03-02). 5266:10.1038/s41467-022-28462-x 4219:10.1038/s41563-021-01090-4 4029:10.1038/s41467-019-09757-y 3360:10.1103/PhysRevA.91.033617 2824:10.1038/s41586-021-04257-w 2180:10.1103/PhysRevA.91.033617 1979:obtained time crystals on 1966:protected eigenstate order 1624:University of Paris-Saclay 1607: 1534:parametric down-conversion 1274: 1245: 1220: 304:Spin gapless semiconductor 18: 10101: 10038: 9966: 9882: 9854: 9826: 9704: 9658: 9530: 9444: 9418: 9362: 9351: 9313: 9213: 9175: 9140: 9095: 9037: 8976: 8965: 8946: 8878: 8821: 8784: 8750: 8727: 8694: 8685: 8618: 8547: 8485: 8445: 8412:Quantum Fourier transform 8357: 8308:Post-quantum cryptography 8251:Entanglement distillation 8224: 8133: 8061: 7965: 7927: 7852: 7796: 7756: 7705: 7697:Density functional theory 7672:electronic band structure 7639: 7588: 7581: 7550: 7539: 7473: 7344:. Space X. Archived from 7224:10.1038/nature.2013.13657 6898:10.1007/978-3-030-52523-1 6886:Sacha, Krzysztof (2020). 6515:10.1134/S0021364013210133 6275:Sacha, Krzysztof (2015). 6099:10.1007/s10946-014-9404-9 4875:10.1038/s41563-020-0780-y 3404:10.1007/978-3-030-52523-1 3392:Sacha, Krzysztof (2020). 2713:Cowen, Ron (2017-02-02). 2527:10.1088/2058-7058/31/7/32 2395:. Penguin Books Limited. 1724:. The researchers used a 1665:time-translation symmetry 1387:{\displaystyle t\to t+nT} 1338:time-translation symmetry 1261:time-translation symmetry 1248:Time-translation symmetry 1242:Time-translation symmetry 244:Electronic band structure 10155:Condensed matter physics 10030:Condensed matter physics 9777:Thermo-dielectric effect 9676:Enthalpy of vaporization 9370:Bose–Einstein condensate 9238:Condensed matter physics 9221:Statistical field theory 8898:Quantum mechanics topics 8593:Quantum machine learning 8569:One-way quantum computer 8422:Quantum phase estimation 8323:Quantum key distribution 8256:Monogamy of entanglement 7867:Bogoliubov quasiparticle 7611:Quantum spin Hall effect 7503:Bose–Einstein condensate 7467:Condensed matter physics 6924: 6878: 6664:Wilczek, Frank (2013a). 6413:10.1103/PhysRev.138.B979 6368:10.1088/1361-6633/aa8b38 5856:10.1088/1367-2630/ab9d54 5499:Bruno, Patrick (2013a). 3922:"Boundary Time Crystals" 2569:"Discrete Time Crystals" 2332:10.1088/1361-6633/aa8b38 2053:phase localizing at two 2043:Bose–Einstein condensate 2025:, this time using IBM's 1922:dissipative time crystal 1883:In May 2018, a group in 1870:nitrogen-vacancy centers 1726:Bose–Einstein condensate 1297:Common crystals exhibit 1152:condensed matter physics 154:Bose–Einstein condensate 85:Condensed matter physics 9671:Enthalpy of sublimation 9096:Mathematical approaches 9085:Lennard-Jones potential 9001:thermodynamic potential 8505:Randomized benchmarking 8367:Amplitude amplification 7141:. Institute of Physics. 6718:Physical Review Letters 6673:Physical Review Letters 6625:10.1126/science.1239834 5936:Physical Review Letters 5873:Physical Review Letters 5763:Physical Review Letters 5631:Physical Review Letters 5568:Physical Review Letters 5505:Physical Review Letters 5438:Physical Review Letters 5319:10.1126/science.adb1790 5153:10.1126/science.abk0603 5055:10.1126/science.abg8102 4910:Physical Review Letters 4784:Physical Review Letters 4623:10.1126/science.add2015 4557:10.1126/science.abo3382 4430:Physical Review Letters 4408:10.1126/science.aba3793 4357:10.1126/science.aaw4465 4262:Physical Review Letters 4079:Physical Review Letters 3926:Physical Review Letters 3861:Physical Review Letters 3460:Physical Review Letters 3104:Physical Review Letters 2934:Physical Review Letters 2865:Physical Review Letters 2023:University of Melbourne 1803:acousto-optic modulator 1681:Jagiellonian University 1656:) and Masaki Oshikawa ( 1555:than the driving force, 1181:quantum computer memory 10114:Nobel Prize in Physics 9976:Relativistic mechanics 9686:Latent internal energy 9436:Color-glass condensate 9132:conformal field theory 8605:Quantum Turing machine 8598:quantum neural network 8345:Quantum secret sharing 7399:University of Maryland 7210:Powell, Devin (2013). 7122:scientificamerican.com 7035:scientificamerican.com 6951:10.1103/Physics.14.131 5826:New Journal of Physics 5368:10.1126/sciadv.abm7652 4168:10.1103/Physics.14.104 1977:University of Maryland 1959:spins are flipped for 1949:many-body localization 1909:and probed them under 1787:University of Maryland 1708:University of Maryland 1626: 1598:laws of thermodynamics 1579:many-body interactions 1500: 1480: 1460: 1440: 1439:{\displaystyle n>1} 1414: 1388: 1294: 1265:conservation of energy 1196:translational symmetry 10180:Statistical mechanics 10119:Philosophy of physics 9496:Magnetically ordered 9047:Ferromagnetism models 8940:Statistical mechanics 8677:Entanglement-assisted 8638:quantum convolutional 8313:Quantum coin flipping 8278:Quantum teleportation 8239:entanglement-assisted 8069:DiVincenzo's criteria 7743:Topological insulator 7677:Anderson localization 7382:on 11 September 2016. 5246:Nature Communications 3999:Nature Communications 3436:Khemani et al. (2016) 2209:Khemani et al. (2016) 2034:University of Hamburg 1918:University of Hamburg 1722:University of Hamburg 1615: 1501: 1481: 1461: 1441: 1415: 1389: 1288: 1211:discrete time crystal 299:Topological insulator 10078:Mathematical physics 9375:Fermionic condensate 8488:processor benchmarks 8417:Quantum optimization 8300:Quantum cryptography 8111:physical vs. logical 7621:Aharonov–Bohm effect 7508:Fermionic condensate 7274:popularmechanics.com 6944:. APS Physics: 131. 3316:Yoshii et al. (2015) 3000:See Li et al. ( 2262:10.1103/Physics.10.5 1645:, a nanoengineer at 1569:the system exhibits 1490: 1486:the driving period, 1470: 1450: 1424: 1398: 1363: 1200:translations in time 317:Electronic phenomena 164:Fermionic condensate 10053:Atmospheric physics 9892:Classical mechanics 9820:branches of physics 9590:Chemical ionization 9482:Programmable matter 9472:Quantum spin liquid 9340:Supercritical fluid 9226:elementary particle 8991:partition functions 8201:Quantum speed limit 8096:Quantum programming 8091:Quantum information 8012:Physics WikiProject 7687:tight binding model 7667:Fermi liquid theory 7652:Free electron model 7601:Quantum Hall effect 7582:Electrons in solids 7348:on 3 February 2017. 7331:on 3 February 2017. 7297:on 2 February 2017. 7280:on 3 February 2017. 7263:on 28 January 2017. 7246:on 3 February 2017. 7205:on 1 February 2017. 7175:on 3 February 2017. 7128:on 3 February 2017. 7111:on 2 February 2017. 7060:2017Natur.543..164G 7041:on 2 February 2017. 6990:2013Natur.493..166C 6971:on 3 February 2017. 6856:1967JETP...24.1006Z 6844:Soviet Physics JETP 6804:2015PhRvB..92v4512Y 6740:2013PhRvL.111y0402W 6685:2013PhRvL.110k8902W 6617:2013Sci...342..453W 6562:2016PhRvB..94h5112V 6507:2013JETPL..98..491V 6452:2016NatPh..12..907S 6405:1965PhRv..138..979S 6360:2018RPPh...81a6401S 6303:2015NatSR...510787S 6244:2015PhRvA..91c3617S 6195:2015PhRvA..91f3618R 6146:2013EL....10357008N 6050:2011NatPh...7..490L 6017:2012arXiv1212.6959L 5958:2012PhRvL.109p3001L 5895:2016PhRvL.116y0401K 5848:2020NJPh...22g5003G 5785:2013PhRvL.111t5303G 5713:1998PhR...304..229G 5653:2016PhRvL.117i0402E 5590:2013PhRvL.111b9301B 5527:2013PhRvL.110k8901B 5460:2016PhRvL.116a5503B 5360:2022SciA....8M7652F 5258:2022NatCo..13..848T 5145:2021Sci...374.1474R 5129:(6574): 1474–1478. 5047:2021Sci...372.1192K 5031:(6547): 1192–1196. 4932:2021PhRvL.126e7201T 4867:2021NatMa..20..171A 4806:2018PhRvL.120u5301A 4718:. 24 February 2024. 4615:2022Sci...377..576L 4549:2022Sci...377..670K 4452:2019PhRvL.123u0602K 4349:2019Sci...366.1496D 4333:(6472): 1496–1499. 4284:2015PhRvL.115p3601P 4211:2021NatMa..20.1172B 4159:2021PhyOJ..14..104G 4101:2021PhRvL.127d3602K 4021:2019NatCo..10.1730B 3948:2018PhRvL.121c5301I 3883:2019PhRvL.123z0401B 3818:2019PhRvL.122a5701G 3756:2018PhRvL.120d0404G 3695:2018PhRvL.121c5301I 3642:10.1038/nature21413 3634:2017Natur.543..217Z 3567:10.1038/nature21426 3559:2017Natur.543..221C 3482:2017PhRvL.118c0401Y 3352:2015PhRvA..91c3617S 3281:2020PhRvB.101x5148U 3195:2020PhRvB.102d1117M 3126:2015PhRvL.114y1603W 3070:on 2 February 2017. 3030:on 2 February 2017. 2956:2012PhRvL.109p0402S 2887:2012PhRvL.109p0401W 2816:2022Natur.601..531M 2741:. Popular Mechanics 2719:Scientific American 2651:2018PhT....71i..40Y 2595:2020ARCMP..11..467E 2519:2018PhyW...31g..29B 2324:2018RPPh...81a6401S 2253:2017PhyOJ..10....5R 2172:2015PhRvA..91c3617S 2137:on 2 February 2017. 1955:" system where all 1767:ground energy state 1702:and a group led by 1658:University of Tokyo 1523:Faraday instability 1519:aerodynamic flutter 1413:{\displaystyle n=1} 1215:thermal equilibrium 1164:lowest-energy state 1162:of particles whose 324:Quantum Hall effect 10170:Physical paradoxes 10109:History of physics 9737:Leidenfrost effect 9666:Enthalpy of fusion 9431:Quark–gluon plasma 9253:information theory 9160:correlation length 9155:Critical exponents 9142:Critical phenomena 9123:stochastic process 9103:Boltzmann equation 8996:equations of state 8850:Forest/Rigetti QCS 8586:quantum logic gate 8372:Bernstein–Vazirani 8359:Quantum algorithms 8234:Classical capacity 8118:Quantum processors 8101:Quantum simulation 7573:Critical phenomena 7413:Harvard University 7395:Christopher Monroe 6281:Scientific Reports 4757:. 5 February 2024. 4732:. 6 February 2024. 3440:Else et al. (2016) 3024:quantamagazine.org 2220:Else et al. (2016) 1973:quantum simulators 1941:Sycamore processor 1704:Christopher Monroe 1627: 1583:collective process 1560:crypto-equilibrium 1496: 1476: 1456: 1436: 1410: 1384: 1295: 1259:The basic idea of 1063:Radiometric dating 721:Physics portal 10175:Quantum mechanics 10137: 10136: 10124:Physics education 10073:Materials science 10040:Interdisciplinary 9998:Quantum mechanics 9785: 9784: 9767:Superheated vapor 9762:Superconductivity 9732:Equation of state 9580:Flash evaporation 9532:Phase transitions 9517:String-net liquid 9410:Photonic molecule 9380:Degenerate matter 9268: 9267: 9258:Boltzmann machine 9128:mean-field theory 9029:Maxwell relations 8906: 8905: 8817: 8816: 8714:Linear optical QC 8495:Quantum supremacy 8449:complexity theory 8402:Quantum annealing 8353: 8352: 8290:Superdense coding 8079:Quantum computing 8021: 8020: 7907:Exciton-polariton 7792: 7791: 7764:Thermoelectricity 7314:on 15 April 2013. 7054:(7644): 164–166. 6984:(7431): 166–167. 6907:978-3-030-52522-4 6782:Physical Review B 6601:(6157): 453–457. 6540:Physical Review B 6460:10.1038/nphys3783 6399:(4B): B979–B987. 6311:10.1038/srep10787 6222:Physical Review A 6183:Physical Review A 6058:10.1038/nphys1926 5429:Academic articles 4609:(6606): 576–577. 4533:(6606): 670–673. 3802:(15701): 015701. 3740:(40404): 040404. 3679:(35301): 035301. 3618:(7644): 217–220. 3543:(7644): 221–225. 3413:978-3-030-52522-4 3330:Physical Review A 3259:Physical Review B 3173:Physical Review B 3086:Yao et al. (2017) 2800:(7894): 531–536. 2659:10.1063/PT.3.4020 2486:978-3-540-72600-5 2458:978-3-540-72600-5 2430:978-981-238-711-0 2402:978-1-84614-702-9 2374:978-0-521-60272-3 2150:Physical Review A 2004:injection locking 1945:quantum computing 1669:"no-go" statement 1637:and professor at 1558:the system is in 1499:{\displaystyle n} 1479:{\displaystyle T} 1459:{\displaystyle t} 1303:Umklapp processes 1254:Noether's theorem 1192:symmetry breaking 1186:The existence of 1148: 1147: 771: 770: 469:Granular material 237:Electronic phases 79: 78: 71: 10192: 10063:Chemical physics 10003:Particle physics 9929:Classical optics 9812: 9805: 9798: 9789: 9788: 9722:Compressed fluid 9357: 9302:States of matter 9295: 9288: 9281: 9272: 9271: 9150:Phase transition 8971: 8970: 8933: 8926: 8919: 8910: 8909: 8896: 8895: 8886: 8885: 8692: 8691: 8622:error correction 8551:computing models 8517:Relaxation times 8407:Quantum counting 8296: 8295: 8244:quantum capacity 8191:No-teleportation 8176:No-communication 8048: 8041: 8034: 8025: 8024: 8009: 8008: 7997: 7985: 7984: 7973: 7972: 7912:Phonon polariton 7804:Amorphous magnet 7784:Electrostriction 7779:Flexoelectricity 7774:Ferroelectricity 7769:Piezoelectricity 7626:Josephson effect 7606:Spin Hall effect 7586: 7585: 7563:Phase transition 7545: 7528:Luttinger liquid 7475:States of matter 7460: 7453: 7446: 7437: 7436: 7383: 7366: 7349: 7332: 7315: 7298: 7281: 7264: 7247: 7242:. Archived from 7206: 7199:newscientist.com 7189: 7176: 7169:physicsworld.com 7159: 7142: 7139:physicsworld.com 7129: 7112: 7105:newscientist.com 7095: 7042: 7025: 6972: 6955: 6953: 6919: 6873: 6871: 6870: 6864: 6858:. Archived from 6850:(5): 1006–1008. 6841: 6831: 6797: 6775: 6733: 6712: 6670: 6660: 6610: 6589: 6555: 6534: 6500: 6479: 6445: 6424: 6387: 6353: 6332: 6322: 6296: 6271: 6237: 6216: 6206: 6173: 6139: 6118: 6077: 6043: 6020: 6010: 5993: 5951: 5930: 5888: 5867: 5841: 5820: 5778: 5757: 5755: 5749:. Archived from 5724: 5707:(5–6): 229–354. 5698: 5688: 5646: 5625: 5583: 5562: 5520: 5495: 5453: 5423: 5422: 5420: 5419: 5413:The Conversation 5404: 5398: 5397: 5387: 5353: 5338:Science Advances 5329: 5323: 5322: 5302: 5296: 5295: 5285: 5237: 5231: 5230: 5228: 5227: 5212: 5206: 5205: 5203: 5202: 5187: 5181: 5180: 5138: 5114: 5108: 5107: 5105: 5104: 5089: 5083: 5082: 5040: 5016: 5010: 5009: 5007: 5006: 4991: 4985: 4984: 4982: 4981: 4966: 4960: 4959: 4925: 4901: 4895: 4894: 4860: 4845:Nature Materials 4840: 4834: 4833: 4799: 4779: 4773: 4772: 4765: 4759: 4758: 4751: 4745: 4740: 4734: 4733: 4726: 4720: 4719: 4712: 4706: 4705: 4703: 4702: 4687: 4678: 4677: 4675: 4674: 4660: 4651: 4650: 4594: 4585: 4584: 4542: 4518: 4509: 4508: 4506: 4494: 4488: 4487: 4445: 4425: 4419: 4418: 4416: 4414: 4391: 4385: 4384: 4342: 4318: 4312: 4311: 4277: 4253: 4247: 4246: 4199:Nature Materials 4190: 4181: 4180: 4170: 4138: 4129: 4128: 4094: 4070: 4059: 4058: 4048: 4014: 3990: 3984: 3983: 3941: 3917: 3911: 3910: 3876: 3852: 3846: 3845: 3811: 3790: 3784: 3783: 3749: 3729: 3723: 3722: 3688: 3668: 3662: 3661: 3627: 3606: 3597: 3596: 3586: 3552: 3527: 3518: 3517: 3475: 3451: 3442: 3432: 3426: 3425: 3389: 3383: 3382: 3345: 3325: 3319: 3313: 3301: 3295: 3294: 3292: 3274: 3250: 3244: 3243: 3241: 3229: 3223: 3222: 3188: 3168: 3162: 3161: 3119: 3099: 3093: 3088:, p. 1 and 3078: 3072: 3071: 3055: 3049: 3038: 3032: 3031: 3015: 3009: 2998: 2992: 2991: 2949: 2929: 2923: 2922: 2880: 2860: 2854: 2853: 2843: 2809: 2785: 2776: 2775: 2773: 2772: 2757: 2751: 2750: 2748: 2746: 2735: 2729: 2728: 2726: 2725: 2710: 2704: 2703: 2701: 2700: 2685: 2679: 2678: 2644: 2624: 2615: 2614: 2588: 2564: 2549: 2548: 2543: 2541: 2498: 2492: 2491:See p. 191. 2490: 2470: 2464: 2463:See p. 193. 2462: 2442: 2436: 2434: 2414: 2408: 2406: 2386: 2380: 2379:See p. 151. 2378: 2358: 2352: 2351: 2317: 2297: 2291: 2290: 2283: 2274: 2273: 2271: 2269: 2264: 2232: 2223: 2217: 2211: 2206: 2200: 2199: 2165: 2145: 2139: 2138: 2122: 2101: 2100: 2089: 2088: 2077: 2076: 2068: 1896:Nature Materials 1885:Aalto University 1848: 1833: 1756: 1749: 1734:Tilman Esslinger 1571:long-range order 1511:convection cells 1505: 1503: 1502: 1497: 1485: 1483: 1482: 1477: 1465: 1463: 1462: 1457: 1445: 1443: 1442: 1437: 1419: 1417: 1416: 1411: 1393: 1391: 1390: 1385: 1277:Crystal symmetry 1140: 1133: 1126: 1070: 954:Day of Judgement 787: 773: 772: 763: 756: 749: 736: 731: 730: 723: 719: 718: 329:Spin Hall effect 219:Phase transition 189:Luttinger liquid 126:States of matter 109:Phase transition 95: 81: 80: 74: 67: 63: 60: 54: 34: 33: 26: 10200: 10199: 10195: 10194: 10193: 10191: 10190: 10189: 10185:2012 in science 10160:Crystallography 10140: 10139: 10138: 10133: 10097: 10083:Medical physics 10034: 9993:Nuclear physics 9962: 9956:Non-equilibrium 9878: 9850: 9822: 9816: 9786: 9781: 9712:Baryonic matter 9700: 9654: 9625:Saturated fluid 9565:Crystallization 9526: 9500:Antiferromagnet 9440: 9414: 9358: 9349: 9309: 9299: 9269: 9264: 9209: 9171: 9136: 9118:BBGKY hierarchy 9113:Vlasov equation 9091: 9080:depletion force 9073:Particles with 9033: 8972: 8968: 8963: 8942: 8937: 8907: 8902: 8874: 8824: 8813: 8786:Superconducting 8780: 8746: 8737:Neutral atom QC 8729:Ultracold atoms 8723: 8688:implementations 8687: 8681: 8621: 8614: 8581:Quantum circuit 8549: 8543: 8537: 8527: 8487: 8481: 8448: 8441: 8397:Hidden subgroup 8349: 8338:other protocols 8294: 8271:quantum network 8266:Quantum channel 8226: 8220: 8166:No-broadcasting 8156:Gottesman–Knill 8129: 8057: 8052: 8022: 8017: 7961: 7942:Granular matter 7937:Amorphous solid 7923: 7848: 7834:Antiferromagnet 7824:Superparamagnet 7797:Magnetic phases 7788: 7752: 7701: 7662:Bloch's theorem 7635: 7577: 7558:Order parameter 7551:Phase phenomena 7546: 7537: 7469: 7464: 7427:Krzysztof Sacha 7391: 7386: 7365:on 9 July 2015. 7158:on 4 July 2013. 7068:10.1038/543164a 6998:10.1038/493166a 6965:physics.aps.org 6927: 6922: 6908: 6881: 6876: 6868: 6866: 6862: 6839: 6668: 6666:"Wilczek Reply" 6436:(10): 907–911. 6393:Physical Review 5753: 5701:Physics Reports 5696: 5431: 5426: 5417: 5415: 5405: 5401: 5344:(9): eabm7652. 5330: 5326: 5303: 5299: 5238: 5234: 5225: 5223: 5213: 5209: 5200: 5198: 5188: 5184: 5115: 5111: 5102: 5100: 5090: 5086: 5017: 5013: 5004: 5002: 5000:Quanta Magazine 4992: 4988: 4979: 4977: 4967: 4963: 4902: 4898: 4841: 4837: 4780: 4776: 4767: 4766: 4762: 4753: 4752: 4748: 4741: 4737: 4728: 4727: 4723: 4714: 4713: 4709: 4700: 4698: 4688: 4681: 4672: 4670: 4662: 4661: 4654: 4595: 4588: 4519: 4512: 4495: 4491: 4426: 4422: 4412: 4410: 4392: 4388: 4319: 4315: 4254: 4250: 4191: 4184: 4139: 4132: 4071: 4062: 3991: 3987: 3918: 3914: 3853: 3849: 3796:Phys. Rev. Lett 3791: 3787: 3734:Phys. Rev. Lett 3730: 3726: 3673:Phys. Rev. Lett 3669: 3665: 3607: 3600: 3528: 3521: 3452: 3445: 3433: 3429: 3414: 3390: 3386: 3326: 3322: 3307: 3305:Wilczek (2013b) 3302: 3298: 3251: 3247: 3230: 3226: 3169: 3165: 3100: 3096: 3082:Nozières (2013) 3079: 3075: 3064:physics.aps.org 3056: 3052: 3039: 3035: 3016: 3012: 2999: 2995: 2930: 2926: 2861: 2857: 2786: 2779: 2770: 2768: 2758: 2754: 2744: 2742: 2737: 2736: 2732: 2723: 2721: 2711: 2707: 2698: 2696: 2686: 2682: 2625: 2618: 2565: 2552: 2539: 2537: 2499: 2495: 2487: 2471: 2467: 2459: 2443: 2439: 2435:See p. 18. 2431: 2415: 2411: 2403: 2387: 2383: 2375: 2359: 2355: 2298: 2294: 2285: 2284: 2277: 2267: 2265: 2233: 2226: 2218: 2214: 2207: 2203: 2146: 2142: 2131:physics.aps.org 2123: 2116: 2112: 2107: 2095: 2083: 2071: 2063: 1926:ultracold atoms 1846: 1835: 1830: 1820: 1819: 1783: 1751: 1745: 1716:in March 2017. 1677:Krzysztof Sacha 1610: 1594: 1491: 1488: 1487: 1471: 1468: 1467: 1451: 1448: 1447: 1425: 1422: 1421: 1399: 1396: 1395: 1364: 1361: 1360: 1334: 1283: 1275:Main articles: 1273: 1250: 1244: 1223: 1144: 1115: 1114: 1090: 1089: 1080: 1079: 1075:Time in physics 1068: 1043: 1042: 1041: 1022: 1021: 1002: 1001: 1000: 979: 978: 939: 938: 937: 918: 917: 893: 892: 881: 880: 841: 840: 839:Fields of study 831: 830: 797: 796: 767: 726: 713: 712: 705: 704: 703: 493: 485: 484: 483: 459:Amorphous solid 453: 443: 442: 441: 420: 402: 392: 391: 390: 379: 377:Antiferromagnet 370: 368:Superparamagnet 361: 348: 347:Magnetic phases 340: 339: 338: 318: 310: 309: 308: 238: 230: 229: 228: 214:Order parameter 208: 207:Phase phenomena 200: 199: 198: 128: 118: 75: 64: 58: 55: 47:help improve it 44: 35: 31: 24: 17: 12: 11: 5: 10198: 10188: 10187: 10182: 10177: 10172: 10167: 10162: 10157: 10152: 10135: 10134: 10132: 10131: 10126: 10121: 10116: 10111: 10105: 10103: 10099: 10098: 10096: 10095: 10090: 10085: 10080: 10075: 10070: 10065: 10060: 10055: 10050: 10044: 10042: 10036: 10035: 10033: 10032: 10027: 10026: 10025: 10020: 10015: 10005: 10000: 9995: 9990: 9989: 9988: 9983: 9972: 9970: 9964: 9963: 9961: 9960: 9959: 9958: 9953: 9946:Thermodynamics 9943: 9942: 9941: 9936: 9926: 9921: 9916: 9915: 9914: 9909: 9904: 9899: 9888: 9886: 9880: 9879: 9877: 9876: 9875: 9874: 9864: 9858: 9856: 9852: 9851: 9849: 9848: 9847: 9846: 9836: 9830: 9828: 9824: 9823: 9815: 9814: 9807: 9800: 9792: 9783: 9782: 9780: 9779: 9774: 9769: 9764: 9759: 9754: 9749: 9744: 9739: 9734: 9729: 9724: 9719: 9714: 9708: 9706: 9702: 9701: 9699: 9698: 9693: 9691:Trouton's rule 9688: 9683: 9678: 9673: 9668: 9662: 9660: 9656: 9655: 9653: 9652: 9647: 9642: 9637: 9632: 9627: 9622: 9617: 9612: 9607: 9602: 9597: 9592: 9587: 9582: 9577: 9572: 9567: 9562: 9560:Critical point 9557: 9552: 9547: 9542: 9536: 9534: 9528: 9527: 9525: 9524: 9519: 9514: 9513: 9512: 9507: 9502: 9494: 9489: 9484: 9479: 9474: 9469: 9464: 9462:Liquid crystal 9459: 9454: 9448: 9446: 9442: 9441: 9439: 9438: 9433: 9428: 9422: 9420: 9416: 9415: 9413: 9412: 9407: 9402: 9397: 9395:Strange matter 9392: 9390:Rydberg matter 9387: 9382: 9377: 9372: 9366: 9364: 9360: 9359: 9352: 9350: 9348: 9347: 9342: 9337: 9328: 9323: 9317: 9315: 9311: 9310: 9298: 9297: 9290: 9283: 9275: 9266: 9265: 9263: 9262: 9261: 9260: 9255: 9250: 9243:Complex system 9240: 9235: 9234: 9233: 9228: 9217: 9215: 9211: 9210: 9208: 9207: 9202: 9197: 9192: 9187: 9181: 9179: 9173: 9172: 9170: 9169: 9168: 9167: 9162: 9152: 9146: 9144: 9138: 9137: 9135: 9134: 9125: 9120: 9115: 9110: 9105: 9099: 9097: 9093: 9092: 9090: 9089: 9088: 9087: 9082: 9071: 9070: 9069: 9064: 9059: 9054: 9043: 9041: 9035: 9034: 9032: 9031: 9026: 9025: 9024: 9019: 9014: 9009: 8998: 8993: 8988: 8982: 8980: 8974: 8973: 8966: 8964: 8962: 8961: 8959:ergodic theory 8956: 8950: 8948: 8944: 8943: 8936: 8935: 8928: 8921: 8913: 8904: 8903: 8901: 8900: 8890: 8879: 8876: 8875: 8873: 8872: 8870:many others... 8867: 8862: 8857: 8852: 8843: 8829: 8827: 8819: 8818: 8815: 8814: 8812: 8811: 8806: 8801: 8796: 8790: 8788: 8782: 8781: 8779: 8778: 8773: 8768: 8763: 8757: 8755: 8748: 8747: 8745: 8744: 8742:Trapped-ion QC 8739: 8733: 8731: 8725: 8724: 8722: 8721: 8716: 8711: 8706: 8700: 8698: 8696:Quantum optics 8689: 8683: 8682: 8680: 8679: 8674: 8673: 8672: 8665: 8660: 8655: 8650: 8645: 8640: 8635: 8626: 8624: 8616: 8615: 8613: 8612: 8607: 8602: 8601: 8600: 8590: 8589: 8588: 8578: 8577: 8576: 8566: 8561: 8555: 8553: 8545: 8544: 8542: 8541: 8540: 8539: 8535: 8529: 8525: 8514: 8513: 8512: 8502: 8500:Quantum volume 8497: 8491: 8489: 8483: 8482: 8480: 8479: 8474: 8469: 8464: 8459: 8453: 8451: 8443: 8442: 8440: 8439: 8434: 8429: 8424: 8419: 8414: 8409: 8404: 8399: 8394: 8389: 8384: 8379: 8377:Boson sampling 8374: 8369: 8363: 8361: 8355: 8354: 8351: 8350: 8348: 8347: 8342: 8341: 8340: 8335: 8330: 8320: 8315: 8310: 8304: 8302: 8293: 8292: 8287: 8286: 8285: 8275: 8274: 8273: 8263: 8258: 8253: 8248: 8247: 8246: 8241: 8230: 8228: 8222: 8221: 8219: 8218: 8213: 8211:Solovay–Kitaev 8208: 8203: 8198: 8193: 8188: 8183: 8178: 8173: 8168: 8163: 8158: 8153: 8148: 8143: 8137: 8135: 8131: 8130: 8128: 8127: 8126: 8125: 8115: 8114: 8113: 8103: 8098: 8093: 8088: 8087: 8086: 8076: 8071: 8065: 8063: 8059: 8058: 8051: 8050: 8043: 8036: 8028: 8019: 8018: 8016: 8015: 8003: 8000:Physics Portal 7991: 7979: 7966: 7963: 7962: 7960: 7959: 7954: 7949: 7947:Liquid crystal 7944: 7939: 7933: 7931: 7925: 7924: 7922: 7921: 7916: 7915: 7914: 7909: 7899: 7894: 7889: 7884: 7879: 7874: 7869: 7864: 7858: 7856: 7854:Quasiparticles 7850: 7849: 7847: 7846: 7841: 7836: 7831: 7826: 7821: 7816: 7814:Superdiamagnet 7811: 7806: 7800: 7798: 7794: 7793: 7790: 7789: 7787: 7786: 7781: 7776: 7771: 7766: 7760: 7758: 7754: 7753: 7751: 7750: 7745: 7740: 7738:Superconductor 7735: 7730: 7725: 7720: 7718:Mott insulator 7715: 7709: 7707: 7703: 7702: 7700: 7699: 7694: 7689: 7684: 7679: 7674: 7669: 7664: 7659: 7654: 7649: 7643: 7641: 7637: 7636: 7634: 7633: 7628: 7623: 7618: 7613: 7608: 7603: 7598: 7592: 7590: 7583: 7579: 7578: 7576: 7575: 7570: 7565: 7560: 7554: 7552: 7548: 7547: 7540: 7538: 7536: 7535: 7530: 7525: 7520: 7515: 7510: 7505: 7500: 7495: 7490: 7485: 7479: 7477: 7471: 7470: 7463: 7462: 7455: 7448: 7440: 7434: 7433: 7424: 7415: 7406: 7401: 7390: 7389:External links 7387: 7385: 7384: 7367: 7350: 7333: 7316: 7299: 7282: 7265: 7248: 7207: 7190: 7177: 7160: 7143: 7130: 7113: 7096: 7043: 7026: 6973: 6956: 6928: 6926: 6923: 6921: 6920: 6906: 6882: 6880: 6877: 6875: 6874: 6832: 6788:(22): 224512. 6776: 6724:(25): 250402. 6713: 6679:(11): 118902. 6661: 6590: 6535: 6491:(8): 491–495. 6480: 6430:Nature Physics 6425: 6388: 6333: 6272: 6217: 6174: 6119: 6078: 6034:(6): 490–495. 6028:Nature Physics 6022: 6021: 5994: 5942:(16): 163001. 5931: 5879:(25): 250401. 5868: 5821: 5769:(20): 205303. 5758: 5756:on 2017-02-11. 5722:10.1.1.65.9479 5689: 5626: 5563: 5511:(11): 118901. 5496: 5432: 5430: 5427: 5425: 5424: 5399: 5324: 5297: 5232: 5207: 5182: 5109: 5084: 5011: 4986: 4961: 4896: 4851:(2): 171–174. 4835: 4790:(21): 215301. 4774: 4760: 4746: 4735: 4721: 4707: 4679: 4652: 4586: 4510: 4489: 4436:(21): 210602. 4420: 4386: 4313: 4268:(16): 163601. 4248: 4182: 4130: 4060: 3985: 3912: 3867:(26): 260401. 3847: 3785: 3724: 3663: 3598: 3519: 3443: 3427: 3412: 3384: 3320: 3296: 3265:(24): 245148. 3245: 3224: 3163: 3110:(25): 251603. 3094: 3090:Volovik (2013) 3073: 3050: 3033: 3010: 2993: 2940:(16): 160402. 2924: 2871:(16): 160401. 2855: 2777: 2752: 2730: 2705: 2680: 2616: 2550: 2493: 2485: 2465: 2457: 2437: 2429: 2409: 2401: 2381: 2373: 2353: 2292: 2275: 2224: 2212: 2201: 2140: 2113: 2111: 2108: 2106: 2105: 2093: 2081: 2047:optical cavity 2008:microresonator 1930:optical cavity 1928:coupled to an 1860:Also in 2016, 1851:Doppler-cooled 1844: 1828: 1817: 1782: 1779: 1730:optical cavity 1635:Nobel laureate 1617:Nobel laureate 1609: 1606: 1593: 1592:Thermodynamics 1590: 1575: 1574: 1567: 1556: 1538:period-doubled 1495: 1475: 1455: 1435: 1432: 1429: 1409: 1406: 1403: 1383: 1380: 1377: 1374: 1371: 1368: 1333: 1330: 1329: 1328: 1325: 1322: 1272: 1269: 1246:Main article: 1243: 1240: 1222: 1219: 1160:quantum system 1146: 1145: 1143: 1142: 1135: 1128: 1120: 1117: 1116: 1113: 1112: 1107: 1102: 1097: 1091: 1088:Related topics 1087: 1086: 1085: 1082: 1081: 1078: 1077: 1072: 1065: 1060: 1055: 1050: 1044: 1040: 1039: 1034: 1030: 1029: 1028: 1027: 1024: 1023: 1020: 1019: 1014: 1009: 1003: 999: 998: 993: 987: 986: 985: 984: 981: 980: 977: 976: 971: 966: 961: 956: 951: 946: 940: 936: 935: 932: 926: 925: 924: 923: 920: 919: 916: 915: 910: 905: 900: 894: 888: 887: 886: 883: 882: 879: 878: 873: 868: 863: 858: 853: 848: 842: 838: 837: 836: 833: 832: 829: 828: 827: 826: 815: 814: 809: 804: 798: 795:Major concepts 794: 793: 792: 789: 788: 780: 779: 769: 768: 766: 765: 758: 751: 743: 740: 739: 738: 737: 724: 707: 706: 702: 701: 696: 691: 686: 681: 676: 671: 666: 661: 656: 651: 646: 641: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 501: 495: 494: 491: 490: 487: 486: 482: 481: 476: 474:Liquid crystal 471: 466: 461: 455: 454: 449: 448: 445: 444: 440: 439: 434: 429: 424: 415: 410: 404: 403: 400:Quasiparticles 398: 397: 394: 393: 389: 388: 383: 374: 365: 359:Superdiamagnet 356: 350: 349: 346: 345: 342: 341: 337: 336: 331: 326: 320: 319: 316: 315: 312: 311: 307: 306: 301: 296: 291: 286: 284:Thermoelectric 281: 279:Superconductor 276: 271: 266: 261: 259:Mott insulator 256: 251: 246: 240: 239: 236: 235: 232: 231: 227: 226: 221: 216: 210: 209: 206: 205: 202: 201: 197: 196: 191: 186: 181: 176: 171: 166: 161: 156: 151: 146: 141: 136: 130: 129: 124: 123: 120: 119: 117: 116: 111: 106: 100: 97: 96: 88: 87: 77: 76: 38: 36: 29: 21:timing crystal 15: 9: 6: 4: 3: 2: 10197: 10186: 10183: 10181: 10178: 10176: 10173: 10171: 10168: 10166: 10163: 10161: 10158: 10156: 10153: 10151: 10148: 10147: 10145: 10130: 10127: 10125: 10122: 10120: 10117: 10115: 10112: 10110: 10107: 10106: 10104: 10100: 10094: 10091: 10089: 10088:Ocean physics 10086: 10084: 10081: 10079: 10076: 10074: 10071: 10069: 10066: 10064: 10061: 10059: 10056: 10054: 10051: 10049: 10046: 10045: 10043: 10041: 10037: 10031: 10028: 10024: 10023:Modern optics 10021: 10019: 10016: 10014: 10011: 10010: 10009: 10006: 10004: 10001: 9999: 9996: 9994: 9991: 9987: 9984: 9982: 9979: 9978: 9977: 9974: 9973: 9971: 9969: 9965: 9957: 9954: 9952: 9949: 9948: 9947: 9944: 9940: 9937: 9935: 9932: 9931: 9930: 9927: 9925: 9922: 9920: 9917: 9913: 9910: 9908: 9905: 9903: 9900: 9898: 9895: 9894: 9893: 9890: 9889: 9887: 9885: 9881: 9873: 9872:Computational 9870: 9869: 9868: 9865: 9863: 9860: 9859: 9857: 9853: 9845: 9842: 9841: 9840: 9837: 9835: 9832: 9831: 9829: 9825: 9821: 9813: 9808: 9806: 9801: 9799: 9794: 9793: 9790: 9778: 9775: 9773: 9770: 9768: 9765: 9763: 9760: 9758: 9755: 9753: 9750: 9748: 9747:Mpemba effect 9745: 9743: 9740: 9738: 9735: 9733: 9730: 9728: 9727:Cooling curve 9725: 9723: 9720: 9718: 9715: 9713: 9710: 9709: 9707: 9703: 9697: 9694: 9692: 9689: 9687: 9684: 9682: 9679: 9677: 9674: 9672: 9669: 9667: 9664: 9663: 9661: 9657: 9651: 9650:Vitrification 9648: 9646: 9643: 9641: 9638: 9636: 9633: 9631: 9628: 9626: 9623: 9621: 9618: 9616: 9615:Recombination 9613: 9611: 9610:Melting point 9608: 9606: 9603: 9601: 9598: 9596: 9593: 9591: 9588: 9586: 9583: 9581: 9578: 9576: 9573: 9571: 9568: 9566: 9563: 9561: 9558: 9556: 9555:Critical line 9553: 9551: 9548: 9546: 9545:Boiling point 9543: 9541: 9538: 9537: 9535: 9533: 9529: 9523: 9520: 9518: 9515: 9511: 9508: 9506: 9503: 9501: 9498: 9497: 9495: 9493: 9490: 9488: 9485: 9483: 9480: 9478: 9477:Exotic matter 9475: 9473: 9470: 9468: 9465: 9463: 9460: 9458: 9455: 9453: 9450: 9449: 9447: 9443: 9437: 9434: 9432: 9429: 9427: 9424: 9423: 9421: 9417: 9411: 9408: 9406: 9403: 9401: 9398: 9396: 9393: 9391: 9388: 9386: 9383: 9381: 9378: 9376: 9373: 9371: 9368: 9367: 9365: 9361: 9356: 9346: 9343: 9341: 9338: 9336: 9332: 9329: 9327: 9324: 9322: 9319: 9318: 9316: 9312: 9307: 9303: 9296: 9291: 9289: 9284: 9282: 9277: 9276: 9273: 9259: 9256: 9254: 9251: 9249: 9246: 9245: 9244: 9241: 9239: 9236: 9232: 9231:superfluidity 9229: 9227: 9224: 9223: 9222: 9219: 9218: 9216: 9212: 9206: 9203: 9201: 9198: 9196: 9193: 9191: 9188: 9186: 9183: 9182: 9180: 9178: 9174: 9166: 9163: 9161: 9158: 9157: 9156: 9153: 9151: 9148: 9147: 9145: 9143: 9139: 9133: 9129: 9126: 9124: 9121: 9119: 9116: 9114: 9111: 9109: 9106: 9104: 9101: 9100: 9098: 9094: 9086: 9083: 9081: 9078: 9077: 9076: 9072: 9068: 9065: 9063: 9060: 9058: 9055: 9053: 9050: 9049: 9048: 9045: 9044: 9042: 9040: 9036: 9030: 9027: 9023: 9020: 9018: 9015: 9013: 9010: 9008: 9005: 9004: 9002: 8999: 8997: 8994: 8992: 8989: 8987: 8984: 8983: 8981: 8979: 8975: 8960: 8957: 8955: 8952: 8951: 8949: 8945: 8941: 8934: 8929: 8927: 8922: 8920: 8915: 8914: 8911: 8899: 8891: 8889: 8881: 8880: 8877: 8871: 8868: 8866: 8863: 8861: 8858: 8856: 8853: 8851: 8847: 8844: 8842: 8838: 8834: 8831: 8830: 8828: 8826: 8820: 8810: 8807: 8805: 8802: 8800: 8797: 8795: 8792: 8791: 8789: 8787: 8783: 8777: 8774: 8772: 8769: 8767: 8766:Spin qubit QC 8764: 8762: 8759: 8758: 8756: 8753: 8749: 8743: 8740: 8738: 8735: 8734: 8732: 8730: 8726: 8720: 8717: 8715: 8712: 8710: 8707: 8705: 8702: 8701: 8699: 8697: 8693: 8690: 8684: 8678: 8675: 8671: 8670: 8666: 8664: 8661: 8659: 8656: 8654: 8651: 8649: 8646: 8644: 8641: 8639: 8636: 8634: 8631: 8630: 8628: 8627: 8625: 8623: 8617: 8611: 8608: 8606: 8603: 8599: 8596: 8595: 8594: 8591: 8587: 8584: 8583: 8582: 8579: 8575: 8574:cluster state 8572: 8571: 8570: 8567: 8565: 8562: 8560: 8557: 8556: 8554: 8552: 8546: 8538: 8534: 8530: 8528: 8524: 8520: 8519: 8518: 8515: 8511: 8508: 8507: 8506: 8503: 8501: 8498: 8496: 8493: 8492: 8490: 8484: 8478: 8475: 8473: 8470: 8468: 8465: 8463: 8460: 8458: 8455: 8454: 8452: 8450: 8444: 8438: 8435: 8433: 8430: 8428: 8425: 8423: 8420: 8418: 8415: 8413: 8410: 8408: 8405: 8403: 8400: 8398: 8395: 8393: 8390: 8388: 8385: 8383: 8382:Deutsch–Jozsa 8380: 8378: 8375: 8373: 8370: 8368: 8365: 8364: 8362: 8360: 8356: 8346: 8343: 8339: 8336: 8334: 8331: 8329: 8326: 8325: 8324: 8321: 8319: 8318:Quantum money 8316: 8314: 8311: 8309: 8306: 8305: 8303: 8301: 8297: 8291: 8288: 8284: 8281: 8280: 8279: 8276: 8272: 8269: 8268: 8267: 8264: 8262: 8259: 8257: 8254: 8252: 8249: 8245: 8242: 8240: 8237: 8236: 8235: 8232: 8231: 8229: 8227:communication 8223: 8217: 8214: 8212: 8209: 8207: 8204: 8202: 8199: 8197: 8194: 8192: 8189: 8187: 8184: 8182: 8179: 8177: 8174: 8172: 8169: 8167: 8164: 8162: 8159: 8157: 8154: 8152: 8149: 8147: 8144: 8142: 8139: 8138: 8136: 8132: 8124: 8121: 8120: 8119: 8116: 8112: 8109: 8108: 8107: 8104: 8102: 8099: 8097: 8094: 8092: 8089: 8085: 8082: 8081: 8080: 8077: 8075: 8072: 8070: 8067: 8066: 8064: 8060: 8056: 8049: 8044: 8042: 8037: 8035: 8030: 8029: 8026: 8014: 8013: 8004: 8002: 8001: 7996: 7992: 7990: 7989: 7980: 7978: 7977: 7968: 7967: 7964: 7958: 7955: 7953: 7950: 7948: 7945: 7943: 7940: 7938: 7935: 7934: 7932: 7930: 7926: 7920: 7917: 7913: 7910: 7908: 7905: 7904: 7903: 7900: 7898: 7895: 7893: 7890: 7888: 7885: 7883: 7880: 7878: 7875: 7873: 7870: 7868: 7865: 7863: 7860: 7859: 7857: 7855: 7851: 7845: 7842: 7840: 7837: 7835: 7832: 7830: 7827: 7825: 7822: 7820: 7817: 7815: 7812: 7810: 7807: 7805: 7802: 7801: 7799: 7795: 7785: 7782: 7780: 7777: 7775: 7772: 7770: 7767: 7765: 7762: 7761: 7759: 7755: 7749: 7746: 7744: 7741: 7739: 7736: 7734: 7731: 7729: 7726: 7724: 7723:Semiconductor 7721: 7719: 7716: 7714: 7711: 7710: 7708: 7704: 7698: 7695: 7693: 7692:Hubbard model 7690: 7688: 7685: 7683: 7680: 7678: 7675: 7673: 7670: 7668: 7665: 7663: 7660: 7658: 7655: 7653: 7650: 7648: 7645: 7644: 7642: 7638: 7632: 7629: 7627: 7624: 7622: 7619: 7617: 7614: 7612: 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7593: 7591: 7587: 7584: 7580: 7574: 7571: 7569: 7566: 7564: 7561: 7559: 7556: 7555: 7553: 7549: 7544: 7534: 7531: 7529: 7526: 7524: 7521: 7519: 7516: 7514: 7511: 7509: 7506: 7504: 7501: 7499: 7496: 7494: 7491: 7489: 7486: 7484: 7481: 7480: 7478: 7476: 7472: 7468: 7461: 7456: 7454: 7449: 7447: 7442: 7441: 7438: 7432: 7428: 7425: 7423: 7419: 7416: 7414: 7410: 7407: 7405: 7404:Frank Wilczek 7402: 7400: 7396: 7393: 7392: 7381: 7377: 7373: 7368: 7364: 7360: 7356: 7351: 7347: 7343: 7339: 7334: 7330: 7326: 7322: 7317: 7313: 7309: 7305: 7300: 7296: 7292: 7291:csmonitor.com 7288: 7283: 7279: 7275: 7271: 7266: 7262: 7258: 7254: 7249: 7245: 7241: 7237: 7233: 7229: 7225: 7221: 7217: 7213: 7208: 7204: 7200: 7196: 7191: 7187: 7183: 7178: 7174: 7170: 7166: 7161: 7157: 7153: 7149: 7144: 7140: 7136: 7131: 7127: 7123: 7119: 7114: 7110: 7106: 7102: 7097: 7093: 7089: 7085: 7081: 7077: 7073: 7069: 7065: 7061: 7057: 7053: 7049: 7044: 7040: 7036: 7032: 7027: 7023: 7019: 7015: 7011: 7007: 7003: 6999: 6995: 6991: 6987: 6983: 6979: 6974: 6970: 6966: 6962: 6957: 6952: 6947: 6943: 6939: 6935: 6930: 6929: 6917: 6913: 6909: 6903: 6899: 6895: 6891: 6890: 6889:Time Crystals 6884: 6883: 6865:on 2017-02-11 6861: 6857: 6853: 6849: 6845: 6838: 6833: 6829: 6825: 6821: 6817: 6813: 6809: 6805: 6801: 6796: 6791: 6787: 6783: 6777: 6773: 6769: 6765: 6761: 6757: 6753: 6749: 6745: 6741: 6737: 6732: 6727: 6723: 6719: 6714: 6710: 6706: 6702: 6698: 6694: 6690: 6686: 6682: 6678: 6674: 6667: 6662: 6658: 6654: 6650: 6646: 6642: 6638: 6634: 6630: 6626: 6622: 6618: 6614: 6609: 6604: 6600: 6596: 6591: 6587: 6583: 6579: 6575: 6571: 6567: 6563: 6559: 6554: 6549: 6546:(8): 085112. 6545: 6541: 6536: 6532: 6528: 6524: 6520: 6516: 6512: 6508: 6504: 6499: 6494: 6490: 6486: 6481: 6477: 6473: 6469: 6465: 6461: 6457: 6453: 6449: 6444: 6439: 6435: 6431: 6426: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6389: 6385: 6381: 6377: 6373: 6369: 6365: 6361: 6357: 6352: 6347: 6344:(1): 016401. 6343: 6339: 6334: 6330: 6326: 6321: 6316: 6312: 6308: 6304: 6300: 6295: 6290: 6286: 6282: 6278: 6273: 6269: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6236: 6231: 6228:(3): 033617. 6227: 6223: 6218: 6214: 6210: 6205: 6200: 6196: 6192: 6189:(6): 063618. 6188: 6184: 6180: 6175: 6171: 6167: 6163: 6159: 6155: 6151: 6147: 6143: 6138: 6133: 6129: 6125: 6120: 6116: 6112: 6108: 6104: 6100: 6096: 6093:(1): 93–100. 6092: 6088: 6084: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6047: 6042: 6037: 6033: 6029: 6024: 6023: 6018: 6014: 6009: 6004: 6000: 5995: 5991: 5987: 5983: 5979: 5975: 5971: 5967: 5963: 5959: 5955: 5950: 5945: 5941: 5937: 5932: 5928: 5924: 5920: 5916: 5912: 5908: 5904: 5900: 5896: 5892: 5887: 5882: 5878: 5874: 5869: 5865: 5861: 5857: 5853: 5849: 5845: 5840: 5835: 5832:(7): 075003. 5831: 5827: 5822: 5818: 5814: 5810: 5806: 5802: 5798: 5794: 5790: 5786: 5782: 5777: 5772: 5768: 5764: 5759: 5752: 5748: 5744: 5740: 5736: 5732: 5728: 5723: 5718: 5714: 5710: 5706: 5702: 5695: 5690: 5686: 5682: 5678: 5674: 5670: 5666: 5662: 5658: 5654: 5650: 5645: 5640: 5637:(9): 090402. 5636: 5632: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5595: 5591: 5587: 5582: 5577: 5574:(2): 029301. 5573: 5569: 5564: 5560: 5556: 5552: 5548: 5544: 5540: 5536: 5532: 5528: 5524: 5519: 5514: 5510: 5506: 5502: 5497: 5493: 5489: 5485: 5481: 5477: 5473: 5469: 5465: 5461: 5457: 5452: 5447: 5444:(1): 015503. 5443: 5439: 5434: 5433: 5414: 5410: 5403: 5395: 5391: 5386: 5381: 5377: 5373: 5369: 5365: 5361: 5357: 5352: 5347: 5343: 5339: 5335: 5328: 5320: 5316: 5312: 5308: 5301: 5293: 5289: 5284: 5279: 5275: 5271: 5267: 5263: 5259: 5255: 5251: 5247: 5243: 5236: 5222: 5218: 5211: 5197: 5196:Physics World 5193: 5186: 5178: 5174: 5170: 5166: 5162: 5158: 5154: 5150: 5146: 5142: 5137: 5132: 5128: 5124: 5120: 5113: 5099: 5095: 5088: 5080: 5076: 5072: 5068: 5064: 5060: 5056: 5052: 5048: 5044: 5039: 5034: 5030: 5026: 5022: 5015: 5001: 4997: 4990: 4976: 4972: 4965: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4924: 4919: 4916:(5): 057201. 4915: 4911: 4907: 4900: 4892: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4859: 4854: 4850: 4846: 4839: 4831: 4827: 4823: 4819: 4815: 4811: 4807: 4803: 4798: 4793: 4789: 4785: 4778: 4770: 4764: 4756: 4750: 4744: 4739: 4731: 4725: 4717: 4711: 4697: 4693: 4686: 4684: 4669: 4665: 4659: 4657: 4648: 4644: 4640: 4636: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4600: 4593: 4591: 4582: 4578: 4574: 4570: 4566: 4562: 4558: 4554: 4550: 4546: 4541: 4536: 4532: 4528: 4524: 4517: 4515: 4505: 4500: 4493: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4457: 4453: 4449: 4444: 4439: 4435: 4431: 4424: 4409: 4405: 4401: 4397: 4390: 4382: 4378: 4374: 4370: 4366: 4362: 4358: 4354: 4350: 4346: 4341: 4336: 4332: 4328: 4324: 4317: 4309: 4305: 4301: 4297: 4293: 4289: 4285: 4281: 4276: 4271: 4267: 4263: 4259: 4252: 4244: 4240: 4236: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4204: 4200: 4196: 4189: 4187: 4178: 4174: 4169: 4164: 4160: 4156: 4152: 4148: 4144: 4137: 4135: 4126: 4122: 4118: 4114: 4110: 4106: 4102: 4098: 4093: 4088: 4085:(4): 043602. 4084: 4080: 4076: 4069: 4067: 4065: 4056: 4052: 4047: 4042: 4038: 4034: 4030: 4026: 4022: 4018: 4013: 4008: 4004: 4000: 3996: 3989: 3981: 3977: 3973: 3969: 3965: 3961: 3957: 3953: 3949: 3945: 3940: 3935: 3932:(3): 035301. 3931: 3927: 3923: 3916: 3908: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3875: 3870: 3866: 3862: 3858: 3851: 3843: 3839: 3835: 3831: 3827: 3823: 3819: 3815: 3810: 3805: 3801: 3797: 3789: 3781: 3777: 3773: 3769: 3765: 3761: 3757: 3753: 3748: 3743: 3739: 3735: 3728: 3720: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3687: 3682: 3678: 3674: 3667: 3659: 3655: 3651: 3647: 3643: 3639: 3635: 3631: 3626: 3621: 3617: 3613: 3605: 3603: 3594: 3590: 3585: 3580: 3576: 3572: 3568: 3564: 3560: 3556: 3551: 3546: 3542: 3538: 3534: 3526: 3524: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3474: 3469: 3466:(3): 030401. 3465: 3461: 3457: 3450: 3448: 3441: 3437: 3431: 3423: 3419: 3415: 3409: 3405: 3401: 3397: 3396: 3395:Time Crystals 3388: 3381: 3377: 3373: 3369: 3365: 3361: 3357: 3353: 3349: 3344: 3339: 3336:(3): 033617. 3335: 3331: 3324: 3317: 3311: 3306: 3300: 3291: 3286: 3282: 3278: 3273: 3268: 3264: 3260: 3256: 3249: 3240: 3235: 3228: 3220: 3216: 3212: 3208: 3204: 3200: 3196: 3192: 3187: 3182: 3179:(4): 041117. 3178: 3174: 3167: 3159: 3155: 3151: 3147: 3143: 3139: 3135: 3131: 3127: 3123: 3118: 3113: 3109: 3105: 3098: 3091: 3087: 3083: 3077: 3069: 3065: 3061: 3054: 3047: 3046:Bruno (2013b) 3043: 3042:Bruno (2013a) 3037: 3029: 3025: 3021: 3014: 3007: 3003: 2997: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2948: 2943: 2939: 2935: 2928: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2884: 2879: 2874: 2870: 2866: 2859: 2851: 2847: 2842: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2808: 2803: 2799: 2795: 2791: 2784: 2782: 2767: 2763: 2756: 2740: 2734: 2720: 2716: 2709: 2695: 2691: 2684: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2648: 2643: 2638: 2634: 2630: 2629:Physics Today 2623: 2621: 2612: 2608: 2604: 2600: 2596: 2592: 2587: 2582: 2578: 2574: 2570: 2563: 2561: 2559: 2557: 2555: 2547: 2536: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2507:Physics World 2504: 2497: 2488: 2482: 2478: 2477: 2469: 2460: 2454: 2450: 2449: 2441: 2432: 2426: 2422: 2421: 2413: 2404: 2398: 2394: 2393: 2385: 2376: 2370: 2366: 2365: 2357: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2321: 2316: 2311: 2308:(1): 016401. 2307: 2303: 2296: 2288: 2282: 2280: 2263: 2258: 2254: 2250: 2246: 2242: 2238: 2231: 2229: 2221: 2216: 2210: 2205: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2169: 2164: 2159: 2156:(3): 033617. 2155: 2151: 2144: 2136: 2132: 2128: 2121: 2119: 2114: 2104: 2099: 2094: 2092: 2087: 2082: 2080: 2075: 2070: 2069: 2066: 2061: 2059: 2058:ground states 2056: 2052: 2048: 2044: 2039: 2035: 2030: 2028: 2024: 2019: 2017: 2013: 2009: 2005: 2001: 1996: 1994: 1990: 1986: 1982: 1978: 1974: 1969: 1967: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1933: 1931: 1927: 1923: 1919: 1914: 1912: 1908: 1904: 1899: 1897: 1893: 1890: 1886: 1881: 1879: 1875: 1871: 1867: 1863: 1862:Mikhail Lukin 1858: 1854: 1852: 1843: 1839: 1831: 1824: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1778: 1774: 1770: 1768: 1764: 1760: 1754: 1748: 1741: 1739: 1735: 1731: 1727: 1723: 1717: 1715: 1714: 1709: 1705: 1701: 1700:Mikhail Lukin 1697: 1693: 1688: 1686: 1682: 1678: 1673: 1670: 1666: 1661: 1659: 1655: 1650: 1648: 1644: 1640: 1636: 1632: 1631:Frank Wilczek 1625: 1621: 1620:Frank Wilczek 1618: 1614: 1605: 1601: 1599: 1589: 1586: 1584: 1580: 1572: 1568: 1565: 1561: 1557: 1554: 1550: 1549: 1548: 1546: 1541: 1539: 1535: 1531: 1528: 1524: 1520: 1516: 1512: 1507: 1493: 1473: 1453: 1433: 1430: 1427: 1407: 1404: 1401: 1381: 1378: 1375: 1372: 1366: 1357: 1355: 1351: 1347: 1343: 1339: 1326: 1323: 1320: 1319: 1318: 1316: 1310: 1308: 1307:Quasimomentum 1304: 1300: 1292: 1287: 1282: 1278: 1268: 1266: 1262: 1257: 1255: 1249: 1239: 1236: 1235:ferromagnetic 1232: 1231:salt crystals 1228: 1218: 1216: 1212: 1207: 1205: 1201: 1197: 1193: 1189: 1184: 1182: 1177: 1174:in 2012 as a 1173: 1172:Frank Wilczek 1169: 1165: 1161: 1157: 1153: 1141: 1136: 1134: 1129: 1127: 1122: 1121: 1119: 1118: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1092: 1084: 1083: 1076: 1073: 1071: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1048:Chronobiology 1046: 1045: 1038: 1035: 1032: 1031: 1026: 1025: 1018: 1015: 1013: 1010: 1008: 1005: 1004: 997: 994: 992: 989: 988: 983: 982: 975: 972: 970: 969:Reincarnation 967: 965: 962: 960: 957: 955: 952: 950: 947: 945: 942: 941: 933: 931: 928: 927: 922: 921: 914: 911: 909: 906: 904: 901: 899: 896: 895: 891: 885: 884: 877: 874: 872: 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 843: 835: 834: 825: 822: 821: 820: 817: 816: 813: 810: 808: 805: 803: 800: 799: 791: 790: 786: 782: 781: 778: 775: 774: 764: 759: 757: 752: 750: 745: 744: 742: 741: 735: 725: 722: 717: 711: 710: 709: 708: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 500: 499:Van der Waals 497: 496: 489: 488: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 456: 452: 447: 446: 438: 435: 433: 430: 428: 425: 423: 419: 416: 414: 411: 409: 406: 405: 401: 396: 395: 387: 384: 382: 378: 375: 373: 369: 366: 364: 360: 357: 355: 352: 351: 344: 343: 335: 332: 330: 327: 325: 322: 321: 314: 313: 305: 302: 300: 297: 295: 294:Ferroelectric 292: 290: 289:Piezoelectric 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 264:Semiconductor 262: 260: 257: 255: 252: 250: 247: 245: 242: 241: 234: 233: 225: 222: 220: 217: 215: 212: 211: 204: 203: 195: 192: 190: 187: 185: 184:Superfluidity 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 145: 142: 140: 137: 135: 132: 131: 127: 122: 121: 115: 112: 110: 107: 105: 102: 101: 99: 98: 94: 90: 89: 86: 83: 82: 73: 70: 62: 52: 48: 42: 39:This article 37: 28: 27: 22: 10048:Astrophysics 9862:Experimental 9772:Superheating 9645:Vaporization 9640:Triple point 9635:Supercooling 9600:Lambda point 9550:Condensation 9467:Time crystal 9466: 9445:Other states 9385:Quantum Hall 9214:Applications 9165:size scaling 8794:Charge qubit 8719:KLM protocol 8668: 8532: 8522: 8216:Purification 8146:Eastin–Knill 8010: 7998: 7986: 7974: 7892:Pines' demon 7631:Kondo effect 7533:Time crystal 7532: 7380:the original 7375: 7363:the original 7358: 7346:the original 7341: 7329:the original 7324: 7312:the original 7307: 7295:the original 7290: 7278:the original 7273: 7261:the original 7256: 7244:the original 7215: 7203:the original 7198: 7185: 7173:the original 7168: 7156:the original 7151: 7138: 7126:the original 7121: 7109:the original 7104: 7051: 7047: 7039:the original 7034: 6981: 6977: 6969:the original 6964: 6941: 6937: 6888: 6867:. Retrieved 6860:the original 6847: 6843: 6785: 6781: 6721: 6717: 6676: 6672: 6633:1721.1/88434 6598: 6594: 6543: 6539: 6488: 6485:JETP Letters 6484: 6433: 6429: 6396: 6392: 6341: 6337: 6284: 6280: 6225: 6221: 6186: 6182: 6130:(5): 57008. 6127: 6123: 6090: 6086: 6031: 6027: 5998: 5939: 5935: 5876: 5872: 5829: 5825: 5766: 5762: 5751:the original 5704: 5700: 5634: 5630: 5571: 5567: 5508: 5504: 5441: 5437: 5416:. Retrieved 5412: 5402: 5341: 5337: 5327: 5310: 5300: 5249: 5245: 5235: 5224:. Retrieved 5221:ScienceAlert 5220: 5210: 5199:. Retrieved 5195: 5185: 5126: 5122: 5112: 5101:. Retrieved 5098:SciTechDaily 5097: 5087: 5028: 5024: 5014: 5003:. Retrieved 4999: 4989: 4978:. Retrieved 4974: 4964: 4913: 4909: 4899: 4848: 4844: 4838: 4787: 4783: 4777: 4763: 4749: 4738: 4724: 4710: 4699:. Retrieved 4696:SciTechDaily 4695: 4671:. Retrieved 4667: 4606: 4602: 4530: 4526: 4492: 4433: 4429: 4423: 4411:. Retrieved 4399: 4389: 4330: 4326: 4316: 4265: 4261: 4251: 4202: 4198: 4150: 4146: 4082: 4078: 4002: 3998: 3988: 3929: 3925: 3915: 3864: 3860: 3850: 3799: 3795: 3788: 3737: 3733: 3727: 3676: 3672: 3666: 3615: 3611: 3540: 3536: 3463: 3459: 3430: 3394: 3387: 3379: 3333: 3329: 3323: 3299: 3262: 3258: 3248: 3227: 3176: 3172: 3166: 3107: 3103: 3097: 3076: 3068:the original 3063: 3053: 3036: 3028:the original 3023: 3013: 2996: 2937: 2933: 2927: 2868: 2864: 2858: 2797: 2793: 2769:. Retrieved 2765: 2755: 2743:. Retrieved 2733: 2722:. Retrieved 2718: 2708: 2697:. Retrieved 2694:ScienceAlert 2693: 2683: 2635:(9): 40–47. 2632: 2628: 2576: 2572: 2545: 2540:September 6, 2538:. Retrieved 2510: 2506: 2496: 2479:. Springer. 2475: 2468: 2451:. Springer. 2447: 2440: 2419: 2412: 2391: 2384: 2363: 2356: 2305: 2301: 2295: 2266:. Retrieved 2244: 2240: 2215: 2204: 2153: 2149: 2143: 2135:the original 2130: 2051:superradiant 2031: 2020: 2012:lattice trap 2000:UC Riverside 1997: 1981:trapped-ions 1970: 1960: 1956: 1934: 1921: 1915: 1900: 1895: 1882: 1859: 1855: 1841: 1837: 1826: 1822: 1814: 1807:Tukey window 1805:, using the 1784: 1775: 1771: 1752: 1746: 1742: 1718: 1712: 1689: 1674: 1662: 1651: 1628: 1602: 1595: 1587: 1582: 1576: 1570: 1559: 1552: 1544: 1542: 1508: 1506:an integer. 1358: 1349: 1345: 1341: 1335: 1314: 1311: 1298: 1296: 1260: 1258: 1251: 1224: 1210: 1208: 1185: 1168:ground state 1156:time crystal 1155: 1149: 871:Paleontology 824:of the world 629:von Klitzing 334:Kondo effect 194:Time crystal 193: 174:Fermi liquid 65: 56: 40: 9951:Statistical 9867:Theoretical 9844:Engineering 9681:Latent heat 9630:Sublimation 9575:Evaporation 9510:Ferromagnet 9505:Ferrimagnet 9487:Dark matter 9419:High energy 9205:von Neumann 9075:force field 9067:percolation 8825:programming 8804:Phase qubit 8709:Circuit QED 8181:No-deleting 8123:cloud-based 7929:Soft matter 7829:Ferromagnet 7647:Drude model 7616:Berry phase 7596:Hall effect 7409:Lukin Group 7186:jqi.umd.edu 5999:Unpublished 4205:(9): 1172. 4005:(1): 1730. 3964:10023/14492 2688:Crew, Bec. 2579:: 467–499. 2103:Mathematics 2038:limit cycle 2010:creating a 1878:subharmonic 1799:spin states 1781:Experiments 1763:Hamiltonian 1643:Xiang Zhang 1641:. In 2013, 1354:Philip Ball 1110:Time travel 1017:Hexadecimal 991:Measurement 959:Immortality 846:Archaeology 451:Soft matter 372:Ferromagnet 10144:Categories 10068:Geophysics 10058:Biophysics 9902:Analytical 9855:Approaches 9696:Volatility 9659:Quantities 9620:Regelation 9595:Ionization 9570:Deposition 9522:Superglass 9492:Antimatter 9426:QCD matter 9405:Supersolid 9400:Superfluid 9363:Low energy 9062:Heisenberg 8865:libquantum 8799:Flux qubit 8704:Cavity QED 8653:Bacon–Shor 8643:stabilizer 8171:No-cloning 7844:Spin glass 7839:Metamagnet 7819:Paramagnet 7706:Conduction 7682:BCS theory 7523:Superfluid 7518:Supersolid 7418:Norman Yao 6869:2017-02-08 6553:1605.00639 6443:1508.07026 6351:1704.03735 6294:1502.02507 5886:1508.03344 5839:2005.03138 5644:1603.08001 5418:2022-03-08 5351:2105.06632 5252:(1): 848. 5226:2022-03-11 5201:2021-12-27 5136:2107.00736 5103:2021-12-27 5038:2102.01695 5005:2021-07-30 4980:2021-08-07 4923:1911.13192 4858:2003.06313 4797:1712.06877 4701:2022-08-07 4673:2022-08-07 4540:2202.06980 4504:2001.11037 4443:1907.07215 4340:1901.05974 4275:1507.08644 4092:2012.08885 4012:1804.06744 3939:1708.05014 3874:1905.12880 3809:1807.10161 3747:1708.01472 3686:1708.05014 3625:1609.08684 3550:1610.08057 3473:1608.02589 3272:1910.10715 3239:1910.10745 3186:1905.08266 2807:2107.13571 2771:2021-12-03 2724:2023-07-22 2699:2017-09-21 2642:1811.06657 2586:1905.13232 2407:See Ch. 3. 2315:1704.03735 2110:References 1892:superfluid 1793:ions in a 1761:many-body 1738:ETH Zurich 1530:spin echos 1346:continuous 1176:time-based 1037:Naturalism 974:Kalachakra 903:Eternalism 898:Presentism 890:Philosophy 876:Futurology 851:Chronology 594:Louis NĂ©el 584:Schrieffer 492:Scientists 386:Spin glass 381:Metamagnet 363:Paramagnet 179:Supersolid 59:March 2024 10018:Molecular 9919:Acoustics 9912:Continuum 9907:Celestial 9897:Newtonian 9884:Classical 9827:Divisions 9185:Boltzmann 9108:H-theorem 8986:Ensembles 8771:NV center 8206:Threshold 8186:No-hiding 8151:Gleason's 7902:Polariton 7809:Diamagnet 7757:Couplings 7733:Conductor 7728:Semimetal 7713:Insulator 7589:Phenomena 7513:Fermi gas 7240:181223762 7232:1476-4687 7076:0028-0836 7022:205075903 7006:0028-0836 6916:240770955 6828:118348062 6820:1098-0121 6795:1404.3519 6756:0031-9007 6731:1308.5949 6701:0031-9007 6641:0036-8075 6608:1310.7563 6586:118699328 6578:2469-9950 6531:119100114 6523:0021-3640 6498:1309.1845 6468:1745-2473 6421:0031-899X 6287:: 10787. 6268:118627872 6260:2469-9934 6235:1410.3638 6213:2469-9926 6170:118662499 6162:0295-5075 6137:1306.6229 6115:122631523 6107:1071-2836 6066:1745-2473 6041:1008.1792 6008:1212.6959 5974:0031-9007 5949:1206.4772 5911:0031-9007 5864:218538401 5801:0031-9007 5776:1305.1800 5747:120738031 5739:0370-1573 5717:CiteSeerX 5669:0031-9007 5606:0031-9007 5581:1211.4792 5543:0031-9007 5518:1210.4128 5476:0031-9007 5451:1407.5876 5376:2375-2548 5274:2041-1723 5177:235727352 5161:0036-8075 5079:231786633 5063:0036-8075 4956:208512720 4891:212717702 4647:251349796 4631:0036-8075 4581:246863968 4565:0036-8075 4484:197431242 4468:0031-9007 4381:119283814 4365:0036-8075 4243:237299508 4227:1476-4660 4177:244256783 4125:229210935 4037:2041-1723 3907:170079211 3842:119187766 3780:206307409 3575:0028-0836 3514:206284432 3498:0031-9007 3422:240770955 3376:118627872 3368:1050-2947 3343:1410.3638 3219:160009779 3211:2469-9950 3142:0031-9007 3117:1410.2143 2972:0031-9007 2947:1202.2537 2903:0031-9007 2878:1202.2539 2832:1476-4687 2675:119433979 2667:0031-9228 2611:173188223 2535:125917780 2513:(7): 29. 2196:118627872 2188:1050-2947 2163:1410.3638 2027:Manhattan 1874:coherence 1811:hyperfine 1795:Paul trap 1750:for some 1466:is time, 1370:→ 1105:Spacetime 1058:Evolution 1053:Cosmogony 996:Standards 964:Afterlife 934:Mythology 866:Metrology 694:Wetterich 674:Abrikosov 589:Josephson 559:Van Vleck 549:Luttinger 422:Polariton 354:Diamagnet 274:Conductor 269:Semimetal 254:Insulator 169:Fermi gas 9757:Spinodal 9705:Concepts 9585:Freezing 9195:Tsallis 8833:OpenQASM 8809:Transmon 8686:Physical 8486:Quantum 8387:Grover's 8161:Holevo's 8134:Theorems 8084:timeline 8074:NISQ era 7976:Category 7957:Colloids 7376:phys.org 7359:phys.org 7342:phys.org 7325:phys.org 7308:phys.org 7257:phys.org 7152:phys.org 7084:28277535 7014:23302852 6764:24483732 6709:25166586 6657:29121373 6649:24159040 6476:53408060 6384:28224975 6376:28885193 6329:26074169 6074:26754031 5982:23215073 5919:27391704 5809:24289695 5677:27610834 5614:23889455 5559:41459498 5551:25166585 5492:17918689 5484:26799028 5394:35235347 5292:35165273 5169:34735218 5071:34112691 4948:33605763 4883:32807922 4830:46997186 4822:29883148 4639:35926056 4573:35679353 4476:31809146 4413:19 March 4373:31857481 4300:26550874 4235:34433935 4117:34355967 4055:30988312 3980:51683292 3972:30085780 3899:31951440 3834:31012672 3772:29437420 3719:51683292 3711:30085780 3650:28277505 3593:28277511 3506:28157355 3150:26197119 2980:23215057 2911:23215056 2850:34847568 2766:phys.org 2745:4 August 2348:28224975 2340:28885193 2055:bistable 2016:solitons 1985:TU Delft 1889:Helium-3 1759:spin-1/2 1692:Berkeley 1446:, where 1350:fraction 1342:discrete 1227:diamonds 1188:crystals 1007:ISO 8601 949:End time 944:Creation 930:Religion 913:Fatalism 861:Horology 819:Eternity 734:Category 679:Ginzburg 654:Laughlin 614:Kadanoff 569:Shockley 554:Anderson 509:von Laue 159:Bose gas 10102:Related 9986:General 9981:Special 9839:Applied 9717:Binodal 9605:Melting 9540:Boiling 9457:Crystal 9452:Colloid 9190:Shannon 9177:Entropy 8823:Quantum 8761:Kane QC 8620:Quantum 8548:Quantum 8477:PostBQP 8447:Quantum 8432:Simon's 8225:Quantum 8062:General 7988:Commons 7952:Polymer 7919:Polaron 7897:Plasmon 7877:Exciton 7420:at the 7092:4460265 7056:Bibcode 6986:Bibcode 6938:Physics 6852:Bibcode 6800:Bibcode 6772:7537145 6736:Bibcode 6681:Bibcode 6613:Bibcode 6595:Science 6558:Bibcode 6503:Bibcode 6448:Bibcode 6401:Bibcode 6356:Bibcode 6320:4466589 6299:Bibcode 6240:Bibcode 6191:Bibcode 6142:Bibcode 6046:Bibcode 6013:Bibcode 5990:8198228 5954:Bibcode 5891:Bibcode 5844:Bibcode 5817:9337383 5781:Bibcode 5709:Bibcode 5685:1652633 5649:Bibcode 5622:1502258 5586:Bibcode 5523:Bibcode 5456:Bibcode 5385:8890700 5356:Bibcode 5311:Science 5283:8844012 5254:Bibcode 5141:Bibcode 5123:Science 5043:Bibcode 5025:Science 4928:Bibcode 4863:Bibcode 4802:Bibcode 4611:Bibcode 4603:Science 4545:Bibcode 4527:Science 4448:Bibcode 4400:Science 4345:Bibcode 4327:Science 4308:5080527 4280:Bibcode 4207:Bibcode 4155:Bibcode 4153:: 104. 4147:Physics 4097:Bibcode 4046:6465298 4017:Bibcode 3944:Bibcode 3879:Bibcode 3814:Bibcode 3752:Bibcode 3691:Bibcode 3658:4450646 3630:Bibcode 3584:5349499 3555:Bibcode 3478:Bibcode 3348:Bibcode 3277:Bibcode 3191:Bibcode 3122:Bibcode 2988:4506464 2952:Bibcode 2919:1312256 2883:Bibcode 2841:8791837 2812:Bibcode 2647:Bibcode 2591:Bibcode 2515:Bibcode 2320:Bibcode 2268:5 April 2249:Bibcode 2241:Physics 2168:Bibcode 2091:Science 2079:Physics 2065:Portals 1953:Floquet 1907:magnons 1866:diamond 1696:Harvard 1608:History 1564:entropy 1394:) with 1221:Concept 1204:entropy 1033:Science 856:History 807:Present 684:Leggett 659:Störmer 644:Bednorz 604:Giaever 574:Bardeen 564:Hubbard 539:Peierls 529:Onsager 479:Polymer 464:Colloid 427:Polaron 418:Plasmon 413:Exciton 45:Please 10013:Atomic 9968:Modern 9818:Major 9345:Plasma 9326:Liquid 9039:Models 8947:Theory 8841:IBM QX 8837:Qiskit 8776:NMR QC 8754:-based 8658:Steane 8629:Codes 8427:Shor's 8333:SARG04 8141:Bell's 7887:Phonon 7882:Magnon 7640:Theory 7498:Plasma 7488:Liquid 7238:  7230:  7216:Nature 7090:  7082:  7074:  7048:Nature 7020:  7012:  7004:  6978:Nature 6914:  6904:  6826:  6818:  6770:  6762:  6754:  6707:  6699:  6655:  6647:  6639:  6584:  6576:  6529:  6521:  6474:  6466:  6419:  6382:  6374:  6327:  6317:  6266:  6258:  6211:  6168:  6160:  6113:  6105:  6072:  6064:  5988:  5980:  5972:  5927:883197 5925:  5917:  5909:  5862:  5815:  5807:  5799:  5745:  5737:  5719:  5683:  5675:  5667:  5620:  5612:  5604:  5557:  5549:  5541:  5490:  5482:  5474:  5392:  5382:  5374:  5290:  5280:  5272:  5175:  5167:  5159:  5077:  5069:  5061:  4954:  4946:  4889:  4881:  4828:  4820:  4645:  4637:  4629:  4579:  4571:  4563:  4482:  4474:  4466:  4379:  4371:  4363:  4306:  4298:  4241:  4233:  4225:  4175:  4123:  4115:  4053:  4043:  4035:  3978:  3970:  3905:  3897:  3840:  3832:  3778:  3770:  3717:  3709:  3656:  3648:  3612:Nature 3591:  3581:  3573:  3537:Nature 3512:  3504:  3496:  3420:  3410:  3374:  3366:  3217:  3209:  3158:312538 3156:  3148:  3140:  2986:  2978:  2970:  2917:  2909:  2901:  2848:  2838:  2830:  2794:Nature 2673:  2665:  2609:  2533:  2483:  2455:  2427:  2399:  2371:  2346:  2338:  2194:  2186:  2045:in an 1937:Google 1924:using 1755:> 0 1753:α 1713:Nature 1685:KrakĂłw 1553:longer 1536:, and 1291:phonon 1233:, and 1095:Motion 1012:Metric 812:Future 732:  699:Perdew 689:Parisi 649:MĂĽller 639:Rohrer 634:Binnig 624:Wilson 619:Fisher 579:Cooper 544:Landau 432:Magnon 408:Phonon 249:Plasma 149:Plasma 139:Liquid 104:Phases 9335:Vapor 9321:Solid 9314:State 9248:chaos 9200:RĂ©nyi 9057:Potts 9052:Ising 8663:Toric 8106:Qubit 7862:Anyon 7483:Solid 7236:S2CID 7088:S2CID 7018:S2CID 6925:Press 6912:S2CID 6879:Books 6863:(PDF) 6840:(PDF) 6824:S2CID 6790:arXiv 6768:S2CID 6726:arXiv 6669:(PDF) 6653:S2CID 6603:arXiv 6582:S2CID 6548:arXiv 6527:S2CID 6493:arXiv 6472:S2CID 6438:arXiv 6380:S2CID 6346:arXiv 6289:arXiv 6264:S2CID 6230:arXiv 6166:S2CID 6132:arXiv 6111:S2CID 6070:S2CID 6036:arXiv 6003:arXiv 5986:S2CID 5944:arXiv 5923:S2CID 5881:arXiv 5860:S2CID 5834:arXiv 5813:S2CID 5771:arXiv 5754:(PDF) 5743:S2CID 5697:(PDF) 5681:S2CID 5639:arXiv 5618:S2CID 5576:arXiv 5555:S2CID 5513:arXiv 5488:S2CID 5446:arXiv 5346:arXiv 5173:S2CID 5131:arXiv 5075:S2CID 5033:arXiv 4952:S2CID 4918:arXiv 4887:S2CID 4853:arXiv 4826:S2CID 4792:arXiv 4643:S2CID 4577:S2CID 4535:arXiv 4499:arXiv 4480:S2CID 4438:arXiv 4377:S2CID 4335:arXiv 4304:S2CID 4270:arXiv 4239:S2CID 4173:S2CID 4121:S2CID 4087:arXiv 4007:arXiv 3976:S2CID 3934:arXiv 3903:S2CID 3869:arXiv 3838:S2CID 3804:arXiv 3776:S2CID 3742:arXiv 3715:S2CID 3681:arXiv 3654:S2CID 3620:arXiv 3545:arXiv 3510:S2CID 3468:arXiv 3418:S2CID 3372:S2CID 3338:arXiv 3267:arXiv 3234:arXiv 3215:S2CID 3181:arXiv 3154:S2CID 3112:arXiv 3006:2012b 3002:2012a 2984:S2CID 2942:arXiv 2915:S2CID 2873:arXiv 2802:arXiv 2671:S2CID 2637:arXiv 2607:S2CID 2581:arXiv 2531:S2CID 2344:S2CID 2310:arXiv 2192:S2CID 2158:arXiv 1840:= 1, 1825:= 0, 1158:is a 1100:Space 908:Event 599:Esaki 524:Bloch 519:Debye 514:Bragg 504:Onnes 437:Roton 134:Solid 9939:Wave 9834:Pure 9306:list 9130:and 8855:Cirq 8846:Quil 8752:Spin 8648:Shor 8328:BB84 8261:LOCC 7872:Hole 7228:ISSN 7080:PMID 7072:ISSN 7010:PMID 7002:ISSN 6902:ISBN 6816:ISSN 6760:PMID 6752:ISSN 6705:PMID 6697:ISSN 6645:PMID 6637:ISSN 6574:ISSN 6519:ISSN 6464:ISSN 6417:ISSN 6372:PMID 6325:PMID 6256:ISSN 6209:ISSN 6158:ISSN 6103:ISSN 6062:ISSN 5978:PMID 5970:ISSN 5915:PMID 5907:ISSN 5805:PMID 5797:ISSN 5735:ISSN 5673:PMID 5665:ISSN 5610:PMID 5602:ISSN 5547:PMID 5539:ISSN 5480:PMID 5472:ISSN 5390:PMID 5372:ISSN 5288:PMID 5270:ISSN 5165:PMID 5157:ISSN 5067:PMID 5059:ISSN 4944:PMID 4879:PMID 4818:PMID 4635:PMID 4627:ISSN 4569:PMID 4561:ISSN 4472:PMID 4464:ISSN 4415:2020 4369:PMID 4361:ISSN 4296:PMID 4231:PMID 4223:ISSN 4113:PMID 4051:PMID 4033:ISSN 3968:PMID 3895:PMID 3830:PMID 3768:PMID 3707:PMID 3646:PMID 3589:PMID 3571:ISSN 3502:PMID 3494:ISSN 3438:and 3434:See 3408:ISBN 3364:ISSN 3314:and 3310:help 3303:See 3207:ISSN 3146:PMID 3138:ISSN 3080:See 3044:and 3040:See 2976:PMID 2968:ISSN 2907:PMID 2899:ISSN 2846:PMID 2828:ISSN 2747:2021 2663:ISSN 2542:2021 2481:ISBN 2453:ISBN 2425:ISBN 2397:ISBN 2369:ISBN 2336:PMID 2270:2021 2184:ISSN 2014:for 1987:and 1961:down 1943:, a 1847:= 0âź© 1834:and 1832:= 0âź© 1633:, a 1431:> 1315:less 1279:and 1154:, a 802:Past 777:Time 669:Tsui 664:Yang 609:Kohn 534:Mott 9934:Ray 9331:Gas 8669:gnu 8633:CSS 8510:XEB 8472:QMA 8467:QIP 8462:EQP 8457:BQP 8437:VQE 8392:HHL 8196:PBR 7493:Gas 7429:at 7411:at 7397:at 7220:doi 7064:doi 7052:543 6994:doi 6982:493 6946:doi 6894:doi 6808:doi 6744:doi 6722:111 6689:doi 6677:110 6629:hdl 6621:doi 6599:342 6566:doi 6511:doi 6456:doi 6409:doi 6397:138 6364:doi 6315:PMC 6307:doi 6248:doi 6199:doi 6150:doi 6128:103 6124:EPL 6095:doi 6054:doi 5962:doi 5940:109 5899:doi 5877:116 5852:doi 5789:doi 5767:111 5727:doi 5705:304 5657:doi 5635:117 5594:doi 5572:111 5531:doi 5509:110 5464:doi 5442:116 5380:PMC 5364:doi 5315:doi 5278:PMC 5262:doi 5149:doi 5127:374 5051:doi 5029:372 4936:doi 4914:126 4871:doi 4810:doi 4788:120 4619:doi 4607:377 4553:doi 4531:377 4456:doi 4434:123 4404:doi 4353:doi 4331:366 4288:doi 4266:115 4215:doi 4163:doi 4105:doi 4083:127 4041:PMC 4025:doi 3960:hdl 3952:doi 3930:121 3887:doi 3865:123 3822:doi 3800:122 3760:doi 3738:120 3699:doi 3677:121 3638:doi 3616:543 3579:PMC 3563:doi 3541:543 3486:doi 3464:118 3400:doi 3356:doi 3285:doi 3263:101 3199:doi 3177:102 3130:doi 3108:114 2960:doi 2938:109 2891:doi 2869:109 2836:PMC 2820:doi 2798:601 2655:doi 2599:doi 2523:doi 2328:doi 2257:doi 2176:doi 1989:TNO 1818:1/2 1736:at 1706:at 1698:'s 1683:in 1679:at 1639:MIT 1622:at 1527:NMR 1150:In 224:QCP 144:Gas 114:QCP 49:to 10146:: 9333:/ 9003:: 8860:Q# 7374:. 7357:. 7340:. 7323:. 7306:. 7289:. 7272:. 7255:. 7234:. 7226:. 7218:. 7214:. 7197:. 7184:. 7167:. 7150:. 7137:. 7120:. 7103:. 7086:. 7078:. 7070:. 7062:. 7050:. 7033:. 7016:. 7008:. 7000:. 6992:. 6980:. 6963:. 6942:14 6940:. 6936:. 6910:. 6900:. 6848:24 6846:. 6842:. 6822:. 6814:. 6806:. 6798:. 6786:92 6784:. 6766:. 6758:. 6750:. 6742:. 6734:. 6720:. 6703:. 6695:. 6687:. 6675:. 6671:. 6651:. 6643:. 6635:. 6627:. 6619:. 6611:. 6597:. 6580:. 6572:. 6564:. 6556:. 6544:94 6542:. 6525:. 6517:. 6509:. 6501:. 6489:98 6487:. 6470:. 6462:. 6454:. 6446:. 6434:12 6432:. 6415:. 6407:. 6395:. 6378:. 6370:. 6362:. 6354:. 6342:81 6340:. 6323:. 6313:. 6305:. 6297:. 6283:. 6279:. 6262:. 6254:. 6246:. 6238:. 6226:91 6224:. 6207:. 6197:. 6187:91 6185:. 6181:. 6164:. 6156:. 6148:. 6140:. 6126:. 6109:. 6101:. 6091:35 6089:. 6085:. 6068:. 6060:. 6052:. 6044:. 6030:. 6011:. 6001:. 5984:. 5976:. 5968:. 5960:. 5952:. 5938:. 5921:. 5913:. 5905:. 5897:. 5889:. 5875:. 5858:. 5850:. 5842:. 5830:22 5828:. 5811:. 5803:. 5795:. 5787:. 5779:. 5765:. 5741:. 5733:. 5725:. 5715:. 5703:. 5699:. 5679:. 5671:. 5663:. 5655:. 5647:. 5633:. 5616:. 5608:. 5600:. 5592:. 5584:. 5570:. 5553:. 5545:. 5537:. 5529:. 5521:. 5507:. 5503:. 5486:. 5478:. 5470:. 5462:. 5454:. 5440:. 5411:. 5388:. 5378:. 5370:. 5362:. 5354:. 5340:. 5336:. 5313:. 5309:. 5286:. 5276:. 5268:. 5260:. 5250:13 5248:. 5244:. 5219:. 5194:. 5171:. 5163:. 5155:. 5147:. 5139:. 5125:. 5121:. 5096:. 5073:. 5065:. 5057:. 5049:. 5041:. 5027:. 5023:. 4998:. 4973:. 4950:. 4942:. 4934:. 4926:. 4912:. 4908:. 4885:. 4877:. 4869:. 4861:. 4849:20 4847:. 4824:. 4816:. 4808:. 4800:. 4786:. 4694:. 4682:^ 4666:. 4655:^ 4641:. 4633:. 4625:. 4617:. 4605:. 4601:. 4589:^ 4575:. 4567:. 4559:. 4551:. 4543:. 4529:. 4525:. 4513:^ 4478:. 4470:. 4462:. 4454:. 4446:. 4432:. 4402:. 4398:. 4375:. 4367:. 4359:. 4351:. 4343:. 4329:. 4325:. 4302:. 4294:. 4286:. 4278:. 4264:. 4260:. 4237:. 4229:. 4221:. 4213:. 4203:20 4201:. 4197:. 4185:^ 4171:. 4161:. 4151:14 4149:. 4145:. 4133:^ 4119:. 4111:. 4103:. 4095:. 4081:. 4077:. 4063:^ 4049:. 4039:. 4031:. 4023:. 4015:. 4003:10 4001:. 3997:. 3974:. 3966:. 3958:. 3950:. 3942:. 3928:. 3924:. 3901:. 3893:. 3885:. 3877:. 3863:. 3859:. 3836:. 3828:. 3820:. 3812:. 3798:. 3774:. 3766:. 3758:. 3750:. 3736:. 3713:. 3705:. 3697:. 3689:. 3675:. 3652:. 3644:. 3636:. 3628:. 3614:. 3601:^ 3587:. 3577:. 3569:. 3561:. 3553:. 3539:. 3535:. 3522:^ 3508:. 3500:. 3492:. 3484:. 3476:. 3462:. 3458:. 3446:^ 3416:. 3406:. 3378:. 3370:. 3362:. 3354:. 3346:. 3334:91 3332:. 3283:. 3275:. 3261:. 3257:. 3213:. 3205:. 3197:. 3189:. 3175:. 3152:. 3144:. 3136:. 3128:. 3120:. 3106:. 3084:, 3062:. 3022:. 3008:). 3004:, 2982:. 2974:. 2966:. 2958:. 2950:. 2936:. 2913:. 2905:. 2897:. 2889:. 2881:. 2867:. 2844:. 2834:. 2826:. 2818:. 2810:. 2796:. 2792:. 2780:^ 2764:. 2717:. 2692:. 2669:. 2661:. 2653:. 2645:. 2633:71 2631:. 2619:^ 2605:. 2597:. 2589:. 2577:11 2575:. 2571:. 2553:^ 2544:. 2529:. 2521:. 2511:31 2509:. 2505:. 2342:. 2334:. 2326:. 2318:. 2306:81 2304:. 2278:^ 2255:. 2245:10 2243:. 2239:. 2227:^ 2190:. 2182:. 2174:. 2166:. 2154:91 2152:. 2129:. 2117:^ 1968:. 1957:up 1791:Yb 1547:: 1532:, 1525:, 1517:, 1513:, 1305:. 1267:. 1256:. 1229:, 1206:. 1183:. 9811:e 9804:t 9797:v 9308:) 9304:( 9294:e 9287:t 9280:v 9022:G 9017:F 9012:H 9007:U 8932:e 8925:t 8918:v 8848:– 8839:– 8835:– 8536:2 8533:T 8526:1 8523:T 8047:e 8040:t 8033:v 7459:e 7452:t 7445:v 7222:: 7094:. 7066:: 7058:: 7024:. 6996:: 6988:: 6954:. 6948:: 6918:. 6896:: 6872:. 6854:: 6830:. 6810:: 6802:: 6792:: 6774:. 6746:: 6738:: 6728:: 6711:. 6691:: 6683:: 6659:. 6631:: 6623:: 6615:: 6605:: 6588:. 6568:: 6560:: 6550:: 6533:. 6513:: 6505:: 6495:: 6478:. 6458:: 6450:: 6440:: 6423:. 6411:: 6403:: 6386:. 6366:: 6358:: 6348:: 6331:. 6309:: 6301:: 6291:: 6285:5 6270:. 6250:: 6242:: 6232:: 6215:. 6201:: 6193:: 6172:. 6152:: 6144:: 6134:: 6117:. 6097:: 6076:. 6056:: 6048:: 6038:: 6032:7 6019:. 6015:: 6005:: 5992:. 5964:: 5956:: 5946:: 5929:. 5901:: 5893:: 5883:: 5866:. 5854:: 5846:: 5836:: 5819:. 5791:: 5783:: 5773:: 5729:: 5711:: 5687:. 5659:: 5651:: 5641:: 5624:. 5596:: 5588:: 5578:: 5561:. 5533:: 5525:: 5515:: 5494:. 5466:: 5458:: 5448:: 5421:. 5396:. 5366:: 5358:: 5348:: 5342:8 5321:. 5317:: 5294:. 5264:: 5256:: 5229:. 5204:. 5179:. 5151:: 5143:: 5133:: 5106:. 5081:. 5053:: 5045:: 5035:: 5008:. 4983:. 4958:. 4938:: 4930:: 4920:: 4893:. 4873:: 4865:: 4855:: 4832:. 4812:: 4804:: 4794:: 4771:. 4704:. 4676:. 4649:. 4621:: 4613:: 4583:. 4555:: 4547:: 4537:: 4507:. 4501:: 4486:. 4458:: 4450:: 4440:: 4417:. 4406:: 4383:. 4355:: 4347:: 4337:: 4310:. 4290:: 4282:: 4272:: 4245:. 4217:: 4209:: 4179:. 4165:: 4157:: 4127:. 4107:: 4099:: 4089:: 4057:. 4027:: 4019:: 4009:: 3982:. 3962:: 3954:: 3946:: 3936:: 3909:. 3889:: 3881:: 3871:: 3844:. 3824:: 3816:: 3806:: 3782:. 3762:: 3754:: 3744:: 3721:. 3701:: 3693:: 3683:: 3660:. 3640:: 3632:: 3622:: 3595:. 3565:: 3557:: 3547:: 3516:. 3488:: 3480:: 3470:: 3424:. 3402:: 3358:: 3350:: 3340:: 3318:. 3312:) 3293:. 3287:: 3279:: 3269:: 3242:. 3236:: 3221:. 3201:: 3193:: 3183:: 3160:. 3132:: 3124:: 3114:: 3092:. 3048:. 2990:. 2962:: 2954:: 2944:: 2921:. 2893:: 2885:: 2875:: 2852:. 2822:: 2814:: 2804:: 2774:. 2749:. 2727:. 2702:. 2677:. 2657:: 2649:: 2639:: 2613:. 2601:: 2593:: 2583:: 2525:: 2517:: 2489:. 2461:. 2433:. 2405:. 2377:. 2350:. 2330:: 2322:: 2312:: 2289:. 2272:. 2259:: 2251:: 2222:. 2198:. 2178:: 2170:: 2160:: 2067:: 1845:F 1842:m 1838:F 1836:| 1829:F 1827:m 1823:F 1821:| 1815:S 1747:r 1494:n 1474:T 1454:t 1434:1 1428:n 1408:1 1405:= 1402:n 1382:T 1379:n 1376:+ 1373:t 1367:t 1139:e 1132:t 1125:v 762:e 755:t 748:v 72:) 66:( 61:) 57:( 43:. 23:.

Index

timing crystal
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑