Knowledge

Transcription activator-like effector nuclease

Source đź“ť

544:(insertion or deletion), or chromosomal rearrangement; any such errors may render the gene products coded at that location non-functional. Because this activity can vary depending on the species, cell type, target gene, and nuclease used, it should be monitored when designing new systems. A simple heteroduplex cleavage assay can be run which detects any difference between two alleles amplified by PCR. Cleavage products can be visualized on simple agarose gels or slab gel systems. 64: 20: 462:
cleavage activity. The FokI domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the FokI cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity.
495: 520:
and enter the nucleus to access the genome. Alternatively, TALEN constructs can be delivered to the cells as mRNAs, which removes the possibility of genomic integration of the TALEN-expressing protein. Using an mRNA vector can also dramatically increase the level of homology directed repair (HDR) and
642:
The off-target activity of an active nuclease may lead to unwanted double-strand breaks and may consequently yield chromosomal rearrangements and/or cell death. Studies have been carried out to compare the relative nuclease-associated toxicity of available technologies. Based on these studies and
461:
that are active in a yeast assay. These reagents are also active in plant cells and in animal cells. Initial TALEN studies used the wild-type FokI cleavage domain, but some subsequent TALEN studies also used FokI cleavage domain variants with mutations designed to improve cleavage specificity and
444:
recognition. This straightforward relationship between amino acid sequence and DNA recognition has allowed for the engineering of specific DNA-binding domains by selecting a combination of repeat segments containing the appropriate RVDs. Notably, slight changes in the RVD and the incorporation of
633:
relies on ribonucleotide complex formation instead of protein/DNA recognition. gRNAs have occasionally limitations regarding feasibility due to lack of PAM sites in the target sequence and even though they can be cheaply produced, the current development lead to a remarkable decrease of cost for
486:
oligonucleotide assembly followed by whole gene amplification. A number of modular assembly schemes for generating engineered TALE constructs have also been reported. Both methods offer a systematic approach to engineering DNA binding domains that is conceptually similar to the modular assembly
498:
Workflow of genome editing of Your Favorite Gene (YFG) using TALEN. The target sequence is identified, a corresponding TALEN sequence is engineered and inserted into a plasmid. The plasmid is inserted into the target cell where it is translated to produce the functional TALEN, which enters the
622:. The DNA binding region of a TAL effector can be combined with the cleavage domain of a meganuclease to create a hybrid architecture combining the ease of engineering and highly specific DNA binding activity of a TAL effector with the low site frequency and specificity of a meganuclease. 588:. Moreover, the method can be used to generate knockin organisms. Wu et al.obtained a Sp110 knockin cattle using Talen nickases to induce increased resistance of tuberculosis. This approach has also been used to generate knockin rats by TALEN mRNA microinjection in one-cell embryos. 380:
which cuts DNA strands). Transcription activator-like effectors (TALEs) can be engineered to bind to practically any desired DNA sequence, so when combined with a nuclease, DNA can be cut at specific locations. The restriction enzymes can be introduced into cells, for use in
1146:
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (February 2011). "A TALE nuclease architecture for efficient genome editing".
629:, TALEN recognizes single nucleotides. It's far more straightforward to engineer interactions between TALEN DNA binding domains and their target nucleotides than it is to create interactions with ZFNs and their target nucleotide triplets. On the other hand, 2561:
Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, Potrel P, Bas C, Lemaire L, Galetto R, Lebuhotel C, Eyquem J, Cheung GW, Duclert A, Gouble A, Arnould S, Peggs K, Pule M, Scharenberg AM, Smith J (September 2015).
607:. Recently, it was shown that TALEN can be used as tools to harness the immune system to fight cancers; TALEN-mediated targeting can generate T cells that are resistant to chemotherapeutic drugs and show anti-tumor activity. 610:
In theory, the genome-wide specificity of engineered TALEN fusions allows for correction of errors at individual genetic loci via homology-directed repair from a correct exogenous template. In reality, however, the
1394:
Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (January 2011). "Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures".
561:
TALEN has been used to efficiently modify plant genomes, creating economically important food crops with favorable nutritional qualities. They have also been harnessed to develop tools for the production of
499:
nucleus and binds and cleaves the target sequence. Depending on the application, this can be used to introduce an error (to knock out a target gene) or to introduce a new DNA sequence into the target gene.
1195:
Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (July 2011).
2463:
Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, DeFeo AP, Gabriel R, Schmidt M, von Kalle C, Carlson DF, Maeder ML, Joung JK, Wagner JE, Voytas DF, Blazar BR, Tolar J (June 2013).
540:(NHEJ) directly ligates DNA from either side of a double-strand break where there is very little or no sequence overlap for annealing. This repair mechanism induces errors in the genome via 440:
sequence with divergent 12th and 13th amino acids. These two positions, referred to as the Repeat Variable Diresidue (RVD), are highly variable and show a strong correlation with specific
767:
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (December 2009). "Breaking the code of DNA binding specificity of TAL-type III effectors".
643:
the maximal theoretical distance between DNA binding and nuclease activity, TALEN constructs are believed to have the greatest precision of the currently available technologies.
2369:
Ramalingam S, Annaluru N, Kandavelou K, Chandrasegaran S (2014). "TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells".
615:
application of TALEN is currently limited by the lack of an efficient delivery mechanism, unknown immunogenic factors, and uncertainty in the specificity of TALEN binding.
1988:
Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (May 2014).
470:
The simple relationship between amino acid sequence and DNA recognition of the TALE binding domain allows for the efficient engineering of proteins. In this case,
1247:
Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Meyer BJ (July 2011).
345: 1947:
Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (September 2014).
478:
of the repetitive sequence found in the TALE binding domain. One solution to this is to use a publicly available software program (DNAWorks) to calculate
1026:"De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks" 2040:
Wienert B, Funnell AP, Norton LJ, Pearson RC, Wilkinson-White LE, Lester K, Vadolas J, Porteus MH, Matthews JM, Quinlan KG, Crossley M (2015).
2603:
Boissel S, Jarjour J, Astrakhan A, Adey A, Gouble A, Duchateau P, Shendure J, Stoddard BL, Certo MT, Baker D, Scharenberg AM (February 2014).
1307:
Tesson L, Usal C, MĂ©noret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ (August 2011).
2652: 2404:
Dupuy A, Valton J, Leduc S, Armier J, Galetto R, Gouble A, Lebuhotel C, Stary A, Pâques F, Duchateau P, Sarasin A, Daboussi F (2013).
553:
can also introduce foreign DNA at the DSB as the transfected double-stranded sequences are used as templates for the repair enzymes.
338: 652: 396: 294: 869:
Juillerat A, Pessereau C, Dubois G, Guyot V, Maréchal A, Valton J, Daboussi F, Poirot L, Duclert A, Duchateau P (January 2015).
1351:
Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (August 2011). "Heritable gene targeting in zebrafish using customized TALENs".
591:
TALEN has also been utilized experimentally to correct the genetic errors that underlie disease. For example, it has been used
1658: 547:
Alternatively, DNA can be introduced into a genome through NHEJ in the presence of exogenous double-stranded DNA fragments.
331: 534:
TALEN can be used to edit genomes by inducing double-strand breaks (DSB), which cells respond to with repair mechanisms.
1088:
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (July 2011).
2747: 2732: 166: 2671: 625:
In comparison to other genome editing techniques, TALEN falls in the middle in terms of difficulty and cost. Unlike
1733:"Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes" 2042:"Editing the genome to introduce a beneficial naturally occurring mutation associated with increased fetal globin" 2712: 2091:"Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes" 176: 2190: 194: 159: 618:
Another emerging application of TALEN is its ability to combine with other genome engineering tools, such as
571: 85: 76: 2722: 2564:"Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies" 136: 45: 2512:
Valton J, Guyot V, Marechal A, Filhol JM, Juillerat A, Duclert A, Duchateau P, Poirot L (September 2015).
732:
Boch J, Bonas U (September 2010). "Xanthomonas AvrBs3 family-type III effectors: discovery and function".
1090:"Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting" 475: 429: 141: 112: 102: 97: 2737: 1490:"Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases" 926:
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (October 2010).
537: 261: 126: 121: 90: 1542:"A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity" 1440:"Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases" 1439: 818:
Moscou MJ, Bogdanove AJ (December 2009). "A simple cipher governs DNA recognition by TAL effectors".
483: 471: 266: 216: 131: 107: 550: 1594:"Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription" 2742: 2727: 1949:"Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family" 299: 226: 171: 977:"TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain" 576: 1780:
Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J (2011). Shiu SH (ed.).
1641:
Hoover D (2012). "Using DNAWorks in Designing Oligonucleotides for PCR-Based Gene Synthesis".
2199:"TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis" 1898:
Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (January 2013).
634:
TALENs, so that they are in a similar price and time range like CRISPR based genome editing.
604: 600: 400: 1731:
Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (August 2011).
2417: 2269: 2210: 2102: 2053: 2001: 1900:"Transcription activator-like effector nucleases enable efficient plant genome engineering" 1852: 1793: 1260: 1037: 882: 827: 776: 657: 626: 314: 8: 596: 567: 54: 2421: 2273: 2214: 2106: 2057: 2005: 1856: 1797: 1264: 1041: 886: 831: 780: 745: 2629: 2604: 2538: 2513: 2489: 2464: 2440: 2405: 2346: 2321: 2292: 2257: 2233: 2198: 2174: 2149: 2125: 2090: 1924: 1899: 1875: 1840: 1816: 1781: 1757: 1732: 1708: 1683: 1618: 1593: 1566: 1541: 1514: 1489: 1470: 1420: 1376: 1281: 1248: 1221: 1196: 1172: 1114: 1089: 1060: 1025: 1001: 976: 952: 927: 903: 870: 851: 800: 714: 373: 366: 2514:"A Multidrug-resistant Engineered CAR T Cell for Allogeneic Combination Immunotherapy" 2382: 1540:
Mussolino C, Morbitzer R, LĂĽtge F, Dannemann N, Lahaye T, Cathomen T (November 2011).
309: 23:
Spacefill drawing of dimeric TALE-FokI fusion (blue: TALE; green: FokI) bound to DNA (
2634: 2585: 2543: 2494: 2445: 2386: 2351: 2297: 2238: 2179: 2130: 2071: 2019: 1970: 1929: 1880: 1821: 1762: 1713: 1664: 1654: 1623: 1571: 1519: 1462: 1412: 1368: 1330: 1286: 1226: 1164: 1119: 1065: 1006: 957: 908: 843: 804: 792: 749: 706: 319: 199: 25: 2605:"megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering" 2406:"Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™" 2148:
Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (August 2011).
1990:"Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology" 1839:
Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011). Bendahmane M (ed.).
1474: 1424: 1380: 1176: 2624: 2616: 2575: 2533: 2525: 2484: 2476: 2435: 2425: 2378: 2341: 2333: 2287: 2277: 2228: 2218: 2169: 2161: 2120: 2110: 2061: 2009: 1960: 1919: 1911: 1870: 1860: 1811: 1801: 1752: 1744: 1703: 1695: 1646: 1613: 1605: 1561: 1553: 1509: 1501: 1454: 1404: 1360: 1320: 1276: 1268: 1216: 1208: 1156: 1109: 1101: 1055: 1045: 996: 988: 947: 939: 898: 890: 855: 835: 784: 741: 698: 479: 369:
that can be engineered to cut specific sequences of DNA. They are made by fusing a
2580: 2563: 718: 2430: 2282: 2115: 1865: 1806: 1650: 975:
Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (January 2011).
517: 433: 204: 2696: 943: 2203:
Proceedings of the National Academy of Sciences of the United States of America
1438:
Szczepek M, Brondani V, BĂĽchel J, Serrano L, Segal DJ, Cathomen T (July 2007).
1030:
Proceedings of the National Academy of Sciences of the United States of America
408: 382: 304: 233: 2258:"Generation of TALEN-mediated GRdim knock-in rats by homologous recombination" 1505: 2706: 2150:"Targeted gene disruption in somatic zebrafish cells using engineered TALENs" 1782:"Transcriptional activators of human genes with programmable DNA-specificity" 1024:
Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (February 2011).
278: 211: 2223: 2089:
Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013).
1272: 1050: 839: 788: 2717: 2638: 2589: 2547: 2498: 2449: 2390: 2355: 2301: 2242: 2183: 2134: 2075: 2023: 1974: 1933: 1884: 1825: 1766: 1717: 1668: 1627: 1592:
Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (February 2011).
1575: 1523: 1466: 1416: 1372: 1334: 1290: 1230: 1168: 1123: 1069: 1010: 961: 912: 847: 796: 753: 710: 662: 619: 581: 513: 419: 370: 273: 221: 63: 2620: 2368: 1915: 1748: 1699: 1557: 1105: 992: 488: 424: 19: 2529: 2337: 2480: 2066: 2041: 2014: 1989: 1408: 441: 437: 2560: 1965: 1948: 894: 508:
Once the TALEN constructs have been assembled, they are inserted into
33: 29: 2165: 1684:"Assembly of custom TALE-type DNA binding domains by modular cloning" 1609: 1364: 1325: 1308: 1212: 1197:"Genetic engineering of human pluripotent cells using TALE nucleases" 1160: 702: 585: 2256:
Ponce de LeĂłn V, MĂ©rillat AM, Tesson L, AnegĂłn I, Hummler E (2014).
1458: 574:(IPSCs) clones and human erythroid cell lines, to generate knockout 436:. The DNA binding domain contains a repeated highly conserved 33–34 871:"Optimized tuning of TALEN specificity using non-conventional RVDs" 566:. In addition, it has been used to engineer stably modified human 458: 445:"nonconventional" RVD sequences can improve targeting specificity. 377: 2197:
Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y (March 2015).
2255: 563: 509: 391: 1645:. Methods in Molecular Biology. Vol. 852. pp. 215–23. 1539: 928:"Targeting DNA double-strand breaks with TAL effector nucleases" 2699:
An entry in the Protein Database's monthly structural highlight
1681: 667: 630: 404: 386: 243: 1249:"Targeted genome editing across species using ZFNs and TALENs" 1437: 868: 541: 494: 238: 2672:"Boston Consulting Group - Report on Gene Editing Precision" 1309:"Knockout rats generated by embryo microinjection of TALENs" 1023: 766: 595:
to correct the genetic defects that cause disorders such as
2602: 2039: 1987: 1841:"Assembly of designer TAL effectors by Golden Gate cloning" 1779: 1682:
Morbitzer R, Elsaesser J, Hausner J, Lahaye T (July 2011).
925: 454: 2462: 2088: 1838: 2690: 2511: 1946: 453:
The non-specific DNA cleavage domain from the end of the
2319: 1087: 2465:"TALEN-based gene correction for epidermolysis bullosa" 2403: 2320:
Carlson DF, Fahrenkrug SC, Hackett PB (January 2012).
2147: 1393: 1306: 1194: 1591: 689:
Boch J (February 2011). "TALEs of genome targeting".
725: 1246: 1145: 1897: 974: 637: 521:the success of introgression during gene editing. 2141: 1730: 1190: 1188: 1186: 2704: 1535: 1533: 1350: 2653:"Pros and Cons Of ZFNS, TALENS, AND CRISPR/CAS" 2196: 2035: 2033: 817: 465: 359:Transcription activator-like effector nucleases 1183: 1675: 1530: 1302: 1300: 1141: 1139: 1137: 1135: 1133: 516:with the plasmids, and the gene products are 457:endonuclease can be used to construct hybrid 339: 2030: 1773: 1587: 1585: 1487: 1431: 1346: 1344: 1083: 1081: 1079: 919: 407:, TALEN is a prominent tool in the field of 2669: 1242: 1240: 2362: 2315: 2313: 2311: 1634: 1297: 1130: 684: 682: 414: 346: 332: 2628: 2579: 2537: 2488: 2439: 2429: 2345: 2291: 2281: 2232: 2222: 2173: 2124: 2114: 2065: 2013: 1964: 1923: 1874: 1864: 1832: 1815: 1805: 1756: 1707: 1617: 1582: 1565: 1513: 1387: 1341: 1324: 1280: 1220: 1113: 1076: 1059: 1049: 1000: 951: 902: 731: 1237: 653:Genome editing with engineered nucleases 493: 397:genome editing with engineered nucleases 18: 16:Enzymes that cleave DNA in specific ways 2322:"Targeting DNA With Fingers and TALENs" 2308: 1481: 679: 295:Genetically modified food controversies 2705: 2456: 1724: 1640: 448: 2693:A comprehensive tool for TALEN design 2397: 1488:Guo J, Gaj T, Barbas CF (July 2010). 688: 482:suitable for assembly in a two step 746:10.1146/annurev-phyto-080508-081936 474:is problematic because of improper 13: 422:are proteins that are secreted by 14: 2759: 2684: 2670:Boglioli, Elsy; Richard, Magali. 2383:10.2174/1566523214666140918101725 524: 2326:Molecular Therapy: Nucleic Acids 62: 2663: 2645: 2596: 2554: 2505: 2249: 2082: 1981: 1940: 1891: 734:Annual Review of Phytopathology 638:TAL effector nuclease precision 556: 503: 177:Cartagena Protocol on Biosafety 1017: 968: 862: 811: 760: 584:, knockout mice, and knockout 77:Genetically modified organisms 1: 2581:10.1158/0008-5472.CAN-14-3321 673: 572:induced pluripotent stem cell 529: 2431:10.1371/journal.pone.0078678 2283:10.1371/journal.pone.0088146 2116:10.1371/journal.pone.0060216 1866:10.1371/journal.pone.0019722 1807:10.1371/journal.pone.0019509 1651:10.1007/978-1-61779-564-0_16 1494:Journal of Molecular Biology 512:; the target cells are then 466:Engineering TALEN constructs 376:to a DNA cleavage domain (a 7: 1953:Plant Biotechnology Journal 944:10.1534/genetics.110.120717 646: 37:​), by David Goodsell 10: 2764: 538:Non-homologous end joining 262:Genetically modified crops 2697:PDB Molecule of the Month 1506:10.1016/j.jmb.2010.04.060 491:DNA recognition domains. 472:artificial gene synthesis 430:type III secretion system 2748:Repetitive DNA sequences 2733:History of biotechnology 551:Homology directed repair 2224:10.1073/pnas.1421587112 1273:10.1126/science.1207773 1051:10.1073/pnas.1019533108 840:10.1126/science.1178817 789:10.1126/science.1178811 415:TALE DNA-binding domain 395:, a technique known as 300:GMO conspiracy theories 172:Substantial equivalence 2713:Biological engineering 2657:The Jackson Laboratory 2609:Nucleic Acids Research 1737:Nucleic Acids Research 1688:Nucleic Acids Research 1546:Nucleic Acids Research 1094:Nucleic Acids Research 981:Nucleic Acids Research 500: 487:method for generating 152:History and regulation 38: 2046:Nature Communications 1994:Nature Communications 1916:10.1104/pp.112.205179 605:epidermolysis bullosa 601:xeroderma pigmentosum 497: 401:zinc finger nucleases 22: 2371:Current Gene Therapy 2154:Nature Biotechnology 1598:Nature Biotechnology 1447:Nature Biotechnology 1353:Nature Biotechnology 1313:Nature Biotechnology 1201:Nature Biotechnology 1149:Nature Biotechnology 691:Nature Biotechnology 658:Zinc finger nuclease 315:StarLink corn recall 2723:Genetic engineering 2621:10.1093/nar/gkt1224 2530:10.1038/mt.2015.104 2422:2013PLoSO...878678D 2338:10.1038/mtna.2011.5 2274:2014PLoSO...988146P 2215:2015PNAS..112E1530W 2107:2013PLoSO...860216D 2058:2015NatCo...6.7085W 2006:2014NatCo...5.3831D 1857:2011PLoSO...619722W 1798:2011PLoSO...619509G 1265:2011Sci...333..307W 1042:2011PNAS..108.2623M 887:2015NatSR...5E8150J 832:2009Sci...326.1501M 781:2009Sci...326.1509B 597:sickle cell disease 568:embryonic stem cell 449:DNA cleavage domain 428:bacteria via their 367:restriction enzymes 55:Genetic engineering 2481:10.1038/mt.2013.56 2067:10.1038/ncomms8085 2015:10.1038/ncomms4831 1749:10.1093/nar/gkr188 1700:10.1093/nar/gkr151 1558:10.1093/nar/gkr597 1409:10.1038/nmeth.1539 1106:10.1093/nar/gkr218 993:10.1093/nar/gkq704 875:Scientific Reports 501: 374:DNA-binding domain 39: 2738:Molecular biology 2518:Molecular Therapy 2469:Molecular Therapy 1966:10.1111/pbi.12201 1660:978-1-61779-563-3 895:10.1038/srep08150 775:(5959): 1509–12. 356: 355: 320:He Jiankui affair 200:Molecular cloning 2755: 2679: 2678: 2676: 2667: 2661: 2660: 2649: 2643: 2642: 2632: 2600: 2594: 2593: 2583: 2558: 2552: 2551: 2541: 2509: 2503: 2502: 2492: 2460: 2454: 2453: 2443: 2433: 2401: 2395: 2394: 2366: 2360: 2359: 2349: 2317: 2306: 2305: 2295: 2285: 2253: 2247: 2246: 2236: 2226: 2194: 2188: 2187: 2177: 2166:10.1038/nbt.1934 2145: 2139: 2138: 2128: 2118: 2086: 2080: 2079: 2069: 2037: 2028: 2027: 2017: 1985: 1979: 1978: 1968: 1944: 1938: 1937: 1927: 1904:Plant Physiology 1895: 1889: 1888: 1878: 1868: 1836: 1830: 1829: 1819: 1809: 1777: 1771: 1770: 1760: 1728: 1722: 1721: 1711: 1679: 1673: 1672: 1638: 1632: 1631: 1621: 1610:10.1038/nbt.1775 1589: 1580: 1579: 1569: 1537: 1528: 1527: 1517: 1485: 1479: 1478: 1444: 1435: 1429: 1428: 1391: 1385: 1384: 1365:10.1038/nbt.1939 1348: 1339: 1338: 1328: 1326:10.1038/nbt.1940 1304: 1295: 1294: 1284: 1244: 1235: 1234: 1224: 1213:10.1038/nbt.1927 1192: 1181: 1180: 1161:10.1038/nbt.1755 1143: 1128: 1127: 1117: 1085: 1074: 1073: 1063: 1053: 1021: 1015: 1014: 1004: 972: 966: 965: 955: 923: 917: 916: 906: 866: 860: 859: 815: 809: 808: 764: 758: 757: 729: 723: 722: 703:10.1038/nbt.1767 686: 480:oligonucleotides 348: 341: 334: 66: 41: 40: 36: 2763: 2762: 2758: 2757: 2756: 2754: 2753: 2752: 2703: 2702: 2687: 2682: 2674: 2668: 2664: 2651: 2650: 2646: 2615:(4): 2591–601. 2601: 2597: 2574:(18): 3853–64. 2568:Cancer Research 2559: 2555: 2510: 2506: 2461: 2457: 2402: 2398: 2367: 2363: 2318: 2309: 2254: 2250: 2209:(13): E1530-9. 2195: 2191: 2146: 2142: 2087: 2083: 2038: 2031: 1986: 1982: 1945: 1941: 1896: 1892: 1837: 1833: 1778: 1774: 1743:(14): 6315–25. 1729: 1725: 1680: 1676: 1661: 1639: 1635: 1590: 1583: 1552:(21): 9283–93. 1538: 1531: 1486: 1482: 1459:10.1038/nbt1317 1442: 1436: 1432: 1392: 1388: 1349: 1342: 1305: 1298: 1245: 1238: 1193: 1184: 1144: 1131: 1086: 1077: 1022: 1018: 973: 969: 924: 920: 867: 863: 816: 812: 765: 761: 730: 726: 687: 680: 676: 649: 640: 559: 532: 527: 506: 468: 451: 417: 352: 310:SĂ©ralini affair 205:Recombinant DNA 24: 17: 12: 11: 5: 2761: 2751: 2750: 2745: 2743:Non-coding RNA 2740: 2735: 2730: 2728:Genome editing 2725: 2720: 2715: 2701: 2700: 2694: 2686: 2685:External links 2683: 2681: 2680: 2662: 2644: 2595: 2553: 2524:(9): 1507–18. 2504: 2455: 2416:(11): e78678. 2396: 2361: 2307: 2248: 2189: 2140: 2081: 2029: 1980: 1939: 1890: 1831: 1772: 1723: 1694:(13): 5790–9. 1674: 1659: 1643:Gene Synthesis 1633: 1581: 1529: 1480: 1430: 1397:Nature Methods 1386: 1359:(8): 699–700. 1340: 1296: 1236: 1182: 1129: 1075: 1016: 967: 918: 861: 826:(5959): 1501. 810: 759: 724: 677: 675: 672: 671: 670: 665: 660: 655: 648: 645: 639: 636: 558: 555: 531: 528: 526: 525:Genome editing 523: 505: 502: 467: 464: 450: 447: 416: 413: 409:genome editing 354: 353: 351: 350: 343: 336: 328: 325: 324: 323: 322: 317: 312: 307: 305:Pusztai affair 302: 297: 289: 288: 284: 283: 282: 281: 276: 271: 270: 269: 256: 255: 251: 250: 249: 248: 247: 246: 241: 234:Genome editing 231: 230: 229: 224: 219: 217:Transformation 209: 208: 207: 197: 189: 188: 184: 183: 182: 181: 180: 179: 174: 163: 162: 154: 153: 149: 148: 147: 146: 145: 144: 139: 134: 129: 118: 117: 116: 115: 110: 105: 94: 93: 88: 80: 79: 73: 72: 68: 67: 59: 58: 50: 49: 15: 9: 6: 4: 3: 2: 2760: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2710: 2708: 2698: 2695: 2692: 2689: 2688: 2673: 2666: 2659:. March 2014. 2658: 2654: 2648: 2640: 2636: 2631: 2626: 2622: 2618: 2614: 2610: 2606: 2599: 2591: 2587: 2582: 2577: 2573: 2569: 2565: 2557: 2549: 2545: 2540: 2535: 2531: 2527: 2523: 2519: 2515: 2508: 2500: 2496: 2491: 2486: 2482: 2478: 2475:(6): 1151–9. 2474: 2470: 2466: 2459: 2451: 2447: 2442: 2437: 2432: 2427: 2423: 2419: 2415: 2411: 2407: 2400: 2392: 2388: 2384: 2380: 2377:(6): 461–72. 2376: 2372: 2365: 2357: 2353: 2348: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2314: 2312: 2303: 2299: 2294: 2289: 2284: 2279: 2275: 2271: 2268:(2): e88146. 2267: 2263: 2259: 2252: 2244: 2240: 2235: 2230: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2185: 2181: 2176: 2171: 2167: 2163: 2159: 2155: 2151: 2144: 2136: 2132: 2127: 2122: 2117: 2112: 2108: 2104: 2101:(3): e60216. 2100: 2096: 2092: 2085: 2077: 2073: 2068: 2063: 2059: 2055: 2051: 2047: 2043: 2036: 2034: 2025: 2021: 2016: 2011: 2007: 2003: 1999: 1995: 1991: 1984: 1976: 1972: 1967: 1962: 1959:(7): 934–40. 1958: 1954: 1950: 1943: 1935: 1931: 1926: 1921: 1917: 1913: 1909: 1905: 1901: 1894: 1886: 1882: 1877: 1872: 1867: 1862: 1858: 1854: 1851:(5): e19722. 1850: 1846: 1842: 1835: 1827: 1823: 1818: 1813: 1808: 1803: 1799: 1795: 1792:(5): e19509. 1791: 1787: 1783: 1776: 1768: 1764: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1727: 1719: 1715: 1710: 1705: 1701: 1697: 1693: 1689: 1685: 1678: 1670: 1666: 1662: 1656: 1652: 1648: 1644: 1637: 1629: 1625: 1620: 1615: 1611: 1607: 1604:(2): 149–53. 1603: 1599: 1595: 1588: 1586: 1577: 1573: 1568: 1563: 1559: 1555: 1551: 1547: 1543: 1536: 1534: 1525: 1521: 1516: 1511: 1507: 1503: 1500:(1): 96–107. 1499: 1495: 1491: 1484: 1476: 1472: 1468: 1464: 1460: 1456: 1453:(7): 786–93. 1452: 1448: 1441: 1434: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1390: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1347: 1345: 1336: 1332: 1327: 1322: 1318: 1314: 1310: 1303: 1301: 1292: 1288: 1283: 1278: 1274: 1270: 1266: 1262: 1259:(6040): 307. 1258: 1254: 1250: 1243: 1241: 1232: 1228: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1189: 1187: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1142: 1140: 1138: 1136: 1134: 1125: 1121: 1116: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1082: 1080: 1071: 1067: 1062: 1057: 1052: 1047: 1043: 1039: 1036:(6): 2623–8. 1035: 1031: 1027: 1020: 1012: 1008: 1003: 998: 994: 990: 987:(1): 359–72. 986: 982: 978: 971: 963: 959: 954: 949: 945: 941: 938:(2): 757–61. 937: 933: 929: 922: 914: 910: 905: 900: 896: 892: 888: 884: 880: 876: 872: 865: 857: 853: 849: 845: 841: 837: 833: 829: 825: 821: 814: 806: 802: 798: 794: 790: 786: 782: 778: 774: 770: 763: 755: 751: 747: 743: 739: 735: 728: 720: 716: 712: 708: 704: 700: 696: 692: 685: 683: 678: 669: 666: 664: 661: 659: 656: 654: 651: 650: 644: 635: 632: 628: 623: 621: 620:meganucleases 616: 614: 608: 606: 602: 598: 594: 589: 587: 583: 582:knockout rats 579: 578: 573: 569: 565: 554: 552: 548: 545: 543: 539: 535: 522: 519: 515: 511: 496: 492: 490: 485: 481: 477: 473: 463: 460: 456: 446: 443: 439: 435: 434:infect plants 431: 427: 426: 421: 420:TAL effectors 412: 410: 406: 402: 398: 394: 393: 388: 384: 379: 375: 372: 368: 364: 360: 349: 344: 342: 337: 335: 330: 329: 327: 326: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 292: 291: 290: 287:Controversies 286: 285: 280: 279:Designer baby 277: 275: 272: 268: 265: 264: 263: 260: 259: 258: 257: 253: 252: 245: 242: 240: 237: 236: 235: 232: 228: 225: 223: 220: 218: 215: 214: 213: 212:Gene delivery 210: 206: 203: 202: 201: 198: 196: 193: 192: 191: 190: 186: 185: 178: 175: 173: 170: 169: 168: 165: 164: 161: 158: 157: 156: 155: 151: 150: 143: 140: 138: 135: 133: 130: 128: 125: 124: 123: 120: 119: 114: 111: 109: 106: 104: 101: 100: 99: 96: 95: 92: 89: 87: 84: 83: 82: 81: 78: 75: 74: 70: 69: 65: 61: 60: 57: 56: 52: 51: 47: 43: 42: 35: 31: 27: 21: 2665: 2656: 2647: 2612: 2608: 2598: 2571: 2567: 2556: 2521: 2517: 2507: 2472: 2468: 2458: 2413: 2409: 2399: 2374: 2370: 2364: 2329: 2325: 2265: 2261: 2251: 2206: 2202: 2192: 2160:(8): 697–8. 2157: 2153: 2143: 2098: 2094: 2084: 2049: 2045: 1997: 1993: 1983: 1956: 1952: 1942: 1907: 1903: 1893: 1848: 1844: 1834: 1789: 1785: 1775: 1740: 1736: 1726: 1691: 1687: 1677: 1642: 1636: 1601: 1597: 1549: 1545: 1497: 1493: 1483: 1450: 1446: 1433: 1400: 1396: 1389: 1356: 1352: 1319:(8): 695–6. 1316: 1312: 1256: 1252: 1207:(8): 731–4. 1204: 1200: 1155:(2): 143–8. 1152: 1148: 1097: 1093: 1033: 1029: 1019: 984: 980: 970: 935: 931: 921: 878: 874: 864: 823: 819: 813: 772: 768: 762: 737: 733: 727: 697:(2): 135–6. 694: 690: 663:Meganuclease 641: 624: 617: 612: 609: 592: 590: 575: 560: 557:Applications 549: 546: 536: 533: 507: 504:Transfection 469: 452: 423: 418: 399:. Alongside 390: 383:gene editing 371:TAL effector 362: 358: 357: 274:Gene therapy 254:Applications 227:Transduction 222:Transfection 53: 2691:E-TALEN.org 1910:(1): 20–7. 1403:(1): 74–9. 1100:(12): e82. 514:transfected 489:zinc finger 425:Xanthomonas 405:CRISPR/Cas9 2707:Categories 740:: 419–36. 674:References 577:C. elegans 530:Mechanisms 442:nucleotide 438:amino acid 432:when they 195:Techniques 167:Regulation 127:Maize/corn 2332:(3): e3. 805:206522347 586:zebrafish 518:expressed 476:annealing 459:nucleases 2639:24285304 2590:26183927 2548:26061646 2499:23546300 2450:24236034 2410:PLOS ONE 2391:25245091 2356:23344620 2302:24523878 2262:PLOS ONE 2243:25733846 2184:21822241 2135:23555929 2095:PLOS ONE 2076:25971621 2052:: 7085. 2024:24871200 2000:: 3831. 1975:24851712 1934:23124327 1885:21625552 1845:PLOS ONE 1826:21625585 1786:PLOS ONE 1767:21459844 1718:21421566 1669:22328436 1628:21248753 1576:21813459 1524:20447404 1475:22079561 1467:17603476 1425:14334237 1417:21131970 1381:28802632 1373:21822242 1335:21822240 1291:21700836 1231:21738127 1177:53549397 1169:21179091 1124:21493687 1070:21262818 1011:20699274 962:20660643 932:Genetics 913:25632877 881:: 8150. 848:19933106 797:19933107 754:19400638 711:21301438 647:See also 593:in vitro 564:biofuels 510:plasmids 389:editing 378:nuclease 86:Bacteria 46:a series 44:Part of 2630:3936731 2539:4817890 2490:3677309 2441:3827243 2418:Bibcode 2347:3381595 2293:3921256 2270:Bibcode 2234:4386332 2211:Bibcode 2175:3154023 2126:3610929 2103:Bibcode 2054:Bibcode 2002:Bibcode 1925:3532252 1876:3098256 1853:Bibcode 1817:3098229 1794:Bibcode 1758:3152341 1709:3141260 1619:3084533 1567:3241638 1515:2885538 1282:3489282 1261:Bibcode 1253:Science 1222:3152587 1115:3130291 1061:3038751 1038:Bibcode 1002:3017587 953:2942870 904:4311247 883:Bibcode 856:6648530 828:Bibcode 820:Science 777:Bibcode 769:Science 613:in situ 392:in situ 385:or for 187:Process 160:History 137:Soybean 113:Insects 103:Mammals 98:Animals 91:Viruses 2637:  2627:  2588:  2546:  2536:  2497:  2487:  2448:  2438:  2389:  2354:  2344:  2300:  2290:  2241:  2231:  2182:  2172:  2133:  2123:  2074:  2022:  1973:  1932:  1922:  1883:  1873:  1824:  1814:  1765:  1755:  1716:  1706:  1667:  1657:  1626:  1616:  1574:  1564:  1522:  1512:  1473:  1465:  1423:  1415:  1379:  1371:  1333:  1289:  1279:  1229:  1219:  1175:  1167:  1122:  1112:  1068:  1058:  1009:  999:  960:  950:  911:  901:  854:  846:  803:  795:  752:  719:304571 717:  709:  668:CRISPR 631:CRISPR 603:, and 542:indels 387:genome 365:) are 244:CRISPR 142:Potato 122:Plants 71:  2675:(PDF) 1471:S2CID 1443:(PDF) 1421:S2CID 1377:S2CID 1173:S2CID 852:S2CID 801:S2CID 715:S2CID 363:TALEN 239:TALEN 2635:PMID 2586:PMID 2544:PMID 2495:PMID 2446:PMID 2387:PMID 2352:PMID 2298:PMID 2239:PMID 2180:PMID 2131:PMID 2072:PMID 2020:PMID 1971:PMID 1930:PMID 1881:PMID 1822:PMID 1763:PMID 1714:PMID 1665:PMID 1655:ISBN 1624:PMID 1572:PMID 1520:PMID 1463:PMID 1413:PMID 1369:PMID 1331:PMID 1287:PMID 1227:PMID 1165:PMID 1120:PMID 1066:PMID 1007:PMID 958:PMID 909:PMID 844:PMID 793:PMID 750:PMID 707:PMID 627:ZFNs 570:and 455:FokI 403:and 267:food 132:Rice 108:Fish 34:3UGM 30:1FOK 2718:DNA 2625:PMC 2617:doi 2576:doi 2534:PMC 2526:doi 2485:PMC 2477:doi 2436:PMC 2426:doi 2379:doi 2342:PMC 2334:doi 2288:PMC 2278:doi 2229:PMC 2219:doi 2207:112 2170:PMC 2162:doi 2121:PMC 2111:doi 2062:doi 2010:doi 1961:doi 1920:PMC 1912:doi 1908:161 1871:PMC 1861:doi 1812:PMC 1802:doi 1753:PMC 1745:doi 1704:PMC 1696:doi 1647:doi 1614:PMC 1606:doi 1562:PMC 1554:doi 1510:PMC 1502:doi 1498:400 1455:doi 1405:doi 1361:doi 1321:doi 1277:PMC 1269:doi 1257:333 1217:PMC 1209:doi 1157:doi 1110:PMC 1102:doi 1056:PMC 1046:doi 1034:108 997:PMC 989:doi 948:PMC 940:doi 936:186 899:PMC 891:doi 836:doi 824:326 785:doi 773:326 742:doi 699:doi 484:PCR 26:PDB 2709:: 2655:. 2633:. 2623:. 2613:42 2611:. 2607:. 2584:. 2572:75 2570:. 2566:. 2542:. 2532:. 2522:23 2520:. 2516:. 2493:. 2483:. 2473:21 2471:. 2467:. 2444:. 2434:. 2424:. 2412:. 2408:. 2385:. 2375:14 2373:. 2350:. 2340:. 2328:. 2324:. 2310:^ 2296:. 2286:. 2276:. 2264:. 2260:. 2237:. 2227:. 2217:. 2205:. 2201:. 2178:. 2168:. 2158:29 2156:. 2152:. 2129:. 2119:. 2109:. 2097:. 2093:. 2070:. 2060:. 2048:. 2044:. 2032:^ 2018:. 2008:. 1996:. 1992:. 1969:. 1957:12 1955:. 1951:. 1928:. 1918:. 1906:. 1902:. 1879:. 1869:. 1859:. 1847:. 1843:. 1820:. 1810:. 1800:. 1788:. 1784:. 1761:. 1751:. 1741:39 1739:. 1735:. 1712:. 1702:. 1692:39 1690:. 1686:. 1663:. 1653:. 1622:. 1612:. 1602:29 1600:. 1596:. 1584:^ 1570:. 1560:. 1550:39 1548:. 1544:. 1532:^ 1518:. 1508:. 1496:. 1492:. 1469:. 1461:. 1451:25 1449:. 1445:. 1419:. 1411:. 1399:. 1375:. 1367:. 1357:29 1355:. 1343:^ 1329:. 1317:29 1315:. 1311:. 1299:^ 1285:. 1275:. 1267:. 1255:. 1251:. 1239:^ 1225:. 1215:. 1205:29 1203:. 1199:. 1185:^ 1171:. 1163:. 1153:29 1151:. 1132:^ 1118:. 1108:. 1098:39 1096:. 1092:. 1078:^ 1064:. 1054:. 1044:. 1032:. 1028:. 1005:. 995:. 985:39 983:. 979:. 956:. 946:. 934:. 930:. 907:. 897:. 889:. 877:. 873:. 850:. 842:. 834:. 822:. 799:. 791:. 783:. 771:. 748:. 738:48 736:. 713:. 705:. 695:29 693:. 681:^ 599:, 580:, 411:. 48:on 32:, 28:: 2677:. 2641:. 2619:: 2592:. 2578:: 2550:. 2528:: 2501:. 2479:: 2452:. 2428:: 2420:: 2414:8 2393:. 2381:: 2358:. 2336:: 2330:1 2304:. 2280:: 2272:: 2266:9 2245:. 2221:: 2213:: 2186:. 2164:: 2137:. 2113:: 2105:: 2099:8 2078:. 2064:: 2056:: 2050:6 2026:. 2012:: 2004:: 1998:5 1977:. 1963:: 1936:. 1914:: 1887:. 1863:: 1855:: 1849:6 1828:. 1804:: 1796:: 1790:6 1769:. 1747:: 1720:. 1698:: 1671:. 1649:: 1630:. 1608:: 1578:. 1556:: 1526:. 1504:: 1477:. 1457:: 1427:. 1407:: 1401:8 1383:. 1363:: 1337:. 1323:: 1293:. 1271:: 1263:: 1233:. 1211:: 1179:. 1159:: 1126:. 1104:: 1072:. 1048:: 1040:: 1013:. 991:: 964:. 942:: 915:. 893:: 885:: 879:5 858:. 838:: 830:: 807:. 787:: 779:: 756:. 744:: 721:. 701:: 361:( 347:e 340:t 333:v

Index


PDB
1FOK
3UGM
a series
Genetic engineering

Genetically modified organisms
Bacteria
Viruses
Animals
Mammals
Fish
Insects
Plants
Maize/corn
Rice
Soybean
Potato
History
Regulation
Substantial equivalence
Cartagena Protocol on Biosafety
Techniques
Molecular cloning
Recombinant DNA
Gene delivery
Transformation
Transfection
Transduction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑