Knowledge

Triple-alpha process

Source 📝

568:, carbon and oxygen accumulate in the core as helium is burned, while hydrogen burning shifts to further-out layers, resulting in an intermediate helium shell. However, the boundaries of these shells do not shift outward at the same rate due to differing critical temperatures and temperature sensitivities for hydrogen and helium burning. When the temperature at the inner boundary of the helium shell is no longer high enough to sustain helium burning, the core contracts and heats up, while the hydrogen shell (and thus the star's radius) expand outward. Core contraction and shell expansion continue until the core becomes hot enough to reignite the surrounding helium. This process continues cyclically – with a period on the order of 1000 years – and stars undergoing this process have periodically variable luminosity. These stars also lose material from their outer layers in a 1828: 63: 1900: 27: 1864: 1888: 1840: 1876: 1852: 560:
is once more established and the star begins to "burn" helium at its core and hydrogen in a spherical layer above the core. The star enters a steady helium-burning phase which lasts about 10% of the time it spent on the main sequence (the Sun is expected to burn helium at its core for about a billion
690:
An excited state of the C nucleus exists a little (0.3193 MeV) above the energy level of Be + He. This is necessary because the ground state of C is 7.3367 MeV below the energy of Be + He; a Be nucleus and a He nucleus cannot reasonably fuse directly into a ground-state C nucleus. However,
620:
who, in 1953, used the abundance of carbon-12 in the universe as evidence for the existence of a carbon-12 resonance. The only way Hoyle could find that would produce an abundance of both carbon and oxygen was through a triple-alpha process with a carbon-12 resonance near 7.68 MeV, which would
531:
pressure. The entire degenerate core is at the same temperature and pressure, so when its density becomes high enough, fusion via the triple-alpha process rate starts throughout the core. The core is unable to expand in response to the increased energy production until the pressure is high enough
695:
of their collision to fuse into the excited C (kinetic energy supplies the additional 0.3193 MeV necessary to reach the excited state), which can then transition to its stable ground state. According to one calculation, the energy level of this excited state must be between about 7.3 MeV
976:
Pian, E.; d'Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; d'Elia, V.; Fynbo, J. P. U.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Grado, A.; Greco, G.; Hjorth, J.; Kouveliotou, C.; Levan, A.; Limatola, L.; Malesani, D.; Mazzali, P. A.; Melandri, A.;
628:
and said that there had to be a resonance of 7.68 MeV in the carbon-12 nucleus. (There had been reports of an excited state at about 7.5 MeV.) Fred Hoyle's audacity in doing this is remarkable, and initially, the nuclear physicists in the lab were skeptical. Finally, a junior physicist,
408:, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process. This creates a situation in which stellar nucleosynthesis produces large amounts of carbon and oxygen, but only a small fraction of those elements are converted into 612:
had calculated the reaction rate for Be, C, and O nucleosynthesis taking this resonance into account. However, Salpeter calculated that red giants burned helium at temperatures of 2·10 K or higher, whereas other recent work hypothesized temperatures as low as 1.1·10 K for the core of a red
696:
and 7.9 MeV to produce sufficient carbon for life to exist, and must be further "fine-tuned" to between 7.596 MeV and 7.716 MeV in order to produce the abundant level of C observed in nature. The Hoyle state has been measured to be about 7.65 MeV above the ground state of C.
637:
that was not being used. Hoyle was back in Cambridge when Fowler's lab discovered a carbon-12 resonance near 7.65 MeV a few months later, validating his prediction. The nuclear physicists put Hoyle as first author on a paper delivered by Whaling at the summer meeting of the
128:
to fuse in its core, it begins to contract and heat up. If the central temperature rises to 10 K, six times hotter than the Sun's core, alpha particles can fuse fast enough to get past the beryllium-8 barrier and produce significant amounts of stable carbon-12.
730:
hypothesis, life can only evolve in the minority of universes where the fundamental constants happen to be fine-tuned to support the existence of life. Other scientists reject the hypothesis of the multiverse on account of the lack of independent evidence.
699:
In the reaction C + He → O, there is an excited state of oxygen which, if it were slightly higher, would provide a resonance and speed up the reaction. In that case, insufficient carbon would exist in nature; almost all of it would have converted to
454:
before its actual observation, based on the physical necessity for it to exist, in order for carbon to be formed in stars. The prediction and then discovery of this energy resonance and process gave very significant support to Hoyle's hypothesis of
507:
The triple-alpha steps are strongly dependent on the temperature and density of the stellar material. The power released by the reaction is approximately proportional to the temperature to the 40th power, and the density squared. In contrast, the
438:
Ordinarily, the probability of the triple-alpha process is extremely small. However, the beryllium-8 ground state has almost exactly the energy of two alpha particles. In the second step, Be + He has almost exactly the energy of an
977:
Møller, P.; Nicastro, L.; Palazzi, E.; Piranomonte, S.; Rossi, A.; Salafia, O. S.; Selsing, J.; et al. (2017). "Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger".
556:, although no effects will be immediately observed at the surface, as the whole energy is used up to lift the core from the degenerate to normal, gaseous state. Since the core is no longer degenerate, 516:
at about the 17th power of the temperature, and both are linearly proportional to the density. This strong temperature dependence has consequences for the late stage of stellar evolution, the
657:
reaction channel was not observed, and this meant the state must be a 0+ state. This state completely suppresses single gamma emission, since single gamma emission must carry away at least 1
616:
Salpeter's paper mentioned in passing the effects that unknown resonances in carbon-12 would have on his calculations, but the author never followed up on them. It was instead astrophysicist
124:, which nearly always decays back into three alpha particles, but once in about 2421.3 times releases energy and changes into the stable base form of carbon-12. When a star runs out of 450:
greatly increases the probability that an incoming alpha particle will combine with beryllium-8 to form carbon. The existence of this resonance was predicted by
532:
to lift the degeneracy. As a consequence, the temperature increases, causing an increased reaction rate in a positive feedback cycle that becomes a
463:
has been cited to explain the fact that nuclear resonances are sensitively arranged to create large amounts of carbon and oxygen in the universe.
604:. Based on known resonances, by 1952 it seemed impossible for ordinary stars to produce carbon as well as any heavier element. Nuclear physicist 1466: 78:
fusion processes at different temperatures (T). The dashed line shows the combined energy generation of the PP and CNO processes within a star.
1331:
Livio, M.; Hollowell, D.; Weiss, A.; Truran, J. W. (27 July 1989). "The anthropic significance of the existence of an excited state of C".
665:
from an excited 0+ state is possible because their combined spins (0) can couple to a reaction that has a change in angular momentum of 0.
1563: 679:
Carbon is a necessary component of all known life. C, a stable isotope of carbon, is abundantly produced in stars due to three factors:
295:
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy:
1945: 1072: 1047: 819: 772: 1414: 947: 1278:
Uzan, Jean-Philippe (April 2003). "The fundamental constants and their variation: observational and theoretical status".
459:, which posited that all chemical elements had originally been formed from hydrogen, the true primordial substance. The 1121: 922: 509: 90: 67: 1827: 642:. A long and fruitful collaboration between Hoyle and Fowler soon followed, with Fowler even coming to Cambridge. 1556: 704:
Some scholars argue the 7.656 MeV Hoyle resonance, in particular, is unlikely to be the product of mere chance.
483:); heavier elements (those beyond Ni) are created mainly by neutron capture. The slow capture of neutrons, the 658: 540:, lasts a matter of seconds but burns 60–80% of the helium in the core. During the core flash, the star's 447: 113: 633:, who was looking for a project decided to look for the resonance. Fowler permitted Whaling to use an old 487:, produces about half of elements beyond iron. The other half are produced by rapid neutron capture, the 112:, unless within that time a third alpha particle fuses with the beryllium-8 nucleus to produce an excited 803: 1088: 687:
nucleus is four orders of magnitude larger than the time for two He nuclei (alpha particles) to scatter.
1818: 1549: 639: 1925: 421: 1143:
Kragh, Helge (2010) When is a prediction anthropic? Fred Hoyle and the 7.65 MeV carbon resonance.
1920: 1715: 1680: 1660: 1615: 634: 565: 557: 492: 456: 401: 430:. One consequence of this is that no significant amount of carbon was produced in the Big Bang. 1710: 1700: 1112:
Carroll, Bradley W.; Ostlie, Dale A. (2010). "Thermal pulses and the asymptotic giant branch".
605: 1204: 1705: 1517: 1390: 1340: 1297: 1249: 1238:
Cook, CW; Fowler, W.; Lauritsen, C.; Lauritsen, T. (1957). "12B, 12C, and the Red Giants".
1212: 1200: 1165: 996: 859: 714: 889:, Morten Hjorth-Jensen, Department of Physics and Center of Mathematics for Applications, 8: 1892: 1759: 1650: 1630: 1625: 914: 789: 727: 722:
argument. Instead, some scientists believe that different universes, portions of a vast "
674: 496: 460: 389:, which also is highly unstable, and decays back into smaller nuclei with a half-life of 1521: 1394: 1344: 1301: 1253: 1169: 1000: 871: 863: 1935: 1880: 1868: 1507: 1448: 1406: 1356: 1313: 1287: 1020: 986: 894: 890: 844: 719: 573: 426:
The triple-alpha process is ineffective at the pressures and temperatures early in the
645:
The final reaction product lies in a 0+ state (spin 0 and positive parity). Since the
1640: 1610: 1580: 1317: 1117: 1068: 1043: 1012: 918: 825: 815: 768: 528: 1410: 911:
Astronomy through the ages the story of the human attempt to understand the universe
104:, which is highly unstable, and decays back into smaller nuclei with a half-life of 1844: 1670: 1635: 1620: 1572: 1525: 1440: 1398: 1360: 1348: 1305: 1257: 1208: 1173: 1024: 1004: 867: 709: 581: 545: 524: 1940: 1930: 1780: 1675: 1645: 1240: 662: 630: 541: 533: 527:, the helium accumulating in the core is prevented from further collapse only by 121: 1375: 788:
Bohan, Elise; Dinwiddie, Robert; Challoner, Jack; Stuart, Colin; Harvey, Derek;
412:
and heavier elements. Oxygen and carbon are the main "ash" of helium-4 burning.
1904: 1832: 1801: 1785: 1402: 939: 909:
Wilson, Robert (1997). "Chapter 11: The Stars – their Birth, Life, and Death".
811: 692: 654: 609: 512:
produces energy at a rate proportional to the fourth power of temperature, the
400:
Fusing with additional helium nuclei can create heavier elements in a chain of
47: 39: 1309: 1914: 1690: 1605: 1471: 829: 807: 440: 405: 20: 1261: 708:
argued in 1982 that the Hoyle resonance was evidence of a "superintellect";
471:
With further increases of temperature and density, fusion processes produce
62: 1856: 1764: 1016: 943: 793: 569: 537: 86: 797: 653:
were expected to be seen. However, when experiments were carried out, the
649:
was predicted to be either a 0+ or a 2+ state, electron–positron pairs or
1590: 884: 726:", have different fundamental constants: according to this controversial 684: 646: 597: 443: 178: 101: 1452: 1444: 1144: 1008: 796:; Hubbard, Ben; Parker, Phillip; et al. (Writers) (February 2016). 1741: 1595: 1292: 1156:
Salpeter, E. E. (1952). "Nuclear Reactions in Stars Without Hydrogen".
747: 723: 705: 617: 549: 451: 26: 1899: 1736: 1728: 1720: 1685: 1600: 1352: 748:
Appenzeller; Harwit; Kippenhahn; Strittmatter; Trimble, eds. (1998).
650: 593: 577: 517: 513: 488: 484: 476: 386: 342: 300: 243: 117: 94: 71: 1541: 1530: 1495: 1177: 991: 843:
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017).
601: 427: 321: 138: 125: 43: 1512: 1467:"Stars burning strangely make life in the multiverse more likely" 1067:(2nd ed.). Addison-Wesley, San Francisco. pp. 461–462. 1042:(2nd ed.). Addison-Wesley, San Francisco. pp. 312–313. 625: 472: 1228:, Simon Mitton, Cambridge University Press, 2011, pages 205–209. 1065:
An Introduction to the Theory of Stellar Structure and Evolution
975: 553: 363: 264: 82: 51: 1116:(2nd ed.). Cambridge University Press. pp. 168–173. 787: 1237: 621:
also eliminate the discrepancy in Salpeter's calculations.
480: 409: 1851: 1056: 962:
Fred Hoyle, "The Universe: Past and Present Reflections."
385:
Nuclear fusion reactions of helium with hydrogen produces
1330: 19:"Helium burning" redirects here. Not to be confused with 16:
Nuclear fusion reaction chain converting helium to carbon
756: 100:
Nuclear fusion reaction of two helium-4 nuclei produces
1031: 938: 1496:"The fine-tuning of the universe for intelligent life" 502: 1816: 1500:
Publications of the Astronomical Society of Australia
466: 292:
The net energy release of the process is 7.275 MeV.
1431:Peacock, John (2006). "A Universe Tuned for Life". 1191:Salpeter, E. E. (2002). "A Generalist Looks Back". 842: 763:Carroll, Bradley W. & Ostlie, Dale A. (2007). 845:"The NUBASE2016 evaluation of nuclear properties" 600:having resonances with slightly more energy than 1912: 668: 592:The triple-alpha process is highly dependent on 57: 765:An Introduction to Modern Stellar Astrophysics 1557: 1111: 1038:Carroll, Bradley W.; Ostlie, Dale A. (2006). 1037: 762: 564:In higher mass stars, which evolve along the 1273: 1271: 1105: 1564: 1550: 1373: 741: 1529: 1511: 1291: 1268: 990: 836: 608:had noted the beryllium-8 resonance, and 1383:Progress in Particle and Nuclear Physics 1190: 1155: 1149: 1139: 1137: 1135: 1133: 1062: 61: 25: 1430: 66:Comparison of the energy output (ε) of 1913: 1493: 1213:10.1146/annurev.astro.40.060401.093901 1114:An Introduction to Modern Astrophysics 1040:An Introduction to Modern Astrophysics 908: 1571: 1545: 1145:http://philsci-archive.pitt.edu/5332/ 1130: 966:, November, 1981. pp. 8–12 536:reaction. This process, known as the 1277: 949:The Anthropic Cosmological Principle 415: 30:Overview of the triple-alpha process 1374:Freer, M.; Fynbo, H. O. U. (2014). 969: 893:, N-0316 Oslo, Norway: 9 May 2011, 752:(3rd ed.). New York: Springer. 503:Reaction rate and stellar evolution 13: 781: 14: 1957: 767:. Addison Wesley, San Francisco. 467:Nucleosynthesis of heavy elements 1898: 1886: 1874: 1862: 1850: 1838: 1826: 1420:from the original on 2022-07-18. 1487: 1459: 1424: 1367: 1324: 1231: 1219: 1184: 1081: 561:years after the helium flash). 956: 931: 902: 878: 624:Hoyle went to Fowler's lab at 1: 1946:Stellar astrophysics concepts 1226:Fred Hoyle, A Life in Science 1093:faculty.wcas.northwestern.edu 872:10.1088/1674-1137/41/3/030001 734: 669:Improbability and fine-tuning 576:, which ultimately becomes a 433: 58:Triple-alpha process in stars 1193:Annu. Rev. Astron. Astrophys 587: 523:For lower mass stars on the 510:proton–proton chain reaction 95:carbon–nitrogen–oxygen cycle 91:proton–proton chain reaction 89:of stars as a result of the 7: 548:which is comparable to the 544:can reach approximately 10 491:, which probably occurs in 10: 1962: 1403:10.1016/j.ppnp.2014.06.001 672: 419: 18: 1794: 1773: 1750: 1659: 1579: 1310:10.1103/RevModPhys.75.403 1280:Reviews of Modern Physics 1158:The Astrophysical Journal 806:(1st American ed.). 640:American Physical Society 629:Ward Whaling, fresh from 42:reactions by which three 683:The decay lifetime of a 659:unit of angular momentum 493:core-collapse supernovae 422:Big Bang nucleosynthesis 1616:Double electron capture 1494:Barnes, Luke A (2012). 1262:10.1103/PhysRev.107.508 1205:2002ARA&A..40....1S 1063:Prialnik, Dina (2006). 964:Engineering and Science 635:Van de Graaff generator 580:as the star enters the 566:asymptotic giant branch 558:hydrostatic equilibrium 479:(which decays later to 457:stellar nucleosynthesis 402:stellar nucleosynthesis 50:) are transformed into 1376:"The Hoyle state in C" 79: 31: 606:William Alfred Fowler 65: 29: 1089:"The End Of The Sun" 915:Taylor & Francis 886:The carbon challenge 790:Wragg-Sykes, Rebecca 750:Astrophysics Library 715:The Cosmic Landscape 497:neutron star mergers 199: (−0.0918 MeV) 36:triple-alpha process 1760:Photodisintegration 1681:Proton–proton chain 1651:Spontaneous fission 1631:Isomeric transition 1626:Internal conversion 1522:2012PASA...29..529B 1445:10.1511/2006.58.168 1395:2014PrPNP..78....1F 1345:1989Natur.340..281L 1302:2003RvMP...75..403U 1254:1957PhRv..107..508C 1170:1952ApJ...115..326S 1009:10.1038/nature24298 1001:2017Natur.551...67P 864:2017ChPhC..41c0001A 675:Fine-tuned universe 529:electron degeneracy 461:anthropic principle 284: (+7.367 MeV) 85:accumulates in the 1475:. 1 September 2016 1433:American Scientist 891:University of Oslo 720:intelligent design 691:Be and He use the 574:radiation pressure 546:solar luminosities 80: 32: 1814: 1813: 1810: 1809: 1641:Positron emission 1611:Double beta decay 1573:Nuclear processes 1339:(6231): 281–284. 1074:978-0-8053-0402-2 1049:978-0-8053-0402-2 852:Chinese Physics C 821:978-1-4654-5443-0 774:978-0-8053-0348-3 542:energy production 416:Primordial carbon 288: 287: 1953: 1903: 1902: 1891: 1890: 1889: 1879: 1878: 1877: 1867: 1866: 1865: 1855: 1854: 1843: 1842: 1841: 1831: 1830: 1822: 1771: 1770: 1671:Deuterium fusion 1636:Neutron emission 1621:Electron capture 1566: 1559: 1552: 1543: 1542: 1536: 1535: 1533: 1515: 1491: 1485: 1484: 1482: 1480: 1463: 1457: 1456: 1428: 1422: 1421: 1419: 1380: 1371: 1365: 1364: 1353:10.1038/340281a0 1328: 1322: 1321: 1295: 1275: 1266: 1265: 1235: 1229: 1223: 1217: 1216: 1188: 1182: 1181: 1153: 1147: 1141: 1128: 1127: 1109: 1103: 1102: 1100: 1099: 1085: 1079: 1078: 1060: 1054: 1053: 1035: 1029: 1028: 994: 973: 967: 960: 954: 953: 935: 929: 928: 906: 900: 882: 876: 875: 849: 840: 834: 833: 785: 779: 778: 760: 754: 753: 745: 718:rejects Hoyle's 710:Leonard Susskind 582:planetary nebula 525:red-giant branch 396: 394: 380: 378: 377: 370: 369: 360: 358: 357: 350: 349: 339: 337: 336: 329: 328: 318: 316: 315: 308: 307: 281: 279: 278: 271: 270: 261: 259: 258: 251: 250: 240: 239: 238: 231: 230: 221: 220: 219: 212: 211: 196: 194: 193: 186: 185: 175: 174: 173: 166: 165: 156: 154: 153: 146: 145: 134: 133: 111: 109: 1961: 1960: 1956: 1955: 1954: 1952: 1951: 1950: 1926:Nucleosynthesis 1911: 1910: 1909: 1897: 1887: 1885: 1875: 1873: 1863: 1861: 1849: 1839: 1837: 1825: 1817: 1815: 1806: 1790: 1781:Neutron capture 1769: 1752: 1746: 1663:nucleosynthesis 1662: 1655: 1646:Proton emission 1601:Gamma radiation 1582: 1575: 1570: 1540: 1539: 1531:10.1071/as12015 1492: 1488: 1478: 1476: 1465: 1464: 1460: 1429: 1425: 1417: 1378: 1372: 1368: 1329: 1325: 1276: 1269: 1241:Physical Review 1236: 1232: 1224: 1220: 1189: 1185: 1154: 1150: 1142: 1131: 1124: 1110: 1106: 1097: 1095: 1087: 1086: 1082: 1075: 1061: 1057: 1050: 1036: 1032: 985:(7678): 67–70. 974: 970: 961: 957: 936: 932: 925: 913:. Basingstoke: 907: 903: 883: 879: 847: 841: 837: 822: 804:David Christian 786: 782: 775: 761: 757: 746: 742: 737: 677: 671: 663:Pair production 631:Rice University 590: 505: 469: 436: 424: 418: 392: 390: 376: 374: 373: 372: 368: 366: 365: 364: 362: 356: 354: 353: 352: 348: 345: 344: 343: 341: 335: 333: 332: 331: 327: 324: 323: 322: 320: 314: 312: 311: 310: 306: 303: 302: 301: 299: 277: 275: 274: 273: 269: 267: 266: 265: 263: 257: 255: 254: 253: 249: 246: 245: 244: 242: 237: 235: 234: 233: 229: 226: 225: 224: 223: 218: 216: 215: 214: 210: 207: 206: 205: 204: 192: 190: 189: 188: 184: 181: 180: 179: 177: 172: 170: 169: 168: 164: 161: 160: 159: 158: 152: 150: 149: 148: 144: 141: 140: 139: 137: 107: 105: 60: 48:alpha particles 24: 17: 12: 11: 5: 1959: 1949: 1948: 1943: 1938: 1933: 1928: 1923: 1921:Nuclear fusion 1908: 1907: 1895: 1883: 1871: 1859: 1847: 1835: 1812: 1811: 1808: 1807: 1805: 1804: 1802:(n-p) reaction 1798: 1796: 1792: 1791: 1789: 1788: 1786:Proton capture 1783: 1777: 1775: 1768: 1767: 1762: 1756: 1754: 1748: 1747: 1745: 1744: 1739: 1734: 1726: 1718: 1713: 1708: 1703: 1698: 1693: 1688: 1683: 1678: 1673: 1667: 1665: 1657: 1656: 1654: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1603: 1598: 1593: 1587: 1585: 1577: 1576: 1569: 1568: 1561: 1554: 1546: 1538: 1537: 1506:(4): 529–564. 1486: 1458: 1439:(2): 168–170. 1423: 1366: 1323: 1293:hep-ph/0205340 1286:(2): 403–455. 1267: 1248:(2): 508–515. 1230: 1218: 1183: 1178:10.1086/145546 1148: 1129: 1122: 1104: 1080: 1073: 1055: 1048: 1030: 968: 955: 930: 923: 901: 877: 835: 820: 814:. p. 58. 802:. Foreword by 780: 773: 755: 739: 738: 736: 733: 702: 701: 697: 693:kinetic energy 688: 673:Main article: 670: 667: 655:gamma emission 610:Edwin Salpeter 589: 586: 504: 501: 468: 465: 435: 432: 420:Main article: 417: 414: 383: 382: 375: 367: 355: 346: 334: 325: 313: 304: 290: 289: 286: 285: 282: 276: 268: 256: 247: 236: 227: 217: 208: 201: 200: 197: 191: 182: 171: 162: 151: 142: 59: 56: 40:nuclear fusion 15: 9: 6: 4: 3: 2: 1958: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1918: 1916: 1906: 1901: 1896: 1894: 1884: 1882: 1872: 1870: 1860: 1858: 1853: 1848: 1846: 1836: 1834: 1829: 1824: 1823: 1820: 1803: 1800: 1799: 1797: 1793: 1787: 1784: 1782: 1779: 1778: 1776: 1772: 1766: 1763: 1761: 1758: 1757: 1755: 1749: 1743: 1740: 1738: 1735: 1733: 1731: 1727: 1725: 1723: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1668: 1666: 1664: 1658: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1606:Cluster decay 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1588: 1586: 1584: 1578: 1574: 1567: 1562: 1560: 1555: 1553: 1548: 1547: 1544: 1532: 1527: 1523: 1519: 1514: 1509: 1505: 1501: 1497: 1490: 1474: 1473: 1472:New Scientist 1468: 1462: 1454: 1450: 1446: 1442: 1438: 1434: 1427: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1377: 1370: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1327: 1319: 1315: 1311: 1307: 1303: 1299: 1294: 1289: 1285: 1281: 1274: 1272: 1263: 1259: 1255: 1251: 1247: 1243: 1242: 1234: 1227: 1222: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1179: 1175: 1171: 1167: 1163: 1159: 1152: 1146: 1140: 1138: 1136: 1134: 1125: 1123:9780521866040 1119: 1115: 1108: 1094: 1090: 1084: 1076: 1070: 1066: 1059: 1051: 1045: 1041: 1034: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 993: 988: 984: 980: 972: 965: 959: 951: 950: 945: 941: 937:For example, 934: 926: 924:9780203212738 920: 916: 912: 905: 898: 897: 892: 888: 887: 881: 873: 869: 865: 861: 858:(3): 030001. 857: 853: 846: 839: 831: 827: 823: 817: 813: 809: 805: 801: 800: 795: 794:Chrisp, Peter 791: 784: 776: 770: 766: 759: 751: 744: 740: 732: 729: 725: 721: 717: 716: 711: 707: 698: 694: 689: 686: 682: 681: 680: 676: 666: 664: 660: 656: 652: 648: 643: 641: 636: 632: 627: 622: 619: 614: 611: 607: 603: 599: 595: 585: 583: 579: 575: 571: 567: 562: 559: 555: 551: 547: 543: 539: 535: 530: 526: 521: 519: 515: 511: 500: 498: 494: 490: 486: 482: 478: 474: 464: 462: 458: 453: 449: 445: 442: 441:excited state 431: 429: 423: 413: 411: 407: 406:alpha process 404:known as the 403: 398: 388: 379: 359: 338: 317: 298: 297: 296: 293: 283: 280: 260: 203: 202: 198: 195: 155: 136: 135: 132: 131: 130: 127: 123: 120:, called the 119: 115: 103: 98: 96: 92: 88: 84: 77: 73: 69: 68:proton–proton 64: 55: 53: 49: 45: 41: 37: 28: 22: 21:alpha process 1893:Solar System 1765:Photofission 1729: 1721: 1695: 1503: 1499: 1489: 1477:. Retrieved 1470: 1461: 1436: 1432: 1426: 1386: 1382: 1369: 1336: 1332: 1326: 1283: 1279: 1245: 1239: 1233: 1225: 1221: 1196: 1192: 1186: 1161: 1157: 1151: 1113: 1107: 1096:. Retrieved 1092: 1083: 1064: 1058: 1039: 1033: 982: 978: 971: 963: 958: 948: 944:Frank Tipler 933: 910: 904: 895: 885: 880: 855: 851: 838: 798: 783: 764: 758: 749: 743: 713: 703: 678: 644: 623: 615: 591: 570:stellar wind 563: 538:helium flash 522: 506: 470: 437: 425: 399: 384: 381:(+7.162 MeV) 294: 291: 99: 81: 75: 38:is a set of 35: 33: 1881:Outer space 1869:Spaceflight 1591:Alpha decay 1581:Radioactive 1164:: 326–328. 940:John Barrow 799:Big History 728:fine-tuning 647:Hoyle state 598:beryllium-8 552:of a whole 475:only up to 122:Hoyle state 102:beryllium-8 1915:Categories 1742:rp-process 1716:Si burning 1706:Ne burning 1676:Li burning 1596:Beta decay 1479:15 January 1098:2020-07-29 992:1710.05858 735:References 724:multiverse 706:Fred Hoyle 651:gamma rays 618:Fred Hoyle 572:driven by 550:luminosity 452:Fred Hoyle 434:Resonances 1936:Beryllium 1845:Astronomy 1753:processes 1737:p-process 1711:O burning 1701:C burning 1691:α process 1686:CNO cycle 1513:1112.4647 1318:118684485 830:940282526 594:carbon-12 588:Discovery 578:superwind 518:red-giant 514:CNO cycle 489:r-process 485:s-process 477:nickel-56 448:resonance 395:10 s 387:lithium-5 118:carbon-12 116:state of 114:resonance 110:10 s 1795:Exchange 1732:-process 1724:-process 1696:Triple-α 1453:27858743 1415:Archived 1411:55187000 1389:: 1–23. 1199:: 1–25. 1017:29094694 946:(1986). 808:New York 602:helium-4 473:nuclides 428:Big Bang 126:hydrogen 93:and the 76:Triple-α 46:nuclei ( 44:helium-4 1905:Science 1833:Physics 1819:Portals 1774:Capture 1661:Stellar 1518:Bibcode 1391:Bibcode 1361:4273737 1341:Bibcode 1298:Bibcode 1250:Bibcode 1201:Bibcode 1166:Bibcode 1025:3840214 997:Bibcode 896:Physics 860:Bibcode 700:oxygen. 626:Caltech 613:giant. 584:phase. 534:runaway 520:stage. 446:. This 1941:Carbon 1931:Helium 1451:  1409:  1359:  1333:Nature 1316:  1120:  1071:  1046:  1023:  1015:  979:Nature 921:  828:  818:  771:  554:galaxy 371:γ 272:γ 83:Helium 70:(PP), 52:carbon 1857:Stars 1751:Other 1583:decay 1508:arXiv 1449:JSTOR 1418:(PDF) 1407:S2CID 1379:(PDF) 1357:S2CID 1314:S2CID 1288:arXiv 1021:S2CID 987:arXiv 899:4, 38 848:(PDF) 87:cores 1481:2017 1118:ISBN 1069:ISBN 1044:ISBN 1013:PMID 919:ISBN 826:OCLC 816:ISBN 769:ISBN 596:and 495:and 481:iron 444:of C 410:neon 106:8.19 74:and 34:The 1526:doi 1441:doi 1399:doi 1349:doi 1337:340 1306:doi 1258:doi 1246:107 1209:doi 1174:doi 1162:115 1005:doi 983:551 868:doi 712:in 391:3.7 262:+ 2 72:CNO 1917:: 1524:. 1516:. 1504:29 1502:. 1498:. 1469:. 1447:. 1437:94 1435:. 1413:. 1405:. 1397:. 1387:78 1385:. 1381:. 1355:. 1347:. 1335:. 1312:. 1304:. 1296:. 1284:75 1282:. 1270:^ 1256:. 1244:. 1207:. 1197:40 1195:. 1172:. 1160:. 1132:^ 1091:. 1019:. 1011:. 1003:. 995:. 981:. 942:; 917:. 866:. 856:41 854:. 850:. 824:. 812:DK 810:: 792:; 685:Be 661:. 499:. 397:. 361:+ 340:→ 330:He 319:+ 241:→ 232:He 222:+ 213:Be 187:Be 176:→ 167:He 157:+ 147:He 97:. 54:. 1821:: 1730:s 1722:r 1565:e 1558:t 1551:v 1534:. 1528:: 1520:: 1510:: 1483:. 1455:. 1443:: 1401:: 1393:: 1363:. 1351:: 1343:: 1320:. 1308:: 1300:: 1290:: 1264:. 1260:: 1252:: 1215:. 1211:: 1203:: 1180:. 1176:: 1168:: 1126:. 1101:. 1077:. 1052:. 1027:. 1007:: 999:: 989:: 952:. 927:. 874:. 870:: 862:: 832:. 777:. 393:× 351:O 347:8 326:2 309:C 305:6 252:C 248:6 228:2 209:4 183:4 163:2 143:2 108:× 23:.

Index

alpha process

nuclear fusion
helium-4
alpha particles
carbon

proton–proton
CNO
Helium
cores
proton–proton chain reaction
carbon–nitrogen–oxygen cycle
beryllium-8
resonance
carbon-12
Hoyle state
hydrogen

2
He


4
Be


6
C


γ


6
C


2
He


8
O


γ

lithium-5
stellar nucleosynthesis
alpha process
neon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.